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Abstract

Multiple protein alignments have several computational biology applications, including de-
tection of protein homology, identification of conserved regions, or construction of HMMs
as templates for protein families. Although it has been shown that structure-basedmethods
produce better multiple protein alignments than pure sequence aligners, structural align-
ers that ignore all sequence information are prone to making easily-avoidable frame offset
errors. We present Formatt, a multiple protein structural alignment program that also takes
sequence similarity into account when constructing alignments. Formatt is based on the
Matt purely geometric multiple structural alignment program. We show that Formatt is su-
perior to Matt in alignment quality based on objective measures (most notably Staccato
Seq and Str scores) while preserving the same advantages in core length and RMSD that
Matt, as a flexible structural aligner, has as compared to other multiple structural alignment
programs on popular benchmark datasets. Applications include producing better training
data for threading methods.
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1 Introduction

A classical problem in computational biology is the construction of multiple protein align-
ments, applications of which include detection of protein homology and inference of pro-
tein function, development of Hidden Markov Models as templates for protein families [28],
identification of highly conserved or highly divergent regions in proteins, and others. Be-
cause of the widespread applications of multiple homologous protein alignments, coming
up with the “best” or “most correct” alignment has been the goal of several alignment pro-
grams. The major approaches to constructing these alignments can be grouped into two
main categories: first, sequence alignment programs, which typically have access only to
and therefore use solely protein sequence information; and second, structural alignment
programs, which, although they have access to both protein sequence and its 3D struc-
ture, typically utilize only protein structure. As has been demonstrated by Kim and Lee [9],
structure-based methods produce better sequence alignments than methods based on se-
quence information alone, likely because structure is more conserved over a longer evo-
lutionary distance than sequence is. But of course, structural information is much less
commonly available for all the proteins in a set that need to be aligned. There is a new,
emerging class of “hybrid” aligners which attempt to utilize both sequence and structural
information.

1.1 Protein Structural Alignment Programs

Because it has been shown that structural aligners can produce better alignments than
pure sequence aligners can, and because we are presenting an improved protein struc-
tural aligner in this paper, we will now describe structural alignment programs and one of
their shortcomings in greater detail. For a succinct description of some of the approaches
employed by sequence alignment programs, see the briefing by S. Batzoglou [1].

As mentioned previously, structural alignment programs assume an input of proteins’
3D structures in space along with these proteins’ sequences. Thus most structural align-
ment programs will produce both a rigid body transformation that aligns the structures in
space, and also a sequence alignment derived from that structural alignment that proposes
homologous residue-residue correspondences. Hasegawa and Holms recently surveyed
the current best structural alignment programs [6].

The quality of protein structural alignments is typically assessed using a purely geo-
metric measure that is some function of the number of residues placed in alignment and an
average RMSD (root mean square deviation) score for aligned residues, and can some-
times include a penalty for gaps. Since the best structural alignment programs use purely
geometric measures to score alignments, it comes as no surprise that many structural
aligners in use today begin by throwing out all sequence information and working only with
the geometric location of the Cα atoms of the protein backbones. Because they ignore
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I.
a1 a2 a3 —

II.
a1 a2 — a3

III.
a1 a2 — a3

b1 b2 b3 — b1 b2 b3 — b1 b2 — b3
— c1 c2 c3 — c1 c2 c3 — c1 c2 c3

Figure 1: Example combinations of spatially consistent structural alignments be-
tween three proteins a1a2a3, b1b2b3, and c1c2c3 where the following groups of amino
acids have been found to be close in 3D space: (a1, b1), (a2, b2, c1), (a3, b3, c2), and
(a3, b3, c3). All three alignments I., II., and III. satisfy the geometric constraints, but
since a structural superposition does not uniquely define a single sequence align-
ment, we would want to choose, in this case, the alignment that places the most
similar amino acids in the same columns [27].

sequence information, structural aligners can sometimes produce suboptimal results in
closely aligned regions, where simple frame shifts have little effect on the overall RMSD of
an alignment, but do have a significant positive or negative effect on the sequence align-
ment of the region. A theoretical illustration of this “blindness” of structural aligners can be
found in Figure 1, adapted from [27].

A logical fix to this problem would be to simply find a way to use the sequence infor-
mation that structural alignment programs already have available to them to augment their
alignments. However, although intuitively it seems that this extra sequence information
should be used rather than discarded, the correct way to incorporate sequence informa-
tion into structural alignment algorithms in order to improve their performance has remained
elusive, since an optimization disagreement between minimizing RMSD and maximizing a
sum-of-pairs score cannot be avoided. Finding an acceptable trade-off between minimiz-
ing the RMSD and improving a sequence score is often problem-dependent and difficult to
generalize. Whereas a purely or heavily structure-based method might be used to identify
regions of a protein that are highly conserved and critical for function, a sequence-based
method might be more appropriate for phylogenetic reconstruction.

When a sequence alignment program and a structural alignment program produce
different results on the same input set of proteins, it is unclear how to determine which
alignment is actually correct, and by what reasonable measure. If the correct alignment
is pre-defined solely based on the geometric location of the Cα atoms of the protein back-
bones, then this correct alignment can always be computed without ever looking at the
protein sequences. At the opposite end of the spectrum, we could imagine a “true” correct
alignment to be one that aligns residues that have evolved from residues in a common
ancestor protein. Although we have no way to truly observe the course of evolution with-
out time travel, such an alignment would presumably maximize a sum-of-pairs alignment
score and might result in aligned regions with very little geometric similarity. Should these
regions still be considered alignable?

