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Abstract

Neutrino-nucleon interactions are a subject of great interest in modern physics.
Baryon resonance reactions, characterized by the creation of a short-lived particle at
the interaction vertex, represent a significant contribution to the total cross section
of neutrino-nucleon scattering. The ∆(1232) particles, which decay into nucleons and
pions, are known examples of resonance particles that carry baryon number =1. Bubble
chamber experiments suggest there may be other baryon-resonance states with masses
greater then that of the ∆ state. However, the presence of these higher mass resonance
particles in neutrino-nucleon scattering is not established. The value of the axial vector
mass of the resonance reaction is also not unknown. I reviewed several papers on ∆-
resonance production phenomenology, and I used these papers to write a simulation
of resonance production. In this Thesis I present the design of the simulation and
results obtained with it. Experimental research groups use GENIE, a Monte Carlo
program, to generate neutrino-nucleon interaction events. By comparing the results of
my simulation to GENIE predictions, I obtain evidence for the existence of higher-mass
baryon resonance states. I also present new constraints on the value of the axial vector
mass for baryon-resonance reactions within the context of contemporary resonance
production phenomenology.

1 Introduction

1.1 Charged-Current Baryon-Resonance Production

Single pion production via charged-current (CC) neutrino or anti-neutrino interactions on
nuclear media has been investigated experimentally. Very often these reactions proceed by
intermediate production of baryon-resonance states. For example, a neutrino (νµ) may react
with a nucleon (N) to produce a muon (µ) and a Delta (∆) resonance state:

νµN→ µ– + ∆++,+ → µ–Nπ (1)
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ν̄µN→ µ+ + ∆0,– → µ+Nπ (2)

The ∆(1232) then decays via the strong nuclear force into a nucleon and a pion (π). The
mean lifetime of a ∆ particle is on the order of 10–24 seconds.The ∆ states have mean masses
of 1.232 GeV/c2 and line widths, Γ, of 120 MeV/c2. There may exist higher-mass baryon
resonance states as well.

There are multiple charge states of nucleons, pions, and ∆ particles. All ∆ states have
the same total isospin number and very similar masses. The different states are differentiated
by charge and projected isospin number. This is true for nucleons and pions as well. Each ∆
particle decays into a unique Nπ particle pair containing exactly one nucleon and one pion.
The decay of a ∆ particle into a Nπ pair must conserve charge, total isospin number, and
projected isospin number.

In this paper, particles are represented by a Greek letter with the charge sometimes listed
as a ’++’,’+’,’0’, or ’-’ symbol in the upper right index position as common convention
requires (ParticleCharge). However, the convention omits any charge symbol for a proton
(p) which has a ’+1’ charge. Sometimes a particle will be described in terms of a quantum
mechanical isospin state in Dirac notation as follows:

Particle ≡ |I Iz > (3)

I represents the total isospin number and Iz represents the projected isospin number.

1.2 Reaction Channels

In the Table below, the resonance states are listed in order of descending isospin number
and charge. The ∆+ and ∆0 resonance particles decay with asymmetric probability into
two possible final Nπ states. In a resonance reaction the neutrinos interact with only one
nucleon. The neutrino (νµ) or anti-neutrino (ν̄µ) become a muon (µ–) or anti-muon (µ+)
respectively. The resonance states each represent a different eigenstate of projected isospin
for a particle with total isospin 3

2 . Each projected isospin state can be decomposed into a

superposition of a total isospin 1 state entangled with a total isospin 1
2 state.

