London Labour and the London Poor, volume 2

Mayhew, Henry


Of the Surface-Water of the Streets of London.


THE consideration of what Professor Way has called the "street waters" of the metropolis, is of as great moment as any of those I have previously treated in my details concerning street refuse, whether "mac," mud, or dung. Indeed, water enters largely into the composition of the former substances, while even the street dung is greatly affected by the rain.

The of the street, as regards the street surface-water, are principally the rains. I will consider the amount of surface-water supplied by the rain descending upon the area of the metropolis: upon the roofs of the houses, and the pavement of the streets and roads.

The depth of rain falling in London in the different months, according to the observations and calculations of the most eminent meteorologists, is as follows:—

 Months. Depth of Rain in inches. Quantity of rain falling in the different seasons. Number of days on which rain falls. 
 Royal Society, according to observation. Howard, according to observation. Daniell according to calculation. 
 January .... 1.56 1.907 1.483   14.4 
 February .. 1.45 1.643 0.746 Winter. 15.8 
 March ..... 1.36 1.542 1.440 5.868 12.7 
 April ...... 1.55 1.719 1.786   14.0 
 May ....... 1.67 2.036 1.853 Spring. 15.8 
 June ...... 1.98 1.964 1.830 4.813 11.8 
 July ...... 2.44 2.592 2.516   16.1 
 August .... 2.37 2.134 1.453 Summer. 16.3 
 September . 2.97 1.644 2.193 6.682 12.3 
 October.... 2.46 2.872 2.073   16.2 
 November . 2.58 2.637 2.400 Autumn. 15.0 
 December . 1.65 2.489 2.426 7.441 17.7 
 Totals ..... 24.04 25.179 22.199 24.804 178.1 

The rainfall in London, according to a years' average of the Royal Society's observations, amounts to inches; in it was as high as inches, and in as low as inches. The depth of rain annually falling near London is stated by Mr. Luke Howard to be, on an average of years (-), as much as . inches. Mr. Daniel says that the average annual fall is / inches. The mean of the observations made at Greenwich between the years and was . inches.

The following extract from an account of the "Soft Water Springs of the Surrey Sands," by the Hon. Wm. Napier, is interesting.

The amount of rainfall," says the Author, "is taken from a register kept at the Royal Military College, Sandhurst, from the year 1818 to 1846.

The average fall of the last 15 years, during which time the register appears to have been correctly kept, is 22.64 inches. I consider this to be a very low estimate, however, of the average rainfall over the whole district. The fall on the ranges of the Hindhead must considerably exceed this amount, for I find in White's 'Selborne,' a register for ten years at that place; the greatest fall being in 1782, 50.26 inches, the lowest, in 1788, 22.50 inches, and the average of all 37.58 inches. The elevation of the Hindhead is about 800 feet above mean tide.

With reference to the measurement of rainfall, it is difficult indeed to obtain more than a very approximate idea for a given district of not very great extent; the method of measurement is so uncertain, as liable to be affected by currents of air and evaporation. It is well known that elevated regions attract by condensation more rain than low lands, and yet a rain-gauge placed on the ground will register a greater fall than one placed immediately, and even at a small height, above it.

M. Arago has shown from 12 years' observations at Paris, that the average depth of rain on the terrace of the Observatory was 19.88 inches, while 30 yards lower it was 22.21 inches. Dr. Heberden has shown the rainfall on the top of Westminster Cathedral, during a certain period to be only 12.09 inches, and at a lower level on the top of a house in the neighbourhood to be 22.608 inches. This fact has been observed all over the world, and I can only account for it as arising partly from the greater amount of condensation the nearer the earth's surface, but probably also from currents of air depriving a rain-gauge at a high elevation of its fair share.

The results of the above observations, as to the yearly quantity of rain falling in the metropolis, may be summed up as follows:—

   Inches of Rain falling Annually. 
 Royal Society (average of 20 years) 24.04 
 Mr. Howard (average of 23 years) . 25.179 
 Professor Daniell . . . . 22.199 
 Dr. Heberden . . . . 22.608 
 Mean . . . . . 23.506 

The "mean mean," or average of all the averages here given is within a fraction the average of the Royal Society's Observations for years, and this is the quantity that I shall


adopt in my calculations as to the gross volume of rain falling over the entire area of London.

