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Abstract 
 

Chinese Hamster Ovary (CHO) cells are widely used in the biopharmaceutical industry to produce 

therapeutic recombinant proteins such as monoclonal antibodies for myriad clinical 

applications.  Technological advances in the past few decades have greatly increased the 

productivity of CHO cells, allowing for more efficient, robust, and flexible production. Most of 

these advances have come from improved growth and longevity of cells, with perfusion cultures 

being the most extreme case and able to sustain cell densities of over 100 million cells/mL over 

the course of weeks or even months. However, as we approach the physical limitations of cell 

growth-based productivity improvement, we need to instead look at increasing the specific 

productivity (qP) of each individual cell to continue making progress towards higher titer and 

volumetric efficiency. This is necessary to meet the growing demand for biologics in a cost-

effective and sustainable way. Growth and qP are closely connected as they both require significant 

amounts of energy from a limited pool within cells. Thus, increases in qP will often correlate with 

decreases in growth, resulting in similar final volumetric titer. Finding ways to enhance qP enough 

to overcome any loss in growth and increase overall titer is a complex challenge. In this work, we 

endeavored to use a metabolomics approach on a library of CHO clones producing IgG on an 

industrial level to identify novel, low-cost strategies for improving qP without compromising cell 

growth.  

 First, we performed untargeted metabolomics on supernatants from fed-batch production of these 

clones and found metabolites that were significantly correlated with qP. Two of these metabolites, 

aspartate and cysteine, were found to have significant positive correlations in separate sets of 

clones producing different recombinant proteins, so they may be useful as early indicators of high-

qP cell lines during clone selection. Having a panel of early indicators may shorten timelines or 
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help to overcome limitations of the clone selection process such as unoptimized media conditions. 

Another metabolite of interest identified through pathway enrichment analysis was citrate. When 

added directly to cell culture, citrate was able to increase both qP and volumetric titer for multiple 

clones, showing potential utility as a media supplement. 

 In order to elucidate the mechanism of qP improvement upon citrate addition, we used 13C-

labeled citrate as a stable isotopic tracer that cellular enzymes cannot distinguish from naturally 

occurring citrate. As a key intermediate of the TCA cycle, citrate could be augmenting TCA cycle 

flux, which generates additional ATP that can be used for protein production, by entering as a 

substrate. However, citrate uptake and conversion into downstream metabolites was not increased 

by citrate supplementation, suggesting an alternative mechanism was at play. Through metabolic 

flux analysis of clones that did and did not respond positively to citrate addition, we discovered 

significant correlations between qP response and intracellular fluxes in pathways connected to but 

not in the TCA cycle. The significant fluxes included catabolism of aromatic and branched-chain 

amino acids as well as flux through the α-ketoglutarate-malate transporter, part of the malate-

aspartate shuttle. These results may signify a more regulatory role for citrate in terms of qP 

improvement rather than being directly used as a substrate for the TCA cycle. Further studies, for 

example using RNA-seq or proteomics, are warranted to study the regulatory impact of citrate 

supplementation. 
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Chapter 1. Introduction: Biopharmaceutical production of monoclonal 
antibodies in Chinese Hamster Ovary cells 
 

1.1 Biopharmaceutical Production 

Biopharmaceuticals, also known as biologics, are medicines which are produced through 

biological process, usually in living cells. These molecules are larger and more complex than the 

other major category of drugs, small molecules, which are well-defined and made through 

chemical synthesis. Biologics include treatments such as monoclonal antibodies (mAbs), other 

recombinant proteins, hormones, gene and cell therapies, and vaccines (Makurvet, 2021). The 

manufacturing process, which usually involves genetic modification to living cells, is a major 

reason why biologics are more expensive than small molecules, in addition to the cost of 

administration to patients in medical facilities because they are not in pill form (Rozek, 2013). 

Despite the cost, the global biopharmaceutical market, projected to reach >$380 billion by 2024, 

has been continually expanding, led by therapeutic mAbs with high specificity and affinity for 

targets (Tsumoto et al., 2019).  

Monoclonal antibody drugs are used to treat many types of disease, but the top sellers include 

many immunotherapy products such as Opdivo (nivolumab), Keytruda (pembrolizumab), which 

are both anti-PD-1, Rituxan (rituximab), targeting CD20, or chemotherapy products such as 

Herceptin (trastuzumab), and Avastin (bevacizumab). Widely prescribed drugs for autoimmune 

and inflammatory diseases like arthritis, psoriasis or Crohn’s disease are also monoclonal 

antibodies, such as Humira (adalimumab), Remicade (infliximab) and Stelara (ustekinumab) (Lu 

et al., 2020). These mAbs can be created in several ways, but the most popular is the traditional 

mouse hybridoma technique, where mice are immunized with desired antigens, triggering an 

immune response. Harvested splenocytes are used to generate hybridoma cells that secrete IgG 
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antibodies. These murine antibodies can be humanized by grafting the complementary-

determining region (CDR), which targets the antigen, into a human framework sequence (Lu et 

al., 2020).  

Typical human antibodies are composed of two light chains (LC) and two heavy chains (HC), with 

each LC linked to an HC and the two HCs linked together via disulfide bridges. Each side of the 

Y-shaped antibody molecule consists of the “antigen-binding” Fab region which includes the light 

chain and first two domains of the heavy chain, and the “crystallizable” Fc region which includes 

two constant domains of the heavy chain. Within the Fab region, there is a variable domain and a 

constant domain for each of the light and heavy chains. The variable heavy and variable light 

chains are connected by a short polypeptide linker and together this is the scFv, or single-chain 

variable fragment which is where the CDR is grafted (Chiu et al., 2019).  

During the production, secretion, and purification of the mAbs, they experience many post-

translational modifications (PTMs). These PTMs are considered product quality attributes (PQAs), 

many of which monitored and controlled within predefined acceptance criteria to maintain 

consistent drug safety and efficacy. Examples of PTMs include deamidation, glycation, disulfide 

reduction, and C-terminal lysine clipping (X. Xu et al., 2019). One of the most important and most 

heterogeneous PTMs that can significantly affect potency and pharmacokinetics is N-linked 

glycosylation. N-linked glycans are typically complex branched oligosaccharide structures with 

one or more monosaccharides attached, and their initial formation starts in the endoplasmic 

reticulum, followed by trimming and modifications in the Golgi apparatus (Cymer et al., 2018). 

Glycosylation can help stabilize the Fc region heavy chains, impact serum half-life, affect binding 

to Fc receptors, and modulate immune-mediated effector functions such as ADCC (antibody-
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dependent cellular cytotoxicity), CDC (complement dependent cytotoxicity), and ADCP (antibody 

dependent cellular phagocytosis) (Shrivastava et al., 2022). 

Because these PTMs have major implications for safety, efficacy, stability, and bioactivity, it is 

critical to synthesize therapeutic proteins in host cells capable of performing PTMs compatible 

with use in humans. Thus, most biologics are made in mammalian cell lines such as CHO (Chinese 

hamster ovary), HEK 293 (human embryonic kidney), NS0 (murine myeloma), SP2/0 (murine 

hybridoma) or BHK (baby hamster kidney) cells. To date, CHO cells have been the host of choice 

for production of mAbs for several reasons. Since there have been many regulatory approvals for 

therapeutics made in CHO cells, they are considered well established to have appropriate safety 

and efficacy profiles for over two decades (Hong et al., 2018). They are also capable of relatively 

high productivity and consistently good growth in chemically defined, serum-free suspension 

cultures suitable for large industrial scale bioreactors (Tihanyi & Nyitray, 2020).  

Although CHO cells are well-characterized due to their popularity, there is room for further 

improvements, especially with respect to cell specific productivity. Higher protein titers can reduce 

costs for patients and help maintain an edge over competing therapeutics. Biosimilars, while not 

as popular or easy to produce as small molecule generics due to greater molecular complexity, are 

still being developed for many drugs, adding to the pressure to lower manufacturing costs. 

Meanwhile, industry trends are driving a shift towards smaller batches often produced in single-

use bioreactors with small footprints, enabling flexible multiproduct facilities. These single-use 

bioreactors can accommodate intense bioprocesses and are designed to translate well between 

scales, require fewer resources for operation including turnaround between batches (Frank, 2018). 

Higher protein productivity would add to manufacturing flexibility by reducing the number of 

batches required to adapt to dynamic clinical and market demands.  
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1.2 Chinese Hamster Ovary Cell Lines 

CHO cells were first isolated and immortalized in the late 1950s by Theodore Puck from an ovarian 

biopsy of Cricetulus griseus (Puck et al., 1958). Through extensive mutagenesis and cloning, 

variants of the original CHO cell line have been established for higher protein yield. An early 

development was the mutation of dihydrofolate reductase (DHFR) in the CHO-K1 subclone (Zhu 

et al., 2007). Because this essential enzyme is required for synthesis of purines and certain amino 

acids, transgenes such as mAb protein constructs could be stably introduced in these DHFR-

deficient CHO-DXB11 cells upon co-transfection with the dhfr gene, as cells only survive when 

DHFR is recombinantly co-expressed (G Urlaub & Chasin, 1980; Wigler et al., 1980). Later, this 

technology was expanded to deleting both DHFR alleles, resulting in the CHO-DG44 cell line (G. 

Urlaub et al., 1983). Even greater selection pressure can be applied by exposing transfected cells 

to methotrexate (MTX), a DHFR inhibitor, effectively acting as a gene amplification system 

leading to higher copy numbers and antibody production (Tihanyi & Nyitray, 2020). The other 

widely-used selection system relies on a strategy initially considered in NS0 cell lines, knocking 

out glutamine synthetase (GS), which is again reintroduced alongside the gene of interest 

(Bebbington et al., 1992). GS is responsible for synthesizing glutamine from glutamate, so cells 

that do not express the exogenous selection marker copy of GS cannot grow in glutamine-free 

medium. Methionine sulfoximine (MSX), a GS inhibitor, can be used in CHO-GS knockout 

systems to improve selection stringency by eliminating background GS expression. 

To efficiently generate the targeted biallelic elimination of these target genes, zinc-finger nucleases 

(ZFNs) have been used in recent years to cause a site-specific double-strand break. This technology 

exploits the mutagenic, error-prone nature of the non-homologous end joining-mediated DNA 

repair to achieve disruption and can even be employed in multi-gene knockouts (Liu et al., 2010). 
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The BMS-proprietary cell lines in this work all originate from a GS-/- host cell line created from 

the CHO-K1 lineage using ZFNs.  

To produce our CHO clones, the host cell line is first transfected by electroporation with the target 

vectors containing the recombination protein, resulting in random integration of the expression 

plasmid. These cells are then pooled and plated as master wells (MW). The top master wells then 

undergo FACS sorting for single cell cloning, and these clones are cultured and screened for the 

best growth, productivity, genetic stability, and product quality matches, especially for attributes 

that affect potency and pharmacokinetics (Bolisetty et al., 2020). Combined with natural clonal 

variation, the unpredictable effects of random integration causes the selection process to be a 

typically 6-12 month effort that is highly intensive in time, labor, and capital (W. Yang et al., 

2022).   

In recent years, targeted integration (TI) has been gaining popularity. By integrating the plasmid 

into a preselected genomic site characterized to have high transcriptional activity and eliminating 

a source of clonal variability, more consistent phenotypes and expression levels can be attained. 

Integrating multiple copies of the plasmid at a genomic locus or integrating it at multiple 

“hotspots” has been shown to increase productivity (Carver et al., 2020; Sergeeva et al., 2020). 

While promising, this strategy needs further development before being used widely at the 

industrial scale, as there can be diminishing returns on multicopy integration at a single site and 

finding hotspots is still a challenge (W. Yang et al., 2022). Additionally, while greater consistency 

or predictability is beneficial for robustness in the screening process, the diversity in the random 

integration strategy provides opportunity for occasionally generating better clones than could be 

achieved with targeted integration. Thus, characterizing stable high producers from random 

integration, including their integration sites, is valuable in better understanding CHO cell 
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phenotypes and finding favorable landing pads (Dhiman et al., 2020; Stadermann et al., 2022). 

Because so many clones are generated for clone selection, most of the screening is performed using 

high-throughput methods at small scales, for example in microplates, conical tubes, or miniature 

bioreactors. Once a clone is selected, a cell bank is made and a process must be developed to 

optimize its cell culture for performance at bench, clinical, and eventually commercial scales.  

1.3 Chinese Hamster Ovary Bioprocesses 

At BMS, this process starts with thawing a vial from the bank into a shake flask containing growth 

media. The cells are grown in a shaking incubator and passaged every 3-4 days into successively 

larger volumes for several weeks. This seed train is then used to inoculate seed (N-2 and N-1) 

bioreactors, which can include WAVE rocking bioreactors and/or stirred-tank bioreactors. These 

seed bioreactors can be operated in a variety of modes, from batch to fed-batch to perfusion, often 

depending on facility fit. Batch mode, meaning the cells are allowed to grow with little 

intervention, is the simplest and usually achieves the lowest cell-density out of the three. Since it 

is desirable to keep the cells in a high-viability exponential growth phase so they grow well when 

seeded into the production stage, batch mode would likely only be operated to a maximum of 

around 10×106 to 15×106 cells/mL. In fed-batch, the culture is periodically supplemented with 

boluses of rich media to replenish nutrients that cells have taken up and can grow to at least 20×106 

cells/mL. Perfusion, the most intensified mode, uses alternating tangential flow devices (ATFs) to 

retain cells but exchange the media to both remove waste metabolites and provide fresh nutrients 

and can achieve very high cell densities nearing 200×106 cells/mL. The N-1 seed bioreactor is used 

to inoculate the production (N) stage bioreactor, which again can be operated in different modes. 

For example, efforts are underway to develop various intensified processes. These intensified 

processes can include a hybrid form of perfusion called high productivity harvest in which 
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perfusion is used in the last few days of a fed-batch culture to maintain high viability and often 

increase product yield. Another option is steady-state perfusion which incorporates a cell bleed to 

keep the culture at a predetermined cell density and can usually achieve a more continuous product 

stream with longer culture duration with higher cell viability. Currently, fed-batch culture is the 

most commonly used bioprocess mode, usually lasting around two weeks (ideal for a regular 

manufacturing cadence) but the process period may vary based on product quality attributes that 

are impacted by duration, followed by harvest and downstream purification. 

Many operating conditions can be tested and optimized, such as working volumes or other 

bioreactor parameters including agitation, pH control, dissolved oxygen setpoint, and feeding 

strategy (Yee et al., 2018). One of the most critical conditions that can affect culture performance 

is the formulation of basal and feed media. These media can sometimes be commercial products 

purchased off-the-shelf but are usually proprietary compositions developed over time using 

empirical data. Depending on the specific clone, even platform media engineered to support a wide 

range of clones from the parental cell line may need to be supplemented with amino acids that are 

depleted particularly quickly or other biological precursor molecules to enhance product yield or 

product quality.  

Media improvement can be achieved based on performance in DoE studies and/or analytical 

assessment of spent media (cell culture supernatant) and the product itself. In addition to viable 

cell density (VCD), viability, cell size, pH, and dissolved oxygen levels, key metabolites are 

measured daily during the production stage to monitor culture health. Glucose and glutamine are 

the main carbon and nitrogen sources for CHO cells, and their metabolism leads to the release of 

waste byproducts lactate and ammonia. Via glutaminolysis, glutamine enters the TCA cycle in the 

form of a-ketoglutarate. If glutamine is not available as in CHO-GS systems, the cells will uptake 
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glutamate instead. The GS catalyzes ATP hydrolysis of glutamate and condensation with ammonia  

to produce glutamine (Zhang et al., 2006). Thus, in many CHO-GS cultures, glutamate 

consumption is seen to occur until enough glutamine has been produced, at which point glutamate 

may accumulate if it is being fed. Likewise, some amount of ammonia may also be consumed 

towards the early stage of a culture before it starts accumulating from glutamine metabolism.  

As for glucose and lactate metabolism, often different phenotypes are observed over the course of 

a production run. During exponential growth, cells are usually in a glycolytic state, consuming 

glucose and producing lactate. After this initial stage, some cultures may exhibit a transition to a 

lactate-consuming culture. This lactate switch is generally regarded as desirable as it prevents the 

acidification of the medium which may result in base addition. Also, it has been associated with 

metabolic efficiency as glucose directed towards aerobic glycolysis, which produces two net moles 

of ATP per mole of glucose, decreases and flux towards oxidative phosphorylation, which results 

in a net of 36 moles of ATP per mole of glucose, increases. Cultures that do not exhibit the lactate 

switch are often lower productivity, and if “lactate runaway” occurs in which the lactate 

accumulates to toxic levels, viability of the culture may be negatively impacted. The mechanism 

of the switch is not fully understood, although a leading hypothesis identifies the redox state of the 

cell as a likely trigger (Hartley et al., 2018). Nevertheless, many approaches have been developed 

to control the lactate switch and an accompanying switch from growth to protein production. One 

approach is metabolic engineering focused on rational knockouts or overexpression of genes 

targeting pyruvate metabolism. At the process level, engineering approaches include dynamic 

feeding strategies limiting glucose to a minimum level that avoids complete depletion, replacing 

it with alternative energy sources such as galactose, adding copper, or implementing a pH or 

temperature shift (Hartley et al., 2018; Qian et al., 2011; S. Xu et al., 2016). However, though 
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these approaches can cause a lactate switch to occur, they may negatively impact other 

performance attributes such as glycosylation or charge variants. From a process development 

perspective, the initial selection of a clone with desirable metabolite trends in production is the 

most straightforward way to ensure a favorable lactate profile. 

Taken together, these desirable metabolite trends are overall reflective of a high yield culture. 

Antibody yield or volumetric titer is a product of growth and qP (specific productivity), or how 

much target protein each individual cell produces over time.  Many high producers can reach high 

cell densities during the exponential growth phase, quickly converting glucose to lactate in 

glycolysis independent of mitochondrial metabolism. These high producers can then shift 

resources towards the TCA cycle and oxidative phosphorylation, associated with a higher qP state 

(Templeton et al., 2013). These cells may have increased mitochondrial oxidative capacity 

compared to low producers, which may not be able to produce ATP as efficiently and consequently 

generate less of the energy needed for protein production (Zagari et al., 2013).  

The first of these two factors, growth, has been extensively studied with the aim of increasing 

production stage VCDs. Cell engineering approaches have largely focused on cell death inhibition, 

for example by overexpression of Bcl-2 or c-Myc, anti-apoptotic proteins, or knocking out pro-

apoptotic proteins such as Bax and Bak which can be activated by stress signals such as nutrient 

deprivation, ER stress, and heat (Ifandi & Al-Rubeai, 2003; Tang et al., 2022; Tey et al., 2000). 

Other cell engineering approaches target growth inhibitors and toxic metabolites, such as lactate, 

or more recently byproducts from branched chain amino acid catabolism (Mulukutla et al., 2019).  

Media development can also significantly improve growth – the required balance of amino acids, 

lipids, vitamins, and key energy sources such as carbohydrates can vary from clone to clone and 

can often be optimized stoichiometrically by calculating experimental consumption rates. Salts, 
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growth factors and trace elements are also important in regulating cell proliferation, not to mention 

other non-nutritional components such as buffers and surfactants, resulting in complex 

formulations of several dozen medium components (Ritacco et al., 2018). Directly identifying 

specific growth issues related to metabolism and signaling pathways can streamline efforts to 

optimize these components by taking advantage of modern analytical technologies, for instance 

multiomics profiling or Process Analytical Technology (PAT) which supports real-time 

measurements and feedback loop control, to highly customize media to each specific cell line.  

As mentioned earlier, perfusion can be effective in increasing cell growth if the media has been 

designed to support very high cell densities, which may require rebalancing components, removing 

unnecessary components, and adjusting osmolality. However, logistical challenges including large 

volumes of perfusion media and storage of perfusate without downstream processing that can 

support a continuous product stream have limited the application of this technology. Furthermore, 

there are also technical challenges such as product retention, membrane fouling, and high cell 

densities leading to debris in the supernatant which can often lead to column clogging and sieving, 

where product accumulates inside reactors instead of passing into the perfusate (Su et al., 2021). 

In internal experiments, we have found that we may be reaching the limitations of cell density with 

perfusion as column clogging occurs at VCDs higher than 200×106 cells/mL.  

As ever higher cell densities become more difficult to attain, raising specific productivity may be 

a more promising avenue for increasing volumetric titers. Through the cell engineering and media 

optimization already discussed, qPs have increased significantly over the past two decades from 

~10 pg/cell/day to as high as a reported 90 pg/cell/day (Wurm, 2004). While this figure is 

impressive, most industrial cell lines are not as productive, and the high end of typical 

benchmarking levels is in the range of 30-50 pg/cell/day with final titers of up to 10 g/L (Reinhart 
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et al., 2019).  Out of the many studies performed to increase overall titer, few have attempted to 

isolate improvement in growth phenotypes, often the main source of titer increase, from any 

change in qP. Separating the two is difficult because cells that are very efficient at directing energy 

towards growth may be less efficient at protein production, and vice versa.  

Decoupling cell growth and protein production is a strategy that could potentially improve both 

aspects by letting cells proliferate without any metabolic burden from the recombinant expression 

before switching over to antibody production. This switch may be induced using a constructed 

gene expression system combined with a proliferation control strategy (Donaldson et al., 2021). In 

these systems, cells are cultured to the desired cell density before halting growth and inducing 

expression of the recombinant protein with an inducer such as tetracycline, doxycycline, or cumate 

(Lam et al., 2017; Poulain et al., 2017).  

However, current control methods for halting proliferation after cell density has reached the 

desired level often impact pathways other than cell growth. A commonly used method is inducing 

mild hypothermia by shifting the culture temperature from 36-37°C to 30-35°C, which can 

successfully arrest cell growth in the G1 phase. In some cases, temperature shifts can cause other 

off-target effects and reduce global protein translation, which may negatively impact productivity 

and product quality (Bedoya-López et al., 2016). Hyperosmolality also inhibits cell growth and 

has been shown to enhance qP (Pfizenmaier et al., 2015). However, this effect is inconsistent, the 

cellular response to osmotic stress can induce premature senescence and the formation of 

micronuclei, a marker of chromosome aberration (Romanova et al., 2021). Chemical techniques 

to induce cell cycle arrest include the addition of sodium butyrate or DMSO, which has been shown 

to lead to G1-phase accumulation and increased specific productivity but also triggers apoptosis 

in some cases, which may undermine the benefits (Kumar et al., 2007).  
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Another potential growth-related tradeoff to consider is between cell number and cell size. In the 

above studies, stressors used to limit cell growth and increase qP – hypothermia, cell cycle arrest, 

hyperosmolality – also showed correlations between higher qP and increased cell diameter. In 

recent study, stressing cells by limiting CO2 supply or oversupplying glucose also decreases cell 

growth and leads to cell enlargement and qP increase (Schellenberg et al., 2022). Even small 

increases in diameter can lead to increased capacity for protein synthesis, processing, and export 

machinery (Lloyd et al., 2000; Pan et al., 2017). Taken together, these studies show that cell 

growth, individual cell size, and qP are interconnected in a highly complex manner. 

As a result, few bioprocess levers have been discovered to consistently enhance qP with minimal 

impact to cell growth such that overall titer is increased. A proteomic profiling attempted to reveal 

proteins that were reflective of a sustained productivity phenotype and found differential 

expression in four proteins involved in protein translation and folding as well as three involved in 

glucose metabolism (Meleady et al., 2011). Meta-analysis of publicly available transcriptomic 

datasets has identified potential engineering targets for increasing qP in cell cycle and lysosome 

pathways (Tamošaitis & Smales, 2018). Despite these and numerous other omics studies on CHO 

cells, so far most cell engineering efforts have focused on reducing growth inhibitory acting 

proteins (Jerabek et al., 2022). Engineering focused on increased qP may be less popular possibly 

because the underlying pathways behind protein productivity are intricate and less well-

understood, and strategies that might work for one cell line/product combination may not work for 

others (Samoudi et al., 2021). So far, successful efforts have mostly targeted the secretory pathway, 

especially in the context of difficult-to-express genes (Cartwright et al., 2020; Pieper et al., 2017; 

Samy et al., 2020). While these improvements have potential, there are still questions about 

whether they can be demonstrated to be generally applicable, and the time and effort required to 
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test them compared to screening natural genetic variation means they have yet to be widely adopted 

throughout the industry.  