Initial State Final State Isospin Breakdown Final Products 100%

vµp µ–∆++ ∆++ ≡ |32
3
2 >=

|12
1
2 > |11 >≡ pπ+ µ–pπ+ 1

vµn µ–∆+ ∆+ ≡ |32
1
2 >=√

1
3(|12 – 1

2 > |11 >≡ nπ+) µ–nπ+ 1
3

+
√

2
3(|12

1
2 > |10 >≡ pπ0) µ–pπ0 2

3

v̄µp µ+∆0 ∆0 ≡ |32 – 1
2 >=√

1
3(|12

1
2 > |1 – 1 >≡ pπ–) µ+pπ– 1

3

+
√

2
3(|12 – 1

2 > |10 >≡ nπ0) µ+nπ0 2
3

v̄µn µ+∆– ∆– ≡ |32 – 3
2 >=

|12 – 1
2 > |1 – 1 >≡ nπ– µ+nπ– 1
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1.3 Experiments

Baryon resonances such as the ∆ are detected indirectly. This is done by plotting the
frequency of detecting a Nπ particle pair as a function of the detected invariant mass of the
pair. A resonance state appears as a Breit-Wigner shaped enhancement in the distribution,
centered on the invariant mass of the resonant state. For example, ∆ states have masses of
1.232 GeV/c2. When such a state decays into a Nπ pair, the two-body final state will have the
same invariant mass. If the production of Nπ pairs is dominated by ∆ decay, one expects to
see a positive increase in the frequency of Nπ pairs around 1.232 GeV/c2. An enhancement
in Nπ invariant mass at a value higher than than 1.2 GeV/c2 would suggest that there
may exist resonance particles additional to the ∆ particles. Many older experiments used
bubble chambers to detect nueutrino-nucleon interactions. In a bubble chamber a moving
charged particle ionizes the surrounding liquid and leaves a visable trajectory which can be
imaged. The chamber is pervaded by a uniform magnetic feild. The length and curvature
of a trajectory can be used to determine the mass, charge, and lifetime of the particle [6-
12]. In Review of Single Pion Production in Charged-Current Experiments for Evidence of
Resonance Structure I examined several papers on resonance production observed in bubble
chamber experiments. I concluded that there was evidence for the creation of higher-mass
baryon resonance particles. However, the possible contribution of higher resonance states to
the resonance cross section has not yet been experimentally determined [5]. In this paper I
turn to phenomenological models of baryon-resonance production to make further progress
on this question.

1.4 The Axial Vector Mass and Form Factors

The other important question that this paper seeks to answer, in addition to the possible
existence of higher mass resonance states, is the value of the axial vector mass (MA) in the
resonance reaction. In quantum feild theory (QFT) particles are understood to be quantized
excitations of fields. A field assigns values to every space-time point. A scalar field assigns
to every space-time point a single value (a scalar) and a vector field assigns every space-time
point an array of values (a vector). A scalar particle is an excitation of a scalar field and a
vector particle is an excitation of a vector field. There is another type of field known as an
axial vector field. It follows that axial vector fields assign axial vectors to every space-time
point and have quantized excitations known as axial vector particles. Axial vectors, like
vectors, are one-dimensional arrays of numbers. However, axial vectors are distinguished
from vectors by how they transform under parity inversion. An axial vector picks up an
extra phase of ’-1’ under the operation of reflection [12].

A reaction can be interpreted as a transfer of energy and momentum from one field to
another within a local area of space time. At the interaction site there are an uncountable
number of virtual particles (briefly lived field excitations). The vector mass MV is related to
the masses of all the vector particles which exist at the interaction vertex. The axial vector
mass MA is the equivalent for the axial vector particles. The physical interpretation of MA
and MV is however highly non trivial. MV and MA are parameters in the vector and axial
vector form factors. The form factors are the fourier transforms of the scattering material
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spacial distribution. They can be interpreted as the momentum space distribution of the
scattering material. The generic dipole form factor is shown in equation 4.

FV,A =
F0

(Q2 + M2
V,A)2

(4)

The form factors characterize the structure of the interaction vertex. The form factors
can be directly computed from a number of field propagators which in the context of QFT
represent the probability amplitude for a transition from an initial state to a final state.
A simple example of a propagator would be the probability amplitude of a virtual particle
being created at one interaction site and propagating to another interaction site where it is
annihilated. In this paper we can summarize the entire resonance reaction as a single tran-
sition amplitude for the incident nucleon to become a ∆ particle. This transition amplitude
can be expanded in terms of form factors. The dependence of the form factors to MA and
MV relates them non-trivially to the virtual vector and axial vector particles respectively at
the interaction vertex [12].