Therefore our problem is two-fold; first, how, where, and in what circumstances should
we incorporate sequence information to repair frame-offset errors in structural alignments,
and second, how can we objectively assess the quality of such a “hybrid” alignment that
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incorporates both sequence and structural protein information, particularly when hand-
curated gold-standard benchmark reference alignments are unavailable to be compared
against?

1.2 Objectively Assessing Alignment Quality

Methods for evaluating the quality of multiple protein alignments is important for the devel-
opment of new alignment methods, and thus has received quite a bit of attention. Unfor-
tunately, most existing algorithms for checking the validity and quality of multiple protein
alignments are applicable only for sequence alignments, and vary in terms of goals and
approaches. These algorithms look at (1) individual columns of an alignment, (2) the en-
tire alignment as a whole, or (3) subsections of alignments when assessing quality. Some
methods, such as norMD [29] and al2co [21] evaluate an alignment’s quality column-by-
column. Other quality assessment algorithms will look only at the entire alignment. The
MUMSA program [13], for example, searches for regions in a multiple alignment which
are identically aligned in many alignments produced by different aligners, or by the same
aligner with different parameters. Using the assumption that these identically-aligned re-
gions are more reliable than regions that are differently aligned by different alignment pro-
grams, MUMSA claims to assess the biological correctness of individual alignments by
evaluating how well they match other alignments in these identically-aligned regions. An-
other method that evaluates the entire alignment is the Heads or Tails (HoT) method in-
troduced by G. Landan and D. Graur [12]. This method reverses each of the sequences
being aligned, realigns them using a specified aligner or parameters to an aligner, and then
compares the original alignment to this new alignment of reversed sequences, checking
the proportion of identical alignment columns and identically-paired residues, with the as-
sumption that a strong method will maximize these two scores and thus have produced
a reliable alignment. Another method, called WOOF, word-oriented objective function [2],
evaluates alignments by identifying and scoring conserved amino acid patterns between
pairs of sequences.

Despite the large body of research dedicated to assessing the quality of multiple
sequence alignments objectively, many of these methods cannot be extended to effec-
tively assess the quality of sequence-structure hybrid alignments. Several previous re-
searchers have developed “hybrid” algorithms, including 3DCoffee [20], Promals3D [23],
and Salign [14], that consider both sequence and structure when constructing protein align-
ments. These algorithms have all, to some extent, had to address the question of what their
hybrid algorithm considers a “correct” alignment. An approach that seemed most intuitive
and applicable to our problem is the Staccato scoring method, presented by Shatsky et
al. [26], and described in further detail in the Methods section. However, with the notable
exception of Salign, most of these papers describing hybrid aligners are actually trying
to use structural information to improve sequence alignments, whereas the goal of this
paper is to use sequence information to improve structural alignments. Even though the
“correct” alignment in both scenarios is presumably the same, these are two very different
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Matt Alignment Formatt Alignment

CVR.FQL.PMPGSRLC CVRFQLPMPGS.RLC
LETLLLNGVL...TLV LET..LLLNGVLTLV
Figure 2: Example of Formatt’s frame-offset repair on a subset (residues 37-50 of
chain A of PDB ID 1c9f, and residues 64-76 of chain A of PDB ID 1d4b) of the Hom-
strad “CIDE-N” group. In both the structural (top) and sequence (bottom) alignments,
the difference between Matt and Formatt are shown in orange and green; and the
red and blue regions are α and β structures aligned identically by Matt and Formatt.
Note that the Formatt alignment has fewer non-core residues (3) than Matt (5), and
more core columns with sequence identity (3/12) than Matt (1/11).

problems, because whereas structural alignment programs can assume an input of se-
quence and structural information for proteins, sequence alignment programs cannot rely
on structural information being available for all proteins.

1.3 Correcting Structural Aligners’ Sequence Errors

Instead of asking if (partial) structural information can help sequence alignment algorithms,
this thesis instead focuses on what is likely a substantially easier computational problem;
does looking at sequence information help structural alignment algorithms, where 3D struc-
tural information is available for all the proteins in the set? The reason we believed this
would help is that, anecdotally, for even the best structural alignment programs, it seemed
that the resulting alignments for certain protein sets could be hand-“corrected” to produce
an alignment that made more sense from a sequence point of view, with little or no loss
in geometric fidelity. In fact, as reported by Landan et al. [12], in the rare case that a
researcher actually inspects a multiple protein alignment, very often that alignment is “cor-
rected by visual or manual inspection.” An example of such an error that might be fixed
manually can be found in Figure 2. In this case, two proteins were aligned by our group’s
own structure alignment program, Matt [15], and then corrected by the sequence alignment
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step implemented in Formatt. You can see from the figure that the structural alignments
produced are nearly identical, but the sequence alignment in Formatt’s version has fewer
gaps, and thus fewer non-core residues (3) than the sequence alignment in Matt’s version
(5). Additionally, whereas the depicted portion of the Matt alignment has only 1 core col-
umn where the residues are identical, the same portion of the Formatt alignment has 3. All
other purely structural alignment algorithms that we tested will sometimes produce similar
such errors.