Likewise, medium additives that reliably improve qP in industrial cell lines have been elusive due 

to the variability of CHO cell phenotypes. For example, valproic acid addition to three different 

CHO-DG44 cell lines all expressing different molecules showed cell-line specific results. With 

two cell lines, qP was increased enough to overcome slightly depressed growth to result in higher 

titer by up to 20%, but the third cell line showed no effect (W. C. Yang et al., 2014). An autophagy-

inducing peptide (AIP) was shown to increase qP in fed-batch culture, leading to an overall titer 

increase of up to twofold (Braasch et al., 2021). Interestingly, addition of the AIP did show reduced 

peak VCD but increased culture viability. These changes were only shown in one cell line and 

more investigation would be needed to explore whether this additive is broadly efficacious. Even 

if the effects of qP-enhancing medium additives may not be applicable to every cell line, having a 

panel of potential additives to screen may be useful in process development. 

1.3 Modeling CHO Cell Culture 

As CHO cells are the workhorse of the biologics industry, there is much interest in modeling them 

to gain insight into cell metabolism and regulation and to systematically find targets for genetic or 

culture parameter improvements (Traustason et al., 2019). Model-based approaches can be data-

driven, based on statistical correlations between input parameters and process outcomes, 

mechanism-driven, based on existing stoichiometric or kinetic understanding of cells, or a hybrid 

of the two (Sha et al., 2018). Data-driven models rely on empirical data to train models, and do 

not take into consideration biologically meaningful relationships between inputs and outputs. On 

the other hand, mechanistic models strive to translate biological knowledge into a functional 

system that can quantitatively describe cellular activities.  
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Over the past decades, many computational, mechanistic models have been developed for CHO 

cells (Ahn & Antoniewicz, 2011; Nicolae et al., 2014; Nolan & Lee, 2010; Torres et al., 2019). 

The sequencing of the CHO genome led to a draft genome-scale metabolic model containing all 

consensus biochemical reactions in CHO cells at the time, called iCHO1766 for the 1,766 included 

genes (Hefzi et al., 2016; Lewis et al., 2013; Xun Xu et al., 2011). Since then, researchers have 

augmented this consensus model for various purposes, such as adding the mammalian secretory 

pathway resulting in iCHO2048s or by a systematic gap-filling approach resulting in iCHO2101 

(Fouladiha et al., 2020; Gutierrez et al., 2020). Models focused on quality attributes, such as 

glycosylation, have also been developed (Galleguillos et al., 2017; Spahn et al., 2016). These 

genome-scale or similar reconstructions use flux balance analysis (FBA). FBA uses linear 

programming, introducing objective functions such as cell growth to calculate intracellular fluxes 

in underdetermined systems where there are far more reactions than metabolites that can be 

measured and used as constraints. Some common software options to perform FBA include 

COBRA toolbox, Sybil, and OptFlux (Gelius-Dietrich et al., 2013; Heirendt et al., 2019; Rocha et 

al., 2010). Models using FBA have been used on industrial cell lines to compare metabolic 

signatures of high and low producers, suggest strategies for medium optimization, identify 

engineering targets, and improve feeding strategies for intensified processes (Brunner et al., 2021; 

Calmels, Arnoult, et al., 2019; Calmels, McCann, et al., 2019; Huang et al., 2020; Huang & Yoon, 

2020).  

Another approach to study metabolic networks has been to focus on smaller networks that can be 

determined or overdetermined, such as central metabolism. When the number of unknown 

intracellular fluxes is the same or less than the number of independent mass balance equations, 

metabolic flux analysis (MFA) can be used. MFA is often paired with 13C stable isotope labeling 
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to track carbon distribution throughout the network (Sha et al., 2018). After mass spectrometry 

analysis of cell pellet samples, intracellular fluxes can be estimated from the mass isotopomer 

distributions (MIDs) and extracellular exchange fluxes using software such as Metran, INCA, or 

other models often developed in Matlab (Yoo et al., 2008; Young, 2014). This technique has been 

used with labeled glucose and GC-MS analysis to compare metabolism of CHO cells at growth 

and stationary phases, finding that the exponential phase is characterized by higher glycolytic and 

anaplerotic fluxes, while the stationary phase is characterized by reduced glycolysis and 

anaplerosis but higher oxidative pentose phosphate pathway flux (Ahn & Antoniewicz, 2011; 

Sengupta et al., 2011). That finding has been supported by numerous other labeling studies 

examining antibody production phenotypes in fed-batch cultures,  although a lower qP despite 

comparable oxidative metabolism in perfusion mode has shown that this association may not tell 

the whole story about productivity (Templeton et al., 2013; Templeton, Smith, et al., 2017; 

Templeton, Xu, et al., 2017). The aforementioned lactate metabolic switch has also been studied 

using 13C MFA, labeling glucose, pyruvate, glutamine, and asparagine to provide insight into the 

stoichiometric requirements of biosynthesis and mAb production (Dean & Reddy, 2013). This 

depth of knowledge can be useful in media development, as evidenced by a similar study with 

parallel labeling of glucose and glutamine showing successful reduction of ammonia via 

rebalancing of medium amino acid composition (McAtee Pereira et al., 2018).  

While 13C MFA is a powerful tool, it is important to keep in mind its limitations. The complexity 

of cell biology means that any rational interventions based on MFA results could potentially have 

off-target effects, especially because the models represent a very limited number of reactions 

(Sacco & Young, 2021). As with any model, outputs are highly dependent on inputs and 

assumptions. Both FBA and MFA typically rely on a pseudo-steady-state assumption (assuming 
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metabolic and isotopic steady state, respectively) as biological changes in reactors occur over the 

course of days, slow compared to the timescale of measurements (Karst et al., 2017). When looking 

for a snapshot to understand cell metabolism at a certain point in time, analyses using this 

assumption may be sufficient. Nolan and Lee used this assumption but incorporated kinetic rate 

expressions to obtain a hybrid dynamic flux balance analysis (dFBA) method of modeling to 

investigate and predict changes over time (Nolan & Lee, 2010, 2012).  Dynamic metabolic flux 

analysis (DMFA) on time-series measurements has also been used to determine CHO cell fluxes 

at metabolic non-steady state (Leighty & Antoniewicz, 2011). These dynamic models have now 

been used to describe clonal variation and media changes (Ghorbaniaghdam et al., 2014; Robitaille 

et al., 2015).  

Isotopic nonstationary 13C MFA (Inst-13CMFA) is used when isotopic steady state is not achieved, 

and current models include reaction reversibility as well as compartmentation separating 

mitochondrial and cytosolic pools (Nicolae et al., 2014). Compartmented CHO cell models were 

used to elucidate improvements in qP by a media additive, MTA, that increased flux into the 

pentose phosphate pathway after cell-cycle arrest and cell size increase, boosting NADPH supply, 

or by attenuation of the GS selection marker to reduce glutamine overflow (Sacco et al., 2022; 

Wijaya et al., 2021).  

Other recent developments in dynamic modeling include incorporating elementary flux modes to 

represent the intracellular reaction network as fewer macroscopic reactions (Hagrot et al., 2019; 

Martínez et al., 2020; Zamorano et al., 2013). Hybrid approaches combining data-driven and 

mechanistic models are becoming more popular as well, taking advantage of both multivariate 

statistical analysis and in silico modeling (Hong et al., 2022; Popp et al., 2016). These hybrid 

models have been proposed as digital twins capable of real-time process control and online 
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optimization (Helgers et al., 2022; Park et al., 2021). This continued trend towards quantitative 

modeling and advanced process control strategies should help bring us closer to more reliable 

culture performance, consistent quality, and efficient biomanufacturing product production. 
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Chapter 2. A Metabolomics Approach to Increasing CHO Cell 
Productivity 
 

2.1 Abstract 

Much progress has been made in improving the viable cell density of bioreactor cultures in 

monoclonal antibody production from Chinese hamster ovary (CHO) cells; however, specific 

productivity (qP) has not been increased to the same degree. In this work, we analyzed a library of 

24 antibody-expressing CHO cell clones to identify metabolites that positively associate with qP 

and could be used for clone selection or medium supplementation. An initial library of 12 clones, 

each producing one of two antibodies, was analyzed using untargeted LC-MS experiments. 

Metabolic model-based annotation followed by correlation analysis detected 73 metabolites that 

significantly correlated with growth, qP, or both. Of these, metabolites in the alanine, aspartate, 

and glutamate metabolism pathway, and the TCA cycle showed the strongest association with qP. 

To evaluate whether these metabolites could be used as indicators to identify clones with potential 

for high productivity, we performed targeted LC-MS experiments on a second library of 12 clones 
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expressing a third antibody. These experiments found that aspartate and cystine were positively 

correlated with qP, confirming the results from untargeted analysis. To investigate whether qP 

correlated metabolites reflected endogenous metabolic activity beneficial for productivity, several 

of these metabolites were tested as medium additives during cell culture. Medium supplementation 

with citrate improved qP by up to 490% and more than doubled the titer. Together, these studies 

demonstrate the potential for using metabolomics to discover novel metabolite additives that yield 

higher volumetric productivity in biologics production processes. 
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2.2 Introduction 
 

Chinese hamster ovary (CHO) cells are widely used for manufacturing of biopharmaceutical 

proteins, especially monoclonal antibodies (mAbs). Maximizing upstream productivity allows for 

greater facility flexibility, smaller footprints, and lower costs for patients. Over recent decades, 

CHO cell culture processes have gradually improved in volumetric productivity to reach 

recombinant protein titers on the order of 10 g/L in fed-batch production (Handlogten et al., 2018; 

Y.-M. Huang et al., 2010; Takagi et al., 2017). Much of the titer increases seen in the past few 

years have been due to increased viable cell density (VCD) and sustained viability (Verhagen et 

al., 2020; Xu et al., 2020). In comparison, cell-specific productivity (qP) has improved to only a 

limited extent (Templeton, Xu, et al., 2017). As the biomanufacturing industry implements process 

intensification technologies such as perfusion cell culture in integrated continuous bioprocesses, 

CHO cell culture processes may soon approach the upper limits of achievable VCDs. This would 

constrain any further improvements to volumetric productivity. Therefore, there is an urgent need 

to identify efficient strategies for developing high-producing clones and optimizing media or 

process conditions not only for VCD but also qP. 

To investigate cellular mechanisms leading to different productivity phenotypes in CHO cells, 

many omics approaches have been used, including transcriptomics and proteomics (Ang et al., 

2019; Z. Huang & Yoon, 2020; Morris et al., 2020; Stolfa et al., 2018). Although challenges persist 

in metabolite identification, untargeted metabolomics has been increasingly adopted for 

characterizing the metabolic profiles of industrially relevant CHO cells cultured in bioreactors (W. 

P. Chong, Goh, et al., 2009; Mohmad-Saberi et al., 2013). Recent studies have used metabolomics 

experiments to identify metabolites associated with apoptosis, hypoxia and ROS generation, or 

growth inhibition (W. P. Chong et al., 2011; Gao et al., 2016; Mulukutla et al., 2017). Only a few 
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studies have examined cellular productivity (Morris et al., 2020). Notably, Chong et al. analyzed 

intracellular metabolites from several CHO cell clones showing high or low productivity and found 

that metabolites related to redox status regulation were elevated in high producers (W. P. Chong 

et al., 2012). Dean and Reddy compared metabolic fluxes between a low- and a high-productivity 

cell line using isotope labeling experiments, identifying differences in glycolysis, the TCA cycle, 

and lactate metabolism; Templeton et al. found similar differences among multiple low- and high-

productivity cell lines (Dean & Reddy, 2013; Templeton, Smith, et al., 2017). Recently, Huang et 

al. used targeted metabolomics data in conjunction with a genome scale modeling approach to 

optimize media for enhanced qP (Z. Huang et al., 2020). Qian et al. also used targeted 

metabolomics to connect a decrease in qP over time to elevated lipid oxidation in unstable cell 

lines (Qian et al., 2020). 

These studies have provided important clues linking CHO cell metabolism to qP. However, it 

remains an open question how metabolic differences drive qP differences and how cellular 

metabolism could be manipulated to improve qP. In this work, we analyze a library of clones with 

varying qP producing different mAbs to identify endogenous (CHO cell derived) metabolites that 

are positively associated with qP and could be used as productivity indicators or medium additives 

to improve clone selection and cell culture process development. Extracellular samples generated 

from an initial library of 12 clones with a wide range of qP were used for an untargeted LC-MS 

metabolomics study. Metabolic model guided annotation and correlation analysis identified a 

panel of metabolites significantly and specifically associated with qP. Targeted metabolomics 

experiments using a different set of 12 mAb producing clones confirmed the positive correlations 

between qP and amino acids identified by the untargeted study. Furthermore, supplementing the 
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culture medium with a qP-associated central carbon metabolite, citrate, significantly improved qP 

and final titer. 

2.3 Results 

2.3.1 Untargeted Metabolomics Identified Endogenous CHO Cell Metabolites That Correlate with 

qP but Not Growth 

A set of 12 clones, six expressing mAb A and six expressing mAb B at industrially relevant titers 

on the g/L scale, was selected to represent a wide range of growth (Figure 1A), titer (Figure 1B) 

and productivity profiles (Figure 1C). All 12 clones were cultured in identically operated 5 L 

bioreactors using the same fed-batch platform process. Detailed qP profiles at different time points 

are shown in Figure S1A. For all clones, VCD peaked between days 6 and 8, with peak VCD 

ranging from about 18 to 39 × 106 cells/mL. Titer and qP were both the highest for clone A-5. 

Interestingly, although often higher growth can lead to higher volumetric productivity, clone B-6 

displayed the lowest titer and the highest growth, indicating that growth and volumetric titer are 

not always positively correlated. Across the 12 clones, we detected a significant negative 

correlation was found between peak VCD and qP (Figure S1B). 

A set of 12 clones, six expressing mAb A and six expressing mAb B at industrially relevant titers 

on the g/L scale, was selected to represent a wide range of growth (Figure 1A), titer (Figure 1B) 

and productivity profiles (Figure 1C). All 12 clones were cultured in identically operated 5 L 

bioreactors using the same fed-batch platform process. Detailed qP profiles at different time points 

are shown in Figure S1A. For all clones, VCD peaked between days 6 and 8, with peak VCD 

ranging from about 18 to 39 × 106 cells/mL. Titer and qP were both the highest for clone A-5. 

Interestingly, although often higher growth can lead to higher volumetric productivity, clone B-6 

displayed the lowest titer and the highest growth, indicating that growth and volumetric titer are 
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not always positively correlated. Across the 12 clones, we detected a significant negative 

correlation was found between peak VCD and qP (Figure S1B). 

 

Figure 1. Growth and productivity profiles of 12 clones producing antibody A or B cultured in 

fed-batch bioreactors under identical process conditions. (A) Viable cell density (VCD) was 

recorded daily. (B) Titer was measured in samples collected on days 6, 8, 11, and 14. (C) Average 

qP from day 6 to 11 was calculated from integral VCD and titer. 

To determine the clones’ metabolite profiles, supernatant samples were collected on days 4 and 7, 

corresponding to mid-exponential and early stationary phases of the bioreactor cultures. 

Untargeted LC-MS analysis on the supernatant samples detected 4541 features between the four 

combinations of LC methods (HILIC or RP, see Materials and Methods) and MS modes (ESI 

positive or negative), including adducts and features that were detected by multiple methods. 
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Analysis of the features’ accurate mass (m/z) and MS/MS spectra using a semi-automated 

annotation tool mapped 167 of these features to CHO cell metabolites (Alden et al., 2017). A 

subset of these metabolites was selected for testing against high purity chemical standards to verify 

the annotations (Figure S2). 

Metabolite abundances, represented by extracted ion chromatogram peak areas (AUCs), were 

normalized to integral VCD to control for the clones’ growth rate differences (Figure 2A). Out of 

the 167 annotated features, 70 features were duplicates detected in more than one analysis method 

and were eliminated from the correlation analysis as described in the methods section. The 

remaining 97 annotated and unique features were tested for significant correlations with cell 

growth or protein production. Pearson and Spearman rank correlation coefficients calculated 

between each metabolite and average qP or peak VCD gave similar results. Pearson coefficients 

are shown in Figure 2B and Table S3. There were no significant correlations for the mid-

exponential phase (day 4) samples. Early stationary phase (day 7) measurements (normalized 

AUCs) were significantly correlated with qP, growth, or both for 73 of the 97 features. More than 

half of the 73 features reached at least level 2 identification (Table S4) based on minimum 

reporting standards of the Metabolomics Standards Initiative (MSI) (Sumner et al., 2007). Out of 

the 73 putatively identified and significantly correlated metabolites, about 25% are part of the basal 

or feed medium, indicating that most of the correlated metabolites result from endogenous 

metabolism of CHO cells. A delta analysis between day 4 and day 7 iVCD-normalized AUCs was 

performed to examine whether any cell-specific rates were correlated with qP or growth. In this 

analysis, 11 metabolites showed a significant positive correlation with qP, and 2 of these showed 

an additional significant negative correlation with growth. All 11 metabolites were also significant 
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in the day 7 correlation analysis. Notably, none of them were originally part of the feed or basal 

medium, indicating that their accumulation was not due to reduced net uptake. 

 

Figure 2. Significant correlations and pathways of extracellular metabolites from untargeted 

analysis. (A) Heatmap of integrated peak areas (AUCs). The AUC of a feature was first normalized 

to the corresponding sample’s viable cell density (VCD), then scaled to the maximum value for 

the feature across all samples. Clones are ordered from low qP to high qP, while rows are grouped 

from the top in the following order: correlated with both qP and growth, correlated with qP, 

correlated with growth, and no significant correlations. (B) Scatter plot of Pearson correlation 

coefficients (PCC) showing significance of correlation for each metabolite with peak VCD (y-

axis) and qP (x-axis). Significant correlations with qP (▲), growth (▼), or both (◊) are indicated 

if the PCC has a p-value less than 0.05. Metabolites without any significant correlations are shown 

by filled dots (●). (C) Enrichment (y-axis) and pathway impact (x-axis) analyses using 

Metaboanalyst were performed on metabolites significantly correlated with qP, including those 

also correlated with growth. Labels indicate the top four ranked pathways as determined by 

pathway impact scores from betweenness centrality and significance in pathway enrichment 

(dotted line represents p < 0.05 calculated by modified Fisher’s exact test). 
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In general, metabolites significantly correlating with qP had positive associations (higher 

extracellular metabolite levels correlated with higher qP), while those significantly correlating 

with growth had negative associations (Figure 2B). Only three metabolites had negative 

correlations with qP, while one metabolite had a positive correlation with growth. None of these 

correlations were significant. This result is consistent with several earlier studies that have shown 

negative associations between growth and endogenous (CHO cell produced) metabolites 

accumulating in the culture medium (Pereira et al., 2018). Positive associations between qP and 

accumulated metabolites could reflect an inverse correlation of qP with growth, possibly due to 

the metabolic burden of recombinant protein biosynthesis (Altamirano et al., 2001). However, it 

is important to note that there are some metabolites, e.g., aspartate, that showed no correlation with 

growth but still positively correlated with qP. 

Pathway impact and enrichment analysis on the set of metabolites correlated with qP, including 

those also correlated with growth, using Metaboanalyst showed that the two pathways with both 

high pathway impact and enrichment of the metabolites that have significant correlations with qP 

were the TCA cycle and alanine, aspartate, and glutamate metabolism had (Figure 2C) (J. Chong 

et al., 2018). Meanwhile, enriched pathways for metabolites that only correlated with growth were 

aminoacyl-tRNA biosynthesis and tyrosine metabolism (data not shown). The latter is consistent 

with a recent study reporting a beneficial impact of tyrosine on cell growth (Traustason, 2019). 

2.3.2 Targeted Analysis Confirmed Aspartate and Cystine as qP Specific Metabolite Indicators 

A fed-batch study with a new set of 12 clones producing a third mAb (molecule C) was performed 

in Ambr 15 bioreactors to investigate if significant metabolites identified by the untargeted 

analysis might serve as useful metabolic indicators of high-qP cell lines. Like the clones producing 
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molecules A and B, these clones exhibited a wide range of growth and productivity profiles (Figure 

S3). 

Supernatant samples from day 7 were analyzed using targeted LC-MS experiments for 34 

metabolites that were significantly and positively associated with peak VCD and/or qP in the 

untargeted analysis. The selection of metabolites was based on commercial availability of 

standards. The day 7 time point was selected to allow discovery of early indicators of qP and to 

avoid potentially confounding influences from nutrient starvation that may occur towards the end 

of a bioreactor run. The targeted analysis again found that aspartate was positively correlated with 

qP, confirming the association from the untargeted experiment (Figures 3A and 3C). In addition, 

cystine was tested, as it had a significant negative correlation with growth and a positive correlation 

with qP, although the latter correlation did not meet the significance threshold of FDR-controlled 

p-value less than 0.05. In the targeted analysis, cystine was found to be significantly and positively 

correlated with qP (Figure 3B and 3D). Aspartate and cystine were not significantly correlated 

with growth in the targeted analysis (Figure S4). This indicates that a positive correlation between 

these two metabolites and qP does not merely reflect the negative correlation between qP and 

growth. 
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Figure 3. Correlations between day 7 metabolite levels and qP. Aspartate (left panels) and cystine 

(right panels) levels plotted against specific productivity (qP) for 12 clones expressing mAbs A 

(●) or B (■) cultured in 5 L bioreactors (A and B, individual bioreactors) or 12 clones expressing 

mAb C (▲) cultured in Ambr 250 bioreactors (C and D, duplicate bioreactors), with * indicating 

a p-value of <0.05. All qP values were normalized to the maximum qP among all 24 clones. For 

the untargeted experiment, metabolite levels shown are integrated areas under the curve (AUCs) 

from extracted ion chromatograms, normalized to VCD. Solid and dotted lines show, respectively, 

the ordinary least squares regression model and 95% confidence interval for the regression line. 
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2.3.3 Medium Supplementation with qP Correlated Metabolite Improved qP and Titer 

We next investigated whether the metabolites that significantly correlated with qP could be used 

to improve qP and antibody titer. To this end, an addback study with a D-optimal design was 

performed with selected metabolites from the TCA cycle and from alanine, aspartate, and 

glutamate metabolism based on the observation that these two pathways were enriched in the set 

of metabolites positively correlated with qP (Figure 2C) (Goos & Jones, 2011). The selected 

metabolites were aspartate, glutamate, 4-aminobutanoate (GABA), and citrate. The lowest- and 

highest-qP clones expressing mAb A and mAb B were cultured in 50 mL conical tubes using a 

scaled down version of the fed-batch platform process. The selected metabolites were added to the 

cultures on day 3 at varying concentrations based on a D-optimal design (Table S2). By day 3, the 

cells have entered exponential growth, but have not begun antibody production. Day 3 was also 

early enough to detect potentially negative effects of metabolite supplementation on peak VCD as 

a proxy for overall growth. 

Of the four metabolites tested, only citrate had a clear dose-dependent effect on qP (Figure 4 and 

S5). The low and medium concentrations of citrate improved qP in three of the four clones, but 

negatively impacted growth. The high concentration was detrimental to both growth and qP. In the 

low-qP clone A-2, the low dose of citrate had minimal impact on growth, while improving qP two-

fold, resulting in a higher overall titer compared to the control without citrate supplementation. 
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Figure 4. Effects of citrate addition on growth and productivity of selected clones with the highest 

(A-5, B-1) and lowest (A-2, B-6) qP for mAbs A and B. Citrate was added at 3 different levels as 

described in Table S2. Grouping of conditions with the same level of citrate indicate dose-

dependent changes in both peak VCD and qP. 

To determine if citrate addition could improve the qP of other clones and confirm that this effect 

also occurs under bioreactor conditions, a similar addback experiment was performed with a 

narrower concentration range using Ambr 250 cultures. Three of the clones expressed molecule 

A, and three expressed molecule B. In all clones, citrate supplemental reduced peak VCD in a 

dose-dependent manner (Figure S6). This effect was modest, however, with the highest 

concentration reducing peak VCDs by 10–35% compared to the controls. In five out of the six 

clones, citrate addition improved qP in a dose-dependent manner (Figure 5A). In four clones, the 

qP improvement outweighed the growth reduction, leading to an increase in overall volumetric 
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titer of 15–107% over the controls without citrate supplementation (Figure 5B). The qP and titer 

improvements were observed for both mAb A and mAb B producing clones. Dose-dependent 

changes in metabolite profiles were observed for the five clones showing a positive qP response 

to citrate addition, including increased accumulation of glutamine, glutamate, and lactate, and 

reduced accumulation of ammonium (Figure S6). Interestingly, clone A-1, which did not show a 

positive qP response to citrate addition, also did not show these metabolic responses. 