The value of MV has been well-determined by experiments in electro-production which
entirely involve vector fields. The vector field dynamics involved in neutrino-induced reso-
nance production are thought to be highly similar to that of electro-production. Resonance
reactions however also involve axial-vector field dynamics, the theory of which is far less es-
tablished. The value of MA has not been theoretically or experimentally determined. Recent
estimates based on resonance production phenomenology place the value of MA around 1.05
GeV/c2. One of the major goals of this paper is to present new bounds on the possible val-
ues of MA. This is done by treating MA as an unknown parameter of the phenomenological
models and then matching the model prediction as closely as possible to data.

1.5 Overview

In this paper I take phenomenological models of resonance production as the basis for a
simulation of resonance production written in the computer language python. I review
the phenomenological models and identify important form factors which contribute to the
resonance cross section. I present the results of the code compared to GENIE, a widely used
Monte Carlo event generator of neutrino-nucleon scattering. I also present the code itself in
the hope that it will find future use and make the phenomenological models more accessible
to future researchers. Finally, I discus the relevance of the results towards answering the two
major questions explored in this paper, the existence of higher mass resonance states and
the value of MA.

2 Phenomenology

2.1 Historical Background

The Adler, model published in 1969, first explored the foundations of ∆-resonance production
theory. The original paper covered all known single pion production channels: photon-
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nucleon, electron-nucleon, and neutrino-nucleon scattering. The theory was derived from
first principles of quantum field theory and the Feynman rules for calculating scattering
amplitudes [1]. The theoretical model of Rein and Segal later expanded the original work
of Adler. They modeled hadrons as quark harmonic oscillators to develop the form factors.
The form factors appear in most models as coefficients that accompany kinematic terms
in an expansion of the transition amplitude for a nucleon to turn into a ∆ particle after
having its total isospin number raised via an interaction with a neutrino. The transition
amplitude can then be used to calculate the cross section of the neutrino-nucleon scattering.
The cross section can often be expanded in terms of polarization/helicity states of the ∆
particle [2]. The model of Rein and Segal serves as the basis for baryon-resonance production
events within the GENIE Monte Carlo simulation. In 2005, Emmanuel A. Pascos published a
detailed phenomenological model of resonance production which combined elements from the
earlier theoretical models with considerations derived from experimental data. The objective
of the Pascos model was to explain the results of several neutrino experiments such as those
at ANL, BNL, K2K, and MiniBooNE [3,4].

The vector form factors were taken from the earlier theoretical models. The axial vector
form factors are less well established within the theory so Pascos put phenomenological form
factors in by hand to best match the data. The vector form factors can be derived using
the well-established conserved vector current hypothesis which places strict constraints on
vector field dynamics. The theory for axial vector form factors is less rigorous. The widely
accepted but approximate partially conserved axial vector current hypothesis PCAC places
some constraints on the form factors. The PCAC hypothesis along with experimental data
allowed Pascos to develop his phenomenological model of baryon resonance production [3,4].
This paper uses the model of Pascos to develop a simulation of resonance production. The
Pascos model is more modern then the Rein-Segal model so it is potentially more robust.
However, the modified Rein-Segal model built into GENIE is still predominately used by the
neutrino physics community. It is the hope of this paper, in addition to answering questions
about higher mass resonance states and the value of MA, to also make the Pascos model
more accessible to the neutrino physics community by presenting a usable simulation based
on that model.

