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Abstract 

This work aims to investigate the use of a systematic methodology to optimize the 

operating conditions of batch fermentation processes, presented by Georgakis 

(Georgakis, 2009). This methodology is a novel model-free technique, as opposed to 

model-based optimization techniques. The methodology consists of designing 

certain experiments, obtaining a response surface model, and optimizing the 

response surface model. This methodology has been called Design of Dynamic 

Experiments (Georgakis, 2009) and is an extension of the well-studied and widely 

used classical Design of Experiments technique (Montgomery, 2005)(Box & Draper, 

2007). The main difference is that the DoDE methodology allows for the design of 

experiments in which at least one of the decision variables is a time-varying one. This 

allows us to explore several substrate feeding strategies, and to determine the optimal 

one. Two different designs of interest to fed-batch fermentations are studied. One in 

which the substrate is fed in a systematic fashion throughout the fermentation 

(centralized), and one in which the fermentation is split into two segments, 

corresponding to the growth phase and the production phase (decentralized). The 

results of the two designs are compared. The production of penicillin is used as a 

case study for this methodology, using a well-established and widely studied model 

by Bajpai and Reuss (Bajpai and Reuss, 1980). Centralized designs are found to be 

more efficient than decentralized designs. Using four dynamic subfactors gives the 

optimal penicillin production when using Centralized designs. Using three dynamic 

subfactors gives the optimal penicillin production when using Decentralized design. 

However, the number of experiments required for each optimal design is the same. 
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Centralized Design has the advantage of only needing to add one extra factor to test 

the significance of adding one more dynamic subfactor, whereas the Decentralized 

Design needs two extra factors to test the significance of adding one more dynamic 

subfactor to each phase. 
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1 Introduction 

Batch processes are usually optimized using traditional optimization techniques, 

which involve having a mathematical model representing the process. 

Experiments are performed in order to estimate parameters in the model. 

However, these methods can sometimes be quite complex and finding such a 

model can be very difficult and time-consuming. In many cases, a first-principles 

model is not available. One method around this is the use of the Design of 

Experiments technique (Montgomery, 2005)(Box & Draper, 2007). However, this 

methodology does not allow for the design of experiments in which at least one of 

the decision variables is a time-varying one. Therefore, this model-free 

optimization technique is not effective in processes that have an important time-

varying factor. This is the case for crystallizations and fed-batch processes, 

including fermentations.  

The Design of Dynamic Experiments methodology (Georgakis, 2009) employs 

many of the Design of Experiments ideas and methods, but has the added 

advantage of designing experiments in which at least one decision variable is a 

time-varying one. 

In the case of fermentations, this methodology allows us to explore several 

substrate feeding strategies, and to determine the optimal one. In this work, this 
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methodology will be applied to the penicillin fermentation process, with the main 

goal of developing a framework for the application of the Design of Dynamic 

Experiments to a general batch fermentation process. Fermentation processes 

were considered as a suitable and attractive application for this methodology, 

since they usually operate in fed-batch mode, with the substrate being fed in a 

time-varying fashion. Also, fermentation processes have industrially significance, 

especially in the pharmaceutical industry, where they are used to produce 

antibiotics and other medications. 
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2 Background 

2.1 Model-based Optimization 

Traditional optimization techniques involve having a fundamental mechanistic 

model that describes the process. Some experiments are usually run to estimate 

the parameters in the model. Several different techniques are available for model-

based optimizations. Fermentation processes have been optimized by several of 

these techniques. The penicillin fermentation optimization problem has been 

solved analytically(Lim, Tayeb, Modak, & Bonte, 1986), by successive quadratic 

programming and orthogonal collocation (Biegler, 1984), as well as by other 

methods (Cuthrell & Biegler, 1989) (Chiou & Wang, 1999).  These methods all 

require a mechanistic model, and can be quite difficult to solve. 