 

Figure 5. Responses of clones expressing mAb A (A-1 through A-3) or mAb B (B-1 through B-

3) to addition of citrate to the culture medium. (A) Five out of six clones, each expressing one of 

two monoclonal antibodies (mAb A or mAb B, indicated by Clones A-1 through 3 and B-1 through 

3), showed a dose-dependent increase in qP. (B) Four of the clones showed an overall increase in 

final volumetric titer. Data shown are normalized qP or titer scaled to the highest respective value 

across the six clones. Error bars show standard deviation across duplicate control cultures. 

2.4 Discussion 

In this work, a metabolomics approach was used to identify CHO cell metabolites that are 

associated with productivity, cell growth, or both, across multiple clones producing different 
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mAbs. These metabolites were also tested for their potential utility in cell culture process 

development either as a qP indicator or medium additive. These studies identified aspartic acid 

and cystine as potential clone-independent indicators of qP. The correlation between these 

metabolites and qP observed in one set of clones producing two different mAbs was validated in 

a distinct, second set of clones expressing a third mAb. Furthermore, this work showed citrate can 

function as a culture additive benefiting both qP and volumetric titer in multiple clones under 

production process conditions. 

2.4.1 Tradeoff between Cell Growth and mAb Production  

We observed that significant correlations between metabolites accumulating in the fed-batch 

cultures and growth were almost always negative, whereas correlations with qP were positive. The 

negative association between growth and metabolite levels observed in the present study is 

consistent with several previous studies that reported on growth-inhibitory effects of metabolic 

byproducts, including many of the TCA cycle metabolites, amino acids, and their derivatives 

reviewed by Pereira et al. (W. P. Chong et al., 2012; Pereira et al., 2018). Well-known examples 

of growth-inhibitory byproducts include ammonium and lactate, the accumulation of which has 

been consistently reported to have a negative impact on cell viability and growth (Freund & 

Croughan, 2018; Lao & Toth, 1997; Noh et al., 2017; Toussaint et al., 2016). Recently, it has been 

shown that reducing the accumulation of branched chain amino acid (BCAA) catabolites, either 

by decreasing concentrations of the amino acid precursor or by metabolic engineering of the cell 

line to limit BCAA transamination, can lead to better growth (Mulukutla et al., 2017; Mulukutla 

et al., 2019). Alden et al. found that a tryptophan metabolite, 5-hydroxyindole acetaldehyde, 

negatively correlated with growth, and that tryptophan addition led to growth inhibition (Alden et 

al., 2020). Although efforts in understanding growth impacts of byproducts can be used to improve 
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productivity, higher growth may not always lead to increased titers, as qP may be negatively 

affected by process modifications that favor growth over protein production. 

Compared to cell growth, very little has been reported regarding the impact of accumulating 

metabolites on qP. Unlike cell proliferation, production of a mAb is not native to CHO cells and 

could place metabolic burdens on the cell that are not subject to endogenous regulatory 

mechanisms, i.e., the cell is not naturally programmed to achieve balanced mAb production. A 

reduction in qP could reflect a depletion of biosynthetic precursors or compromised cell viability. 

In principle, a depletion of carbon, nitrogen or energy resources needed for heterologous protein 

production could be mitigated by media supplementation or by engineering increased flux through 

pathways that supply the precursors. However, a reduction in qP due to compromised cell viability 

could be more complex to address. Collectively, the trends from the fed-batch studies referenced 

in the previous paragraph suggest declining viability in fed-batch systems is likely due to 

accumulation of harmful metabolites, rather than nutrient depletion. This is also supported by 

studies showing that cell density and productivity, as well as high viability, can be maintained for 

long periods of time in perfusion systems which continuously remove toxic byproducts (Bielser et 

al., 2018; Warikoo et al., 2012). Conversely, an increase in qP could indicate that more resources 

are directed towards protein production instead of cell growth and maintenance. Cell growth and 

heterologous protein production could require different balances of nutrients, and if the culture is 

operated the same way during both exponential and stationary phases of a fed-batch process, 

accumulation of metabolites may be seen. 

In the present study, we show that almost all significant correlations between qP and metabolites 

detected in the culture medium are positive, in contrast to correlations between peak VCD and the 

metabolites. If a metabolite is accumulating in a culture, the cells are consuming less of it (if it is 
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in the feed or basal media), making an excess of it, or there is a bottleneck in the metabolite’s use. 

This accumulation is more likely to happen when cells enter stationary phase, growth slows, and 

a larger share of metabolic resources (biosynthetic precursors and energy currency metabolites) is 

consumed for producing the non-native molecule (Martínez et al., 2013). Before this point, 

accumulation of metabolites may not differ significantly between low-qP and high-qP cultures. 

This is consistent with the results of our untargeted analysis on mid-exponential phase (day 4) 

samples. After the stationary phase begins (day 7), we see that the metabolic profile of cells that 

grew to a high cell density is different than the metabolic profile of cells that exhibit high qP. 

The best-growing cells likely have a flux distribution optimized for growth with minimal overflow 

of central carbon metabolites. Meanwhile, accumulation of central carbon pathway intermediates 

may reflect a suboptimal flux distribution for growth but more capacity for a non-natural objective 

such as producing recombinant protein. This tradeoff could explain why only negative correlations 

were seen with growth and positive correlations with qP. Additionally, cell culture processes are 

generally optimized for titer rather than growth, with many processes even limiting proliferation 

in favor of producing antibody (Fussenegger et al., 1998; Kumar et al., 2007). The platform process 

used in these studies was indeed previously optimized for antibody expression in the parental cell 

line, which could be another reason most correlations with qP were positive. 

2.4.2 Aspartic Acid and Cystine 

Metabolites that correlate with qP across different clones independent of the clones’ mAbs could 

be useful early indicators for selecting high-qP clones. Ideally, such indicators specifically predict 

qP and are independent of growth. In this work, day 7 aspartic acid and cystine levels in the culture 

medium were identified as potential indicators that had statistically significant correlations with 

qP of 24 clones expressing three different molecules. Furthermore, both metabolites showed no 
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correlation with growth in the targeted analysis. Extracellular metabolites are easily measured 

indicators that could be used to assess the culture at an early stage of protein production (e.g., day 

7 of a 14-day process) to reduce timelines during multiple rounds of clone selection. The indicators 

could also reveal clones with high-qP potential that may not perform well in initial clone selection 

due to unoptimized platform culture conditions such as starvation towards the end of a process. 

Although both aspartic acid and cysteine were present in the basal and feed media used in the 

study, there were differences in the consumption rates of these amino acids between low-qP and 

high-qP clones. 

A previous study reported that aspartate is produced by mammalian cells when the cells are grown 

in high glucose/glutamine conditions, whereas the amino acid is consumed by the cells in low 

glucose/glutamine conditions (Larson et al., 2002). In the presence of excess glucose, as was the 

case in the present work, aspartate production may have occurred as a byproduct of elevated 

glucose metabolism in the higher qP clones. Alternatively, the positive correlation between qP and 

aspartate could reflect the amino acid’s involvement in the malate-aspartate shuttle (Eric L. Allen 

et al., 2016). Overexpression of an aspartate/glutamate carrier in the malate-aspartate shuttle has 

been shown to increase ATP production in CHO cells (Lasorsa et al., 2003). A high concentration 

of ATP could deactivate adenosine monophosphate kinase (AMPK) and modulate mTOR 

signaling, which has been found to promote qP (W. P. Chong, Sim, et al., 2009; Edros et al., 2014). 

The positive correlation of aspartate with qP could also be linked to increased oxidative 

phosphorylation, a phenotype associated with higher productivity phases and clones (Templeton, 

Smith, et al., 2017; Young, 2013). 

Cystine was measured in the present study instead of free cysteine, which readily dimerizes to 

cystine in the presence of oxygen. The accumulation of cystine in high-qP clones could indicate a 
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more oxidized cell culture environment. Previous studies have reported that having sufficient 

cysteine in the medium supports high productivity (Ali et al., 2018). Cysteine is an important 

substrate for synthesis of antioxidants, including taurine and glutathione (GSH), which support 

high rates of oxidative phosphorylation associated with high-qP cells. A recent study found that a 

depletion of cysteine in CHO cell culture medium negatively impacted VCD, viability, and qP, 

and attributed these observations to redox imbalance, endoplasmic reticulum stress, and 

mitochondrial dysfunction (Ali et al., 2020). The accumulation we observed in high-qP cells could 

reflect the ability of these cells to supplement feed cysteine with endogenous production. We did 

not observe a significant trend with methionine, the other sulfur-containing amino acid, but the 

cells could be sourcing the sulfur by turning over proteins. Further studies, e.g., using isotopic 

tracers, are warranted to better understand the source of cystine in the medium, the mechanisms 

behind metabolite-qP correlations and to evaluate more broadly the use of the metabolites as 

biomarkers of qP. 

2.4.3 Citrate Addition Improves qP and Titer 

Addition of citrate to the medium on day 3 increased qP for multiple clones in a dose-dependent 

manner. In the untargeted experiment (Figure 2), citrate correlated positively with qP but 

negatively with growth. Previous studies have suggested that the accumulation of TCA cycle 

intermediates in the media may signal a bottleneck that is connected to growth limitation (Carinhas 

et al., 2013; Sellick et al., 2011; Sellick et al., 2015). In the present study, multiple clones showed 

a benefit to qP with citrate addition that overcame any impact on growth. One possible explanation 

for our finding is that metabolism in the clones benefiting from citrate addition has not yet reached 

a bottleneck, and the added citrate increased the amount of substrate available for the TCA cycle. 

Zhang et al. postulated this hypothesis in an earlier study which found that feeding various TCA 
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cycle intermediates led to titer increases (Zhang et al., 2020). Another study reported that feeding 

TCA cycle intermediates, including citrate, to CHO cells during stationary phase resulted in lower 

ammonium accumulation and higher glutamate and glutamine concentrations in the culture 

medium (Gilbert et al., 2013), consistent with findings in this study (Figure S6). These 

observations could be explained by additional conversion of citrate to α-ketoglutarate (aKG), 

which would reduce transamination of glutamate and production of ammonium, while increasing 

flux of glutamate to glutamine. Entry of additional citrate into the TCA cycle could also reduce 

the demand for cytosolic pyruvate, leaving more pyruvate available for reduction to lactate. This 

scenario is consistent with the lactate profiles observed in this work. However, current literature 

suggests that elevated pyruvate flux towards lactate indicates a less efficient metabolic state for 

antibody production (Alden et al., 2020; Templeton, Smith, et al., 2017). Further investigation into 

intracellular carbon fluxes may be able to resolve this difference. 

An alternative explanation for citrate’s effect on qP is that it promotes iron chelation. An earlier 

study reported that adding sodium citrate in combination with ferric sulfate increased qP (Bai et 

al., 2011). A future study comparing citrate with the effects of other iron-chelating compounds 

while examining ATP production in all phases of the cell culture could shed light on the 

mechanism by which productivity increased. Quality attributes including glycan distribution and 

charge variants should also be considered in future studies. 

The titer improvement seen in this study from medium supplementation of a metabolite identified 

through untargeted metabolomics on a library of clones followed by correlation analysis shows 

that this approach has the potential to discover early indicators of qP and beneficial media 

additives. Although prior studies focused on byproducts that inhibit cell growth, this work sought 

to identify metabolites that can be added to improve process performance by increasing qP. 
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Additives such as citrate offer the advantage of flexibility, in that they are easy to introduce at any 

stage, including during clone selection to provide a better indication of a clone’s potential 

performance. For example, when comparing clones B-2 and B-3 under the same platform process 

condition, differences in qP and volumetric titer appear to be negligible (Figure 4). However, with 

the addition of citrate, clone B-2 clearly outperforms B-3 with a 110% increase in final titer over 

the control condition without citrate. In comparison, other strategies for improving qP, such as 

genetic modifications or subcloning with higher levels of a selection agent require greater effort 

and time and have yielded only modest benefit to titer (Gupta et al., 2017; Lao & Toth, 1997; 

Wilkens & Gerdtzen, 2015). Furthermore, it is an open question if genetic modifications or a 

subcloning strategy effective for clones producing one mAb also apply to other clones producing 

a different mAb. 

In conclusion, we demonstrate that high-qP associated extracellular metabolites identified by 

analyzing a library of multiple CHO cell clones producing different mAbs can be used to predict 

high-qP clones in another library. Through addback studies, we also show that a TCA cycle 

metabolite positively associated with qP can be used as a medium additive to improve both qP as 

well as final titer. To our knowledge, this is the first study to identify extracellular metabolites that 

specifically associate with qP across a large number of CHO cell clones and demonstrate their 

applications. The metabolomics approach presented here offers practical routes for identifying 

metabolites to improve clone selection and enhance overall productivity and titer. 

2.5 Materials and Methods 

2.5.1 Cell Lines 

A total of 24 clones derived from a CHO GS KO parental cell line were used in these studies. The 

parental cell line has been described previously by Morris et al. (Morris et al., 2020). Six clones 
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expressing mAb A and six expressing mAb B were used for the initial fed-batch cell culture 

experiments to generate untargeted LC-MS data, and a subset of these 12 clones were used for 

addback experiments. Twelve other clones expressing mAb C were used for the targeted LC-MS 

experiment. All 24 clones were single-cell clones selected from multiple transfection pools to 

increase the likelihood of including diverse phenotypes with a wide range of growth and qP 

profiles. 

2.5.2 Fed-Batch Cell Culture Experiments 

Fed-batch experiments were performed on several platforms: 5 L bioreactors, 50 mL conical tubes, 

and 15 mL and 250 mL bioreactors (Ambr 15 and Ambr 250, Sartorius, Göttingen, Germany). The 

cells were grown using chemically defined BMS proprietary media. Temperature was maintained 

at 36.5 °C for all cultures. In bioreactors, dissolved oxygen was maintained above 40% using 

oxygen sparging and pH was maintained between 6.8–7.4 using sodium carbonate addition and 

carbon dioxide sparging. In addition to daily concentrated feed, boluses of glucose were 

supplemented starting on day 2 to maintain a concentration greater than 1 g/L. Cell suspension 

samples were taken daily over the course of 14 days to monitor growth using a Vi-Cell cell counter 

(Beckman Coulter, Brea, CA, USA). The daily samples were also analyzed for concentrations of 

lactate, ammonia, glutamate, and glutamine using a Cedex BioHT (Roche, Basel, Switzerland). 

Supernatants from the samples centrifuged at 1000× g for 5 min were analyzed by Protein-A HPLC 

for the antibody product. 

2.5.3 Untargeted LC-MS 

Supernatant samples collected on days 4 and 7 of the fed-batch experiments were diluted 1:10 with 

HPLC grade water and analyzed for metabolites using information-dependent acquisition (IDA) 

experiments performed on a quadrupole time-of flight (TOF) mass spectrometer (TripleTOF 
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5600+, AB Sciex, Framingham, MA, USA). Each sample was run four times with different 

combinations of chromatography methods and ionization modes (positive and negative). The 

chromatographic separation was performed with a binary pump HPLC system (1260 Infinity, 

Agilent, Santa Clara, CA, USA) using either a HILIC column (Phenomenex Luna NH2, Torrance, 

CA, USA) or a reverse-phase column (Phenomenex Synergi Hydro-RP, Torrance, CA, USA) as 

described previously (Alden et al., 2017). The gradient methods and mobile phases are described 

in Supplementary Methods. An example chromatogram can be found in Figure S7. 

2.5.4 Feature Annotation 

The LC-MS features were annotated with putative chemical identities based on accurate mass (m/z) 

and product ion (MS/MS) spectrum data. The details of the annotation procedure have been 

previously described (Alden et al., 2017). Briefly, the m/z value and MS/MS spectrum of each 

unique feature was analyzed using the following five annotation tools: Metfrag (Ruttkies et al., 

2016), CFM-ID (F. Allen et al., 2015), NIST17 (NIST/EPA/NIH, 2017), Metlin (Tautenhahn et 

al., 2012), and HMDB (Wishart et al., 2013). For many features, these fives tools returned different 

annotations. To determine the most likely identity for a feature, we mapped each feature to one or 

more compounds in a model of CHO cell metabolism based on accurate mass and computed a 

score reflecting the confidence in the mapping. Some features were putatively identified as the 

same metabolite in multiple LC-MS methods. For example, tryptophan was detected in negative 

ionization mode paired with the Synergi column and positive mode with the HILIC column. In 

these cases, the putatively identified metabolite was represented by the feature responses (i.e., peak 

areas) from the LC-MS method that detected the highest dynamic range in peak areas across all 

samples. 
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2.5.5 Data Analysis 

The peak area, representing the integrated area under the curve (AUC) of the extracted ion 

chromatogram, for each annotated feature was normalized to the integral viable cell density of the 

corresponding sample. These normalized AUCs were used in correlation analyses with peak VCD 

and qP calculated from early stationary phase (day 6 or 7, depending on experimental constraints) 

to mid-stationary phase (day 11 or 12). Before and after this period, respectively, the cells produce 

little antibody and show significant viability loss. All correlation analyses were performed only 

within experiments using data from the same timepoints. More detailed qP profiles are available 

in Figure S1. The qP was calculated using the following equation: 

Specific productivity 𝑞𝑞𝑞𝑞 � 𝑝𝑝𝑝𝑝
𝑑𝑑𝑑𝑑𝑑𝑑∙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 − 𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉1

 

Other equations for qP were also tested, including a simple titer/iVCD calculation, and all provided 

similar results. 

Both Pearson and Spearman correlation coefficients were calculated to test for linear and nonlinear 

relationships in the data, respectively. The p-values were controlled for false discovery rate (FDR) 

using the Benjamini–Hochberg method (Benjamini & Hochberg, 1995). A p-value < 0.05 indicated 

a significantly correlated metabolite. Similar results were obtained using both correlations. For 

simplicity, the Pearson correlation coefficients are reported here. The same correlation analysis 

was also performed on the delta (difference) between day 7 measurements and day 4 

measurements. 

For pathway enrichment analysis, Metaboanalyst 4.0 was used, supported by the Mus musculus 

pathway library as the closest organism available [25]. Default selections were used for all other 

settings: the method for the over-representation analysis was the hypergeometric test, and the node 

importance measure for pathway topology analysis was relative betweenness centrality. 
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2.5.6 Targeted LC-MS 

Multiple reaction monitoring (MRM) experiments were performed on a triple quadrupole mass 

spectrometer (6410, Agilent, Santa Clara, CA, USA) for targeted analysis of significantly 

correlating metabolites identified from the correlation analysis. High purity standards were used 

to optimize the following MRM parameters for each target analyte: ionization mode, precursor 

ion, fragmentor voltage for the precursor ion, product ion (i.e., MRM transition), and collision 

energy for the transition (Table S1). For sample analysis, supernatants were diluted 1:10 and the 

same HILIC method was used as in the untargeted experiments. The samples were then analyzed 

in MRM experiments using the optimized acquisition parameters. Example chromatograms can be 

found in Figure S8. 

2.5.7 Addback Experiments 

To determine the effects of significantly correlating metabolites on specific growth and 

productivity, addback experiments were carried out in 50 mL conical tubes and the Ambr 250. The 

fed-batch cell culture experiments were performed as described above, except that varying doses 

of selected compounds were added in bolus to the culture medium on day 3. Each compound was 

added from a stock solution in a low, medium, or high concentration according to a D-optimal 

design (Table S2). Control conditions used water addition to maintain the same volume as test 

conditions. Multiple concentrations were used to determine whether the cultures would exhibit a 

dose-dependent response in growth or protein production. 
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2.7 Supplementary Information 
 
LC-MS Methods 
Untargeted analysis was performed as described in Alden et al., 2017. In brief, information-

dependent acquisition (IDA) experiments were performed on a QTOF, consisting of a TOF MS 

survey scan and four dependent product ion (MS/MS) scans for the highest intensity unique 

masses in each scan. Fragmentation was triggered when precursor ion counts rose quickly over 

several scans, ensuring ions were selected near the top of their LC peaks. 

 
Reverse phase (RP) chromatography method 
• Column: Phenomenex Synergi Hydro-RP 

• Solvents: 
o A: 0.1% formic acid in water 
o B: 0.1% formic acid in 

methanol 
• Column temperature: 15°C 
• Flow rate: 0.2 mL/min 
• Ion source: Turbo spray (ESI) 
• Ion source Gas 1: 35 
• Ion source Gas 2: 45 
• Curtain Gas: 25 
• Temperature: 450C 

 
Gradient: 

 
 
 
 
 
 
 
 
 

• IonSpray Voltage Floating: ±4500 V 
 

 
Hydrophilic interaction chromatography (HILIC) method 
• Column: Phenomenex Luna NH2 
• Solvents 
o A: 95:5 water:acetonitrile + 

20mM ammonium acetate, pH to 
9.45 using ammonium hydroxide 

o B: 100% acetonitrile 
• Column temperature: 25°C 

 
Gradient: 

• Flow rate: 0.3 mL/min 

Time (min) %B 
0-8 3 
8-38 3 → 95 
38-45 95 
45-47 95 → 3 
47-55 3 

Time (min) %B 
0-15 85 → 0 
15-28 0 
28-30 0 → 85 
30-60 85 



 

69 
 

• Ion source: Turbo spray (ESI) 
• Ion source Gas 1: 35 
• Ion source Gas 2: 45 
• Curtain Gas: 25 
• Temperature: 450C 
• IonSpray Voltage Floating: ±5500 V 
 
For the QQQ targeted experiment, the HILIC method above was used with a modified 
gradient: 
 
Gradient: 
 
 
 
 
 
Ion source: ESI 
Source parameters 
Gas temp: 350C 
Gas flow: 11 l/min 
Nebulizer: 50 psi 
Capillary: Positive 4000V Negative 4500V 

   

Time (min) %B 
0-15 85 → 0 
15-20 0 
20-25 0 → 85 
25-30 85 
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Table S1. MRM transitions and instrument parameters for targeted analysis 
 

Compound Name Mass Precursor Product approx 
RT CE Frag Polarity 

4-aminobutanoate (GABA) 103.06 104.1 87.1 8.9 5 60 Positive 
5-hydroxy-L-tryptophan 220.09 221.1 204.1 8.3 5 90 Positive 
Adenosine 267.1 268.1 136.1 5.5 9 90 Positive 
Biotin 244.09 245.1 227.1 9.7 5 90 Positive 
Citrate 192.03 191 111.1 16.2 9 60 Negative 
D-gluconic acid 196.16 195.2 75 11 17 90 Negative 
D-glucuronate 194.04 193 73.1 11.6 9 90 Negative 
Folate 441.14 440.1 310.9 17.3 21 147 Negative 
Fumaric acid 116.01 115 71.1 16.1 5 60 Negative 
Glycine 75.03 76 30.2 15 5 60 Positive 
Guanine 151.05 152.1 135.1 7.1 17 120 Positive 
Hypoxanthine 136.04 137 55.1 7.3 33 120 Positive 
Inosine 268.08 269.1 137.1 5.2 5 60 Positive 
L-2-aminoadipate 161.12 162.1 98.2 11.9 13 90 Positive 
L-alanine 89.04 90.1 44.2 15 9 30 Positive 
L-arginine 174.11 175.1 70.2 9.5 25 90 Positive 
L-aspartate 133.04 132 88.1 11.7 9 60 Negative 
L-cysteine 121.02 122 59.1 16 25 60 Positive 
L-Cystine 240.02 239 120.1 11.9 5 60 Negative 
L-Glutamate 147.05 148.1 84.1 11.7 13 60 Positive 
L-histidine 155.07 156.1 110.1 9.1 9 90 Positive 
L-isoleucine 131.1 132.1 86.2 6.6 5 60 Positive 
L-leucine 131.1 132.1 86.2 6.6 5 60 Positive 
L-lysine 146.1 147.1 84.2 10.2 13 90 Positive 
L-methionine 149.05 148 47.1 7.4 9 60 Negative 
L-Phenylalanine 165.08 166.1 120.1 7.1 9 60 Positive 
L-proline 115.06 116.1 70.1 8 13 90 Positive 
L-threonine 119.06 118 74.1 8.5 9 60 Negative 
L-tryptophan 204.09 205.1 188.1 7.3 5 60 Positive 
L-tyrosine 181.07 182.1 136.1 8.1 9 90 Positive 
Methionine sulfoxide 165.04 166 74.1 8.9 9 90 Positive 
S-malate 134.02 133 115.1 6.6 9 60 Negative 
Succinate 118.03 117 73.1 15.5 9 60 Negative 
Uridine 244.07 245.1 113 4.9 5 60 Positive 
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Table S2. Experimental design for add-back screening study 
 