2.2 Reaction Kinematics

The Pascos paper introduces the phenomenology of one particular reaction channel. Adjacent
to each symbol representing a particle is a four-vector in parenthesis which represents the
four-momentum of the particle. The length of a four-vector, calculated using the Minkowski
metric signature (1,-1,-1,-1), is the invariant mass of a particle. The symbol ’q’ represents
the four-momentum transfer from the lepton current to the hadronic current. The neutrinos
and muons are part of the lepton current while the nuclear particles are part of the hadronic
current. All calculations are done in the rest frame of the incident nucleon and in natural
units. The initial 3-momentum of the proton is zero and the energy of the proton is just
the rest mass of the proton. The neutrino has a negligible mass. It is possible to calculate
the inner products of several important four-vectors in terms of proton mass (mN), the four-
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momentum transfer (Q2), the neutrino energy (E), and the invariant mass of the resonance
particle (W).

The double differential cross section can be calculated using the lepton tensor (Lµν) and
the hadronic tensor (Wµν). The lepton tensor is calculated using the lepton four-momentum
vectors. The gamma matrices are the standard Dirac matrices. The ’Wi’ are known as
the structure functions. The hadronic tensor can be calculated from the hadronic four-
momentum vectors and from the structure functions.

The hadronic tensor can be alternatively calculated as shown below. The calculation
sums the transition probability of a proton becoming a ∆ particle for all polarization states
of the ∆ particle (ψ̄γ). The calculation is done assuming a random value of invariant mass
of the ∆ particle (W). Note here that the value of W is not fixed but rather can vary over
a small range. Final calculations have to integrate over all values of W. MR refers to the
central mass value within the range of possible values for W. The δ(W2 – M2

R) function,
known as the resonance width, is distributed around MR which can be interpreted as the
probability that the ∆ particle will have an invariant mass W.
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The hadronic tensor can be alternatively calculated using the Sσλ projection operator
which projects onto a basis of ∆ polarization states. The latter two methods of calculating
the hadronic tensor rely on dλν tensor.

The dλν tensor is composed of terms known as form factors (Ci). At the interaction
vertex there are a series of processes that can be categorized as either involving vector or
axial-vector fields. The CV form factors relate to processes in the vector fields and the CA

form factors relate to processes in the axial-vector fields.

The vector form factors are determined using both experimental data and first principles.
Each form factor is associated to a specific kinematic procses at the interaction vertex.
The conserved vector-current hypothesis eliminates all vector form factors exept for the
third and fourth terms. The fourth term can be determined as a function of the third
term. The third vector form factor is determined using electro-production experiments that
have been studied in depth. The dominance of specific electric multi-pole moments have
been determined for electro-production experiments. Vector form factors dominate electro-
production experiments which is why the results of those experiments can be used to set
the vector form factors in this model. The axial vector form factors are less established
experimentally and theoretically. The PCAC hypothesis helps eliminate some of the axial
vector form factors. The Pascos paper proposes a form for the 5th axial vector form factor
based on matching the model to the data. The other form factors can be determined from
the 5th axial vector form factor.
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The equations below present a separate method of calculating the double differential cross
section. This equality bypasses the need to explicitly calculate the leptonic tensor and the
hadronic tensor. This equation allows the double differential cross section to be calculated
directly from the structure functions. The structure functions are calculated from the form
factors which are calculated from the four vectors. This was selected as the method for
calculating the double differential cross section in the simulation [4].
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3 Building the Model

3.1 Logical Structure of the Model

Figure 1: Schematic summary of the Pascos model. An arrow connecting one object in the
model to another indicates that the former appears in an expansion of the latter. There are
multiple possible algorithms for calculating the double differential cross section. The red
arrows represent the method I used to build my simulation.