2.2 Design of Experiments 

The Design of Experiments methodology is a well-established methodology (Box 

& Draper, 2007) (Montgomery, 2005). It is a systematic way of designing 

experiments in an efficient manner, such that these experiments provide the 

researcher with as much information as possible with a limited number of 

experiments. Design of Experiments enables the measurement of the interaction 

effect between different factors. In the one-factor-at-a-time approach, each factor 
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is varied individually, and thus any interaction between the factors cannot be 

estimated. The optimum operating conditions of the process may very well be 

different than the optimum obtained by this approach. For example, if temperature 

and pressure are the two factors being evaluated, and experiments are performed 

in which only one factor is varied at a time, the optimum temperature observed at 

a specific pressure may not be as optimal at a different pressure. This indicates an 

interaction effect between temperature and pressure, and the one-factor-at-a-time 

approach does not allow for such effects to be accounted for. However, Design of 

Experiments does allow for this by designing experiments in which multiple 

factors are varied together to evaluate such interaction effects. Design of 

Experiments then allows the development of a statistical model that relates the 

response variable to the factors being varied. This model can then be used for 

prediction of the response variable at different operating conditions within the 

design space tested. This response surface model (RSM) can be optimized by 

plotting the response surface over the range of the design space, and locating the 

global maximum or minimum, or by performing a nonlinear optimization 

numerically. 

Design of Experiments allows for the optimization of a process without 

knowledge of the underlying process or the use of a mechanistic model describing 

the process. Also, optimization of such response surface models is much simpler 

and quicker than model-based optimization techniques. 
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There are several ways to design the experiments. Factorial designs are generally 

used when two or more factors are being evaluated. Such designs evaluate all 

possible combinations of the levels of the factors. Fractional factorial designs can 

also be used where only a fraction of the factorial design runs are used. Such 

designs do not usually allow for the inclusion of quadratic terms in the model. 

This is a potential problem in the case that the response exhibits curvature. There 

are designs available that overcome this obstacle. These are called response 

surface designs. Some examples of such designs are ‘Central Composite Design’, 

‘Box-Behnken Design’, and computer-generated designs such as D-optimal 

designs. It is a good idea to start with a factorial design initially. By including 

center points in the design, i.e. all factor levels are zero, curvature can be 

detected, if it is present. If curvature is found to exist, then the factorial design can 

be augmented by some axial runs, which then represents a Central Composite 

Design (Montgomery, 2005). 
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3 Methodology 

3.1 Design of Dynamic Experiments 
 

The Classical Design of Experiments discussed above, only allows for factors to 

be set at constant values throughout the experiment. These will be referred to as 

static factors. However, many industrially significant processes involve factors 

that might need to be varied with time, such as cooling profiles in crystallizations, 

feeding profiles in fed-batch reactions, heating or cooling temperature curves etc. 

Applying the classical Design of Experiments technique to such cases where the 

optimal operating conditions are ones that change with time will not yield a very 

good optimum. 

The Design of Dynamic Experiments technique (Georgakis, 2009) is a novel way 

of optimizing certain processes without the need for a first-principles model. It 

provides a systematic way of designing experiments that have one or more 

dynamic input variables. The classical Design of Experiments technique also 

provides a way to optimize processes without having a fundamental model. 

However, it is limited to designing and optimizing processes in which all the input 

functions are constant throughout the experiment. The Design of Dynamic 

Experiments technique utilizes many of the concepts of the classical Design of 
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Experiments. The experiments are designed in much the same manner, with the 

main difference being the ability to design experiments with time-varying factors.  

The first step in performing a Design of Dynamic Experiments is to identify the 

dynamic decision variable. In the case of fermentations, the substrate-feeding rate 

is a key time-varying function. Next, a functional basis must be defined. An 

appropriate choice would be the shifted Legendre polynomials. These 

polynomials form a complete linearly independent set and can be used as a 

functional basis. This is an orthogonal basis. Time must be non-dimensionalized 

by dividing the time by the batch time. 