To correct for exactly these “offset in sequence” register errors that purely structural
aligners are prone to, we modified Matt to “peek” at the sequence at appropriate times in
the algorithm. We present this modified version of Matt, called “Formatt” for “Frame Offset
Repair for Matt,” which initially follows the Matt algorithm exactly. Formatt uses the same
aligned fragment-pair chaining method as Matt, first adding small, tightly-aligned blocks of
5 to 9 residues to an alignment, but differs from Matt in the following step of the algorithm,
the “final extension phase,” where these blocks are extended to complete the alignment.
Whereas Matt uses solely geometric criteria to greedily align the protein backbones in
the regions between blocks, which we will now refer to as “inter-block regions,” Formatt
considers both geometric and sequence similarity criteria in choosing which residues to
align. Details of both the Matt and Formatt algorithms can be found in the Methods section.

It is important to note that the original Matt structural aligner that was modified to
produce Formatt is specifically optimized for more distant homology [3]. Therefore, as was
found in the original paper and again in this thesis, other aligners may perform better on
highly homologous sequences. However, the hope is that Formatt’s frame-offset correction
will improve Matt’s performance on closely homologous sequences while preserving Matt’s
performance advantage on remote homologs. We show in our Results section that this is
indeed the case.

We test the performance of Formatt against the original Matt [15], against Mustang [10],
another well-known multiple structure alignment program, and against Salign [14], which
like Formatt incorporates sequence information into a structural alignment. We also con-
sidered 3DCoffee [19] and Promals3D [23] but found they were not competitive even on
the closely-aligned structures in the popular Homstrad benchmark. Of course, as remarked
above, to be fair to 3DCoffee and Promals3D, they can also produce alignments (which
Formatt cannot) in the situation where structural information is only available for a sub-
set of the protein sequences to be aligned, and were not optimized for the full-information
structural alignment problem.

We tested the performance of Formatt against the performance of competitor aligners
on the Homstrad benchmark set [17] and the SABmark Twilight Zone benchmark set [30],
also referred to as just the “Twilight” set in this thesis. The Homstrad benchmark set con-
tains several sets of closely homologous proteins, and, unlike the SABmark benchmark
sets, also contains the “correct,” gold-standard reference alignment for each of these sets,
which were curated by hand. We chose the SABmark Twilight set to capture the alignment
of more distantly related proteins. Since there are no available “correct” alignments of these
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protein sets to compare against, we use the objective Staccato Seq and Str scores as in-
troduced by Shatsky, Nussinov and Wolfson [27] to measure alignment quality. Although
Mustang and Salign produce reasonable, and in many cases more correct, alignments on
Homstrad than either Matt or Formatt, neither Mustang nor Salign produce alignments on
SABmark Twilight with a reasonable RMSD, whereas both Formatt and Matt do produce
alignments with tight RMSDs on these sets.

We make available Formatt source code, freely available for download under the Gnu
Public License, at http://bcb.cs.tufts.edu/formatt, where we also make available Homstrad
and SABmark benchmark reference alignments aligned by Formatt.

2 Methods

2.1 Matt

The Matt structural aligner [15] is an aligned fragment-pair chaining method. Like other
structural aligners in this class, Matt first finds blocks of between 5 and 9 residues in each
chain that share very close spatial alignment. Then, Matt greedily adds these blocks into a
final multiple structural alignment, and extends these aligned blocks, keeping close spatial
alignment, in a “final extension phase” by adding adjacent residues into the inter-block
regions. A depiction of a Matt “bent” alignment, that is, before these closely-aligned 5-9
residue blocks have been extended into the inter-block regions, can be found in Figure 3.

What separates Matt from other fragment-pair chaining methods is that Matt initially
adds tightly-aligned blocks to the final alignment with disregard to geometric consistency,
allowing, in essence, impossible bends, translations, and twists between aligned blocks
prior to the final extension phase. Thus the name, Matt, which stands for Multiple Align-
ment with Translations and Twists. This way, Matt is able to detect regions in close spatial
contact and incorporate them into an alignment in situations where other aligners would
have immediately, and oftentimes erroneously, disallowed such blocks from entering an
alignment.

Matt places residues from the input protein sequences into alignment based on the
resulting RMSD. That is, residues are aligned if the distance between them, spatially, is
minimized. Of course, it is easy to see how placing residues in alignment based solely
on RMSD could be problematic; any residue in a column by itself would have an RMSD
of 0. On the other hand, maximally long alignments in which all residues from all chains
participate in the overall alignment could be achieved without regard to RMSD. We define
the “core” of a multiple protein structural alignment to be the subset of columns in the align-
ment with no gaps present for any of the chains. Therefore, Matt finds the optimal trade-off
between minimizing the average core RMSD and maximizing the number of residues in
alignment. This balance was achieved by finding a linear combination of RMSD and core
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Figure 3: Segment of two chains participating in an alignment after the Matt “bent”
phase. The solid blue and red portions of the two chains are found in be in very
close spatial alignment, and were added into the final alignment. These blocks are
extended to incorporate portions of the translucent sections labeled B, C, D, and E
in the “final extension phase” according to purely geometric measures in the original
Matt algorithm, and are extended according to geometric and sequence measures in
the modified Format algorithm. This figure comes from [15].

length that optimally separated SABmark [30] positive from decoy chains at the superfamily
level of homology.