Above I present a schematic summary of the Pascos model. The arrows show which objects
within the model can be used to calculate other objects. All form factors appear in all
structure functions except for CA

6 which appears only within W4 and W5. The conserved

vector current hypothesis eliminates CV
5 and CV

4 . The partial conserved axial-vector current

hypothesis eliminates CA
3 . The remaining vector form factors can be calculated using CV

3 and

the remaining axial vector form factors can be calculated from CA
5 . The CV

3 and CA
5 form

factors are the most important form factors. The structure functions depend upon vector
and axial vector form factors. W3 is unique in that it is entirely dependent on interference
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terms. No other structure function has any dependence on interference terms. Interference
terms are the products of terms including both vector and axial-vector form factors and
represent interference between the vector and axial-vector fields. This is why the label of
W3 can be substituted with the label ’I” which stands for ’interference.’

The inputs to the model are the four vectors for the particles. The goal is always to
calculate the double differential cross section with respect to Q2 and W, dσ

dWdQ2 . The double

differential cross section is a function of E as well as W and Q2. There are multiple methods
of calculating this final result. The red arrows show the method that I used to build the
simulation. The four vectors are used to calculate the form factors which are in turn used
to calculate the structure functions. The structure functions are then used to calculate the
double differential cross section. The lepton tensor, hadron tensor, polarization projection
operator, and transition amplitude are never explicitly calculated.

3.2 Integration Limits

For particular values of E, Q2, and W, we can calculate the four vectors, form factors,
structure functions, and finally the double differential cross section dσ

dWdQ2 . To get the

single differential crossection over Q2 alone, we integrate over W. The lower bound for W
integration is fixed at the mass of the nucleon mN plus the mass of the pion mπ. The upper
bound is depends on the value of Q2. This means that for a given value of Q2, the range of
W values over which we must calculate dσ

dWdQ2 depends on that value of Q2.

To then find the value of the cross section at a specific energy, we perform a second
integration over Q2. The final cross section is achieved by integrating the double differential
cross section over both Q2 and W. The bounds on Q2 are put in by hand. In this paper
I set the lower limit of Q2=0 GeV2 and the upper limit at 2.0 GeV2. This was based on
considerations of the range over which the Pascos model is viable.

dσ

dQ2
(E, Q2) =

∫ W+

W–

dσ

dWdQ2
(E, W, Q2)dW (5)

σ(E) =

∫ 2.0

0.0

dσ

dQ2
(E, Q2)dQ2 (6)

3.3 Flux Weighting

The differential cross section as calculated in Eq.(4), gives the expected number or resonance
events at a given value of Q2 if the neutrino beam has a fixed energy of E. However, the
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neutrino beam produces a flux over a range of energy values. The flux function used in this
paper is that of the MINERvA neutrino beam.

Figure 2: Neutrino beam flux as a function of neutrino energy (E). The beam peaks around
3.0 GeV.

I am interested in calculating the effective differential cros section dσ
′

dQ2 (Q2) which is only

a function of Q2. It relates to the actual number of expected resonance reactions at a given

value of Q2. dσ
′

dQ2 (Q2) is calculated by taking a flux weighted integration of dσ
dQ2 (E, Q2) over

E. In this paper I study data in a neutrino energy range of 1.5 to 4.0 GeV.

dσ
′

dQ2
(Q2) =

∫ 4.0

1.5
flux(E) ∗ dσ

dQ2
(E, Q2)dE (7)

3.4 Pauli Blocking

The Pauli suppression factor is a possible correction to baryon resonance production models.
So far we have examined the phenomenology of resonance production involving only a single
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nucleon. We are interesting in determine the phenomenology of resonance production when
the incident nucleon is within the nuclear medium of an atomic nucleus. Experiments suggest
that the ∆ particle decays inside the atomic nucleus. This makes sense with respect to
modern theory on the ∆ particles. The lifetime of the ∆ particle is too short for there to
be a significant probability of the ∆ particle escaping the nucleus within its lifetime at the
energy scales we are exploring. The ∆ particle decays into a pion and a nucleon within
the nucleus. Nucleons are fermions, so the newly created nucleon from the decay of the
∆ particle cannot enter a momentum state already occupied by another nucleon within the
nucleus. Theoretically, ∆ resonance production may be suppressed if there are no unoccupied
momentum states for the nucleon produced by decay to enter. The nucleons in the atomic
nucleus have relatively low momentum so the suppression of ∆ resonance production should
be highest at low Q2 and diminish rapidly at high Q2.