I have shown, by a detail of the respective districts in the Registrar General's department, that the metropolis contains statute acres. Every square inch of this extent, as garden, arable, or pasture ground, or as road or street, or waste place, or house, or inclosed yard or lawn, of course receives its modicum of rain. Each acre comprises square inches, and we thus find the whole metropolitan area to contain a number of square inches, almost beyond the terms of popular arithmetic, and best expressible in figures.

Area of metropolis in square inches, . Now, multiplying these , millions, , square inches, by , the number of inches of rain falling every year in London, we have the following result:—

Total quantity of rain falling yearly in the metropolis, cubic inches.

Then, as a fraction more than cubic inches of water represent a weight of lbs., and an admeasurement of a gallon, we have the following further results:—

   Weight in pounds and tons. Admeasurement in gallons. 
 Yearly Rainfall in the Metropolis 385,399,721,220 lbs., 38,539,972,122 gals. 
 172,053,447 tons. 

The total quantity of water mechanically supplied every day to the metropolis is said to be in round numbers gallons, the amount being made up in the following manner:—

Daily Mechanical Supply of Water to Metropolis.
 Sources of Supply. Average No. of Gallons per day.   
 New River . . . 14,149,315   
 East London . . 8,829,462   
 Chelsea . . . 3,940,730   
 West Middlesex . . 3,334,054   
 Grand Junction . . 3,532,013   
 Lambeth . . . 3,077,260   
 Southwark and Vauxhall 6,313,716   
 Kent . . . . 1,079,311   
 Hampstead . . . 427,468   
 Total from Companies   44,383,329 
 Artesian Wells . .   8,000,000 
 Land Spring Pumps .   3,000,000 
 Total daily . .   55,383,329 

Yearly Mechanical Supply of Water.
 From Companies . . 16,200,000,000 gals. 
 " Artesian Wells . 1,920,000,000 " 
 " Land Spring Pumps. 1,095,000,000 " 
 Total yearly . . 19,215,000,000 " 

Hence it would appear that the rain falling in London in the course of the year is , the rain-water being to the other as . to ..

Now, in order to ascertain what proportion of the entire volume of rain comes under the denomination of street surface-water, we must deduct from the gross quantity falling the amount said to be caught, and which, in contradistinction to that mechanically to the houses of the metropolis is termed, "catch." This is estimated at gallons per diem, or gallons yearly.

But we must also subtract from the gross quantity of rain-water that which falls on the roofs as well as on the "back premises" and yards of houses, and is carried off directly to the drains without appearing in the streets. This must be a considerable proportion of the whole, since the streets themselves, allowing them to be yards wide on an average, would seem to occupy only about - part of the entire metropolitan area, so that the rain falling upon the public thoroughfares will be but a tithe of the aggregate quantity. But the surface-water of the streets is increased largely by tributary shoots from courts and drainless houses, and hence we may fairly assume the supply to be doubled by such means. At this rate the volume of rain-water annually poured into and upon the metropolitan thoroughfares by natural means, will be between and millions of gallons, or times the quantity that is daily supplied to the houses of the metropolis by mechanical agency.

Still only a part of this quantity appears in the form of surface-water, for a considerable portion of it is absorbed by the ground on which it falls— especially in dry weather—serving either to "lay the dust," or to convert it into mud. Due regard, therefore, being had to all these considerations, we cannot, consistently with that caution which is necessary in all statistical inquiries, estimate the surface-water of the London streets at more than millions of gallons per annum, or times the daily mechanical supply to the houses of the entire metropolis, and which it has been asserted is sufficient to exhaust a lake covering the area of St. James's-park, inches in depth.

The quantity of water annually poured upon the streets in the process of what is termed "watering" amounts, according to the returns of the Board of Health, to gallons per annum! But as this seldom or never assumes the form of street surface-water, it need form no part of the present estimate.

What proportion of the million gallons of "slop dirt" produced annually in the London streets is carried off down the drains, and what proportion is ladled up by the scavengers, I have no means of ascertaining, but that vast quantities run away into the sewers and there form large deposits of mud, everything tends to prove.

