
Review of Projective Representations of Finite Groups
by Gregory Karpilovsky

William F. Reynolds
Department of Mathematics, Tufts University, Medford, MA 02155

Projective representations take their name from projective geometry.
To be specific, let G be a finite group, K a field, and V a finite-dimensional
vector space over K. Let h be a homomorphism of G into the projective
general linear group PGL(V ), i. e., the group of all projective transformations
of the projective space whose points are the one-dimensional subspaces of V .
Since many of the finite simple groups are defined as subgroups of groups
PGL(V ) for finite K, their natural injections into PGL(V ) furnish important
examples. PGL(V ) can be identified with the quotient group of the group
GL(V ) of all invertible linear transformations of V by the normal subgroup Z
consisting of scalar multiples of the identity 1GL(V ) by the elements of K× =
K − {0}. Accordingly, h can be studied as follows: for each g ∈ G choose a
representative ρ(g) of the coset h(g)Z = h(g)K×; then ρ is a mapping of G
into GL(V ) such that

(1) ρ(g1)ρ(g2) = α(g1, g2)ρ(g1g2)

for some mapping α of G×G to K×; we can suppose that

(2) ρ(1G) = 1GL(V ).

Then ρ can be studied in place of h; this replaces a projective situation by
a more familiar linear one, though at the price that ρ depends on arbitrary
choices. Any mapping ρ of G to GL(V ) that satisfies (1) and (2) for any
α is called a projective representation of G; if α is specified, ρ is called an
α-representation.

Many examples can be constructed as follows: let

(3) 1 → A → H
f→ G → 1

be a central extension, i. e., an epimorphism H → G of finite groups with
ker f ∼= A contained in the center of H; thus G ∼= H/A if we identify ker f
and A. (The group H is also called a central extension of G.) For each g ∈ G
choose an inverse image µ(g) ∈ H such that f(µ(g)) = g, with µ(1G) = 1H .
Then for each linear representation r of H, the rule

(4) ρ(g) = r(µ(g))

defines a projective representation ρ of G. For example, if H is either of
the nonabelian groups of order 8, A its center, and f the natural map to
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G = H/A, the 2-dimensional irreducible complex representation of H yields
a projective representation of the Klein four-group. Central extensions play
an important role in the proof of the classification of finite simple groups [2],
[7, pp. 295–303]; furthermore, attempts to use the classification to prove a
conjecture for arbitrary finite groups sometimes reduce the conjecture to the
case of central extensions of simple groups. (Projective representations of
Lie groups can also be defined and are used in quantum theory, in particular
in connection with spinors.)

The associative law for G implies that α is a 2-cocycle in Z2(G,K×),
where K× is considered a G-module with multiplication as operation and
trivial action. If we replace ρ by another choice ρ′ with corresponding 2-
cocycle α′, we find that α and α′ are cohomologous; so it is the cohomology
class of α in H2(G,K×) that matters. If α is the trivial cocycle, the α-
representations of G are just the linear representations of G; this means that
projective representation theory is a generalization of linear representation
theory. On the other hand, we shall see that the study of linear representa-
tions leads inevitably to the introduction of projective representations.

One way to do projective theory is to go through the linear theory,
generalizing each definition and proof as you go along. For example, the
group algebra KG is generalized by the twisted group algebra KαG: this
is an associative K-algebra possessing a basis {bg|g ∈ G} with multiplica-
tion determined by bg1bg2 = α(g1, g2)bg1g2 . Then a bijection between all
α-representations ρ of G and all linear representations R of KαG is defined
by ρ(g) = R(bg). Thus all the representation theory of this algebra be-
comes available to study the α-representations of G. In particular we can
talk in terms of KαG-modules. (But beware: the adjective “projective” has
completely different meanings for modules and for representations.)

A second way is to use central extensions to reduce questions about
projective representations to corresponding questions about linear represen-
tations. For example, suppose that α has finite order m in Z2(G,K×) and
that K contains a primitive mth root ζ of unity. Let

Gα = { ζibg | i ∈ Z, g ∈ G } ⊆ KαG.

Then Gα is a finite group under multiplication, and for each α-representation
ρ of G, the restriction r to Gα of the corresponding R is a linear represen-
tation of Gα with r(bg) = ρ(g). This is a reverse of the construction that
led to (4) applied to the central extension 1 → {ζi} → Gα → G → 1. This
lifting of ρ to r reduces much of the theory of α-representations to the study
of some of the linear representations of Gα, which is called the α-covering
group (or α-representation group) of G.

If K is algebraically closed, a more elaborate construction due to Schur
yields a finite group H such that all the projective representations of G
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can be lifted to representations of H (apart from a shift to cohomologous
cocycles). H is called a representation group of G; it is “almost unique”. For
example, any finite simple group has a unique representation group, but both
nonabelian groups of order 8 are representation groups for the four-group.
In the corresponding exact sequence (3), A is isomorphic to H2(G,K×). If
K = C, this is called the Schur multiplier of G. The calculation of the Schur
multipliers of the simple groups is a difficult part of the above-mentioned
work related to the classification; for example, the Schur multiplier of the
Mathieu group M22 is cyclic of order 12.