Exp. 
# Clone 

L-aspartic acid 
sodium salt 

monohydrate 
(mM) 

 
γ-Aminobutyric 

acid (mM) 
Sodium citrate 

(mM) 
L-glutamic acid 

(mM) 
1 B-6 0.72 20 3 0.76 
2 B-1 0.72 5 3 0.76 
3 B-6 0.18 5 12 0.19 
4 B-1 0.72 20 12 0.19 
5 A-5 0.36 10 6 0.38 
6 A-5 0.72 5 3 0.76 
7 B-1 0.36 10 6 0.38 
8 B-1 0.18 20 3 0.18 
9 A-2 0.72 5 12 0.76 

10 A-2 0.72 5 3 0.76 
11 A-2 0.36 10 6 0.38 
12 B-6 0.18 5 3 0.76 
13 B-1 0.72 20 12 0.19 
14 B-6 0.72 5 12 0.76 
15 A-2 0.72 20 12 0.19 
16 A-5 0.36 10 6 0.38 
17 A-5 0.72 20 3 0.76 
18 A-2 0.18 20 12 0.76 
19 A-5 0.72 5 3 0.19 
20 A-2 0.72 20 12 0.19 
21 B-6 0.72 20 12 0.76 
22 A-2 0.72 5 3 0.76 
23 A-2 0.36 10 6 0.38 
24 A-2 0.18 5 12 0.19 
25 A-2 0.72 20 3 0.76 
26 B-6 0.18 5 3 0.76 
27 B-6 0.36 10 6 0.38 
28 B-1 0.72 5 3 0.76 
29 B-1 0.18 5 12 0.19 
30 B-6 0.72 5 3 0.19 
31 A-2 0.72 5 12 0.76 
32 A-5 0.18 5 12 0.19 
33 B-1 0.72 20 3 0.76 
34 B-1 0.72 20 12 0.76 
35 B-1 0.18 20 12 0.76 
36 B-6 0.18 20 3 0.19 
37 B-6 0.18 20 3 0.19 
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Exp. 
# Clone 

L-aspartic acid 
sodium salt 

monohydrate 
(mM) 

 
γ-Aminobutyric 

acid (mM) 
Sodium citrate 

(mM) 
L-glutamic acid 

(mM) 
38 B-1 0.36 10 6 0.38 
39 B-1 0.18 20 3 0.19 
40 A-5 0.72 20 12 0.19 
41 B-6 0.36 10 6 0.38 
42 A-5 0.18 5 3 0.76 
43 A-2 0.72 20 3 0.76 
44 B-6 0.72 5 3 0.19 
45 A-5 0.72 20 12 0.19 
46 A-5 0.72 20 12 0.76 
47 B-6 0.18 20 12 0.76 
48 B-6 0.18 5 12 0.19 
49 B-6 0.72 20 12 0.76 
50 A-5 0.18 20 3 0.19 
51 A-2 0.72 5 3 0.19 
52 A-5 0.18 20 12 0.76 
53 B-1 0.18 5 3 0.76 
54 A-2 0.18 5 3 0.76 
55 A-2 0.18 5 12 0.19 
56 B-6 0.72 5 3 0.76 
57 A-5 0.72 5 12 0.76 
58 B-1 0.18 5 12 0.19 
59 A-5 0.18 20 12 0.76 
60 B-6 0.72 20 12 0.19 
61 B-1 0.72 5 3 0.19 
62 A-5 0.72 5 3 0.19 
63 B-6 0.18 20 12 0.76 
64 A-2 0.18 20 12 0.76 
65 A-5 0.72 5 12 0.76 
66 A-2 0.72 20 12 0.76 
67 B-1 0.18 5 3 0.76 
68 B-6 0.72 20 12 0.18 
69 B-1 0.72 5 12 0.76 
70 A-2 0.18 20 3 0.19 
71 B-1 0.72 5 3 0.19 
72 B-1 0.72 20 12 0.76 
73 A-5 0.72 5 3 0.76 
74 A-5 0.18 20 3 0.19 
75 B-6 0.72 5 3 0.76 
76 A-5 0.72 20 3 0.76 
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Exp. 
# Clone 

L-aspartic acid 
sodium salt 

monohydrate 
(mM) 

 
γ-Aminobutyric 

acid (mM) 
Sodium citrate 

(mM) 
L-glutamic acid 

(mM) 
77 A-2 0.72 20 12 0.76 
78 A-2 0.18 20 3 0.19 
79 B-1 0.72 5 12 0.76 
80 B-1 0.72 20 3 0.76 
81 A-5 0.72 20 12 0.76 
82 A-2 0.72 5 3 0.19 
83 A-5 0.18 5 3 0.76 
84 A-2 0.18 5 3 0.76 
85 A-5 0.18 5 12 0.19 
86 B-6 0.72 5 12 0.76 
87 B-6 0.72 20 3 0.76 
88 B-1 0.18 20 12 0.76 
89 B-1 0 0 0 0 
90 B-1 0 0 0 0 
91 A-2 0 0 0 0 
92 A-2 0 0 0 0 
93 B-6 0 0 0 0 
94 B-6 0 0 0 0 
95 A-5 0 0 0 0 
96 A-5 0 0 0 0 

 
A D-optimal design of 96 conditions was used to screen four metabolites for qP-enhancing 

potential. 
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Table S3. Pearson correlation coefficients between annotated metabolites and qP or growth. 
  Correlation with qP Correlation with growth 

Annotated metabolite Correlation 
coefficient p-value  Correlation 

coefficient p-value  

L-Glutamate 5-semialdehyde 0.817 0.008 -0.829 0.030 
2-Oxobutanoate 0.799 0.010 -0.827 0.030 
2-Hydroxy-dATP 0.901 0.002 -0.738 0.032 
Biotin 0.875 0.004 -0.692 0.032 
cis-Aconitate 0.815 0.008 -0.696 0.032 
Citrate 0.822 0.008 -0.700 0.032 
Biotin amide 0.813 0.008 -0.732 0.032 
D-Glucuronate 0.806 0.009 -0.734 0.032 
5-Hydroxyindoleacetaldehyde 0.787 0.011 -0.739 0.032 
L-Formylkynurenine 0.782 0.011 -0.803 0.032 
N-Acetyl-D-mannosamine 0.787 0.011 -0.740 0.032 
N-Acetylneuraminate 0.772 0.013 -0.736 0.032 
Adenosine 0.766 0.014 -0.708 0.032 
L-Tryptophan 0.762 0.014 -0.732 0.032 
L-Arginine 0.758 0.015 -0.756 0.032 
5-Hydroxy-L-tryptophan 0.755 0.015 -0.707 0.032 
alpha-D-Glucose 0.740 0.019 -0.776 0.032 
Guanine 0.732 0.021 -0.702 0.032 
7,8-Dihydroneopterin 3'-
triphosphate 0.722 0.022 -0.700 0.032 

Inosine 0.722 0.022 -0.724 0.032 
L-Histidine 0.697 0.028 -0.721 0.032 
L-Phenylalanine 0.697 0.028 -0.715 0.032 
L-Isoleucine 0.691 0.029 -0.780 0.032 
L-Methionine 0.683 0.031 -0.776 0.032 
5-Acetylamino-6-
formylamino-3-methyluracil 0.667 0.038 -0.717 0.032 

L-methionine-S-oxide 0.658 0.041 -0.767 0.032 
Sorbitol 6-phosphate 0.649 0.044 -0.810 0.032 
Leukotriene C4 0.639 0.046 -0.695 0.032 
Sucrose 0.635 0.048 -0.775 0.032 
Glycine 0.839 0.007 -0.684 0.034 
L-2-Aminoadipate 0.784 0.011 -0.684 0.034 
Folate 0.781 0.011 -0.683 0.034 
Dihydrobiopterin 0.751 0.016 -0.675 0.036 
L-Glutamate 0.907 0.002 -0.665 0.038 
Succinate 0.836 0.007 -0.656 0.041 
5-Oxoproline 0.918 0.002 -0.638 0.049 
4-Aminobutanoate 0.897 0.002 -0.626 0.053 
Farnesylcysteine 0.865 0.005 -0.626 0.053 
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L-Alanine 0.722 0.022 -0.627 0.053 
sn-Glycero-3-phospho-1-
inositol 0.818 0.008 -0.621 0.054 

5,10-
Methenyltetrahydrofolate 0.700 0.027 -0.623 0.054 

UDP-N-acetyl-alpha-D-
glucosamine 0.701 0.027 -0.611 0.058 

Uridine 0.780 0.011 -0.582 0.072 
Glycolate 0.653 0.042 -0.582 0.072 
(R)-Mevalonate 0.779 0.011 -0.567 0.079 
L-Aspartate 0.760 0.015 -0.548 0.088 
(R)-5-Phosphomevalonate 0.914 0.002 -0.531 0.097 
Fumarate 0.756 0.015 -0.524 0.102 
(S)-1-Pyrroline-5-carboxylate 0.802 0.009 -0.509 0.113 
sn-Glycero-3-
phosphoethanolamine 0.640 0.046 -0.507 0.113 

D-Gluconic acid 0.810 0.009 -0.489 0.128 
2-Hydroxy-dAMP 0.817 0.008 -0.430 0.182 
(S)-Malate 0.770 0.013 -0.410 0.205 
Hypoxanthine 0.643 0.045 -0.372 0.249 
3-Cyano-L-alanine 0.618 0.056 -0.696 0.032 
3-Aminopropanal 0.614 0.057 -0.741 0.032 
2,5-Dioxopentanoate 0.569 0.085 -0.711 0.032 
L-Proline 0.558 0.092 -0.704 0.032 
L-Tyrosine 0.536 0.105 -0.782 0.032 
D-Sorbitol 0.524 0.116 -0.780 0.032 
L-Threonine 0.506 0.132 -0.696 0.032 
1-(5-Phospho-D-ribosyl)-5-
amino-4-
imidazolecarboxylate 

0.460 0.178 -0.775 0.032 

L-Lysine 0.458 0.178 -0.701 0.032 
L-Leucine 0.443 0.191 -0.702 0.032 
Carboxyphosphamide 0.406 0.234 -0.750 0.032 
S-Adenosyl-L-homocysteine 0.401 0.240 -0.700 0.032 
4-Fumarylacetoacetate 0.391 0.252 -0.761 0.032 
Dopamine 0.305 0.375 -0.713 0.032 
L-Cysteine 0.327 0.344 -0.676 0.036 
D-myo-Inositol 1,2-cyclic 
phosphate 0.322 0.351 -0.674 0.036 

2-Aminobut-2-enoate 0.549 0.098 -0.665 0.038 
5-Guanidino-2-oxopentanoate 0.426 0.211 -0.667 0.038 
L-Cystine 0.387 0.257 -0.663 0.038 
Dopaquinone 0.627 0.052 -0.652 0.042 
Betaine 0.358 0.296 -0.618 0.055 
Pterine 0.411 0.229 -0.568 0.079 
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6-Phospho-D-gluconate 0.200 0.575 -0.560 0.081 
L-Glutamine 0.167 0.637 -0.558 0.082 
L-Pipecolate 0.617 0.056 -0.545 0.089 
Taurine 0.469 0.169 -0.536 0.094 
L-Asparagine 0.180 0.613 -0.513 0.109 
Guanidinoacetate 0.365 0.286 -0.455 0.158 
5,10-
Methylenetetrahydrofolate 0.503 0.134 -0.435 0.178 

L-Serine -0.188 0.598 -0.405 0.209 
D-Glycerate 0.241 0.492 -0.401 0.213 
(S)-3-Methyl-2-oxopentanoic 
acid 0.008 0.986 -0.396 0.218 

1,2-Dibromoethane 0.540 0.103 -0.376 0.245 
L-Cysteate 0.424 0.211 -0.368 0.252 
3-Methoxy-4-
hydroxyphenylglycolaldehyde 0.581 0.077 -0.326 0.314 

3,4-Dihydroxymandelate 0.313 0.366 -0.293 0.368 
1D-myo-Inositol 1,3,4,5,6-
pentakisphosphate -0.044 0.915 0.270 0.406 

Alcophosphamide -0.302 0.378 -0.119 0.717 
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Table S4. Metabolites reaching at least MSI level 2 identification. 
 
 

dataSrc mz RT ppm 

Confirmed 
with 

standard Annotation 
Match 
Factor 

HilNeg 74.02558 618.8435 11.40  Glycine 597 

HilNeg 105.0188 759.329 4.68  Glyceric acid 917 

HilNeg 114.0546 574.902 12.58 X L-Proline 661 

HilNeg 118.05 610.716 7.92  Threonine 668 

HilNeg 145.0613 616.1975 3.70 X L-Glutamine 947 

HilNeg 164.0372 639.561 9.39 X L-methionine S-Oxide 761 

HilNeg 195.0502 800.8455 4.01  D-gluconic acid 782 

HilNeg 239.016 853.677 2.12  L-Cystine 938 

HilNeg 440.1362 1229.261 8.49 X Folic acid 899 

HilPos 77.02329 503.784 0.36  Glycolic acid 700 

HilPos 106.0484 636.0098 13.71 X Serine 876 

HilPos 130.0864 673.7855 1.05  Pipecolic acid 729 

HilPos 133.0606 631.9407 1.19 X L-Asparagine 976 

HilPos 137.0451 411.3256 5.14 X Hypoxanthine 911 

HilPos 152.0564 527.1319 1.81  Guanine 523 

HilPos 156.0764 646.861 2.24 X L-Histidine 926 

HilPos 175.1187 636.9453 1.52  L-Arginine 990 

HilPos 176.0728 582.9782 12.74  5-hydroxyindoleacetaldehyde * 

HilPos 221.0889 519.4064 14.41  5-hydroxy-l-tryptophan 684 

SynNeg 88.04049 881.1325 1.02 X L-alanine 587 

SynNeg 101.0244 920.672 0.02 X 2-oxobutanoate 659 

SynNeg 112.0399 1289.605 5.04  (S)-1-Pyrroline-5-carboxylate 504 

SynNeg 115.003 882.8115 5.77  Fumaric acid 582 

SynNeg 117.019 2587.291 3.00 X Succinate 887 
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SynNeg 132.03 883.0335 1.89 X L-aspartic acid 988 

SynNeg 133.0136 1382.16 4.67 X Malic acid 987 

SynNeg 145.0975 717.552 4.88 X L-Lysine 719 

SynNeg 146.0455 910.85 2.49 X L-Glutamic acid 752 

SynNeg 148.0433 1443.241 3.48 X L-Methionine 636 

SynNeg 160.0607 1154.211 5.31 X L-2-aminoadipic acid 806 

SynNeg 162.0414 2615.492 4.31  Pterine 798 

SynNeg 164.0717 2816.974 0.18 X L-phenylalanine 903 

SynNeg 173.0082 2452.754 5.06  cis-aconitic acid 572 

SynNeg 180.0666 2490.638 0.33 X L-tyrosine 922 

SynNeg 191.0193 2453.592 2.28 X Citric acid 970 

SynNeg 193.0348 928.936 2.80  D-glucuronic acid 965 

SynNeg 203.0826 2984.451 0.06 X L-tryptophan 962 

SynNeg 346.0572 2337.519 3.92  Adenosine monophosphate 815 

SynPos 115.0496 2885.132 5.10  3-Cyano-L-alanine 483 

SynPos 245.092 3140.981 13.97 X Biotin 905 

 *No score but see Alden et al, Metabolites 2020, 10(5), 199; https://doi.org/10.3390/metabo10050199   

https://doi.org/10.3390/metabo10050199
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Figure S1. Time profiles of qP for twelve clones producing mAb A and mAb B. (A) For the 

overall comparison of qP in Figure 1C, titers from days 6 and 11 were used. More detailed qP 

profiles for each clone are shown here, using titer data available on days 6, 8, 11, and 14. (B) 

Peak VCD was negatively correlated with qP (days 6-11), indicating a tradeoff between 

productivity and growth. 
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Figure S2. Mirror plot examples. The red spectra are from samples; the blue spectra are from 

standards. Spectral scores (head to tail match factors and reverse match factors) in green indicate 

the similarity of the unknown spectrum to the library spectrum on the NIST scale of 0 (no 

matching peaks) to 999 (perfect match). 
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Figure S3. Growth and productivity profiles of mAb C experiment. A set of 12 clones expressing 

mAb C was cultured in duplicate in Ambr 15 bioreactors using the same fed-batch process as the 

5-L bioreactor cultures used for the first set of 12 clones expressing mAb A or mAb B. (A) 
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Growth and (B) productivity profiles. (C) Average qP was calculated for correlation analysis 

from Day 7 and Day 12 titers. Error bars indicate standard deviation between duplicates. 

 
Figure S4. Correlations between Day 7 metabolite levels and peak VCD. (A) Aspartate and (B) 

cystine AUCs in the targeted experiment were normalized to Day 7 VCDs and plotted against 

peak VCD. Calculations of both Pearson and Spearman’s rank correlation coefficients showed 

that there were no significant correlations between the metabolite levels and peak VCD. 
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Figure S5. Productivity and growth in the add-back screening study. Data shown are cell-specific 

productivity (qP) and peak VCD of the 96 conditions (Table S2). (A) Aspartate, (B) GABA, (C) 

glutamate. Colors indicate metabolite level. Value 0 represents the control and 3 represents the 
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highest level of the indicated metabolite. In contrast to citrate (Figure 4), these metabolites did 

not show consistent responses in qP or VCD. High-qP clones used in this study were A-5 and B-

1. Low-qP clones were A-2 and B-6. 

 
Figure S6. Metabolite profiles for citrate add-back study in Ambr 250 reactors. Line colors 

represent different amounts of citrate supplementation. The control condition was performed in 

duplicate. For all but one clone (A-1), we observed a dose-dependent decrease in peak VCD, an 

increase in lactate accumulation, and a decrease in lactate accumulation with the addition of 

citrate. We also saw slightly increased glutamate and glutamine concentrations. 
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Figure S7. Example chromatogram from untargeted LC-MS analysis. The top panel is the XIC (extracted ion chromatogram) showing the 

retention time for citrate when run in the negative ionization mode using the HILIC column. The next panels are the MS/MS spectra from the 

selected XIC window for a mix of standards including citrate (center panel) and a sample (bottom panel). 
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Figure S8. Example chromatograms from targeted LC-MS analysis. Varying intensities can be seen for aspartate in supernatant samples. The last 

two panels show a very low intensity in a blank sample and a higher intensity for a chemical standard. 
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Chapter 3. 13C Metabolic Flux Analysis to Understand the Impact of 
Citrate Addition on Productivity of CHO Cells 
 

3.1 Abstract 

Addition of TCA cycle metabolites such as citrate to CHO cell cultures has been shown to 

improve volumetric titer and specific productivity (qP) of monoclonal antibodies. To gain insight 

into the mechanism of this productivity improvement, we used stable isotope labeling of citric 

acid-13C6 in ambr250 bioreactors for multiple industrial CHO clones. We analyzed cell pellets 

and supernatants from mid-exponential and early-stationary timepoints using LC-MS for key 

TCA cycle intermediates and other select metabolites connected to citrate metabolism. We used 

mass isotopomer distributions (MIDs) derived from this analysis along with amino acid 

exchange data to estimate intracellular fluxes using 13C-metabolic flux analysis (MFA) and 

found several fluxes that significantly correlated with either qP or clonal response in glycolysis, 

mitochondrial exchange, and amino acid metabolism pathways. 

  



 

92 
 

3.2 Introduction 

In the previous chapter, we discovered that the addition of sodium citrate solution as a bolus to 

cell culture could lead to a dose-dependent increase in qP for multiple CHO cell lines expressing 

two different molecules, mAb A or mAb B.  To better understand the mechanism of qP increase, 

we decided to follow the fate of the added citrate by repeating the experiment but with 13C stable 

isotope labeling in the high-dose conditions. One hypothesis for how the citrate could be improving 

qP is that it is acting as a direct substrate into the TCA cycle, preventing a bottleneck and enhancing 

oxidative TCA flux (Zhang et al., 2020). The increased ATP could reduce the amount of glutamine 

and glutamate metabolism towards α-ketoglutarate by inhibiting glutamate dehydrogenase, 

thereby also reducing production of ammonium, a toxic byproduct (Gilbert et al., 2013). If citrate 

directly enters the TCA cycle, pyruvate oxidation to acetyl-CoA and eventually citrate may be 

reduced, and the pyruvate would be driven more towards a glycolytic flux resulting in lactate 

production (Figure 1). Accumulation of lactate may have negative impacts on cell growth, 

although our cell lines have historically been robust to lactate accumulation below 6-8 g/L. We 

explored this hypothesis by measuring the MIDs of several metabolites involved in the TCA cycle, 

as well as of palmitic acid which could potentially also accumulate labeled carbons from citrate 

via acetyl-CoA. 
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Figure 1. A simplified view of main pathways connected to citrate metabolism. Large yellow 

arrows indicate trends previously observed upon citrate addition: increased accumulation of 

glutamate, glutamine, and lactate and decreased accumulation of ammonium. Small yellow arrows 

indicate hypothetical flux changes that could explain those metabolite trends. Metabolites in 

orange were targeted for LC-MS analysis to investigate this hypothesis. (LDH: lactate 

dehydrogenase, PDH: pyruvate dehydrogenase, PC: pyruvate carboxylase, PEPCK: 

phosphoenolpyruvate carboxykinase, AST: aspartate transaminase, GDH: glutamate 

dehydrogenase, GLS: glutaminase) 

3.3 Materials and Methods 

3.3.1 Cell Culture Experiment 

Cell lines A-1, A-2, A-3, B-1, B-2, and B-3 from Chapter 2 were used in this study. 14-day fed-

batch experiments were carried out in an ambr250 as in described section 2.5.2, with sodium citrate 
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bolus additions on day 3 as described in 2.5.7. The 3mM sodium citrate bolus was unlabeled due 

to material constraints. The 6mM sodium citrate bolus included 20% fully labeled citric acid-13C6 

(Sigma-Aldrich), neutralized with sodium hydroxide, and 80% unlabeled sodium citrate. Pellets 

containing 1×106 cells were washed with PBS and snap frozen in liquid nitrogen on days 4 and 7. 

The supernatants from these timepoints were also frozen. Amino acid quantitation was performed 

on the supernatant samples using the REBEL Cell Culture Media Analyzer (908 Devices, Boston, 

MA, USA). Cell growth and productivity characteristics were calculated as previously described 

in section 2.5.5. 

3.3.2 LC-MS Experiment 

Supernatant samples were diluted 1:10 for LC-MS analysis. Cell pellets were extracted by first 

resuspending and vortexing in a methanol/water mixture (91:9 v/v). Samples were subjected to 

three freeze-thaw cycles in liquid nitrogen, then centrifuged at 15,000 ×g for 5 minutes at 4°C. 

The supernatant was dried in a SpeedVac concentrator using no heat and stored at -20°C prior to 

reconstitution in 100uL methanol/water mixture (1:1 v/v).  Analysis was performed on a 

quadrupole time-of flight (TOF) mass spectrometer (TripleTOF 5600+, AB Sciex, Framingham, 

MA, USA) with a HILIC column (Phenomenex Luna NH2, Torrance, CA, USA) as described in 

section 2.5.3. The gradient and settings used were identical to the ones used in the QQQ targeted 

experiment in section 2.6. Each sample was run multiple times in negative mode, each time with 

a TOF scan and multiple product ion scans for targeted masses.  

3.3.3 Mass Isotopomer Distribution (MID) Calculations 

Peaks from product ion scans were identified based on precursor-product transitions and the 

retention times of pure unlabeled chemical standards for all metabolites and quantified in Skyline 

21.2.0.425 (Pino et al., 2020). Retention times and transitions used to identify the metabolites and 
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their isotopologues can be found in supplementary information (Table S1). MS/MS spectra were 

used to verify metabolite identities. Measurements from blank samples were used to remove 

background in M+2 and higher forms. A metabolite’s MID was calculated by normalizing the 

area-under-the curve (AUC) of each isotopologue to the sum of the peak areas for all isotopologues 

of the metabolite. 