Mr. Lovick, on being asked, "How many loads of deposit have been removed in any week in the Surrey and Kent district? What is the total


quantity of deposit removed in any week in the whole of the metropolitan district?" replied:

It is difficult, if not impossible, to ascertain correctly the quantity removed, owing to the variety of forms of sewers and the ever-varying forms assumed by the deposit from the action of varying volumes of water; but I have had observations made on the rate of accumulation, from which I have been enabled roughly to approximate it. In one week, in the Surrey and Kent district, about 1000 yards were removed. In one week, in the whole of the metropolitan districts, including the Surrey and Kent district, between 4000 and 5000 yards were removed; but in portions of the districts these operations were not in progress.

It is not here stated of what the deposit consisted, but there is no doubt that "mac" from the streets formed a great portion of it. Neither is it stated what period of time had sufficed for the accumulation; but it is evident enough that such deposits in the course of a year must be very great.

The street surface-water has been analyzed by Professor Way, and found to yield different constituents according to the different pavements from which it has been discharged. The results are as follows:—

Examination of Samples of Water from Street Drainage, taken from the Gullies in the Sewers during the rain of 6th May, 1850.

The waters were all more or less turbid, and some of them gave off very noxious odours, due principally to the escape of sulphuretted hydrogen gas.

Some of them were alkaline to test-paper, but the majority were neutral.

The following table exhibits the quantity of matter (both in solution and in solid state) contained in an imperial gallon of each specimen. "STREET WATERS. Number of Bottle. NAME OF STREET. Quality of Paving. Quality of Traffic. Residue in an Imperial Gallon. Soluble. Insoluble. Both. Grains. Grains. Grains. 1 Duke-street, Manchester-square . Macadam Middling 92.80 105.95 198.75 7 Foley-street (upper part) . . " Little 95.13 116.30 211.43 5 Gower-street . . . . Granite Middling 126.00 168.30 294.30 12 Norton-street . . . . " Little 123.87 3.00 126.87 3 Hampstead-road (above the canal) Ballasted Great 96.00 84.00 180.00 4 Ferdinand-street . . . " Middling 44.00 48.30 92.30 2 Ferdinand-place . . . " Little 50.80 34.30 85.10 10 Oxford-street . . . . Granite Great 276.23 537.10 813.33 6 " . . . . Macadam " 194.62 390.30 584.92 11 " . . . . Wood " 34.00 5.00 39.00

The influence of the quality of the paving on the composition of the drainage water," says Professor Way, "is well seen in the specimens Nos. 10, 6, and 11, all of them from Oxford-street, the traffic being described as 'Great.'

The quantity of soluble salts is here found to be greatest from the granite matter from the macadamized road, and very inconsiderable from the wood pavement.

The same relation between the granite and macadam pavement seems to hold good in the other instances; the granite for any quality of traffic affording more soluble salts to the water than the macadam.

The ballasted pavement holds a position intermediate between the macadam and the wood, giving more soluble salts than the wood, but less than the macadam.

The quantity of solid (insoluble) matter in the different samples of water, which is a measure of the mechanical waste of the different kinds of pavement, appears also to follow the same relation as that of the soluble salts; that is to say, granite greatest, next macadam, then ballasted, and, lastly, wood pavement, which affords a quantity of solid deposit almost too small to deserve notice.

The influence of the quality of traffic on the composition of the different specimens of drainage is well marked in nearly all cases; the greatest amount of matter both insoluble and soluble being found in the water obtained from the streets of great traffic.

The following table shows the composition of the soluble salts of four specimens, two of them being from the granite, and two from the macadam pavement.

It appears from the table that the granite furnishes little or no magnesia to the water, whilst the quantity from the macadam is considerable.

On the other hand, the quantity of potash is far greatest in the water derived from the granite.