The dynamic decision variable, u, can be expanded in terms of the functional 

basis (Georgakis, 2009): 

€ 

u τ( ) = u0 + ΔU ai
i=1

N

∑ φi τ( )  

€ 

u0 = umax + umin( ) 2  

€ 

ΔU = diag uimax − uimin( ) 2( ) 

where ai are the expansion coefficients. They shall be referred to as dynamic 

subfactors from hereon, as they are factors that will be used to design the dynamic 

variable, and sets of experiments can be designed with these coefficients as 

factors using the classical Design of Experiments technique. In this work, a design 

of experiments will be performed involving static as well as dynamic factors. 
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In this case, the basis-functions, φi, are the shifted Legendre polynomials, Pi. Here 

are the first five shifted Legendre polynomials (Horng & Chou, 1986): 

€ 

P0(τ) =1

 

€ 

P1(τ) = 2τ −1

 

€ 

P2(τ) = 6τ 2 − 6τ +1

 

€ 

P3(τ) = 20τ 3 − 30τ 2 +12τ −1 

€ 

P4 (τ) = 70τ 4 −140τ 3 + 90τ 2 − 20τ +1 

The dynamic decision variable can then be calculated at each level of dynamic 

subfactors. By designing such experiments, the dynamic subfactors can be 

optimized using the same methods as the classical Design of Experiments. The 

optimization will yield optimal values for the dynamic subfactors, which can then 

be used to calculate the optimal dynamic decision variable. 

It must be noted that some constraints must be applied on the dynamic subfactors. 

These constraints are imposed so that the coded dynamic factor stays within the 

range -1 to 1, for all time 0 ≤ τ ≤ 1, where τ is the non-dimensionalized time: 

€ 

−1≤ ai
i=1

N

∑ φi τ( ) ≤1
 

In the case where the basis-functions, φi, are chosen to be the shifted Legendre 

polynomials, Pi: 
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€ 

−1≤ ai
i=1

N

∑ Pi τ( ) ≤1
 

€ 

−1≤ a0P0 τ( ) + a1P1 τ( ) + a2P2 τ( ) + ...≤1
 

For the inequality to be satisfied for all τ, it is sufficient to apply this constraint at 

τ=0, τ=1, and at any local minima and maxima located in between. In order to 

find such stationary points, the following equation must be solved: 

€ 

d a0P0 τ( ) + a1P1 τ( ) + a2P2 τ( ) + ...( )
dt

= 0
 

Then the constraints for the dynamic subfactors are: 

€ 

−1≤ a0P0 0( ) + a1P1 0( ) + a2P2 0( ) + ...≤1
 

€ 

−1≤ a0P0 1( ) + a1P1 1( ) + a2P2 1( ) + ...≤1
 

€ 

−1≤ a0P0 τ *( ) + a1P1 τ *( ) + a2P2 τ *( ) + ...≤1 

,where τ* represents the non-dimensionalized time where the stationary point 

occurs. 

When dealing with third order polynomials and higher order polynomials,  

solving the above equation for τ can become quite complex, and an explicit 

solution may not exist. Substituting the resulting expression for τ, if it exists, into 

the inequality constraint, could lead to highly nonlinear and complex constraint. 
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Many of the software used for performing Design of Experiments, such as Design 

Expert, do not permit the inclusion of nonlinear constraints. One would then 

have to approximate the nonlinear constraint with a set of linear constraints, 

where more problems may arise, such as the violation of the constraint if the 

nonlinear constraint is convex. 

One way of avoiding this is by using the following logic: 

€ 

−1≤ a0P0 τ( ) + a1P1 τ( ) + a2P2 τ( ) + ...≤1
 

€ 

max a0P0 τ( ) + a1P1 τ( ) + a2P2 τ( ) + ...( ) ≤max a0P0 τ( )( ) +max a1P1 τ( )( ) +max a2P2 τ( )( )...
 

Therefore, the upper constraint can be satisfied by the following: 

€ 

max a0P0 τ( )( ) +max a1P1 τ( )( ) +max a2P2 τ( )( )...≤1
 

If ai>0, for all i, then the above expression becomes: 

€ 

a0 + a1 + a2 + ...≤1
 

If ai>0, for all i, except a2<0, then the expression becomes: 

€ 

a0 + a1 − a2 + ...≤1
 

If all possible cases are considered, by the same logic, the upper constraint 

becomes: 
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€ 

±a0 ± a1 ± a2 ± ...≤1
 

Applying the same reasoning for the lower constraint yields: 

€ 

1≤ ±a0 ± a1 ± a2 ± ...
 