Here, g(W, |q|) is the Pauli suppression factor. PF is the Fermi momentum which is
related to the average momentum of the background nucleons within the nucleus [3].

4 Results

I calculated the contribution of various parts of the model to the double differential cross
section dσ

dQ2 . I present the results for Eν = 4.0 GeV, which is slightly above the peak of the

neutrino flux. For MA = 1.1 GeV and MA = 1.3 GeV, I got good agreement between the
Pascos model and the prediction of the GENIE Monte Carlo event generator.
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4.1 Form Factors

The contribution of the form factors to dσ
dQ2 was calculated. The first plot shows the primary

form factors of interest. The curve labelled V3 represents the contribution to the cross section
of CV

3 , A5 represents the contribution of CA
5 , and V3-A5 represents the contribution of the

interference between CV
3 and CA

5 . The total double differential cross section is the direct

sum of the contributions from all the form-factor terms. V3 is the sum of all terms in dσ
dQ2

which contain CV
3 but no other form factors. The same is true for A5 and CA

5 respectively.

V3-A5 is the sum of all terms in dσ
dQ2 which contain the product CV

3 CA
5 but no other form

factors or form factor products. CV
3 represents the most significant processes in the vector

fields and all other vector form factors depend on it, same for CA
5 with respect to the axial

vector fields and form factors, and the product CV
3 CA

5 represents the interaction between
these vector and axial vector processes.

Figure 3: Primary form factor contributions of interest calculated for MA values of 1.1 and
1.3 GeV/c2.

The term A5 has the biggest contribution to dσ
dWdQ2 which suggests that the resonance

reaction is dominated by axial vector field dynamics. V3 and V3 – A5 have comparable
contributions with V3 slightly larger in the low Q2 region but dying off faster at higher Q2.
All contributions have low Q2 fall-off which means that they go to 0 at Q2=0. This behavior
was observed for all contributions though it may be difficult to see for A5.

The next plots show the rest of the form factor contributions dσ
dQ2 . Most of the contribu-

tions are negative. All of the contributions are of lower magnitude than V3, A5, and V3-A5.
This explains why CV

3 , CA
5 , and their interaction are of primary interest. They give the most

significant contribution.
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Figure 4: Form factor contributions calculated for MA values of 1.1 and 1.3 GeV/c2.

Figure 5: Form factor contributions calculated for MA values of 1.1 and 1.3 GeV/c2.

4.2 Structure Functions

The contribution of the structure functions to dσ
dQ2 was calculated. The functions labeled

’Wn’ refer to the n structure function contributions. ’CS’ refers to the differential cross
section dσ

dQ2 . The following plot allows for a comparison between the structure function

contributions and the total cross section. The structure function W2 is heavily dominated
by axial vector form factor terms, W1 is dominated by vector form factor terms, and W3
contains all interaction form factor terms. W5 and W4 are the only structure functions
which includes contributions from CA

6 .
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Figure 6: Structure function contributions for MA values of 1.1 and 1.3 GeV/c2.

4.3 Double Differential Cross Section

The double differential cross section dσ
dWdQ2 was calculated. The value of the double differ-

ential cross section is presented in natural units.

Figure 7: Double differential cross section plots for E = 4.0 GeV and MA = 1.1 GeV/c2 over
W and Q2, shown from above and from an angle.
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Figure 8: Double differential cross section plots for E = 4.0 GeV and MA = 1.3 GeV/c2 over
W and Q2, shown from above and from an angle.

4.4 Differential Cross Section

The following plots show the differential cross section dσ
dQ2 , the total axial vector contribution

(A), the total vector contribution (v), and the total interference contribution (I). V represents
the sum of all vector form factor contribution terms, A represents the sum of all axial vector
form factor contribution terms, and I represents the sum of all interference form factor
contributions which is just the third structure function W3. The term V is dominated by
V3, A is dominated by A5, and I is dominated by V3-A5. The total cross section is highly
axial-vector dominated.