In Matt’s final extension phase, the algorithm loops through all inter-block regions,
first adding new blocks into these regions of length 4, then 3, then 2, then 1. This entire
process is continued until no new changes to the alignment are made, which in practice
is between 1 and 3 loops. The value of 4 as the longest length of a block to be added
was arbitrarily chosen, again in an effort to achieve longer sections of core residues. Each
“block” that is added, either before the final extension phase or during it, must include a
residue from each chain in the alignment. In other words, partial alignments, or columns
with gaps, are not allowed to participate in an alignment. Prior to outputting an alignment,
Matt aesthetically fixes any remaining inter-block regions with partial alignments, but this
does not affect the rigid body transformation that aligns the structures in space, but rather
just the sequence alignment derived from it.

2.2 Improving upon Matt

The chief limitation of the Matt procedure is that the inter-block regions in between the
original, closely-aligned, 5-9 amino acid blocks are still aligned purely according to this
balance between core length and RMSD, and thus the final alignment may choose arbi-
trarily between different possible alignments of similar RMSD values, as previously shown
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in Figure 1. This can lead to certain alignments with otherwise obvious sequence similarity
being discarded due to negligible increases in RMSD.

By preserving sequence information instead of immediately discarding it at the start of
the algorithm, and allowing the input from a pure sequence alignment tool to influence the
final alignment, we aim to improve the alignments of these inter-block regions. We decided
that this extension phase would be the ideal point in the algorithm to allow sequence infor-
mation to influence an alignment, because logically only structural information should play
a role in detecting the original closely-aligned blocks in the bent alignment. Incorporating
sequence information prior to the final extension phase could damage this original align-
ment if the proteins being aligned have very low sequence similarity. On the other hand,
choosing to incorporate sequence information at later steps in the algorithm would have a
negligible effect on the overall alignment, and frame-offset errors that were introduced in
the final extension phase would not be fixed.

Therefore, Formatt improves upon the Matt algorithm by first producing an initial bent
alignment, identical to Matt’s, of 5 to 9 amino acid blocks, and then extending these blocks
using sequence information as follows.

2.2.1 Approach 1: Align entire inter-block regions using sequence

The very first version of Formatt performed the following steps to generate an alignment:

1. A “window length” is calculated for each inter-block region, equivalent to the minimum
length of the chains participating in the inter-block region. For example, in an align-
ment with three chains, called A, B, and C, residues A13...A20, B8...B12, and C11...C19

could participate in one inter-block region. In this inter-block region, the maximum
length is 9, occurring in chain C, the minimum length is 5, occurring in chain B, and
the window length would also be 5, equivalent to the minimum length.

2. The RMSD of all possible alignments of this particular window length in each inter-
block region is measured. Specifically, we implement a sliding window that checks
all possible orientations of window-length subchains in each chain in the inter-block
region against each other.

3. If any window orientation results in a region with average RMSD < 5 Angstroms (Å),
the entire inter-block region is passed to a sequence aligner. We output the amino
acid sequences from this region to a temporary file and run an existing sequence
aligner to produce an alignment. We currently use Muscle [5] but in principle, any
multiple sequence alignment application could be used.

4. The resulting sequence alignment for the inter-block region is used in place of the
structural alignment extension that Matt originally relied upon.
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5. Otherwise, we leave this inter-block region untouched. It is eventually aligned using
the purely geometric extension method employed by original Matt.

This approach was based on the following two assumptions about the structure of
inter-block regions, which turned out to be problematic.

• Most inter-block regions contain subchains with lengths of about 5 to 15 residues
each. This assumption was supported by a histogram of inter-block region lengths.

– Although the vast majority of inter-block regions were fairly short, it turns out
that only about half of the Homstrad protein sets we were testing on had sev-
eral, short inter-block regions upon entering the final extension phase, and the
other portion of sets entered this phase with only a few, very long inter-block
regions. When we instead looked at the average inter-block region length for
each Homstrad protein set, we discovered that the average inter-block region
length was much larger than we originally assumed.

• The lengths of the subchains participating in each inter-block region were nearly
equivalent in length, differing only by 1 or 2 residues.

– There actually appeared to be a few inter-block regions in particular protein sets
where a single subchain was very short or very long compared to the lengths of
the other subchains. We then passed such entire inter-block regions to an exter-
nal sequence aligner, disregarding which window orientations resulted in a tight
RMSD. As a result, shorter subchains were placed at positions that maximized
a sequence score, and in several cases yielded high and undesirable RMSD
values as a result.

Because of the flawed assumptions about the structure of inter-block regions, this ap-
proach turned out to be inadequate. The problem of having long inter-block regions was a
major one, and replacing entire inter-block structural alignments with sequence alignments
in the event that one small window had a good RMSD was clearly not the ideal approach.