Combining the above two inequalities results in the following constraint: 

€ 

−1≤ a0 ± a1 ± a2 ± ...≤1
 

This is a set of simple linear inequalities that can be easily input into any Design 

of Experiments software that handles constraints. This set of inequalities is 

sufficient, but not necessary, to ensure the constraint on the coded dynamic factor 

is met. The drawback to using this set of inequalities is that some portion of the 

original design space is not explored. However, we find that this is not a major 

drawback, and using this method is much simpler and more efficient than the 

previously mentioned method involving the location of the stationary points.  

 

3.2 Optimal Designs 

There are several different designs of experiments that can be used to fit models 

of a certain form. Different designs are better suited for different situations. Of 

particular interest for fermentations are computer-generated designs. Such designs 

include D-Optimal designs. These designs are generated by computer software 
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such as Design Expert®. Computer-generated designs are useful in cases where 

the design space is not a regular geometric shape. In the case of fermentations, 

there is usually a constraint on the volume at the end of the biosynthesis process. 

Applying this constraint will yield an irregular design region. Thus, standard 

designs such as factorial designs and central composite designs will not fit into 

such regions. Another advantage of computer-generated designs is that they often 

employ fewer experiments than factorial and central composite designs. This is 

particularly beneficial for processes that are costly and/or time-consuming. It is 

generally preferred to use the standard designs when the process is relatively 

inexpensive and not time-consuming, and when the design space is of regular 

geometric shape. This is because the standard designs are general and flexible 

(Montgomery, 2005). 

Computer-generated designs are usually designed in a way to optimize certain 

criteria. One such design is the D-optimal design that minimizes the determinant

€ 

X'X( )−1 , where X is the design matrix. This could be interpreted to mean that the 

set of experiments will be designed such that the volume of the confidence 

ellipsoid related to the vector of regression coefficients is minimized. In other 

words, it improves the accuracy of the estimates of the regression coefficients. 

This is the most widely used computer-generated design. Other designs include 

A-optimal designs, which minimize the sum of the variances of the regression 

coefficients. G-optimal designs are generally used when prediction accuracy is 
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very important. Such designs minimize the maximum variance of the predictions 

(Montgomery, 2005). 

Since fermentations frequently encounter reactor volume constraints, and since 

the application of the Design of Dynamic Experiments technique requires the 

application of constraints on the dynamic subfactors as previously explained, the 

design region is usually irregular in shape. Thus, optimal designs should be used 

for the application of DoDE to fermentation processes. Since optimization is the 

main goal of this study, and D-optimal designs are the most widely used 

computer-generated designs, D-optimal designs will be used in designing the 

experiments. Design-Expert® is a valuable tool in generating such designs, and 

allows the input of constraints on the design space.  

3.3 Centralized and Decentralized Designs 

Many factors affect fermentation processes. These include, but are not limited to, 

temperature, pH, substrate concentration being fed, initial volume in the reactor, 

initial cell concentration in the fermentor, batch time, initial substrate 

concentration, and the feed rate of the substrate. For this study, experiments will 

be designed with static and dynamic factors. The following factors will be 

focused on in this study: initial biomass concentration, initial substrate 

concentration, and substrate feeding profile. 
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Penicillin is an antibiotic that is usually a non-growth associated product. It is 

produced in the stationary phase as opposed to during the growth phase when the 

cells are growing. Glucose is the substrate fed for penicillin fermentations. 

Typical feeding strategies used for fermentations is feeding the substrate at a high 

rate initially for the cells to grow in the growth phase, then feed it at a lower rate 

that is enough for the cell maintenance, when the metabolite is produced. This is 

known as the production phase. 

In this work, two main designs are studied: Decentralized and Centralized. 

3.3.1 Decentralized Design 

In the first design, which shall be called the “Decentralized Design”, the general 

approach of feeding the substrate in two different phases is used. Two feeding 

profiles are designed: one for the growth phase, and one for the production phase. 

For this design, two static factors are used: initial substrate concentration and 

initial biomass concentration. The feed switch time from growth to metabolite 

production will also be varied, but will not be an independent variable, as 

explained later on. 