Figure 9: Differential cross section for MA values of 1.1 and 1.3 GeV/c2.

The next plots show a comparison to the differential cross section (CS) to the differential

cross section with Pauli suppression turned on (CS-PE). We see a reduction in dσ
dQ2 at low

Q2 values. This is the expected effect of Pauli suppression.
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Figure 10: Comparison of differential cross section with and without Pauli supression for
MA values of 1.1 and 1.3 GeV/c2 respectively.

4.5 Cross Section

Integrating dσ
dQ2 gives σ(E) which is shown in the plot below. The cross section levels off

around 1.75 GeV. The terms V, A, and I again represent the vector, axial vector, and
interference contributions to the cross section respectively. A is larger showing that the
cross section is axial vector dominated. A and V continue to grow as energy increases.
Interestingly I dies off at higher energy values which leads to the leveling off of σ(E) and
suggests a de-coupling of vector and axial vector processes at higher energy values. CS-PE
is the cross section when Pauli suppression is turned on. The effect of Pauli suppression is
a small reduction in the cross section at all energy values.

Figure 11: Cross section as a function of energy for MA values of 1.1 and 1.3 GeV/c2

respectively.
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4.6 Effective Differential Cross Section

The next plot shows the flux-weighted energy-integrated differential cross section dσ
dQ2 (Q2).

As MA increases, the peak shifts to a slightly higher Q2 value and the high Q2 decay becomes
slower.

Figure 12: Flux-weighted differential cross section at MA values of 1.1, 1.2, 1.3 and 1.4
GeV/c2. The y-axis scale is arbitrary and all curves are area normalized. As MA increases
the high Q2 becomes slower.

I am now interested in matching dσ
dQ2 (Q2) against the prediction of the GENIE event

generator. I received GENIE generated plots for reaction event rate as a function of Q2

for both mixed resonance (RES) and pure ∆ (Delta) samples. These plots came courtesy
of private communications I had with a MINERvA experimentalist collaborator who had
already calibrated GENIE to match the most recent experimental data.
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Figure 13: Flux-weighted differential cross section compared to GENIE plots at MA values of
1.1 and 1.3 GeV/c2 respectively. RES is the GENIE prediction for mixed baryon resonance
production and Delta is the GENIE prediction for ∆ baryon resonance production only. The
simulation curves are area normalized.

The model matched with the Delta plot most closely at MA = 1.1 GeV/c2 and matched
with the RES plot most closely at 1.3 GeV/c2.

5 Discussion

In trying to match the model to GENIE I did not find it useful to turn on the Pauli exclusion
factor. This factor is often left out of phenomenological models of resonance production and
I have not found any evidence that it should be included. An MA value of 1.1 GeV2 is close
to what MA is expected to be in the literature [4]. Therefore, I have confirmed that the
Pascos model is indeed consistent with GENIE for modelling baryon resonance production.
The fact that the model matched the GENIE prediction for mixed resonance events is very
interesting. Assuming the accuracy of GENIE for modeling higher mass resonance produc-
tion, it shows that a crude approximation of mixed resonance production can be achieved by
raising the value of MA within a model designed for ∆ resonance production only. It shows
that we can find an effective value of axial vector mass, MA–effective, and treat a resonance
reaction involving multiple resonance states as though it only involved a single resonance
state with MA–effective. The higher mass resonance states in a mixed resonance reaction pull
MA–effective above 1.1 GeV2 which is the MA–Delta value.
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7 Appendix A: Structure Functions

This Appendix contains the equations which allow the structure functions to be calculated
from the form factors. The Vi’s are functions of the four vectors and Q2. The structure
functions are then obtained by multiplying the Vi functions by the δ function [4].
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