2.2.2 Approach 2: Align segments of inter-block regions using sequence

We then modified Formatt’s original approach to deal with larger inter-block regions. The
new version of the algorithm was very similar to the previous version, except steps 3 and
4 were updated. Instead of passing the entire inter-block region to a sequence aligner in
the event that a certain window orientation had an RMSD < 5 Å, Formatt instead passed
only that particular window with the tightest RMSD to an external sequence aligner. The
resulting sequence alignment was then incorporated back into the final alignment, and the
resulting new inter-block regions were again considered for potential sequence alignment.
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This alleviated the problem we were seeing before, where seemingly “junk” alignments
were produced when a sequence aligner was used to align a large region, particularly
when that region had only a short segment with a low RMSD and otherwise little to no
sequence identity.

However, we encountered a new problem. Because Formatt was now choosing which
subsection of an inter-block region to pass to an external sequence aligner, there arose
a new opportunity for frame offset issues to occur. The new issue that started to occur
was that in certain inter-block regions, the “winning” window frame with the tightest RMSD
did not contain the best possible sequence alignment, and if the frame had shifted one or
two positions to the right or left for any of the participating subchains, a significantly better
sequence alignment was possible. Thus, we recreated our original frame-offset issue in a
smaller form.

Additionally, choosing the ideal window size for this purpose was also complicated.
The range of lengths of subchains in each inter-block region, the RMSD over the entire
region and the RMSD for each sliding window frame, and also the maximum length of the
participating subchains all seemed to play an important, yet inconsistent, role in choosing
an ideal window size.

2.2.3 Approach 3: Only align inter-block regions of certain lengths using sequence

The third approach produced much better results, which are the results presented in this
paper. There is one more approach detailed in the following subsection which is currently
being implemented, but for which no results have yet been calculated. Current difficulties
with this approach are discussed in the next section and in the Future Work section.

Because at this point it seemed that only “large” inter-block regions were problematic
and difficult to deal with, we modified Formatt to instead follow a different set of steps:

1. Given an inter-block region where the length of the longest subchain is less than some
previously specified window size, we measure the optimal RMSD of the region using
the same sliding window technique described in the first and second approaches.

2. If the RMSD of this region is less than Matt’s original spatial alignment threshold (5 Å),
we output the amino acid sequences from this region to a temporary file, and run an
existing external sequence aligner on those sequences. (As previously mentioned,
we currently use Muscle.)

3. We then incorporate this sequence alignment into the overall structural alignment in
place of whatever structural alignment could have been calculated by original Matt.

4. Otherwise, in the event that the RMSD of this inter-block region is greater than the
cutoff of 5 Å, then this region is not passed to a multiple sequence aligner, and in-
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stead we use the same purely structural extension method as would have been done
originally.

5. Inter-block regions of longer than our previously specified window size are greedily
aligned based solely on RMSD; they are, in practice, unlikely candidates for a good
sequence alignment.

The choice of window size to pass to the sequence aligner in Step 1 above determines
when sequence rather than RMSD-based structure alignment is used to align inter-block
regions. As noted in Step 5, inter-block regions longer than the window size are greedily
aligned based purely on RMSD. We present results for window size choices of 5, 10, 15,
and 20 residues.

2.2.4 Approach 4: Choose between a sequence and structural alignment for each
inter-block region

As you will see in the Results section, there were a select few cases where our new ap-
proach seemed to be doing worse than original Matt. To deal with this problem, we plan
to implement a method that calculates a sequence alignment and whatever original struc-
tural alignment Matt may have produced for every inter-block region (i.e. no longer only
for inter-block regions of maximum length less than the window sizes of 5, 10, 15, or 20),
compare them using an objective measure that takes both sequence and structural sim-
ilarity into account, and select whichever alignment scores higher to incorporate into the
final structural alignment.

Calculation of the Objective Staccato Cons Score

The objective score that will be implemented in the newest version of Formatt is the
Staccato Cons score, as described by Shatsky et al. [27], where Cons(c) ∈ [0,9]. Formatt
calculates the Cons(c) score for each column in an alignment, where c is a single column,
and averages the score of all columns in the inter-block region to get an overall score
for that region. As mentioned before, alignments produced both by the purely geometric
method and by an external sequence aligner for each inter-block region are compared
using the objective Cons score, and the “winning” alignment is selected. The calculation
for this score is reproduced below:

Cons(c) = w ∗ Consseq(c) + (1− w) ∗ Consstr(c)

The value of w is set to 0.5 for our testing. This value is a parameter to Formatt and
can be adjusted so that either sequence or structure is weighted more heavily if a user
has some prior knowledge about the input data. If the user knows that the proteins being
aligned are more closely related, the value of w should be increased from 0.5, and if they
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are more distantly related, the value of w should decrease, so that structure is weighted
more heavily. The calculation for the Consstr(c) portion of the overall Cons(c) score is
shown below:

Consstr(c) =


9 if (rmsd(c) > 22.62Å),

1

f +
1− f

rmsd(c)

otherwise.

In the above Consstr(c) equation, the value of f is operationally set to 0.07. We calcu-
late the Consseq(c) score using the Blosum62 scoring matrix, so the values of each column
can range between -4 to 5.75. We map these values to the range [0,9] using the following
equation.

Consseq(c) = 9 ∗
(
1−

Cons∗seq(c) + 4

9.75

)
The actual Cons∗seq(c) score calculation is described by the following equations, where

N is the number of chains in the alignment, and ci is the amino acid residue from chain i
in column c.