The traffic, as was before seen, has a very great influence on the quantity of the soluble salts. It seems also to influence their composition, for we find no carbonates either in the water from the granite, or that from the macadam, where the traffic is little; whereas, when it is great, carbonates of lime and potash are found in the water in large quantity, a circumstance which is no doubt attributable to the action of decaying organic matter on the mineral substances of the pavement. "ANALYSIS OF THE SOLUBLE MATTER IN DIFFERENT SPECIMENS OF STREET DRAINAGE WATER. Grains in an Imperial Gallon. Great Traffic. Little Traffic. Granite. No. 10. Macadam. No. 6. Granite. No. 12. Macadam. No. 7. Water of combination and some soluble organic matter . . . . . 77.56 29.07 22.72 13.73 Silica . . . . . . . .51 2.81 ... ... Carbonic Acid . . . . . 15.84 12.23 None None Sulphuric Acid . . . . . 36.49 38.23 46.48 34.08 Lime . . . . . . . 6.65 13.38 25.90 16.10 Magnesia . . . . . . None 23.51 Trace 3.50 Oxide of Iron and Alumina, with a little Phosphate of Lime . . . . 2.58 1.25 ... ... Chloride of Potassium . . . . None 10.99 None 2.79 " Sodium . . . . 53.84 44.88 18.44 19.70 Potash . . . . . . . 82.76 18.27 8.75 5.23 Soda . . . . . . . ... ... 1.58 ... 276.23 194.62 123.87 95.13

The insoluble matter in the waters consists of the comminuted material of the road itself, with small fragments of straw and broken dung.

The quantity of soluble salts (especially of salts of potash) in many of these samples of water is quite as great, and in some cases greater, than that found in the samples of sewer-water that have been examined; and it is open to question and further inquiry, whether the water obtained from the street-drainage of a crowded city might not often be of nearly equal value as liquid manure with the sewer-water with which it is at present allowed to mix.

With regard to the "ballasted pavement" mentioned by Professor Way, I may observe that it cannot be considered a -pavement, unless exceptionally. It is formed principally of Thames ballast mixed with gravel, and is used in the construction of what are usually private or pleasure walks, such as the "gravel walks" in the inclosures of some of the parks, and upon , &c.

This object is in collection Temporal Permanent URL
Component ID:
To Cite:
TARC Citation Guide    EndNote
Detailed Rights
View all images in this book
 Title Page
Of the Street-Sellers of Second-Hand Articles
Of the Street-Sellers of Live Animals
Of the Street-Sellers of Mineral Productions and Natural Curiosities
Of the Street-Buyers
Of the Street-Jews
Of the Street-Finders or Collectors
Of the Streets of London
Of the London Chimney-Sweepers
Of the London Chimney-Sweepers
Of the Sweepers of Old, and the Climbing Boys
Of the Chimney-Sweepers of the Present Day
Of the General Characteristics of the Working Chimney-Sweepers
Sweeping of the Chimneys of Steam-Vessels
Of the 'Ramoneur' Company
Of the Brisk and Slack Seasons, and the Casual Trade among the Chimney- Sweepers
Of the 'Leeks' Among the Chimney-Sweepers
Of the Inferior Chimney-Sweepers -- the 'Knullers' and 'Queriers'
Of the Fires of London
Of the Sewermen and Nightmen of London
Of the Wet House-Refuse of London
Of the Means of Removing the Wet House-Refuse
Of the Quantity of Metropolitan Sewage
Of Ancient Sewers
Of the Kinds and Characteristics of Sewers
Of the Subterranean Character of the Sewers
Of the House-Drainage of the Metropolis as Connected With the Sewers
Of the London Street-Drains
Of the Length of the London Sewers and Drains
Of the Cost of Constructing the Sewers and Drains of the Metropolis
Of the Uses of Sewers as a Means of Subsoil Drainage
Of the City Sewerage
Of the Outlets, Ramifications, Etc., of the Sewers
Of the Qualities, Etc., of the Sewage
Of the New Plan of Sewerage
Of the Management of the Sewers and the Late Commissions
Of the Powers and Authority of the Present Commissions of Sewers
Of the Sewers Rate
Of the Cleansing of the Sewers -- Ventilation
Of 'Flushing' and 'Plonging,' and Other Modes of Washing the Sewers
Of the Working Flushermen
Of the Rats in the Sewers
Of the Cesspoolage and Nightmen of the Metropolis
Of the Cesspool System of London
Of the Cesspool and Sewer System of Paris
Of the Emptying of the London Cesspools by Pump and Hose
Statement of a Cesspool-Sewerman
Of the Present Disposal of the Night-Soil
Of the Working Nightmen and the Mode of Work