3.3.4 Metabolic Flux Analysis 

Fluxes for amino acids, ammonia, glucose, and lactate were calculated from day 4 to day 7 with a 

simple regression on concentrations from each day and converted to millimoles per gram of dry 

cell weight per hour (mmol/gDW/hr). Lacking experimental cell weight measurements, we 

assumed a literature value of 300 pg as the dry weight of a cell (Chen et al., 2019). Asparagine and 

cysteine concentrations were not used due to insufficient data from the REBEL. These fluxes were 

used along with the MIDs for glutamate, malate, and citrate for elementary metabolite unit (EMU)-

based flux optimization of a 66-reaction network (Supplementary Information Table S2) as 

described previously (Si et al., 2009). Twenty iterations were performed for each day/clone pair 

and averaged. These averaged flux estimates were then correlated with qP as well as each clone’s 

response to citrate addition, and significant correlations (p<0.05) were examined (Supplementary 

Information Table S3). The response to citrate addition was calculated as such for each clone: 

𝛥𝛥𝛥𝛥𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑞𝑞𝑞𝑞 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 6 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑞𝑞𝑞𝑞 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 0 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑞𝑞𝑞𝑞 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 0 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

. 

3.4 Results 

3.4.1 Dose-dependent qP and titer improvement observed  

In this labeling experiment, results were similar to those observed in the previous experiment 

without labeling (Figure 5 of section 2.3.3), with a qP and titer increase seen in the majority of 
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clones upon citrate addition (Figure 2). Unfortunately, the 6mM condition in clone A-3 was lost 

by day 7 to bacterial contamination, so this clone was removed from the flux analysis. As seen 

previously, clone B-2 saw the most benefit from the citrate addition while clone A-1 showed a 

negative impact on specific and volumetric productivity. 

 

 

Figure 2. Specific productivity (qP) and volumetric productivity (final titer) of six industrial CHO 

clones, normalized to the maximum qP or titer among all conditions. For each clone, bars from 

left to right represent addition of 0mM, 3mM, or 6mM citrate on day 3. Addition of citrate to the 

cultures at 3mM or 6mM impacts both qP and titer in a dose-dependent manner, with most clones 

responding positively and one clone (A-1) responding negatively. 

 

Viable cell density trends were similar as well, with some clones showing a negative impact from 

citrate and others showing minimal impact (Figure 3). In a departure from the previous experiment, 

for clone B-1, the increase in qP was enough to overcome detrimental effects on growth, resulting 

in slightly higher final titer. 
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Figure 3. Viable cell densities across the 14-day fed-batch production culture. Addition of citrate 

impacts some clones minimally, while other clones show a negative impact on growth resulting in 

a lower peak VCD. (Legend applies to all graphs in this section.) 

 

For some of the clones, the lower peak VCD with increasing citrate amounts correlated with 

improved longevity (Figure 4). 
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Figure 4. Viabilities across the 14-day fed batch production culture. Higher viability towards the 

end of the culture was observed in most clones upon citrate addition. Clones A-2 and B-1, which 

had lower peak VCDs with citrate, especially showed improved longevity in a dose-dependent 

manner.   

 

As observed in the previous experiment, citrate addition also generally led to increased lactate, 

glutamate, and glutamine accumulation and decreased ammonium buildup, although the degree of 

change varies by clone, and again clone A-1 showed little impact (Figures 5-8). 
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Figure 5. Lactate concentrations in supernatant. 

 

Figure 6. Glutamate concentrations in supernatant. 
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Figure 7. Glutamine concentrations in supernatant. 

  

Figure 8. Ammonium concentrations in supernatant. 
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Cell diameters, which often correlate with titer, increased over time as expected (Figure 9). For 

some clones, citrate addition also increased cell size. 

 

Figure 9. Cell diameters and titers (normalized to the maximum titer) over the 14-day production 

culture. Marker size indicates day, with the smallest markers for day 6 and the largest for day 14. 

Cultures with 6mM citrate had increased cell diameters for some clones, such as A-2 and B-1. 

3.4.2 Citrate was not completely consumed by cells 

Supernatants from day 7 were analyzed using LC-MS to confirm labeling in the 6mM citrate 

bioreactors. As expected, M+6 labeling was observed in these conditions (Figure 10). 
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Figure 10. Peak areas for all isotopologues of citric acid in the supernatant. Areas under the curve 

(AUC) were integrated for peaks chosen based on retention time, precursor-product transitions, 

and MS/MS spectra. M+6 peaks were present in the labeled 6mM conditions as expected.  

 

None of the other metabolites in the supernatant were labeled, suggesting that the citrate was not 

metabolized within cells into other products that were then secreted. Cell pellet samples from days 

4 and 7 for each clone were analyzed using LC-MS to examine intracellular metabolism.  Out of 

these intracellular metabolites, citrate showed the most incorporation of the label while the other 

metabolites each had a very small amount of labeling. While the total amount of intracellular citrate 

was higher in the supplemented cultures as expected, the proportion of intracellular citrate that was 

labeled was much lower than that of the extracellular citrate, indicating that not all added citrate 

was taken up by the cells. Isotopologue AUCs for citrate, glutamate, malate, and aspartate can be 

found in Supplementary Information Figures S1-S4. 

3.4.3 Flux estimation shows correlations with qP and citrate response 

The MIDs of glutamate, malate, and citrate in the 6mM citrate conditions were calculated by 

normalizing the total AUCs for all isotopomers to 100% and used in EMU-based flux estimation. 
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Exchange fluxes for glucose, lactate, ammonium, and all amino acids except for asparagine and 

cysteine were calculated between days 4 and 7 and used for flux estimation for both timepoints. 

Because these initial input fluxes were the same, estimated fluxes were similar, differing slightly 

because of changed MIDs. Day 7 estimated fluxes are shown in Figure 11. 

 

Figure 11. Day 7 reaction fluxes averaged from 20 iterations of EMU-based flux estimation for 

each clone. Reaction numbers across the x-axis correspond to those in SI Table 2. 

 

The average estimated fluxes for each clone at each timepoint were used in correlation analyses 

against the qP for each clone and against the qP response to citrate addition.  

All estimated fluxes and correlation coefficients can be found in Supplementary Information 

Tables S2 and S3. There were no significant correlations between estimated day 4 fluxes and qP. 

For estimated day 7 fluxes, 3 reactions were significantly positively correlated with qP: the 

production of lactate from pyruvate via lactate dehydrogenase, the production of alanine from 

pyruvate via alanine dehydrogenase, and serine uptake by cells (Figure 12). When looking at the 
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response to citrate addition, the day 4 flux through the malate-α-ketoglutarate transporter was 

positively correlated. Day 7 fluxes for metabolism of phenylalanine, tyrosine, isoleucine, and 

leucine were also significantly correlated to ΔqPcitrate, with all positive correlations except for 

leucine catabolism. 

 

Figure 12. Estimated fluxes that were significantly correlated with qP or ΔqPcitrate. 
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3.5 Discussion 

Overall, results from adding citrate to fed-batch production cell cultures of CHO clones showed 

reproducible trends in qP/titer improvement as well as the previously observed decrease in 

ammonium production and increases in glutamine, glutamate, and lactate accumulation. However, 

the mechanism of qP increase (Figure 1) may not necessarily be due to direct incorporation of 

citrate as a substrate for the TCA cycle as initially hypothesized. The abundance of labeled citrate 

remaining in the media four days after feeding is high compared to the lower amount of labeled 

intracellular citrate, and minimal incorporation into other measured intracellular and extracellular 

metabolites was detected. Taken together, these measurements suggest that much of the citrate 

remained in the medium and did not become metabolized in the TCA cycle.  

Upon correlation analysis between estimated fluxes from 13C-MFA and qP from 6mM citrate 

conditions, we found that increased conversion of pyruvate to lactate and alanine was positively 

correlated with higher qP (Figure 13). We did not estimate intracellular fluxes in the 0 mM control 

conditions for comparison, but this result is in line with the overall increased extracellular lactate 

seen in the citrate-supplemented cultures (Figure 5). However, it seems to be contrary to many 

publications suggesting a negative association between lactate production and titer as well as 

industry-wide efforts to promote a lactate consumption phenotype (Le et al., 2012; Pereira et al., 

2018; Templeton et al., 2013; Templeton, Smith, et al., 2017; Xu et al., 2016; Zhang et al., 2020). 

It is possible that although lactate is known to be a toxic metabolite in terms of cell growth, our 

cell lines are less sensitive to lactate buildup below an inhibitory threshold and more sensitive to 

accumulation of ammonium. There may potentially be a clone-specific range of lactate 

concentrations that can slightly dampen growth but lead to more energy being directed towards 

producing antibody. Indeed, the 6 mM conditions with the highest qP (clones A-1 and B-1) had 
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lower peak VCDs than the others yet relatively high titers. Alanine has also been shown to have a 

negative effect on cell growth as it can inhibit pyruvate kinase and the TCA cycle (Xing et al., 

2011). Its presence signals that TCA cycle intermediates are abundant, so this correlation with qP 

may simply reflect adequate TCA cycle flux for high productivity (Reinhart et al., 2019). Indeed, 

in our previous untargeted metabolomics experiment investigating pathway correlations with qP, 

the two pathways identified through Metaboanalyst to be both significantly enriched and impacted 

were the TCA cycle and alanine, aspartate, and glutamate metabolism, again reflecting the strong 

influence of these reactions on qP (Yao et al., 2021). 

 

Figure 13. Intracellular pathways associated with qP and citrate response. Estimated fluxes in 

brown were positively correlated with qP. Fluxes in green were positively correlated with clonal 

response to citrate, or ΔqPcitrate, while the flux in red had a negative correlation with ΔqPcitrate. 

(MDH: malate dehydrogenase) 

Another flux that was positively correlated with qP was serine consumption. Serine uptake can 

lead to production of glycine, formate, or pyruvate (Carinhas et al., 2013; Coulet et al., 2022). 
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Based on simulated fluxes (Table S2), it is more likely that the increased consumption led to 

glycine and formate production rather than that of pyruvate. Formate has been identified as a 

putative growth inhibitor and reducing the levels of its precursors serine and glycine was suggested 

as a way to control formate to a minimum (Mulukutla et al., 2017). Possibly similar to lactate and 

alanine production, a small flux increase in this growth-inhibitory reaction may be beneficial 

enough to qP that overall titer is enhanced. 

When examining estimated fluxes associated with ΔqPcitrate, we found five significant correlations. 

Increased flux through the exchange reaction of α-ketoglutarate (α-KG) and malate was correlated 

with a positive response to citrate addition: clone B-2, which saw the highest increase in qP, had 

high flux while clone A-1, which had a negative response, had the lowest flux. This reaction is 

part of the malate-aspartate shuttle, which requires concerted action by two transporters in the 

mitochondrial membrane: the α-KG-malate transporter and the aspartate-glutamate transporter 

(Borst, 2020). Working together, these two carriers transfer cytosolic NADH into the mitochondria 

for ATP production via oxidative metabolism (Lasorsa et al., 2003). As can be seen in Figure 15, 

malate dehydrogenase (MDH) is closely connected with the activity of this shuttle. An enzymatic 

bottleneck at MDH along with excess aspartate in media can result in malate efflux, resulting in 

secretion of a molecule which should be moving through the TCA cycle. Metabolic engineering 

to overexpress MDH in CHO cells can remove this bottleneck and result in increased intracellular 

ATP and NADH (Chong et al., 2010). Extracellular aspartate concentration was previously found 

to be positively associated with qP (Yao et al., 2021). If cells can support higher flux through MDH 

and the malate-aspartate shuttle while aspartate is readily available, as seen in cultures that saw 

increased qP after citrate supplementation, then potentially this flux increase can drive higher 

antibody productivity by fueling ATP production. 
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In addition to the malate-aspartate shuttle, malate participates in the citrate-malate shuttle, which 

transports acetyl-CoA into the mitochondria for fatty acid synthesis (Matuszczyk et al., 2015). 

Flux through this reaction (Table S2 reaction 63) was higher for the clone that did not show higher 

qP with citrate addition compared to other clones, so potentially this clone processed the signal 

from excess citrate differently than the others and caused less malate to be available for the malate-

aspartate shuttle. 

The other four significantly correlated reactions were involved in catabolism of two aromatic 

amino acids (phenylalanine and tyrosine), and two branched-chain amino acids (isoleucine and 

leucine). Interestingly, correlations were positive with degradation of phenylalanine, tyrosine, and 

isoleucine but negative with degradation of leucine, the only one of the four that is only ketogenic, 

not both glucogenic and ketogenic. Phenylalanine hydroxylase converts phenylalanine to tyrosine, 

which is transaminated with α-KG to form glutamate and 4-hydroxy-phenylpyruvate. 4-hydroxy-

phenylpyruvate is then further degraded through a series of steps to form acetoacetate and fumarate 

(Matthews, 2007). Fumarate can directly enter the TCA cycle, while acetoacetate can also enter 

the TCA cycle after degradation by 3-oxoacid-CoA transferase and acetoacetyl-CoA thiolase into 

acetyl-CoA (Williamson, 1998). As for isoleucine and leucine, these branched-chain amino acids 

(BCAAs) are first transaminated with α-KG by branched-chain aminotransferase (BCAT). 

Isoleucine is then further converted into 2-methylbutyryl-CoA, then to acetyl-CoA and succinyl-

CoA to enter the TCA cycle. Leucine is similarly catabolized to isovaleryl-CoA, then acetyl-CoA 

and acetoacetate. Because the three glucogenic amino acids were positively correlated with 

ΔqPcitrate while the ketogenic amino acid was negatively correlated, it is possible that increased flux 

in this case is feeding into the TCA cycle, indirectly impacted by citrate but still driving ATP 

production to support greater product biosynthesis.  
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BCAA catabolism has previously been observed to be higher in perfusion processes compared to 

fed-batch (Templeton, Xu, et al., 2017). Lower BCAA degradation rates have also been associated 

with high-producing phenotypes, although this association was based on titer and strong growth, 

not specific productivity (Popp et al., 2016). Intermediates in each of these pathways have been 

identified to be growth inhibitors, and enzymes in both pathways have been genetically targeted 

to curtail their production resulting in improved growth (Mulukutla et al., 2019). In a follow-up to 

that work, short-chain fatty acid (SCFA) byproducts of BCAA catabolism were found to enhance 

qP in CHO cells by inhibiting histone deacetylases (Harrington et al., 2021). This mechanism could 

be an alternative explanation for our observations. Furthermore, citrate can dampen the activity of 

the TCA cycle by inhibiting PDH and succinate dehydrogenase (Iacobazzi & Infantino, 2014). 

Thus, we may be seeing the accumulation of citrate signaling cells to favor anabolism (fatty acid 

synthesis) including these qP-promoting SCFAs over catabolism (TCA cycle)  (Frezza, 2017). 

RNA-seq or proteomics analysis to investigate enzyme activity around pyruvate, citrate, acetyl-

CoA, and these SCFAs is warranted to explore this possibility. 

Some further work can be done to improve the calculation of MIDs and exchange fluxes used to 

estimate intracellular fluxes for the clones on days 4 and 7. For the MID calculations, corrections 

for natural isotope abundance could improve accuracy. Ideally, pure chemical standards would be 

analyzed using these same LC-MS methods in product ion mode to generate isotope distributions 

that could be used for correction (Midani et al., 2017). Known natural abundance values could also 

be used, although in this experiment, due to the low uptake and metabolism of the labeled citrate, 

the impact on overall analysis may be minimal. The exchange fluxes were calculated by obtaining 

metabolite concentrations supernatant samples from these two timepoints and performing a 

regression between them, accounting for viable cell densities and feeds. If sample analysis 
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capability is not a constraint, future work could consider flux changes over time to provide greater 

accuracy by calculating a separate set of fluxes for each timepoint, for example one set from days 

3 to 5 and another set from days 6 to 8. However, in this work, due to sample availability, only 

one set of fluxes was obtained for each clone. Also, input fluxes could be further improved by 

incorporating cell dry weights, either by using an approximation such as 0.25*cell volume  based 

on cell diameters, or by empirical measurements (Niklas et al., 2011). Nevertheless, the MIDs and 

fluxes used in this work helped us gain interesting insights into productivity differences among 

clones.  

We found that rather than increasing qP by directly entering the TCA cycle as a substrate, citrate 

addition led to increased glucogenic fluxes from isoleucine, phenylalanine, and tyrosine, decreased 

ketogenic flux from leucine, and increased flux through the α-KG-malate transporter for clones 

that responded positively. Further elucidation of these pathways and citrate’s role as a regulatory 

molecule could provide engineering targets for additional cell line improvements. 
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3.7 Supplementary Information 

 

Figure S1. Citric acid isotopologue AUCs from cell pellet samples on days 4 and 7. 

 

Figure S2. Glutamic acid isotopologue AUCs from cell pellet samples on days 4 and 7. 
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Figure S3. Aspartic acid isotopologue AUCs from cell pellet samples on days 4 and 7. 

 

Figure S4. Malic acid isotopologue AUCs from cell pellet samples on days 4 and 7.  
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Table S1. Retention times and precursor-product transitions used for peak selection. Although 
peaks were integrated for each of these transitions, they were not all ultimately used in the 
final analysis because some metabolite isotopologues had overlapping mz at the same 
retention time so could not be distinguished from each other. 

Molecule 
Retention 

Time 
(min) 

Precursor 
Adduct 

Precursor 
Mz 

Fragment 
Ion 

Product 
Adduct 

Product 
Mz 

Citric acid  20.4 [M-H] 191.020 M [M-H] 111.009 
[M-1C+1C'-H] 192.023 M [M-H] 111.009 
[M-1C+1C'-H] 192.023 M+1 [M-1C+1C'-H] 112.012 
[M-2C+2C'-H] 193.026 M [M-H] 111.009 
[M-2C+2C'-H] 193.026 M+1 [M-1C+1C'-H] 112.012 
[M-2C+2C'-H] 193.026 M+2 [M-2C+2C'-H] 113.015 
[M-3C+3C'-H] 194.030 M [M-H] 111.009 
[M-3C+3C'-H] 194.030 M+1 [M-1C+1C'-H] 112.012 
[M-3C+3C'-H] 194.030 M+2 [M-2C+2C'-H] 113.015 
[M-3C+3C'-H] 194.030 M+3 [M-3C+3C'-H] 114.019 
[M-4C+4C'-H] 195.033 M [M-H] 111.009 
[M-4C+4C'-H] 195.033 M+1 [M-1C+1C'-H] 112.012 
[M-4C+4C'-H] 195.033 M+2 [M-2C+2C'-H] 113.015 
[M-4C+4C'-H] 195.033 M+3 [M-3C+3C'-H] 114.019 
[M-4C+4C'-H] 195.033 M+4 [M-4C+4C'-H] 115.022 
[M-5C+5C'-H] 196.037 M [M-H] 111.009 
[M-5C+5C'-H] 196.037 M+1 [M-1C+1C'-H] 112.012 
[M-5C+5C'-H] 196.037 M+2 [M-2C+2C'-H] 113.015 
[M-5C+5C'-H] 196.037 M+3 [M-3C+3C'-H] 114.019 
[M-5C+5C'-H] 196.037 M+4 [M-4C+4C'-H] 115.022 
[M-5C+5C'-H] 196.037 M+5 [M-5C+5C'-H] 116.026 
[M-6C+6C'-H] 197.040 M [M-H] 111.009 
[M-6C+6C'-H] 197.040 M+1 [M-1C+1C'-H] 112.012 
[M-6C+6C'-H] 197.040 M+2 [M-2C+2C'-H] 113.015 
[M-6C+6C'-H] 197.040 M+3 [M-3C+3C'-H] 114.019 
[M-6C+6C'-H] 197.040 M+4 [M-4C+4C'-H] 115.022 
[M-6C+6C'-H] 197.040 M+5 [M-5C+5C'-H] 116.026 

Fumaric 
acid 

19.2 [M-H] 115.004 M [M-H] 71.014 
[M-1C+1C'-H] 116.007 M [M-H] 71.014 
[M-1C+1C'-H] 116.007 M+1 [M-1C+1C'-H] 72.017 
[M-2C+2C'-H] 117.010 M [M-H] 71.014 
[M-2C+2C'-H] 117.010 M+1 [M-1C+1C'-H] 72.017 
[M-2C+2C'-H] 117.010 M+2 [M-2C+2C'-H] 73.021 
[M-3C+3C'-H] 118.014 M [M-H] 71.014 
[M-3C+3C'-H] 118.014 M+1 [M-1C+1C'-H] 72.017 
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[M-3C+3C'-H] 118.014 M+2 [M-2C+2C'-H] 73.021 
[M-3C+3C'-H] 118.014 M+3 [M-3C+3C'-H] 74.024 
[M-4C+4C'-H] 119.017 M [M-H] 71.014 
[M-4C+4C'-H] 119.017 M+1 [M-1C+1C'-H] 72.017 
[M-4C+4C'-H] 119.017 M+2 [M-2C+2C'-H] 73.021 
[M-4C+4C'-H] 119.017 M+3 [M-3C+3C'-H] 74.024 

Glutamic 
acid 

15.3 [M-H] 146.046 M [M-H] 102.056 
[M-1C+1C'-H] 147.049 M [M-H] 102.056 
[M-1C+1C'-H] 147.049 M+1 [M-1C+1C'-H] 103.059 
[M-2C+2C'-H] 148.053 M [M-H] 102.056 
[M-2C+2C'-H] 148.053 M+1 [M-1C+1C'-H] 103.059 
[M-2C+2C'-H] 148.053 M+2 [M-2C+2C'-H] 104.063 
[M-3C+3C'-H] 149.056 M [M-H] 102.056 
[M-3C+3C'-H] 149.056 M+1 [M-1C+1C'-H] 103.059 
[M-3C+3C'-H] 149.056 M+2 [M-2C+2C'-H] 104.063 
[M-3C+3C'-H] 149.056 M+3 [M-3C+3C'-H] 105.066 
[M-4C+4C'-H] 150.059 M [M-H] 102.056 
[M-4C+4C'-H] 150.059 M+1 [M-1C+1C'-H] 103.059 
[M-4C+4C'-H] 150.059 M+2 [M-2C+2C'-H] 104.063 
[M-4C+4C'-H] 150.059 M+3 [M-3C+3C'-H] 105.066 
[M-4C+4C'-H] 150.059 M+4 [M-4C+4C'-H] 106.069 
[M-5C+5C'-H] 151.063 M [M-H] 102.056 
[M-5C+5C'-H] 151.063 M+1 [M-1C+1C'-H] 103.059 
[M-5C+5C'-H] 151.063 M+2 [M-2C+2C'-H] 104.063 
[M-5C+5C'-H] 151.063 M+3 [M-3C+3C'-H] 105.066 
[M-5C+5C'-H] 151.063 M+4 [M-4C+4C'-H] 106.069 
[M-5C+5C'-H] 151.063 M+5 [M-5C+5C'-H] 107.073 

Malic acid 19.2 [M-H] 133.014 M [M-H] 115.004 
[M-1C+1C'-H] 134.018 M [M-H] 115.004 
[M-1C+1C'-H] 134.018 M+1 [M-1C+1C'-H] 116.007 
[M-2C+2C'-H] 135.021 M [M-H] 115.004 
[M-2C+2C'-H] 135.021 M+1 [M-1C+1C'-H] 116.007 
[M-2C+2C'-H] 135.021 M+2 [M-2C+2C'-H] 117.010 
[M-3C+3C'-H] 136.024 M [M-H] 115.004 
[M-3C+3C'-H] 136.024 M+1 [M-1C+1C'-H] 116.007 
[M-3C+3C'-H] 136.024 M+2 [M-2C+2C'-H] 117.010 
[M-3C+3C'-H] 136.024 M+3 [M-3C+3C'-H] 118.014 
[M-4C+4C'-H] 137.028 M [M-H] 115.004 
[M-4C+4C'-H] 137.028 M+1 [M-1C+1C'-H] 116.007 
[M-4C+4C'-H] 137.028 M+2 [M-2C+2C'-H] 117.010 
[M-4C+4C'-H] 137.028 M+3 [M-3C+3C'-H] 118.014 
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[M-4C+4C'-H] 137.028 M+4 [M-4C+4C'-H] 119.017 
Aspartic 
Acid 