Cons∗seq(c) =
N∑
i=1

N∑
j>i

wiwjScore
∗
SM(ci, cj)/W

Score∗SM(a, b) =


ScoreSM(a, b) if (a ̸= b),
20∑
i=1

ScoreSM(i, i)/20 if (a = b).

The Score∗SM (a, b) is merely a modified scoring matrix such that only the matrix diag-
onal is changed, where the original scoring matrix is represented by ScoreSM (a, b)). In the
original Staccato and our implementation, the Blosum62 scoring matrix is used. If we only
used an unaltered sum-of-pairs scoring method, sequences with high similarity would have
a significantly higher Score∗SM , so to overcome this overweighting, the following weights wi

and normalized weight W are used to balance the weighting scheme:

wi =
N∑
j ̸=i

1− PercentIdentity(Si,Sj)

100

N − 1
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W =
N∑
i=1

N∑
j>i

wiwj

The overall Cons score will range between the values 0 and 9, and we want to max-
imize this score in order to select the “best” alignment. We conjecture that this approach
must improve Formatt’s performance, because the event where considering sequence sim-
ilarity is detrimental to an alignment will be eliminated.

2.3 Validation

In order to quantitatively assess Formatt’s performance, we evaluate it against two well-
known benchmark sets, Homstrad [17] and SABmark [30].

Homstrad Benchmark Set

The Homstrad multiple-alignment benchmark is a manually curated set of 1,028 align-
ments, each of which contains between 2 and 41 structures. Homstrad alignments consist
of closely related, homologous protein families, where proteins in each set have at least
30% sequence identity on average. The original alignments were derived using COM-
PARER, then annotated using JOY in a format representing the local structural environ-
ment of each amino acid residue. The alignments were tweaked manually where neces-
sary. For Homstrad alignments, we can assume the manually curated alignments form a
gold-standard set of “correct” alignments.

We test on the 414 Homstrad alignments with more than 2 (i.e. between 3 and 41)
structures in the alignment, because these necessitate a multiple rather than a pairwise
structure alignment program. Of these 414 sets, 16 sets require fused or reversed chains
to be aligned, and unfortunately there is no automatic way to input these modified chains
without actually manually editing the appropriate PDB files. Therefore Matt and Formatt,
which do not yet have the capability of automatically editing the input PDB files accordingly,
were only run on 398 sets. Other structural aligners have the same problem with aligning
fused or reversed chains.

SABmark Benchmark Set

The SABmark benchmark, unlike the Homstrad benchmark, does not contain refer-
ence alignments, and contains only sets of remotely homologous proteins to be aligned.
The SABmark benchmark covers the entire fold space according to the SCOP classifica-
tion, and is divided into two datasets: the superfamily and Twilight Zone datasets, which
each contain subsets of 3 to 25 remotely homologous protein structures. Each Twilight
Zone set represents a SCOP fold, and the proteins in each set have very low sequence
identity (0-25%).
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We test Formatt and its competitors on the 209 subsets in the Twilight set. As pre-
viously mentioned, we do not have a gold-standard set of “correct” alignments as we did
with the Homstrad sets, and must instead determine alignment quality solely by objective
means, such as core length, average core pairwise RMSD, as well as the Staccato scores,
as introduced by [27].

Staccato Objective Scores

We review how the Staccato scores are computed next. Note that our calculation of
Staccato scores diverge from the algorithms presented in the original paper in one impor-
tant respect: we only consider core positions, or columnswithout any gaps, in the alignment
when scoring a multiple alignment.

The Staccato Seq score measures sequence alignment quality and is a normalized
sum-of-pairs score based upon the BLOSUM62 matrix. More formally:

1. Let seq = 0

2. Let P be a set of protein chains p1 through pn participating in a multiple alignment A

3. For every column cj ∈ A

(a) Let ri,j be the residue at position j of chain pi

(b) If ∀i ∈ {1..n}, ri,j is not a gap
i. Let B be the BLOSUM62 score of ri,j∀i ∈ {1..n}
ii. seq = seq +B

4. return seq

The Staccato Str score is a measure of what percentage of core residues in an align-
ment have an RMSD of < 3 Å, with core residues defined as those columns in the multiple
alignment for which every chain has a residue, or equivalently, those columns without gaps.
More formally,

1. Let str = 0

2. Let P be a set of protein chains p1 through pn participating in a multiple alignment A

3. For every column cj ∈ A

(a) Let ri,j be the residue at position j of chain pi

(b) If ∀i ∈ {1..n}, ri,j is not a gap
i. Let R be the RMSD of ri,j∀i ∈ {1..n}
ii. If R < 3.0 Å

A. str = str + 1

4. return str
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3 Results

Table 1: Performance on Homstrad Benchmark Set (414 sets)

Aligner Num. of Average Core
Results Length RMSD % Correct Seq score Str score

Homstrad 414 126.8 2.71 (100%) 39.2 84.4
Mustang 410 152.8 3.60 79.3% 37.5 82.1
Matt 398 178.4 1.72 73.4% 32.0 86.8
Promals3D 383 185.8 — 18.6% 33.7 —
Salign 277 172.6 2.29 78.1% 37.4 78.9
Formatt (5) 398 178.6 1.79 73.5% 32.0 85.6
Formatt (10) 398 178.9 1.83 73.4% 32.3 84.7
Formatt (15) 398 179.4 1.93 73.4% 32.6 83.8
Formatt (20) 398 179.6 1.95 73.4% 32.7 83.5