Since this design has two different substrate feeding profiles, two sets of dynamic 

subfactors are needed. We will use an incremental approach in testing how many 

dynamic subfactors, i.e. how many Legendre polynomials show an effect on the 

optimum production of the penicillin metabolite. 
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The next design will have the first two shifted Legendre polynomials, i.e two 

dynamic subfactors, which represent linear feeding profiles. As long as the 

dynamic subfactors corresponding to the higher order Legendre polynomials in 

the design are significant, then we will increase the number of dynamic factors 

until the added higher order polynomials has no improvement on the optimum 

metabolite production. 

The dynamic feeding profiles must be designed about some base case. For the 

decentralized design, the base case used will be a step function. The base feeding 

profile during the growth phase is constant and relatively high, whereas that 

during the production phase is constants but relatively low. This is a customary 

base case to use, and is chosen because of the knowledge of secondary metabolite 

production. 

3.3.2 Centralized Design 

The second design used, is the so-called “Centralized Design”, in which the entire 

batch time is considered as one phase with only one continuous feeding profile.  

For this design, only two static factors are used: initial substrate concentration and 

initial biomass concentration.  

Since this design has only one substrate feeding profile, only one set of dynamic 

subfactors is needed. As in the case of the decentralized design, an incremental 

approach will be used in testing how many dynamic subfactors have an influence 

on the production of penicillin. 
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This design will follow the same procedure of designing experiments first with 

only one dynamic subfactor, then increasing until the addition of more dynamic 

subfactors shows no improvement on the optimum metabolite production. 

Two different base cases are used for this design; a flat base case, and a linearly 

decreasing base case. The motivation behind using a decreasing linear base case 

comes from knowledge of fermentation processes. We know that secondary 

metabolites are usually produced after a substantial lag phase, so it is logical to 

feed more substrate initially for the cells to grow, then feed just enough substrate 

later so that the cells can maintain themselves, but at the same time, not inhibiting 

product formation. Thus a decreasing linear profile would be a smarter base case 

to design the profiles about. A flat base case may not yield the best optimal 

feeding profile, as it may not allow the exploration of as much of the optimal 

operating area as the linear one.   

Therefore, we begin with a flat base case, with two dynamic subfactors, and 

obtain the optimum substrate feeding profile in that design space. This feeding 

profile is expected to be a linearly decreasing profile. This optimum substrate 

feeding profile then serves as the linearly decreasing base case for the next design. 

This is done so that we design our experiments closer to the expected optimum 

region. 

 



DESIGN OF DYNAMIC EXPERIMENTS FOR THE OPTIMIZATION OF BATCH FERMENTATION PROCESSES 

 
 

18 
 

3.4 Simulation and error 

Since this is a preliminary study in testing the DoDE methodology for its 

effectiveness in the design of dynamic experiments for the optimization of 

fermentation processes, the process is simulated using the mechanistic model 

derived by Bajpai and Reuss (Bajpai & Reuss, 1980), rather than actually 

performing the experiments. The model is a set of ordinary differential equations 

that can be solved using the ‘ODE45’ function in MATLAB® when the system is 

non-stiff, and the ‘ODE15s’ function when the system is stiff. ‘ODE45’ uses a 

Runge-Kutta method to numerically solve the differential equations. ‘ODE15s’ is 

a multistep solver based on the numerical differentiation formulas. The system is 

solved for each designed ‘experiment’. 

The performance index, which is the objective function that we wish to maximize, 

will be the amount of secondary metabolite present at the end of the reaction, as 

this is the final product. This quantity is calculated by solving the system of 

ordinary differential equations for each experiment. 

A random error term must be added to this simulated performance index to make 

it more realistic and to account for uncertainty in the parameters as well as 

measurement errors associated with measuring the amount of product formed at 

the end of the experiment. The error term added can be chosen as a random 

number from the normal distribution with mean of zero and standard deviation to 

be determine according to the amount of error desired. In this study, a 5% error on 
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the amount of product is used. Adding the error is critical for simulating reality 

accurately, also enabling the estimation of the lack of fit statistic for the response 

surface model. If the error added is very low, then the sum of squares due to pure 

error could be underestimated, which leads to the overestimation of the sum of 

squares associated with the lack of fit. An important rule-of-thumb is to make sure 

the residuals of the response surface model are normally distributed. This is an 

indication of a good fit. Several other statistics and plots should be looked at 

together to determine if the model is satisfactory. 