15.3 [M-H] 132.030 M [M-H] 88.040 
[M-1C+1C'-H] 133.034 M [M-H] 88.040 
[M-1C+1C'-H] 133.034 M+1 [M-1C+1C'-H] 89.044 
[M-2C+2C'-H] 134.037 M [M-H] 88.040 
[M-2C+2C'-H] 134.037 M+1 [M-1C+1C'-H] 89.044 
[M-2C+2C'-H] 134.037 M+2 [M-2C+2C'-H] 90.047 
[M-3C+3C'-H] 135.040 M [M-H] 88.040 
[M-3C+3C'-H] 135.040 M+1 [M-1C+1C'-H] 89.044 
[M-3C+3C'-H] 135.040 M+2 [M-2C+2C'-H] 90.047 
[M-3C+3C'-H] 135.040 M+3 [M-3C+3C'-H] 91.050 
[M-4C+4C'-H] 136.044 M [M-H] 88.040 
[M-4C+4C'-H] 136.044 M+1 [M-1C+1C'-H] 89.044 
[M-4C+4C'-H] 136.044 M+2 [M-2C+2C'-H] 90.047 
[M-4C+4C'-H] 136.044 M+3 [M-3C+3C'-H] 91.050 

Succinic 
acid 

19.2 [M-H] 117.019 M [M-H] 73.030 
[M-1C+1C'-H] 118.023 M [M-H] 73.030 
[M-1C+1C'-H] 118.023 M+1 [M-1C+1C'-H] 74.033 
[M-2C+2C'-H] 119.026 M [M-H] 73.030 
[M-2C+2C'-H] 119.026 M+1 [M-1C+1C'-H] 74.033 
[M-2C+2C'-H] 119.026 M+2 [M-2C+2C'-H] 75.036 
[M-3C+3C'-H] 120.029 M [M-H] 73.030 
[M-3C+3C'-H] 120.029 M+1 [M-1C+1C'-H] 74.033 
[M-3C+3C'-H] 120.029 M+2 [M-2C+2C'-H] 75.036 
[M-3C+3C'-H] 120.029 M+3 [M-3C+3C'-H] 76.040 
[M-4C+4C'-H] 121.033 M [M-H] 73.030 
[M-4C+4C'-H] 121.033 M+1 [M-1C+1C'-H] 74.033 
[M-4C+4C'-H] 121.033 M+2 [M-2C+2C'-H] 75.036 
[M-4C+4C'-H] 121.033 M+3 [M-3C+3C'-H] 76.040 

a-
Ketoglutaric 
acid 

19.2 [M-H] 145.014 M [M-H] 101.024 
[M-1C+1C'-H] 146.018 M [M-H] 101.024 
[M-1C+1C'-H] 146.018 M+1 [M-1C+1C'-H] 102.028 
[M-2C+2C'-H] 147.021 M [M-H] 101.024 
[M-2C+2C'-H] 147.021 M+1 [M-1C+1C'-H] 102.028 
[M-2C+2C'-H] 147.021 M+2 [M-2C+2C'-H] 103.031 
[M-3C+3C'-H] 148.024 M [M-H] 101.024 
[M-3C+3C'-H] 148.024 M+1 [M-1C+1C'-H] 102.028 
[M-3C+3C'-H] 148.024 M+2 [M-2C+2C'-H] 103.031 
[M-3C+3C'-H] 148.024 M+3 [M-3C+3C'-H] 104.034 
[M-4C+4C'-H] 149.028 M [M-H] 101.024 
[M-4C+4C'-H] 149.028 M+1 [M-1C+1C'-H] 102.028 
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[M-4C+4C'-H] 149.028 M+2 [M-2C+2C'-H] 103.031 
[M-4C+4C'-H] 149.028 M+3 [M-3C+3C'-H] 104.034 
[M-4C+4C'-H] 149.028 M+4 [M-4C+4C'-H] 105.038 
[M-5C+5C'-H] 150.031 M [M-H] 101.024 
[M-5C+5C'-H] 150.031 M+1 [M-1C+1C'-H] 102.028 
[M-5C+5C'-H] 150.031 M+2 [M-2C+2C'-H] 103.031 
[M-5C+5C'-H] 150.031 M+3 [M-3C+3C'-H] 104.034 
[M-5C+5C'-H] 150.031 M+4 [M-4C+4C'-H] 105.038 

Palmitic 
acid 

8.4 [M-H] 255.233 M [M-H] 237.222 
[M-1C+1C'-H] 256.236 M [M-H] 237.222 
[M-1C+1C'-H] 256.236 M+1 [M-1C+1C'-H] 238.226 
[M-2C+2C'-H] 257.240 M [M-H] 237.222 
[M-2C+2C'-H] 257.240 M+1 [M-1C+1C'-H] 238.226 
[M-2C+2C'-H] 257.240 M+2 [M-2C+2C'-H] 239.229 
[M-3C+3C'-H] 258.243 M [M-H] 237.222 
[M-3C+3C'-H] 258.243 M+1 [M-1C+1C'-H] 238.226 
[M-3C+3C'-H] 258.243 M+2 [M-2C+2C'-H] 239.229 
[M-3C+3C'-H] 258.243 M+3 [M-3C+3C'-H] 240.232 
[M-4C+4C'-H] 259.246 M [M-H] 237.222 
[M-4C+4C'-H] 259.246 M+1 [M-1C+1C'-H] 238.226 
[M-4C+4C'-H] 259.246 M+2 [M-2C+2C'-H] 239.229 
[M-4C+4C'-H] 259.246 M+3 [M-3C+3C'-H] 240.232 
[M-4C+4C'-H] 259.246 M+4 [M-4C+4C'-H] 241.236 
[M-5C+5C'-H] 260.250 M [M-H] 237.222 
[M-5C+5C'-H] 260.250 M+1 [M-1C+1C'-H] 238.226 
[M-5C+5C'-H] 260.250 M+2 [M-2C+2C'-H] 239.229 
[M-5C+5C'-H] 260.250 M+3 [M-3C+3C'-H] 240.232 
[M-5C+5C'-H] 260.250 M+4 [M-4C+4C'-H] 241.236 
[M-5C+5C'-H] 260.250 M+5 [M-5C+5C'-H] 242.239 
[M-6C+6C'-H] 261.253 M [M-H] 237.222 
[M-6C+6C'-H] 261.253 M+1 [M-1C+1C'-H] 238.226 
[M-6C+6C'-H] 261.253 M+2 [M-2C+2C'-H] 239.229 
[M-6C+6C'-H] 261.253 M+3 [M-3C+3C'-H] 240.232 
[M-6C+6C'-H] 261.253 M+4 [M-4C+4C'-H] 241.236 
[M-6C+6C'-H] 261.253 M+5 [M-5C+5C'-H] 242.239 
[M-6C+6C'-H] 261.253 M+6 [M-6C+6C'-H] 243.243 
[M-7C+7C'-H] 262.256 M [M-H] 237.222 
[M-7C+7C'-H] 262.256 M+1 [M-1C+1C'-H] 238.226 
[M-7C+7C'-H] 262.256 M+2 [M-2C+2C'-H] 239.229 
[M-7C+7C'-H] 262.256 M+3 [M-3C+3C'-H] 240.232 
[M-7C+7C'-H] 262.256 M+4 [M-4C+4C'-H] 241.236 
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[M-7C+7C'-H] 262.256 M+5 [M-5C+5C'-H] 242.239 
[M-7C+7C'-H] 262.256 M+6 [M-6C+6C'-H] 243.243 
[M-7C+7C'-H] 262.256 M+7 [M-7C+7C'-H] 244.246 
[M-8C+8C'-H] 263.260 M [M-H] 237.222 
[M-8C+8C'-H] 263.260 M+1 [M-1C+1C'-H] 238.226 
[M-8C+8C'-H] 263.260 M+2 [M-2C+2C'-H] 239.229 
[M-8C+8C'-H] 263.260 M+3 [M-3C+3C'-H] 240.232 
[M-8C+8C'-H] 263.260 M+4 [M-4C+4C'-H] 241.236 
[M-8C+8C'-H] 263.260 M+5 [M-5C+5C'-H] 242.239 
[M-8C+8C'-H] 263.260 M+6 [M-6C+6C'-H] 243.243 
[M-8C+8C'-H] 263.260 M+7 [M-7C+7C'-H] 244.246 
[M-8C+8C'-H] 263.260 M+8 [M-8C+8C'-H] 245.249 
[M-9C+9C'-H] 264.263 M [M-H] 237.222 
[M-9C+9C'-H] 264.263 M+1 [M-1C+1C'-H] 238.226 
[M-9C+9C'-H] 264.263 M+2 [M-2C+2C'-H] 239.229 
[M-9C+9C'-H] 264.263 M+3 [M-3C+3C'-H] 240.232 
[M-9C+9C'-H] 264.263 M+4 [M-4C+4C'-H] 241.236 
[M-9C+9C'-H] 264.263 M+5 [M-5C+5C'-H] 242.239 
[M-9C+9C'-H] 264.263 M+6 [M-6C+6C'-H] 243.243 
[M-9C+9C'-H] 264.263 M+7 [M-7C+7C'-H] 244.246 
[M-9C+9C'-H] 264.263 M+8 [M-8C+8C'-H] 245.249 
[M-9C+9C'-H] 264.263 M+9 [M-9C+9C'-H] 246.253 
[M-10C+10C'-H] 265.267 M [M-H] 237.222 
[M-10C+10C'-H] 265.267 M+1 [M-1C+1C'-H] 238.226 
[M-10C+10C'-H] 265.267 M+10 [M-10C+10C'-H] 247.256 
[M-10C+10C'-H] 265.267 M+2 [M-2C+2C'-H] 239.229 
[M-10C+10C'-H] 265.267 M+3 [M-3C+3C'-H] 240.232 
[M-10C+10C'-H] 265.267 M+4 [M-4C+4C'-H] 241.236 
[M-10C+10C'-H] 265.267 M+5 [M-5C+5C'-H] 242.239 
[M-10C+10C'-H] 265.267 M+6 [M-6C+6C'-H] 243.243 
[M-10C+10C'-H] 265.267 M+7 [M-7C+7C'-H] 244.246 
[M-10C+10C'-H] 265.267 M+8 [M-8C+8C'-H] 245.249 
[M-10C+10C'-H] 265.267 M+9 [M-9C+9C'-H] 246.253 
[M-11C+11C'-H] 266.270 M [M-H] 237.222 
[M-11C+11C'-H] 266.270 M+1 [M-1C+1C'-H] 238.226 
[M-11C+11C'-H] 266.270 M+10 [M-10C+10C'-H] 247.256 
[M-11C+11C'-H] 266.270 M+11 [M-11C+11C'-H] 248.259 
[M-11C+11C'-H] 266.270 M+2 [M-2C+2C'-H] 239.229 
[M-11C+11C'-H] 266.270 M+3 [M-3C+3C'-H] 240.232 
[M-11C+11C'-H] 266.270 M+4 [M-4C+4C'-H] 241.236 
[M-11C+11C'-H] 266.270 M+5 [M-5C+5C'-H] 242.239 
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[M-11C+11C'-H] 266.270 M+6 [M-6C+6C'-H] 243.243 
[M-11C+11C'-H] 266.270 M+7 [M-7C+7C'-H] 244.246 
[M-11C+11C'-H] 266.270 M+8 [M-8C+8C'-H] 245.249 
[M-11C+11C'-H] 266.270 M+9 [M-9C+9C'-H] 246.253 
[M-12C+12C'-H] 267.273 M [M-H] 237.222 
[M-12C+12C'-H] 267.273 M+1 [M-1C+1C'-H] 238.226 
[M-12C+12C'-H] 267.273 M+10 [M-10C+10C'-H] 247.256 
[M-12C+12C'-H] 267.273 M+11 [M-11C+11C'-H] 248.259 
[M-12C+12C'-H] 267.273 M+12 [M-12C+12C'-H] 249.263 
[M-12C+12C'-H] 267.273 M+2 [M-2C+2C'-H] 239.229 
[M-12C+12C'-H] 267.273 M+3 [M-3C+3C'-H] 240.232 
[M-12C+12C'-H] 267.273 M+4 [M-4C+4C'-H] 241.236 
[M-12C+12C'-H] 267.273 M+5 [M-5C+5C'-H] 242.239 
[M-12C+12C'-H] 267.273 M+6 [M-6C+6C'-H] 243.243 
[M-12C+12C'-H] 267.273 M+7 [M-7C+7C'-H] 244.246 
[M-12C+12C'-H] 267.273 M+8 [M-8C+8C'-H] 245.249 
[M-12C+12C'-H] 267.273 M+9 [M-9C+9C'-H] 246.253 
[M-13C+13C'-H] 268.277 M [M-H] 237.222 
[M-13C+13C'-H] 268.277 M+1 [M-1C+1C'-H] 238.226 
[M-13C+13C'-H] 268.277 M+10 [M-10C+10C'-H] 247.256 
[M-13C+13C'-H] 268.277 M+11 [M-11C+11C'-H] 248.259 
[M-13C+13C'-H] 268.277 M+12 [M-12C+12C'-H] 249.263 
[M-13C+13C'-H] 268.277 M+13 [M-13C+13C'-H] 250.266 
[M-13C+13C'-H] 268.277 M+2 [M-2C+2C'-H] 239.229 
[M-13C+13C'-H] 268.277 M+3 [M-3C+3C'-H] 240.232 
[M-13C+13C'-H] 268.277 M+4 [M-4C+4C'-H] 241.236 
[M-13C+13C'-H] 268.277 M+5 [M-5C+5C'-H] 242.239 
[M-13C+13C'-H] 268.277 M+6 [M-6C+6C'-H] 243.243 
[M-13C+13C'-H] 268.277 M+7 [M-7C+7C'-H] 244.246 
[M-13C+13C'-H] 268.277 M+8 [M-8C+8C'-H] 245.249 
[M-13C+13C'-H] 268.277 M+9 [M-9C+9C'-H] 246.253 
[M-14C+14C'-H] 269.280 M [M-H] 237.222 
[M-14C+14C'-H] 269.280 M+1 [M-1C+1C'-H] 238.226 
[M-14C+14C'-H] 269.280 M+10 [M-10C+10C'-H] 247.256 
[M-14C+14C'-H] 269.280 M+11 [M-11C+11C'-H] 248.259 
[M-14C+14C'-H] 269.280 M+12 [M-12C+12C'-H] 249.263 
[M-14C+14C'-H] 269.280 M+13 [M-13C+13C'-H] 250.266 
[M-14C+14C'-H] 269.280 M+14 [M-14C+14C'-H] 251.269 
[M-14C+14C'-H] 269.280 M+2 [M-2C+2C'-H] 239.229 
[M-14C+14C'-H] 269.280 M+3 [M-3C+3C'-H] 240.232 
[M-14C+14C'-H] 269.280 M+4 [M-4C+4C'-H] 241.236 
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[M-14C+14C'-H] 269.280 M+5 [M-5C+5C'-H] 242.239 
[M-14C+14C'-H] 269.280 M+6 [M-6C+6C'-H] 243.243 
[M-14C+14C'-H] 269.280 M+7 [M-7C+7C'-H] 244.246 
[M-14C+14C'-H] 269.280 M+8 [M-8C+8C'-H] 245.249 
[M-14C+14C'-H] 269.280 M+9 [M-9C+9C'-H] 246.253 
[M-15C+15C'-H] 270.283 M [M-H] 237.222 
[M-15C+15C'-H] 270.283 M+1 [M-1C+1C'-H] 238.226 
[M-15C+15C'-H] 270.283 M+10 [M-10C+10C'-H] 247.256 
[M-15C+15C'-H] 270.283 M+11 [M-11C+11C'-H] 248.259 
[M-15C+15C'-H] 270.283 M+12 [M-12C+12C'-H] 249.263 
[M-15C+15C'-H] 270.283 M+13 [M-13C+13C'-H] 250.266 
[M-15C+15C'-H] 270.283 M+14 [M-14C+14C'-H] 251.269 
[M-15C+15C'-H] 270.283 M+15 [M-15C+15C'-H] 252.273 
[M-15C+15C'-H] 270.283 M+2 [M-2C+2C'-H] 239.229 
[M-15C+15C'-H] 270.283 M+3 [M-3C+3C'-H] 240.232 
[M-15C+15C'-H] 270.283 M+4 [M-4C+4C'-H] 241.236 
[M-15C+15C'-H] 270.283 M+5 [M-5C+5C'-H] 242.239 
[M-15C+15C'-H] 270.283 M+6 [M-6C+6C'-H] 243.243 
[M-15C+15C'-H] 270.283 M+7 [M-7C+7C'-H] 244.246 
[M-15C+15C'-H] 270.283 M+8 [M-8C+8C'-H] 245.249 
[M-15C+15C'-H] 270.283 M+9 [M-9C+9C'-H] 246.253 
[M-16C+16C'-H] 271.287 M [M-H] 237.222 
[M-16C+16C'-H] 271.287 M+1 [M-1C+1C'-H] 238.226 
[M-16C+16C'-H] 271.287 M+10 [M-10C+10C'-H] 247.256 
[M-16C+16C'-H] 271.287 M+11 [M-11C+11C'-H] 248.259 
[M-16C+16C'-H] 271.287 M+12 [M-12C+12C'-H] 249.263 
[M-16C+16C'-H] 271.287 M+13 [M-13C+13C'-H] 250.266 
[M-16C+16C'-H] 271.287 M+14 [M-14C+14C'-H] 251.269 
[M-16C+16C'-H] 271.287 M+15 [M-15C+15C'-H] 252.273 
[M-16C+16C'-H] 271.287 M+16 [M-16C+16C'-H] 253.276 
[M-16C+16C'-H] 271.287 M+2 [M-2C+2C'-H] 239.229 
[M-16C+16C'-H] 271.287 M+3 [M-3C+3C'-H] 240.232 
[M-16C+16C'-H] 271.287 M+4 [M-4C+4C'-H] 241.236 
[M-16C+16C'-H] 271.287 M+5 [M-5C+5C'-H] 242.239 
[M-16C+16C'-H] 271.287 M+6 [M-6C+6C'-H] 243.243 
[M-16C+16C'-H] 271.287 M+7 [M-7C+7C'-H] 244.246 
[M-16C+16C'-H] 271.287 M+8 [M-8C+8C'-H] 245.249 
[M-16C+16C'-H] 271.287 M+9 [M-9C+9C'-H] 246.253 
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Table S2. Reactions and estimated fluxes. Average of 20 iterations of flux estimation based on MIDs of glutamate, citrate, and malate 

and 20 highlighted exchange fluxes. Bolded metabolites are extracellular. 

      Day 4 Day 7 

  Pathway Reaction A-1 A-2 B-1 B-2 B-3 A-1 A-2 B-1 B-2 B-3 

1 Glycolysis Glucose + ATP = Glucose 6-P + ADP 3.24E+01 1.15E+01 1.44E+01 1.01E+01 7.62E+00 3.24E+01 1.15E+01 1.44E+01 1.01E+01 7.61E+00 

2 Glycolysis Glucose 6-P = Fructose 6-P 1.22E+01 2.19E+00 2.82E+00 1.28E+00 4.55E-01 1.07E+01 1.72E+00 3.41E+00 1.48E+00 5.42E-01 

3 Glycolysis Fructose 6-P + ATP = Glyceraldehyde 3-P + Glycerone-P + ADP 2.56E+01 8.40E+00 1.06E+01 7.15E+00 5.23E+00 2.52E+01 8.25E+00 1.07E+01 7.22E+00 5.25E+00 

4 Glycolysis Glycerone-P = Glyceraldehyde 3-P 2.56E+01 8.40E+00 1.06E+01 7.15E+00 5.23E+00 2.52E+01 8.25E+00 1.07E+01 7.22E+00 5.25E+00 

5 Glycolysis Glyceraldehyde 3-P + NAD+ + ADP + Pi = P-Enolpyruvate + ATP + H2O 5.80E+01 1.99E+01 2.50E+01 1.72E+01 1.28E+01 5.75E+01 1.98E+01 2.51E+01 1.73E+01 1.29E+01 

6 Glycolysis P-Enolpyruvate + ADP + H+ = Pyruvate + ATP 6.85E+01 2.70E+01 3.31E+01 2.37E+01 1.70E+01 6.91E+01 2.72E+01 3.26E+01 2.44E+01 1.69E+01 

7 Glycolysis Pyruvate + NADH + H+ = Lactate + NAD+ 7.63E-02 1.70E-02 1.39E-02 -1.95E-02 -6.95E-02 7.19E-02 -1.57E-02 5.09E-02 -2.57E-02 -7.35E-02 

8 
Pentose phosphate 
pathway Glucose 6-P + 2 NADP+ + H2O = Ribulose 5-P + CO2 + 2 NADPH + 2 H+ 2.02E+01 9.31E+00 1.16E+01 8.80E+00 7.16E+00 2.17E+01 9.80E+00 1.10E+01 8.61E+00 7.06E+00 

9 
Pentose phosphate 
pathway 3 Ribulose 5-P = 2 Fructose 6-P + Glyceraldehyde 3-P 6.74E+00 3.10E+00 3.87E+00 2.93E+00 2.39E+00 7.23E+00 3.27E+00 3.66E+00 2.87E+00 2.35E+00 

10 
TCA cycle 
(mitochondria) Pyruvate + Oxaloacetate + NAD+ + H2O = Citrate + CO2 + NADH + H+ 3.39E+01 1.60E+01 1.89E+01 1.60E+01 1.41E+01 3.54E+01 1.67E+01 1.94E+01 1.57E+01 1.42E+01 

11 
TCA cycle 
(mitochondria) Pyruvate + HCO3- + ATP = Oxaloacetate + ADP + Pi 4.25E+00 7.58E+00 8.24E+00 8.83E+00 7.79E+00 5.57E+00 8.21E+00 8.74E+00 7.92E+00 7.60E+00 

12 
TCA cycle 
(mitochondria) Citrate + NAD+ = 2-Oxoglutarate + CO2 + NADH + H+ 3.50E-01 1.16E+00 1.13E+00 1.41E+00 2.50E+00 5.59E-01 1.41E+00 1.46E+00 1.84E+00 2.19E+00 

13 
TCA cycle 
(mitochondria) 2-Oxoglutarate + NAD+ + CoA = Succinyl-CoA + CO2 + NADH 6.77E-01 2.32E+00 1.89E+00 3.01E+00 3.62E+00 1.16E+00 2.69E+00 2.55E+00 3.37E+00 3.85E+00 

14 
TCA cycle 
(mitochondria) Succinyl-CoA + FAD + Pi + ADP  = Fumarate + FADH2 + ATP + CoA 6.22E-01 2.40E+00 1.81E+00 3.04E+00 3.66E+00 1.21E+00 2.67E+00 2.50E+00 3.51E+00 3.82E+00 

15 
TCA cycle 
(mitochondria) Fumarate + H2O = Malate 5.28E-01 2.33E+00 1.72E+00 3.01E+00 3.64E+00 1.16E+00 2.64E+00 2.46E+00 3.52E+00 3.80E+00 

16 
TCA cycle 
(mitochondria) Malate + NAD+ = Oxaloacetate + NADH + H+ 2.96E+01 8.41E+00 1.06E+01 7.15E+00 6.26E+00 2.98E+01 8.47E+00 1.07E+01 7.77E+00 6.62E+00 

17 TCA cycle Citrate + CoA + ATP = Acetyl-CoA + Oxaloacetate + ADP + Pi 3.33E+01 1.38E+01 1.71E+01 1.31E+01 1.03E+01 3.44E+01 1.41E+01 1.69E+01 1.23E+01 1.04E+01 

18 TCA cycle Oxaloacetate + NADH + H+ = Malate + NAD+ 4.68E+01 1.04E+01 1.49E+01 7.85E+00 5.19E+00 4.48E+01 9.70E+00 1.48E+01 7.01E+00 5.16E+00 

19 TCA cycle Malate + NADP+ = Pyruvate + CO2 + NADPH 1.77E+01 4.37E+00 6.03E+00 3.70E+00 2.57E+00 1.62E+01 3.87E+00 6.62E+00 2.76E+00 2.33E+00 

20 TCA cycle Citrate + NADP+ = 2-Oxoglutarate + CO2 + NADPH + H+ 1.94E-01 1.05E+00 6.15E-01 1.51E+00 1.24E+00 4.23E-01 1.16E+00 1.03E+00 1.55E+00 1.66E+00 
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21 TCA cycle Oxaloacetate + ATP  = P-Enolpyruvate + CO2 + ADP 1.05E+01 7.06E+00 8.16E+00 6.44E+00 4.14E+00 1.16E+01 7.47E+00 7.54E+00 7.09E+00 4.03E+00 