As can be seen in Table 1, all the aligners do a reasonable job producing alignments
for the 414 Homstrad multiple protein sets, although no aligner actually produces results for
all 414 sets. It is also important to notice that Salign only produced results on 277 out of 414
sets, and therefore the resulting long average core length and high percent correct might
change if alignments for all Homstrad sets were available. The Homstrad gold standard
has the smallest average core length, followed byMustang and Salign. Matt’s average core
length is longer, and each version of Formatt with progressively longer sequence alignment
windows achieves a progressively longer core length. On the other hand, as the Formatt
alignment window increases, RMSD increases slightly from Matt as well, as would be ex-
pected. Formatt’s and Matt’s percent correct, however, according to the gold standard,
underperforms the other methods, though the difference between Formatt and Matt by this
measure is negligible. Thus, we conclude that Formatt and Matt by the most objective
measure (both core length and RMSD) outperform other methods on the Homstrad bench-
mark set, but underperform them according to the Homstrad hand-curated alignments. On

Table 2: Performance on SABmark Twilight Benchmark Set (209 sets)

Aligner Num. of Average Core
Results Length RMSD Seq score Str score

Mustang 204 63.4 11.83 -9.9 49.6
Matt 209 67.1 2.64 -15.4 64.9
Promals3D 196 75.4 — 1.6 —
Salign 155 60.0 22.15 -15.9 45.4
Formatt (5) 209 67.0 2.64 -15.4 64.7
Formatt (10) 209 67.0 2.68 -15.3 64.1
Formatt (15) 209 67.0 2.71 -15.2 63.5
Formatt (20) 209 67.0 2.74 -15.1 63.2
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(a) Homstrad Benchmark (398) (b) SABmark Twilight Benchmark (209)
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Figure 4: Histograms showing the effect of different Formatt window lengths on For-
matt’s performance compared to Matt’s, on the Homstrad (a) and SABmark Twilight
(b) multiple alignments. Numbers in parentheses indicate the total number of protein
sets that were tested on for each benchmark. For the vast majority of both Homstrad
and SABmark Twilight protein sets, Formatt with a window size of 5 outperforms Matt
on the Staccato Seq score, while rarely performing worse on the Str score. As the
window size increases, Formatt outperforms Matt more frequently on the Seq score
but less frequently on the Str score.

the other hand, it is clear that in comparing Formatt to Matt, Formatt increases core length
for a small penalty in RMSD.

We also tested Promals3D on the Homstrad benchmark set. Note that Promals3D
outputs only a sequence alignment without coordinates, so an RMSD and Str score could
not be calculated. However, when we compared the Promals3D to the Homstrad gold-
standard alignments, the average percentage correct was only 18.6%. We tested a a sub-
set of the Homstrad benchmark set against 3DCoffee and the results were even worse,
and unfortunately 3DCoffee was also unable to run on a majority of the Homstrad sets. Al-
though at first we assumed this could have been a result of neither Promals3D nor 3DCof-
fee being able to adequately handle malformed PDB files, the problems continued even
when aligning just sequences. Thus, we conclude that Promals3D and 3DCoffee are not
producing competitive alignments on this benchmark.

Table 2 shows that Matt and Formatt outperform Mustang and Salign both in terms of
core length and RMSD on the SABmark Twilight benchmark set. Here, however, we do
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not have gold-standard reference alignments. It is also less immediately clear from Table 2
whether Formatt or Matt alignments are to be preferred. To further study this question, we
look at the Staccato scores suggested by [27] on both Homstrad and SABmark. Figure 4a
shows that on Homstrad, Formatt with a window size of 5, for example, has a Staccato
Seq score and Str score greater than or equal to Matt on 242 out of 398 groups, and a Seq
score greater than or equal to Matt but a Str score less than Matt on 95 groups. Figure 4b
shows that on the SABmark Twilight set, Formatt with a window size of 5 has a Staccato
Seq score and Str score greater than or equal to Matt on 175 out of 209 groups, and a Seq
score greater than or equal to Matt but a Str score less than Matt on 21 groups. Thus, by
the objective Staccato measures, Formatt’s alignments are superior to Matt’s alignments.
As Formatt window size increases, the Staccato Seq score goes up in a tradeoff against
the Staccato Str score.

4 Discussion

We have introduced Formatt and shown that incorporating sequence information can im-
prove the quality of structural alignments, both in terms of gold-standard alignment bench-
marks, and in terms of objective measures of sequence and structural alignment quality
(e.g. Staccato Seq and Str scores [27]). We were particularly interested in “correcting”
Matt structural alignments to better capture correct sequence homology because of our
extensive use of the Matt structural alignment program in the training phase as we build
HMMs [11] and Markov Random Fields [16] from sets of solved protein structures that all
fold into the same shape, to learn to recognize new protein sequences that match these
models. More consistent alignments lead to better structural templates, and therefore bet-
ter motif recognition programs. This is the same problem domain that motivated the work
on the Salign program as well [14].