3.5 Response Surface 

After simulating the amount of product formed at the end of the reaction, i.e. the 

performance index, and adding the random error to them, the performance index 

is regressed with the values of the coded factors. When using an optimal design, 

or any other response surface design, quadratic terms can be estimated, in addition 

to main effects and interaction terms. Therefore, the data will be fit using a 

quadratic model. The terms in the model then need to be evaluated in order to 

determine which of them is significant, and which of them are not. 

It is very cumbersome to evaluate all possible regressions, so a stepwise 

regression is performed. There are three types of stepwise regressions: forward 

selection, backward elimination, and mixed stepwise regression (Montgomery, 

Peck, & Vining, 2006). 
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Forward selection entails adding regressors to the model one at a time. The model 

initially has no regressors. The regressor with the largest F statistic, i.e. the most 

significant term, is added first, assuming the F statistic is larger than a preselected 

F statistic. The next regressor that will be added is the one that has the largest 

partial F statistic with the new model. This algorithm terminates when no more 

terms have partial F statistics larger than the preselected threshold. 

Backward elimination works in quite the opposite way. As the name indicates, the 

model begins with the inclusion of all possible regressors, and works its way 

back. The term with the smallest partial F statistic in the model is eliminated as 

long as it is below a minimum F value. The partial F statistics of the remaining 

terms are recalculated after the first term is removed. The term with the smallest 

recalculated F value is removed also on condition that it is below the minimum F 

value chosen. This process is repeated until no more terms remaining in the model 

have partial F values below the minimum F value. This technique is favored over 

forward selection. 

The stepwise regression is a combination of forward selection and backward 

elimination. This algorithm works by applying a forward selection, and after each 

step, a backward elimination step is performed to check if any of the terms that 

had been added during the forward selection step have become insignificant after 

the addition of a new regressor. This method requires two limiting F values: one 

for entering terms, and the other for eliminating them. Frequently, the two F 
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values are set to the same value. Some people also like to choose the F value for 

entering to be greater than the F value for exiting. This strategy makes it more 

difficult for a term to be added than to be removed (Montgomery, Peck, & 

Vining, 2006). 

A mixed stepwise regression, also known simply as stepwise regression, will be 

used in developing the response surface models. A cutoff p-value of 0.05 for the 

addition and removal of terms will be used for all stepwise regressions in this case 

study. 

 

3.6 Optimization 

After obtaining a satisfactory response surface model, the next step is to optimize 

this RSM. One method of doing this would be to plot the response surface and 

observe where the maximum occurs. This is an effective method when there are 

only two factors. However, the designs used produce response surfaces that 

depend on more than two factors. This makes it difficult to observe the optimum 

graphically. Also, this is a constrained nonlinear optimization, since we have 

constraints on the dynamic factors as well as a constraint on the final volume. An 

easier and more accurate method is to use nonlinear programming. The function 

fmincon in MATLAB®, which employs a trust-region reflective algorithm, can be 

used. This function finds the minimum of constrained nonlinear multivariable 
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functions. Thus, the sign of the response surface model must be changed, since 

the objective is to maximize the performance index (amount of metabolite 

formed). By doing this, the maximum performance index will be the absolute 

value of the minimum of the negative function. This function will give the 

optimum operating conditions that will maximize the product formation. The 

amount of product can then be predicted using the response surface model at the 

optimum operating conditions. A good test of the model would be to simulate the 

optimum operating conditions calculated from the optimization, and compare it to 

that predicted by the model to assess the prediction power of the response surface 

model.  

 

3.7 Volume Constraint 

Fermentations will generally have physical constraints on the system. The volume 

at the end of the reaction cannot exceed the volume of the reactor; otherwise the 

fermentor will overflow. As a result, a constraint must be imposed on the final 

volume. The details of this volume constraint will be different for the 

Decentralized and Centralized designs. 