22 
Oxidative 
phosphorylation NADH + 0.5 O2 + 3 ADP + 3 Pi + 4 H+ = NAD+ + 3 ATP + 4 H2O 5.17E+01 3.39E+01 3.66E+01 3.59E+01 3.55E+01 5.78E+01 3.62E+01 3.88E+01 3.74E+01 3.58E+01 

23 
Oxidative 
phosphorylation FADH2 + 0.5 O2 + 2 ADP + 2 Pi + 3 H+ = FAD + 2 ATP + 3 H2O 6.95E-01 2.49E+00 1.86E+00 3.10E+00 3.72E+00 1.30E+00 2.70E+00 2.56E+00 3.61E+00 3.86E+00 

24 
Palmitate 
biosynthesis 

8 Acetyl-CoA + 14 NADPH + 7 ATP + 7 HCO3- + 14 H+ = Palmitate + 14 
NADP+ + 8 CoA + 7 ADP + 7 Pi + 7 CO2 + 6 H2O 4.17E+00 1.72E+00 2.14E+00 1.63E+00 1.29E+00 4.30E+00 1.76E+00 2.11E+00 1.54E+00 1.30E+00 

25 
Tripalmitoylglycerol 
biosynthesis 

Glycerone-P + 3 Palmitate + NADH + 3 ATP + H2O + H+ = 
Tripalmitoylglycerol + NAD+ + Pi + 3 AMP + 3 PPi 9.61E-07 1.75E-07 2.43E-07 5.79E-07 -2.33E-09 1.72E-06 1.29E-06 7.83E-07 1.24E-06 -8.18E-07 

26 
Tripalmitoylglycerol 
biosynthesis Tripalmitoylglycerol + 3 H2O = Glycerol + 3 Palmitate 4.31E-07 -1.05E-07 -2.43E-07 3.68E-07 -1.19E-09 3.06E-07 3.05E-07 -4.70E-07 -1.24E-06 9.21E-07 

27 
Metabolism of 
ketone bodies 2 Acetyl-CoA = Acetoacetate + 2 CoA 8.11E-07 -1.14E-07 1.71E-08 5.18E-08 8.19E-09 -6.21E-06 1.81E-06 2.53E-06 -6.19E-09 -1.05E-07 

28 
Metabolism of 
ketone bodies Acetoacetyl-CoA = Acetoacetate + CoA 3.27E-06 8.64E-08 8.54E-09 4.30E-08 2.48E-09 4.50E-07 -2.27E-06 6.47E-07 2.18E-08 1.76E-07 

29 
Metabolism of 
ketone bodies Acetoacetate + NADH = 3-Hydroxybutyrate 3.57E-06 2.30E-07 -8.06E-09 -1.29E-07 -3.73E-09 3.55E-06 -6.07E-07 -4.23E-06 2.30E-08 4.46E-07 

30 
Amino acid 
metabolism Pyruvate + NH4+ + NADPH = Alanine 2.63E-02 1.11E-02 2.07E-02 2.67E-02 1.27E-03 4.74E-02 -1.54E-02 5.00E-02 -3.59E-02 -4.18E-02 

31 
Amino acid 
metabolism Aspartate + NH4+ = Asparagine -2.39E+01 -3.68E+00 -5.92E+00 -1.17E+00 1.05E+00 -2.19E+01 -3.01E+00 -5.42E+00 -1.76E+00 1.24E+00 

32 
Amino acid 
metabolism Aspartate = Oxaloacetate + NH4+ + NADH 2.40E+01 3.71E+00 5.98E+00 1.22E+00 -9.87E-01 2.20E+01 3.06E+00 5.47E+00 1.81E+00 -1.18E+00 

33 
Amino acid 
metabolism Cysteine = Pyruvate + NH4+ + NADH -4.81E+01 -7.63E+00 -1.20E+01 -2.54E+00 2.22E+00 -4.43E+01 -6.29E+00 -1.11E+01 -3.65E+00 2.41E+00 

34 
Amino acid 
metabolism Glutamate = 2-Oxoglutarate + NH4+ + NADH 1.33E-01 1.15E-01 1.44E-01 8.87E-02 -1.21E-01 1.75E-01 1.16E-01 6.03E-02 -1.93E-02 3.91E-03 

35 
Amino acid 
metabolism Glutamine = Glutamate + NH4+ + ATP   -1.60E-02 -1.29E-02 -1.87E-02 2.69E-02 9.01E-02 -4.66E-02 -1.01E-02 9.55E-03 -5.13E-03 4.30E-02 

36 
Amino acid 
metabolism Serine + THF = Glycine 8.50E-03 2.92E-02 5.78E-02 3.30E-02 1.41E-02 5.05E-02 1.26E-03 2.64E-02 -5.33E-03 -1.86E-03 

37 
Amino acid 
metabolism Histidine + THF = Glutamate + NH4+ 8.60E-02 1.06E-01 8.99E-02 1.19E-01 3.38E-02 9.56E-02 1.08E-01 1.66E-01 -7.60E-03 3.98E-02 

38 
Amino acid 
metabolism 

Isoleucine + 2 CoA = Succinyl-CoA + Acetyl-CoA + NH4+ + FADH2 + 2 
NADH -7.22E-02 -5.54E-02 -5.47E-02 -1.11E-02 -8.35E-03 -3.58E-02 -3.40E-02 -2.30E-02 2.14E-02 -1.44E-02 

39 
Amino acid 
metabolism 

Leucine + CoA + CO2 + ATP = Acetoacetate + Acetyl-CoA + NH4+ + 
FADH2 + 2 NADH 9.31E-02 6.50E-02 9.33E-02 3.10E-02 1.79E-02 5.36E-02 3.48E-02 4.81E-02 -7.59E-03 2.78E-02 

40 
Amino acid 
metabolism Lysine = 2-Oxoadipate + 2 NH4+ + 3 NADH -1.55E-02 1.29E-02 5.11E-03 9.75E-03 -7.69E-03 2.19E-02 -3.02E-02 1.74E-02 -4.59E-02 -3.33E-02 

41 
Amino acid 
metabolism 2-Oxoadipate + CoA = Acetoacetyl-CoA + 2 CO2 + FADH2 + 2 NADH 2.98E-06 2.78E-06 9.57E-06 7.64E-07 2.48E-09 -7.19E-07 8.18E-06 1.55E-05 1.69E-05 -1.04E-05 

42 
Amino acid 
metabolism 

Methionine + Serine + ATP + CoA + THF = Succinyl-CoA + Cysteine + 
NH4+ + NADH -3.65E-02 4.67E-02 -3.46E-02 6.29E-03 3.13E-03 1.48E-02 -4.42E-03 -5.04E-02 3.24E-02 -3.40E-02 

43 
Amino acid 
metabolism Phenylalanine + O2 + NADH = Tyrosine -4.21E-02 -3.42E-02 -5.24E-02 -1.92E-02 -1.14E-02 -2.65E-02 -3.81E-03 -3.06E-02 2.19E-02 -1.27E-02 

44 
Amino acid 
metabolism Glutamate + ATP + 2 NADPH = Proline -1.38E-03 -4.99E-02 -6.20E-02 -2.87E-02 4.07E-02 -6.83E-02 -3.36E-02 -4.12E-03 1.32E-02 -6.90E-03 
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45 
Amino acid 
metabolism Serine = Pyruvate + NH4+ 1.04E-01 -8.32E-02 3.76E-03 -2.22E-02 -3.13E-03 4.08E-03 3.58E-02 7.62E-02 1.52E-02 6.77E-02 

46 
Amino acid 
metabolism Threonine + CoA = Glycine + Acetyl-CoA + NADH -2.09E-02 -9.58E-03 -3.86E-02 -1.99E-02 -9.50E-03 -1.78E-02 -7.14E-04 -2.50E-02 -1.38E-02 -1.34E-02 

47 
Amino acid 
metabolism Tryptophan + 3 O2 + NADPH = 2-Oxoadipate + Alanine + CO2 + NH4+ 1.55E-02 -1.29E-02 -5.11E-03 -9.75E-03 7.69E-03 -2.19E-02 3.02E-02 -1.74E-02 4.59E-02 3.33E-02 

48 
Amino acid 
metabolism Tyrosine + 2 O2 = Acetoacetate + Fumarate + CO2 + NH4+ + NADH -9.31E-02 -6.50E-02 -9.33E-02 -3.10E-02 -1.79E-02 -5.36E-02 -3.48E-02 -4.81E-02 7.60E-03 -2.78E-02 

49 
Amino acid 
metabolism Valine + CoA = Succinyl-CoA + CO2 + 4 NADH + FADH2 + NH4+ 5.29E-02 8.62E-02 5.93E-03 3.74E-02 4.82E-02 7.43E-02 2.46E-02 2.62E-02 8.52E-02 2.04E-02 

50 Plasma exchange Palmitate = Palmitate 4.17E+00 1.72E+00 2.14E+00 1.63E+00 1.29E+00 4.30E+00 1.76E+00 2.11E+00 1.54E+00 1.30E+00 

51 Plasma exchange Acetoacetate = Acetoacetate 3.24E-06 2.38E-07 -7.93E-09 4.13E-07 -2.95E-09 3.75E-06 -7.97E-07 -5.18E-06 2.17E-08 4.61E-07 

52 Plasma exchange Alanine = Alanine 4.18E-02 -1.85E-03 1.56E-02 1.70E-02 8.96E-03 2.55E-02 1.48E-02 3.27E-02 1.00E-02 -8.56E-03 

53 Plasma exchange Aspartate  = Aspartate 7.39E-02 3.39E-02 6.62E-02 5.31E-02 6.29E-02 8.69E-02 5.10E-02 4.36E-02 5.44E-02 5.87E-02 

54 Plasma exchange Cysteine = Cysteine -4.81E+01 -7.68E+00 -1.20E+01 -2.54E+00 2.22E+00 -4.43E+01 -6.28E+00 -1.11E+01 -3.68E+00 2.45E+00 

55 Plasma exchange Glutamate = Glutamate 2.97E-02 -5.38E-02 -2.64E-02 -3.17E-02 -2.36E-02 -3.50E-02 -3.56E-02 -1.00E-01 -3.57E-03 2.42E-04 

56 Plasma exchange Glycine = Glycine -1.24E-02 1.96E-02 1.92E-02 1.31E-02 4.57E-03 3.27E-02 5.45E-04 1.39E-03 -1.92E-02 -1.52E-02 

57 Plasma exchange Serine = Serine 7.62E-02 -7.38E-03 2.70E-02 1.72E-02 1.41E-02 6.94E-02 3.26E-02 5.23E-02 4.22E-02 3.18E-02 

58 Plasma exchange Tyrosine = Tyrosine -5.10E-02 -3.08E-02 -4.09E-02 -1.18E-02 -6.46E-03 -2.71E-02 -3.09E-02 -1.74E-02 -1.42E-02 -1.51E-02 

59 Plasma exchange O2 = O2 2.60E+01 1.80E+01 1.90E+01 1.94E+01 1.96E+01 2.93E+01 1.95E+01 2.05E+01 2.07E+01 1.99E+01 

60 Plasma exchange CO2 = CO2 7.92E+01 3.36E+01 3.99E+01 3.20E+01 2.75E+01 8.13E+01 3.48E+01 4.08E+01 3.31E+01 2.77E+01 

61 Plasma exchange NH4+ =  NH4+ 1.28E-02 -1.01E-02 2.93E-02 2.56E-02 3.64E-02 2.89E-02 2.34E-02 -1.50E-02 4.14E-02 3.17E-02 

62 
Mitochondrial 
exchange Pyruvate = Pyruvate 3.81E+01 2.36E+01 2.71E+01 2.48E+01 2.18E+01 4.09E+01 2.49E+01 2.81E+01 2.36E+01 2.18E+01 

63 
Mitochondrial 
exchange Citrate + Malate = Citrate + Malate 3.35E+01 1.48E+01 1.77E+01 1.46E+01 1.16E+01 3.48E+01 1.53E+01 1.79E+01 1.38E+01 1.20E+01 

64 
Mitochondrial 
exchange 2-Oxoglutarate +  Malate = 2-Oxoglutarate + Malate 3.27E-01 1.16E+00 7.60E-01 1.60E+00 1.12E+00 5.98E-01 1.28E+00 1.09E+00 1.53E+00 1.66E+00 

65 
Mitochondrial 
exchange Malate + Pi = Malate + Pi 4.10E+00 7.59E+00 8.06E+00 8.83E+00 7.81E+00 5.57E+00 8.16E+00 8.64E+00 8.06E+00 7.54E+00 

66 
Tripalmitoylglycerol 
accumulation Tripalmitoylglycerol = Tripalmitoylglycerol 5.79E-07 -9.93E-08 -2.39E-07 -1.29E-07 -1.14E-09 2.59E-07 3.06E-07 -4.97E-07 -1.24E-06 9.24E-07 
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Table S3. Correlation coefficients and p-values for correlations between estimated fluxes and qP or ΔqPcitrate. Cells with a significant 

p-value of <0.05 are highlighted. 

   Correlation w/ qP Correlation w/ CIT response 

      D4 D7 D4 D7 

  Pathway Reaction CC t 
p-

value CC t 
p-

value CC t 
p-

value CC t 
p-

value 

1 Glycolysis Glucose + ATP = Glucose 6-P + ADP 0.718 1.787 0.172 0.717 1.782 0.173 -0.618 1.363 0.266 -0.618 1.361 0.267 

2 Glycolysis Glucose 6-P = Fructose 6-P 0.667 1.549 0.219 0.736 1.882 0.156 -0.628 1.396 0.257 -0.620 1.370 0.264 

3 Glycolysis Fructose 6-P + ATP = Glyceraldehyde 3-P + Glycerone-P + ADP 0.708 1.739 0.180 0.720 1.799 0.170 -0.621 1.371 0.264 -0.618 1.363 0.266 

4 Glycolysis Glycerone-P = Glyceraldehyde 3-P 0.708 1.739 0.180 0.720 1.799 0.170 -0.621 1.371 0.264 -0.618 1.363 0.266 

5 Glycolysis Glyceraldehyde 3-P + NAD+ + ADP + Pi = P-Enolpyruvate + ATP + H2O 0.714 1.765 0.176 0.719 1.789 0.171 -0.619 1.367 0.265 -0.618 1.362 0.267 

6 Glycolysis P-Enolpyruvate + ADP + H+ = Pyruvate + ATP 0.736 1.882 0.156 0.730 1.847 0.162 -0.603 1.310 0.281 -0.590 1.265 0.295 

7 Glycolysis Pyruvate + NADH + H+ = Lactate + NAD+ 0.722 1.806 0.169 0.925 4.212 0.024 -0.431 0.828 0.468 -0.445 0.860 0.453 

8 
Pentose phosphate 
pathway Glucose 6-P + 2 NADP+ + H2O = Ribulose 5-P + CO2 + 2 NADPH + 2 H+ 0.762 2.039 0.134 0.703 1.711 0.186 -0.607 1.323 0.278 -0.615 1.351 0.269 

9 
Pentose phosphate 
pathway 3 Ribulose 5-P = 2 Fructose 6-P + Glyceraldehyde 3-P 0.762 2.039 0.134 0.703 1.711 0.186 -0.607 1.323 0.278 -0.615 1.351 0.269 

10 
TCA cycle 
(mitochondria) Pyruvate + Oxaloacetate + NAD+ + H2O = Citrate + CO2 + NADH + H+ 0.718 1.784 0.172 0.707 1.731 0.182 -0.608 1.326 0.277 -0.633 1.416 0.252 

11 
TCA cycle 
(mitochondria) Pyruvate + HCO3- + ATP = Oxaloacetate + ADP + Pi -0.418 0.798 0.483 -0.305 0.554 0.618 0.765 2.060 0.132 0.527 1.075 0.361 

12 
TCA cycle 
(mitochondria) Citrate + NAD+ = 2-Oxoglutarate + CO2 + NADH + H+ -0.758 2.011 0.138 -0.692 1.660 0.196 0.266 0.477 0.666 0.552 1.147 0.335 

13 
TCA cycle 
(mitochondria) 2-Oxoglutarate + NAD+ + CoA = Succinyl-CoA + CO2 + NADH -0.791 2.241 0.111 -0.734 1.873 0.158 0.566 1.188 0.320 0.588 1.259 0.297 

14 
TCA cycle 
(mitochondria) Succinyl-CoA + FAD + Pi + ADP  = Fumarate + FADH2 + ATP + CoA -0.814 2.426 0.094 -0.723 1.813 0.167 0.569 1.197 0.317 0.634 1.419 0.251 

15 
TCA cycle 
(mitochondria) Fumarate + H2O = Malate -0.815 2.435 0.093 -0.721 1.800 0.170 0.569 1.198 0.317 0.644 1.459 0.241 

16 
TCA cycle 
(mitochondria) Malate + NAD+ = Oxaloacetate + NADH + H+ 0.671 1.567 0.215 0.669 1.559 0.217 -0.644 1.457 0.241 -0.631 1.409 0.254 

17 TCA cycle Citrate + CoA + ATP = Acetyl-CoA + Oxaloacetate + ADP + Pi 0.738 1.894 0.155 0.713 1.759 0.177 -0.605 1.315 0.280 -0.634 1.419 0.251 

18 TCA cycle Oxaloacetate + NADH + H+ = Malate + NAD+ 0.695 1.675 0.193 0.702 1.705 0.187 -0.637 1.430 0.248 -0.650 1.482 0.235 

19 TCA cycle Malate + NADP+ = Pyruvate + CO2 + NADPH 0.696 1.681 0.191 0.739 1.898 0.154 -0.626 1.391 0.259 -0.670 1.562 0.216 
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20 TCA cycle Citrate + NADP+ = 2-Oxoglutarate + CO2 + NADPH + H+ -0.729 1.844 0.162 -0.738 1.896 0.154 0.817 2.453 0.091 0.657 1.510 0.228 

21 TCA cycle Oxaloacetate + ATP  = P-Enolpyruvate + CO2 + ADP 0.842 2.707 0.073 0.755 1.993 0.140 -0.423 0.809 0.478 -0.363 0.674 0.548 

22 
Oxidative 
phosphorylation NADH + 0.5 O2 + 3 ADP + 3 Pi + 4 H+ = NAD+ + 3 ATP + 4 H2O 0.650 1.480 0.236 0.667 1.552 0.218 -0.598 1.292 0.287 -0.597 1.290 0.287 

23 
Oxidative 
phosphorylation FADH2 + 0.5 O2 + 2 ADP + 2 Pi + 3 H+ = FAD + 2 ATP + 3 H2O -0.823 2.507 0.087 -0.710 1.746 0.179 0.567 1.194 0.318 0.649 1.478 0.236 

24 
Palmitate 
biosynthesis 

8 Acetyl-CoA + 14 NADPH + 7 ATP + 7 HCO3- + 14 H+ = Palmitate + 14 NADP+ + 8 CoA 
+ 7 ADP + 7 Pi + 7 CO2 + 6 H2O 0.738 1.894 0.155 0.713 1.759 0.177 -0.605 1.315 0.280 -0.634 1.419 0.251 

25 
Tripalmitoylglycerol 
biosynthesis 

Glycerone-P + 3 Palmitate + NADH + 3 ATP + H2O + H+ = Tripalmitoylglycerol + NAD+ + 
Pi + 3 AMP + 3 PPi 0.692 1.660 0.196 0.580 1.235 0.305 -0.108 0.188 0.863 0.079 0.138 0.899 

26 
Tripalmitoylglycerol 
biosynthesis Tripalmitoylglycerol + 3 H2O = Glycerol + 3 Palmitate 0.240 0.427 0.698 -0.425 0.813 0.476 0.137 0.239 0.826 -0.767 2.073 0.130 

27 
Metabolism of 
ketone bodies 2 Acetyl-CoA = Acetoacetate + 2 CoA 0.625 1.387 0.260 -0.383 0.718 0.525 -0.554 1.153 0.332 0.470 0.922 0.424 

28 
Metabolism of 
ketone bodies Acetoacetyl-CoA = Acetoacetate + CoA 0.563 1.179 0.323 0.605 1.314 0.280 -0.612 1.339 0.273 -0.166 0.291 0.790 

29 
Metabolism of 
ketone bodies Acetoacetate + NADH = 3-Hydroxybutyrate 0.539 1.108 0.349 -0.047 0.081 0.940 -0.649 1.479 0.236 -0.290 0.524 0.636 

30 
Amino acid 
metabolism Pyruvate + NH4+ + NADPH = Alanine 0.817 2.450 0.092 0.883 3.257 0.047 0.229 0.407 0.712 -0.592 1.273 0.293 

31 
Amino acid 
metabolism Aspartate + NH4+ = Asparagine -0.706 1.726 0.183 -0.723 1.812 0.168 0.631 1.409 0.254 0.599 1.294 0.286 

32 
Amino acid 
metabolism Aspartate = Oxaloacetate + NH4+ + NADH 0.706 1.728 0.183 0.722 1.809 0.168 -0.631 1.410 0.253 -0.599 1.295 0.286 

33 
Amino acid 
metabolism Cysteine = Pyruvate + NH4+ + NADH -0.707 1.732 0.182 -0.723 1.814 0.167 0.628 1.396 0.257 0.599 1.296 0.286 

34 
Amino acid 
metabolism Glutamate = 2-Oxoglutarate + NH4+ + NADH 0.708 1.737 0.181 0.418 0.796 0.484 0.039 0.067 0.950 -0.725 1.825 0.166 

35 
Amino acid 
metabolism Glutamine = Glutamate + NH4+ + ATP   -0.670 1.563 0.216 -0.594 1.279 0.291 0.169 0.297 0.786 0.193 0.341 0.756 

36 
Amino acid 
metabolism Serine + THF = Glycine 0.310 0.565 0.611 0.823 2.506 0.087 0.372 0.694 0.538 -0.723 1.814 0.167 

37 
Amino acid 
metabolism Histidine + THF = Glutamate + NH4+ 0.343 0.632 0.572 0.462 0.903 0.433 0.554 1.154 0.332 -0.601 1.303 0.284 

38 
Amino acid 
metabolism Isoleucine + 2 CoA = Succinyl-CoA + Acetyl-CoA + NH4+ + FADH2 + 2 NADH -0.605 1.315 0.280 -0.148 0.259 0.812 0.631 1.408 0.254 0.883 3.252 0.047 

39 
Amino acid 
metabolism Leucine + CoA + CO2 + ATP = Acetoacetate + Acetyl-CoA + NH4+ + FADH2 + 2 NADH 0.788 2.216 0.113 0.423 0.810 0.477 -0.535 1.096 0.353 -0.928 4.323 0.023 

40 
Amino acid 
metabolism Lysine = 2-Oxoadipate + 2 NH4+ + 3 NADH -0.280 0.505 0.648 0.826 2.542 0.084 0.732 1.858 0.160 -0.729 1.845 0.162 

41 
Amino acid 
metabolism 2-Oxoadipate + CoA = Acetoacetyl-CoA + 2 CO2 + FADH2 + 2 NADH 0.664 1.537 0.222 0.407 0.772 0.496 -0.254 0.456 0.680 0.635 1.425 0.249 

42 
Amino acid 
metabolism Methionine + Serine + ATP + CoA + THF = Succinyl-CoA + Cysteine + NH4+ + NADH -0.839 2.674 0.075 0.049 0.084 0.938 0.429 0.823 0.471 0.428 0.821 0.472 

43 
Amino acid 
metabolism Phenylalanine + O2 + NADH = Tyrosine -0.775 2.124 0.124 -0.477 0.941 0.416 0.425 0.813 0.476 0.896 3.495 0.040 
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44 
Amino acid 
metabolism Glutamate + ATP + 2 NADPH = Proline -0.389 0.732 0.517 -0.290 0.526 0.635 -0.303 0.551 0.620 0.772 2.105 0.126 

45 
Amino acid 
metabolism Serine = Pyruvate + NH4+ 0.686 1.635 0.201 -0.219 0.388 0.724 -0.573 1.212 0.312 -0.142 0.249 0.820 

46 
Amino acid 
metabolism Threonine + CoA = Glycine + Acetyl-CoA + NADH -0.840 2.686 0.075 -0.762 2.041 0.134 0.037 0.064 0.953 0.207 0.366 0.739 