Formatt is a variant of the Matt [15] multiple structure alignment program, one of a new
generation of structural alignment programs that incorporate flexibility into multiple protein
structure alignments. Other recent pairwise and multiple structure alignment programs that
also incorporate some form of flexibility into alignments include FlexProt [25], Fatcat [31],
Posa [32], Rapido [18], and FlexSnap [24]. It would be interesting to see if some form
of sequence alignment could be incorporated into these programs as well, and whether it
could improve their structural alignments.

5 Future Work

As mentioned above, our current implementation of Formatt was tested using only two
different popular sequence alignment methods, namely Clustal-W [7] and Muscle [5]. We
only reported results for Muscle, since Formatt’s resulting percent correct on Homstrad
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was consistently higher over Clustal-W. However, there are many newer multiple sequence
alignment programs that have recently been shown to perform well on more distantly ho-
mologous sequences, such as ProbCons [4], MUMMALS [22] and MAFFT [8]. We conjec-
ture that substituting some of these programs in for Muscle for Formatt’s multiple sequence
alignments might improve Formatt results still further. So far, we have tested the replace-
ment of Muscle in Formatt with Clustal-W, ProbCons and MAFFT, and results appear in
Table 3.

Table 3: Sequence Aligner Effect on Formatt’s Performance onHomstrad Benchmark

Window Aligner Average Core
Length Length RMSD % Correct Seq score Str score

5

Muscle 178.6 1.79 73.5% 32.0 85.6
Clustal-W 178.0 1.78 73.0% 32.3 85.9
MAFFT 177.7 1.78 73.0% 32.2 85.8
ProbCons 174.7 1.76 71.8% 32.1 86.3

10

Muscle 178.9 1.83 73.4% 32.3 84.7
Clustal-W 178.0 1.82 72.8% 32.9 85.9
MAFFT 176.4 1.82 72.1% 32.9 85.0
ProbCons 168.8 1.71 69.5% 32.8 87.4

15

Muscle 179.4 1.93 73.4% 32.6 83.8
Clustal-W 178.5 1.91 72.6% 33.3 84.0
MAFFT 176.4 1.92 71.7% 33.3 84.2
ProbCons 165.2 1.66 68.3% 33.3 88.1

20

Muscle 179.6 1.95 73.4% 32.7 83.5
Clustal-W 178.7 1.94 72.6% 33.3 83.8
MAFFT 178.2 1.77 73.3% 32.2 86.2
ProbCons 163.9 1.65 67.9% 33.4 88.4

As we already knew, Formatt using Muscle outperforms the version of Formatt using
Clustal-W in regard to percent correct on Homstrad in nearly all cases. However, it appears
that using MAFFT, ProbCons, and Clustal-W improve both the Seq and Str scores on
Homstrad, yet the core length also reduces. It is therefore hard to say whether these
particular aligners are improving Formatt. Because of this, we chose not to also run these
variant versions of Formatt on SABmark before we can first assess the performance gains,
if any, on Homstrad. However, this question leads us to the more pressing issue, the next
major modification to Formatt as a future step.

As mentioned in the Methods section, we are attempting to modify Formatt so that
for every inter-block region, regardless of the length of that inter-block region (which we
currently take into consideration), we calculate both a sequence alignment and a structural
alignment, and then choose the better of these alignments according to the Staccato Cons
score. This way, we will select an alignment that most optimally maximizes the core length,
minimizes the core RMSD, and maximizes both the Staccato Seq and Str scores. If we
are consistently choosing the “best” alignment for each interblock region, it will be much
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easier to see whether changing the sequence aligner actually improves the performance
of Formatt. Furthermore, we suspect that implementing this new final extension phase will
improve all alignments of protein sets for which Formatt is currently doing worse than Matt.
In essence, Formatt will never perform worse than Matt.

There are a few minor setbacks to implementing the newest version of Formatt with
the Staccato Cons score. Specifically, calculating what original Matt would have done for
a given inter-block region is difficult to determine. In the original Matt code, the addition of
somewhat tightly-aligned blocks of lengths 4, 3, 2, and 1 are added to the entire alignment
in that order, and not to each inter-block region in that order. That is, all new blocks of
length 4 are added to all existing inter-block regions in the alignment, where appropriate,
before any blocks of length 3 are added. If we update this algorithm to look individually at
inter-block regions and add blocks there instead, core length increases dramatically, but
the RMSD also increases dramatically. It is unclear why we are seeing these results.

Furthermore, in several cases, a sequence alignment for one inter-block region can
change the resulting structural alignments in subsequent inter-block regions. That is, if we
calculate a structural alignment in inter-block regions i, j, and k, and then add some sort
of sequence alignment into inter-block region i, the structural alignments, specifically the
RMSDs of these structural alignments, that we previously calculated for j and k can also
change. Any Cons score, which depends on the RMSD of an alignment, that was initially
calculated would no longer be valid in subsequent steps of the algorithm as sequence
alignments are incorporated. Therefore, a simple solution to our previously-mentioned
problem, merely calculating all of the structural alignments for each inter-block region in
one go and then evaluating these will not work.

We are currently attempting to duplicate the results of the original Matt final exten-
sion phase without using the same algorithm as before. This will hopefully make it much
easier to calculate a reliable structural alignment for a given inter-block region that doesn’t
drastically change from what is expected with changes in other inter-block regions.
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