Projective representations come into linear representation theory as fol-
lows. Let N be a normal subgroup of G and σ an irreducible linear repre-
sentation of N , with K algebraically closed and σ stable (up to equivalence)
under conjugation by all the elements of G. It is natural to ask whether
σ can always be extended to a representation of G. It turns out that the
answer is “no” if we demand a linear representation, but “yes” if we will
settle for a β-representation ρ for a certain β; furthermore β is inflated from
a cocycle ω of G/N , and the irreducible linear representations of G whose
restrictions to N contain σ are precisely the tensor products of ρ with the
irreducible ω−1-representations of G/A (inflated to G). This result, proved
by W. H. Clifford in 1937, shows that projective representations are needed
to study linear ones. In 1958 Mackey proved a similar result with σ replaced
by a projective representation, so that the projective theory is self-contained
in a way that the linear theory is not. (There are deep theorems giving cases
in which β = 1.)

Schur created the central part of this theory in 1904 in a remarkably
mature form. Many results on linear representations have projective ana-
logues; the proof may be the same as in the linear case or may involve messy
calculations with cocycles, but it is most interesting when the result itself is
different. For example, ifK = C, the number of irreducible α-representations
of G is the number of conjugacy classes of G that satisfy a certain condition,
namely that α(g, x) = α(x, g) whenever g is in the class and gx = xg; thus
in the example above, the four-group has only one α-representation but four
linear representations. The same example shows that irreducible projective
representations of abelian groups over C need not be one-dimensional. While
Brauer showed that all the linear representations of G in C can be written
over the field of eth roots of unity where e is the least common multiple of
the orders of the elements of G, this is false for projective representations
but becomes true if we take the field of |G|th roots instead [11], [12]. The
characters of projective representations need not be constant on conjugacy
classes; and while this difficulty can be circumvented for a single group, it
arises again once subgroups are considered.

Now for Karpilovsky’s book. This is the first book devoted entirely to
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projective representations, and it is a big one. The contents have been well
described in Humphreys’ review [8]. It gives a comprehensive presentation,
mostly in the first of the two ways I have described. As a result, it includes
a large part of the linear theory as a special case, and even some theory of
algebras. Characteristics 0 and p are treated together when possible. There
are some nice touches, such as the definition of “α-covering group” that I have
stated here and a proof in full generality of a theorem of Noether (Theorem
8.1.7) on the behavior of representations of algebras under field extensions,
the only such proof I know of in print except for Noether’s original paper.
However, no reference to a proof of Proposition 1.1.13, essential here, is
given. (The author has pointed out to me that this proposition is proved on
pp. 176-177 of [9a]; this book appears in his bibliography.) The book treats
Mackey’s results (originally done for C) for general fields. It also contains a
number of projective analogues of results that were previously known only
in the linear case, although some of these are easy generalizations. Some
noteworthy omissions are the p-adic theory and projective Brauer characters.
The generalization of twisted group algebras to fully G-graded rings made
in the 1960’s independently by Dade, Fell, Kanzaki, and Ward [4] is not
discussed.

Unfortunately the book has serious drawbacks. It is in the dry style of
much mathematical writing, with too little explanation of what is important
and why; this fault is especially bad because of the book’s size. Often the
author duplicates a proof from a research paper with little change and no
new insights, when it would have been better and briefer to explain the
significance of the result and give a reference for the proof. Sometimes the
exposition is inferior to that in the original papers. For example, the proof of
Proposition 4.1.14 contains two inaccuracies. For another, the author adopts
on p. 305 a definition of “projective splitting field” that refers to irreducible
(rather than arbitrary, or completely reducible) projective representations;
as a result he states some of the succeeding theorems, including the above-
mentioned one involving eth roots, in an unnecessarily weakened form. These
examples may not be typical, but it would probably be a good idea to have
another reference handy when using this book.

The book is photographically reproduced from a typescript. Apart from
a considerable number of misprints, which may not be the author’s fault, the
format would be fine for something like the Lecture Notes in Mathematics,
but in this age of TEX it is not satisfactory in such a high-priced book.

Because it contains so much material in self-contained form, and an ex-
cellent 24-page bibliography, this will be a useful reference for anyone working
in the field. Although it originated in a set of lecture notes for a graduate
course, my own preference would be to have a graduate student begin to
learn about representations from such books as [1], [3], [5], [6], [9], and [10],
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rather than to study projective representations single-mindedly; in particu-
lar, [9] contains a good introduction to the projective theory. Afterwards, or
concurrently, the student could make selective use of Karpilovsky’s book.
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