47 
Amino acid 
metabolism Tryptophan + 3 O2 + NADPH = 2-Oxoadipate + Alanine + CO2 + NH4+ 0.280 0.505 0.648 -0.826 2.540 0.085 -0.732 1.859 0.160 0.729 1.847 0.162 

48 
Amino acid 
metabolism Tyrosine + 2 O2 = Acetoacetate + Fumarate + CO2 + NH4+ + NADH -0.788 2.216 0.113 -0.423 0.810 0.477 0.535 1.097 0.353 0.928 4.323 0.023 

49 
Amino acid 
metabolism Valine + CoA = Succinyl-CoA + CO2 + 4 NADH + FADH2 + NH4+ -0.601 1.303 0.283 0.449 0.870 0.448 -0.103 0.179 0.870 0.356 0.661 0.556 

50 Plasma exchange Palmitate = Palmitate 0.738 1.894 0.154 0.713 1.759 0.177 -0.605 1.315 0.280 -0.634 1.418 0.251 

51 Plasma exchange Acetoacetate = Acetoacetate 0.554 1.153 0.332 -0.086 0.150 0.890 -0.521 1.059 0.368 -0.255 0.456 0.679 

52 Plasma exchange Alanine = Alanine 0.765 2.054 0.132 0.863 2.960 0.060 -0.393 0.741 0.512 -0.233 0.415 0.706 

53 Plasma exchange Aspartate  = Aspartate 0.647 1.468 0.238 0.310 0.565 0.612 -0.491 0.975 0.401 -0.535 1.096 0.353 

54 Plasma exchange Cysteine = Cysteine -0.706 1.728 0.182 -0.723 1.812 0.168 0.628 1.396 0.257 0.598 1.292 0.287 

55 Plasma exchange Glutamate = Glutamate 0.631 1.409 0.254 -0.643 1.453 0.242 -0.593 1.276 0.292 0.317 0.579 0.603 

56 Plasma exchange Glycine = Glycine -0.301 0.547 0.623 0.630 1.405 0.255 0.571 1.205 0.314 -0.756 1.998 0.140 

57 Plasma exchange Serine = Serine 0.760 2.028 0.136 0.918 4.006 0.028 -0.543 1.121 0.344 -0.460 0.896 0.436 

58 Plasma exchange Tyrosine = Tyrosine -0.768 2.075 0.130 -0.024 0.041 0.970 0.610 1.335 0.274 0.471 0.925 0.423 

59 Plasma exchange O2 = O2 0.575 1.218 0.310 0.639 1.438 0.246 -0.575 1.217 0.311 -0.562 1.176 0.324 

60 Plasma exchange CO2 = CO2 0.706 1.728 0.182 0.706 1.728 0.182 -0.619 1.364 0.266 -0.609 1.331 0.275 

61 Plasma exchange NH4+ =  NH4+ 0.130 0.227 0.835 -0.480 0.947 0.413 0.102 0.177 0.871 0.319 0.583 0.601 

62 
Mitochondrial 
exchange Pyruvate = Pyruvate 0.782 2.170 0.118 0.750 1.965 0.144 -0.548 1.135 0.339 -0.631 1.410 0.253 

63 
Mitochondrial 
exchange Citrate + Malate = Citrate + Malate 0.733 1.866 0.159 0.709 1.741 0.180 -0.587 1.257 0.298 -0.630 1.407 0.254 

64 
Mitochondrial 
exchange 2-Oxoglutarate +  Malate = 2-Oxoglutarate + Malate -0.634 1.420 0.251 -0.786 2.201 0.115 0.903 3.633 0.036 0.632 1.412 0.253 

65 
Mitochondrial 
exchange Malate + Pi = Malate + Pi -0.457 0.891 0.439 -0.307 0.558 0.615 0.772 2.107 0.126 0.591 1.269 0.294 

66 
Tripalmitoylglycerol 
accumulation Tripalmitoylglycerol = Tripalmitoylglycerol 0.343 0.633 0.572 -0.448 0.869 0.449 -0.623 1.379 0.262 -0.751 1.969 0.144 
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Chapter 4. Improvement of Genome Scale CHO Models Using Secondary 
Parameters in Objective Functions 
 

4.1 Abstract 

In this work, we tested several strategies to improve the accuracy of growth rate predictions from 

a genome-scale metabolic model for CHO cells. The original model used was the consensus model 

iCHO1766 using the COBRA toolbox for objective function optimization (Hefzi et al., 2016). 

Tested strategies include model reduction, implementing a two-step optimization including 

different objective functions, eliminating select constraints, and modifying antibody production 

parameters. While some of these strategies led to slight improvement in predictions, the 

improvements were inconsistent among cell lines. 
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4.2 Introduction 

After the Cricetulus griseus genome became publicly available in 2011, researchers have been 

able to develop genome scale metabolic models used for understanding CHO phenotypes (Xu et 

al., 2011). The main component of a metabolic model is a stoichiometric matrix (known as the S 

matrix) of reactions in a cell and the metabolites that are consumed or produced in those reactions. 

The CHO consensus genome scale model reconciled from multiple independent research groups 

was published in 2016 with 1766 genes, encompassing over 6000 reactions and 4000 metabolites 

(Hefzi et al., 2016). Under a pseudo steady-state assumption, flux balance analysis (FBA) is 

applied using the GIMME algorithm (Gene Inactivity Moderated by Metabolism and Expression) 

and measured values as lower- and upper-bound constraints for certain fluxes to calculate the 

optimal set of metabolic fluxes for an assumed cellular objective (Becker & Palsson, 2008). In this 

case, the open-source COBRA (COnstraint-Based Reconstruction and Analysis, v3.0) toolbox in 

MATLAB (v2019b, Mathworks, Natick, MA) was used for the objective function optimization 

(Heirendt et al., 2019) The consensus model includes a biomass reaction that accounts for RNA, 

DNA, proteins, amino acids, fatty acids, ATP costs, etc. and uses it as the default objective 

function. Hefzi et al. modified the global CHO reconstruction to represent 3 protein-producing cell 

lines (CHO-K1, CHO-S, and CHO-DG44) more accurately and demonstrated growth rate 

predictions for multiple datasets.  

For this work, we wanted to modify the CHO-K1 cell line model further to better represent 

BMSCHO1 cells, which are generated from a double GS knockout by random integration of a 

plasmid that contains the GS gene along with the gene for the protein of interest.  We gathered 

data from six BMSCHO1 clones and attempted to implement several strategies towards this aim. 

First, we wanted to reduce to the model to simplify and speed up further work. Next, we wanted 
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to incorporate some known information about protein production in our cell lines. Finally, we tried 

a two-step objective function optimization. A case study for multi-objective optimization has 

previously been performed by Villaverde et al. on a large-scale CHO metabolic model using 

biomass, antibody composition, and other experimental data available in the literature (Nolan & 

Lee, 2010; Villaverde et al., 2016). They obtained a Pareto front that described the tradeoff 

between two conflicting objectives: maximize productivity while minimizing enzymatic 

modifications. We expected to also see tradeoffs within the cell based on this and other previous 

work on multi-objective optimizations. 

 

4.3 Materials and Methods 

4.3.1 CHO cell data 

The data for this work come from the control conditions of the 6 different clones in the citrate 

addback experiment described in section 3.3.1. Daily culture maintenance activities are described 

in section 2.5.2, including the cell counts used for determining integral VCD. Instead of using the 

REBEL for amino acid analysis on select days, a high-throughput HPLC analysis was performed 

with supernatants taken each day from day 0 through day 14. This measurement was also 

performed on the feed media for use in calculating metabolite fluxes. 

4.3.2 Flux Balance Analysis 

Fluxes for all amino acids, glucose, lactate, and ammonia were calculated for each condition. For 

simpler calculation, concentration time course data from the fed-batch production culture were 

transformed into batch culture. Transformation of glucose concentration data provides an 

illustrative example. Glucose was consumed by cells at variable rates throughout the process but 

generally more quickly than other nutrients. Once the measured value dropped below the action 
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limit, we supplemented more glucose. This led to a glucose profile that fluctuated over the course 

of the fed-batch culture due to intermittent feeds. We summed up the total amount of glucose fed 

over the course of the culture and added it to the measured glucose concentration on day 0. By 

adding all the glucose at the beginning instead of on a daily basis, we transformed the glucose 

profile so that the glucose concentration consistently decreased, allowing for easier calculation of 

glucose consumption rates over multiple days.  This transformation was applied to all measured 

metabolites. Linear regressions were then performed on the metabolite data normalized to daily 

integral VCD, to obtain the exchange fluxes. These exchange fluxes were inputted as the lower-

bound and upper-bound constraints in the model using the changeRxnBounds function in the 

COBRA toolbox. FBA was then performed using the optimizeCbModel function, also from the 

COBRA toolbox (see script in the Supplementary Information). For initial optimizations, biomass 

production was used as the objective function. 

4.3.3 Model Reduction 

Following a published extraction process for the human genome, we applied a model reduction 

strategy based on metabolic data and an input of core reactions (Quek & Turner, 2019) We adapted 

pseudocode and a spreadsheet template from the supplementary data, and we modified MATLAB 

scripts provided by Quek and Turner to execute the model reduction. Briefly, exchange reactions 

were restricted to force uptake of substrates not in the cell culture media to be zero, while cofactor-

producing reactions were also restricted to a few conventional reactions. A check was performed 

to make sure the model was still feasible, then mixed-integer linear programming was used to 

minimize reactions not in the core set.  
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4.3.4 Modifying antibody production parameters 

The amino acid composition for the IgG formation reactions in the original iCHO1766 model 

differs from that of the IgGs produced by the BMSCHO1 cells in this study. We updated the S 

matrix of the model to reflect the correct number of each of the amino acids. Another parameter 

to note was the flux input for the IgG reaction, which was initially set to 0 for growth phase 

simulations. However, a small amount of antibody is being made during this time, so we calculated 

IgG fluxes in the same manner as we calculated all other input fluxes. We added these updated 

fluxes to the lower- and upper-bound constraints. 

4.3.5 Two-Step Objective Function Optimization 

We tested bilevel objective function optimization following previous work by Schinn et al. which 

had shown improvement in predictions (Schinn et al., 2021). Based on their results, we tried adding 

a layer to the default objective function to maximize biomass formation: minimization of either 

cytosolic NADPH regeneration or mitochondrial NADH regeneration, as these both were shown 

to have positive effects on accuracy. Essentially this involved implementing an additional 

objective function before optimizing the fluxes for biomass production. For each of these tested 

functions, a dummy metabolite was created and added to the model to minimize related reactions. 

For example, all reactions including mitochondrial NADH regeneration were annotated to receive 

this penalty by being added to the dummy “NADH regeneration metabolite.” Minimizing a new 

reaction that keeps track of the dummy metabolite was used as the first objective function in FBA. 

The solution for the new objective function in this optimization was then used as the lower bound 

for the dummy metabolite in a new optimization maximizing biomass. 
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4.4 Results 

Although we were able to reduce iCHO1766 significantly, the resulting networks were too small, 

i.e., too many reactions were removed, and we were unable to obtain a satisfactory reduced model 

that included all the reactions we designated as core reactions. One possible explanation is that the 

sets of essential reactions and constraints between the example model, Recon 2, and our CHO cell 

model were too different. We proceeded to test alternative strategies for modifying the genome-

scale model without reducing it. 

Our initial simulated growth rates, without making any adjustments to the published model, were 

not on the same order of magnitude as experimental results. We hypothesized that one or more 

measured fluxes were inaccurately determined and artificially limited the growth rates that could 

be achieved. After excluding some measured metabolic flux data, we were able to achieve higher 

growth rates in the range of the experimental results. Removing different inputs led to different 

simulated growth rates, as can be seen in Figures 1-3, which represent the optimized maximum 

biomass with different sets of constraints (see constraint sets in Table S1). As we were interested 

in eventually evaluating the model’s capability for predicting protein production as well as cell 

growth, we decided to focus on timeframes that were likely to include some amount of antibody 

production: days 1-6 and days 3-6. We still wanted to observe results in the earliest timeframe, 

days 1-3, but little protein is thought to be produced during this time while the cells were in an 

exponential growth phase. Thus, in the rest of the work, the constraint set 1 was used, since it is 

more closely aligned with the experimental data in Figure 2. 
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Figure 1: Results of model optimization with two different sets of constraints on fluxes calculated 

from days 1-3. 

 

Figure 2: Results of model optimization with two different sets of constraints on fluxes calculated 

from days 1-6. 
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Figure 3: Results of model optimization with two different sets of constraints on fluxes calculated 

from days 3-6.  

Updating the IgG composition and flux impacted the predicted growth rate but the change was 

inconsistent for the two tested timespans. For days 1-6 (Figure 4), the predicted growth rate 

increased for half of the clones, resulting in a greater difference between predicted and 

experimental rates. For the other three clones, there was only a very minimal decrease in simulated 

growth rate. For days 3-6 (Figure 5), the improvement was slightly greater and more consistent. 

Because the protein production is occurring to a larger extent during this time compared to days 

1-3, it is not surprising that we see more improvement for days 3-6. We also added a 10% tolerance 

to the input IgG fluxes to account for measurement error, but this had a minimal impact on 

simulated growth rates. Overall, estimated fluxes were still at least double the experimental fluxes 

for most cases, suggesting that additional constraints need to be considered. 
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Figure 4: Results of model optimization with updated IgG flux and updated IgG flux with a 10% 

tolerance from days 1-6. For this timespan, adding the 10% tolerance did not impact the simulated 

growth rate at all. 

 

 

Figure 5: Results of model optimization with updated IgG flux and updated IgG flux with a 10% 

tolerance from days 3-6. 
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In the two-step objective function testing, we saw that the bilevel objective function results in 

growth rates much closer to the experimental values as can be seen in Figures 6 and 7, with 

minimizing mitochondrial NADH regeneration as the additional objective layer. Minimizing 

cytosolic NADPH regeneration similarly led to improved results. As expected, the added 

constraints limited the amount of flux in the biomass reaction. However, though growth rates were 

reduced, the trend among clones was not always consistent with experimental data.  For example, 

experimental data shows that clone A-1 has the slowest growth rate during these timeframes, but 

the bilevel optimization estimates the second fastest growth rate for A-1 among the six clones. 

Nevertheless, the bilevel optimization strategy was still the most successful in quantitatively 

improving estimated growth rate calculations. 

 

Figure 6: Results of model optimization with minimization of mitochondrial NADH regeneration 

as the additional objective function from days 1-6. 
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Figure 7: Results of model optimization with minimization of mitochondrial NADH regeneration 

as the additional objective function from days 3-6. 

 

4.5 Conclusion 

After testing several strategies for improving cell growth prediction for our specific cell lines, we 

found that the most effective strategy was implementing a two-step optimization, where the first 

step solves an optimization problem to generate additional constraints for the second optimization 

step. We tried two “penalties” suggested by Schinn et al.; others may be more consistent or more 

accurate. Although our predictions were quantitatively closer to experimental results compared to 

the conventional FBA solutions, growth rates between cell lines did not trend correctly. The 

difficulty in modifying the genome-scale model to better fit BMSCHO1 cells may reflect the 

rigidity of the underlying consensus model. However, we only had a limited dataset from which 

we could determine exchange fluxes as model inputs. An annotated genome for BMSCHO1could 

be useful in more specifically curating the reactions in the model and further improving 

predictions.  
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4.7 Supplementary Information 
 

Matlab script for Flux Balance Analysis 

m =6; 
sol = [0,0,0,0,0,0]; 
changeCobraSolver('gurobi'); 
fileName = 'iCHOv1_final.mat'; 
%load model 
if ~exist('modelCHO','var') 
    modelCHO = readCbModel(fileName); 
end 
  
%load constraint data 
[constraints,names] = xlsread('constraintsNewZero.xlsx','3-6'); 
names = names(2:end,1); 
exp = names(1,2:end); 
gr = constraints(end,:); 
%iterate through different experiments 
for v =1:6 
    model1 = modelCHO; 
     
    %constraint names 
    names = string(names); 
    %constraint lower bounds 
    boundsX = constraints(:,v); 
    %boundsX = table2array(boundsX); 
     
    %do not want every single constraint in excel table 
    %Predicted 2 
    %want = [3:6, 9, 11:14, 17,18,20,22,23,25,26, 28,30:33,38:41]'; 
    %Predicted 1 
    %want = [3, 4, 6, 11, 12, 13, 14, 16, 17, 18, 19, 20,22, 23, 25, 26, 28, 
30, 31, 32, 33, 38, 39, 40, 41]'; 
    %Predicted 3 
    want = [3:6, 9,11:14, 16, 17, 19,20,22,25,26,28,30:33,38:41]; 
    n = length(want); 
     
        %initialize 
    s = zeros(n,m); 
        %create array of selectred constraints 
    for k = 1:n 
        t = want(k); 
        s(k,:) = boundsX(t,:); 
    end 
    c = names(want); 
        
        %iterate through constraints to set lower bounds 
    for i = 1:n 
        model1 = changeRxnBounds(model1,c(i),s(i),'l'); 
    end 
     
        %model1 = changeRxnBounds(model1,c2,5*s2,'b'); 
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        %iterate through constraints to set upper bounds 
    for j = 1:n-4 
        model1 = changeRxnBounds(model1,c(j),s(j),'u'); 
    end 
  
        %add in tolerances for Igg 10% 
    tol = 0; 
    model1 = changeRxnBounds(model1,names(1),boundsX(1)*(1-tol),'l'); 
    model1 = changeRxnBounds(model1,names(1),boundsX(1)*(1+tol),'u'); 
        %find growth rate for each expermient 
    %obj_func = 'igg_formation'; 
    %model1 = changeObjective(model1,  obj_func); 
    FBAsolution = optimizeCbModel(model1,'max'); 
    % try other Igg models 
    sol(v) = FBAsolution.f; 
  
end 
sol = sol' 
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Table S1. Constraint Sets For Simulating Growth Rates 

Constraint Set 1 Constraint Set 2 
DM_igg[g] DM_igg[g] 
EX_ala_L_e_ EX_ala_L_e_ 
EX_arg_L_e_ EX_arg_L_e_ 
EX_asp_L_e_ EX_asn_L_e_ 
EX_cys_L_e_ EX_asp_L_e_ 
EX_glc_e_ EX_cys_L_e_ 
EX_gln_L_e_ EX_glc_e_ 
EX_glu_L_e_ EX_gln_L_e_ 
EX_gly_e_ EX_glu_L_e_ 
EX_his_L_e_ EX_gly_e_ 
EX_ile_L_e_ EX_ile_L_e_ 
EX_lac_L_e_ EX_lys_L_e_ 
EX_leu_L_e_ EX_nh4_e_ 
EX_lys_L_e_ EX_o2_e_ 
EX_met_L_e_ EX_phe_L_e_ 
EX_nh4_e_ EX_pro_L_e_ 
EX_o2_e_ EX_ser_L_e_ 
EX_phe_L_e_ EX_thr_L_e_ 
EX_pro_L_e_ EX_trp_L_e_ 
EX_ser_L_e_ EX_tyr_L_e_ 
EX_thr_L_e_ EX_val_L_e_ 
EX_trp_L_e_ SK_Asn_X_Ser/Thr[r] 
EX_tyr_L_e_ SK_Tyr_ggn[c] 
EX_val_L_e_ SK_Ser/Thr[g] 
SK_Asn_X_Ser/Thr[r] SK_pre_prot[r] 
SK_Tyr_ggn[c]   
SK_Ser/Thr[g]   
SK_pre_prot[r]   
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Chapter 5. Conclusions & Future Directions 
 

In Chapter 2, we aimed to better understand specific productivity in CHO cells starting with an 

untargeted metabolomics approach on a library of industrial clones. Using this approach, we were 

able to identify several pathways associated with productivity and select metabolites of interest 

from these pathways to investigate further in hopes of finding rational interventions that can 

enhance qP during commercial process development. Some metabolites that positively correlated 

with qP, like citrate, directly improved both qP and titer in multiple cell lines when supplemented 

to the cell culture. A simple screening study with only four metabolites at three concentrations was 

performed to find this additive, but potentially others could be found by experimenting more with 

timing and amount. Others, like aspartic acid and cysteine, were found to be potential early 

indicators of high-qP cell lines and could be useful in clone selection. Intracellular mechanisms 

behind how the extracellular concentrations of these amino acids correlate to qP are not well 

understood. 13C tracer experiments could reveal more about these associations. For example, 

according to our experimental fluxes, aspartate is consumed by cells, at least between days 4-7. 

Feeding labeled aspartate and targeting metabolites involved in aspartate catabolism pathways 

(purine biosynthesis, urea cycle, and the malate-aspartate shuttle) followed by flux analysis 

comparing high- and low-qP clones could provide more clues about the relationship between 

aspartate and qP. 

This 13C-MFA strategy was used for exploring how citrate addition improved qP in Chapter 3, and 

we were able to estimate fluxes and pinpoint more pathways related to qP and clonal qP response 

to citrate addition. These pathways included catabolism of aromatic and branched-chain amino 

acids (BCAAs), glycolysis, and mitochondrial exchange. Unfortunately, the proportion of labeled 

citrate combined with the amount of citrate consumed was too low to see significant labeling of 
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other metabolites and trace the fate of citrate in the cells as originally intended. Other labeling 

strategies have been used for CHO cells such as parallel labeling of glucose and glutamine, which 

has been shown to be effective for providing insights into CHO cell metabolism (Ahn & 

Antoniewicz, 2013). However, because we do not feed our GS knockout cells glutamine, it may 

be necessary to find an alternative feed source to label, e.g., glutamate. Compartment-specific 

analysis of isotopic label distribution by separating cytosolic components from mitochondrial 

compartments may be another more sophisticated, though laborious, option that can provide 

greater detail (Matuszczyk et al., 2015) Especially because we observed that some 

intercompartmental fluxes may be key factors in qP or response to qP, such as malate-aspartate 

transport, α-KG-glutamate transport, and the citrate-malate shuttle, clarifying these subcellular 

fluxes along with the resulting cofactor balances could be essential in narrowing down engineering 

targets (Junghans et al., 2019; Wijaya et al., 2021). Furthermore, the LC-MS methods used could 

be refined to resolve metabolites based on retention times as well as product ion spectra. We 

observed similar retention times for some pairs of metabolites that had overlapping m/z for their 

isotopologues such as pyruvate and lactate, or succinate and fumarate. 

To augment LC-MS data, some orthogonal methods could be used. For example, we examined 

glycolytic versus mitochondrial ATP generation using the Seahorse XFe96 Analyzer (Agilent, 

Santa Clara, CA, USA) and saw preliminary results suggesting that increased ATP in citrate-

supplemented cultures was largely due to increased glycolytic ATP production rather than 

mitochondrial ATP production. However, due to poor replicate consistency, this experiment would 

need to be repeated to provide a more definitive evidence of increased ATP production from 

glycolysis. Another option is to acquire genomic data that may reveal differences between clones. 

Because our clones are generated through random integration, the insertion sites are unknown. We 
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are planning to target our plasmids using Cas9 and sequence outwards to discover the insertion 

sites and what genes, if any, are disrupted. If a pattern emerges between these disrupted genes and 

clonal productivity, this knowledge could be used in choosing hotspots while developing new host 

cell lines. Epigenetic data that can be acquired during sequencing may also be useful, especially 

in light of the potential role of BCAA catabolism byproducts as histone deacetylase (HDAC) 

inhibitors (Harrington et al., 2021). 

We explored a consensus genome-scale metabolic model for CHO cells in Chapter 4. Strategies 

such as correcting amino acid composition in the antibody production reactions did not lead to 

significant improvement towards matching the experimental data we had generated. One strategy 

that did lead to improvement in estimating the growth rate was implementation of a bilevel 

optimization scheme for FBA, which added a constraint reflecting cellular limitations to growth. 

Different cellular objectives could be tested as the additional constraint. Furthermore, there are 

several updated versions of the genome-scale model that may be examined; for example, some 

curation has been done to better represent industrial cell lines or the model has been enhanced with 

more reactions in the secretory pathway. Also, one limitation of this work was that data for each 

clone was from a single reactor due to experimental restrictions. Multiple replicates from different 

reactor runs would help ensure that the input (exchange flux) data more accurately capture 

experimental variability. 

Finally, the approaches described in this thesis were used to explore CHO cell productivity, while 

product quality was considered out of scope. However, the metabolomics approach of this thesis 

study could also be helpful in investigating metabolites and pathways related to glycosylation and 

other quality attributes.  
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