3.7.1 Centralized design 

3.7.1.1 Flat Base Case 
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€ 

dV
dt

= u(t) 

Time is non-dimensionalized: 

€ 

dV
dτ

= tb ⋅ u(τ )  

Separating and integrating yields: 

€ 

Vf −V0 = tb ⋅ um + Δu a0P0 τ( ) + a1P1 τ( ) + ...( )[ ]dτ
0

1

∫  

Integrating P1(τ), P2(τ), and higher order Legendre polynomials from 0 to 1 yields 

zero, since they are orthogonal with P0(τ)=1, assuming that Δu is not a function of 

time. 

€ 

P0
0

1

∫ τ( )Pi τ( )dτ = Pi τ( )dτ
0

1

∫ = 0

i =1,2,...
 

So we are left with: 

€ 

Vf =V0 + tb ⋅ um + Δu ⋅ a0( )  

Therefore, the inequality constraint on the final volume is: 

€ 

V0 + tb ⋅ um + Δu ⋅ a0( ) ≤Vreactor  

This constraint applies regardless of how many Legendre polynomials are used in 

designing the feeding profiles. 
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3.7.1.2 Linear Base Case 

If we start with a linearly decreasing profile as the base case, and we choose Δu in 

such a way that it is larger at τ=0 than at τ=1, then we can represent um and Δu 

with the following expressions: 

€ 

um τ( ) = A + Bτ  

€ 

Δu τ( ) = C + Dτ  

Δu is designed to be larger at τ=0 than at τ=1, since the base case is linearly 

decreasing, and thus u(τ) has a larger value at τ=0 than at τ=1. 

Therefore,  

€ 

Vf −V0 = tb ⋅ um τ( ) + Δu τ( ) a0P0 τ( ) + a1P1 τ( ) + ...( )[ ]dτ
0

1

∫

 

€ 

Vf −V0
tb

= A + Bτ + C + Dτ( ) a0P0 τ( ) + a1P1 τ( ) + ...( )[ ]dτ
0

1

∫
 

€ 

= A +
B
2

+ C ⋅ a0 + D ⋅ τ a0P0 τ( ) + a1P1 τ( ) + ...( )[ ]dτ
0

1

∫
 

We can rewrite τ in terms of P0(τ) and P1(τ): 

€ 

τ =
P0 τ( ) + P1 τ( )

2  

€ 

⇒
ΔV
tb

= A +
B
2

+ C ⋅ a0 +
D
2
⋅ a0 +

D
2
⋅ P1 τ( ) ⋅ P1 τ( )[ ]dτ
0

1

∫
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€ 

⇒
ΔV
tb

= A +
B
2

+ C ⋅ a0 +
D
2
⋅ a0 +

D
6
⋅ a1

 

€ 

⇒Vf =V0 + tb ⋅ A +
B
2

+ C ⋅ a0 +
D
2
⋅ a0 +

D
6
⋅ a1

 

 
 

 

 
 

 

Therefore, the inequality constraint on the final volume is: 

€ 

⇒V0 + tb ⋅ A +
B
2

+ C +
D
2

 

 
 

 

 
 ⋅ a0 +

D
6
⋅ a1

 

 
 

 

 
 ≤Vreactor

 

This constraint applies regardless of how many Legendre polynomials are used in 

designing the feeding profiles. 

3.7.2 Decentralized Design 

Assuming that Δu is not a function of time: 

€ 

ΔV = ΔV1 + ΔV2  

€ 

ΔV1 = t f ⋅ um1 + Δu1 a10P0 τ( ) + a11P1 τ( )...( )[ ]dτ
0

1

∫  

€ 

ΔV1 = t f um1 + Δu1a10( )  

€ 

ΔV2 = tb − t f( ) ⋅ um2 + Δu2a20( )  

€ 

Vf =V0 + t f um1 + Δu1a10( ) + tb − t f( ) ⋅ um2 + Δu2a20( )

 Therefore, the inequality constraint on the final volume is: 

€ 

V0 + t f um1 + Δu1a10( ) + tb − t f( ) ⋅ um2 + Δu2a20( ) ≤Vreactor  
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This constraint also applies independent of the number Legendre polynomials are 

used in designing the feeding profiles. 

Looking at the above inequality, we notice that it is a nonlinear inequality if the 

feed switch time is considered as a factor. However, most software used for 

designing experiments using the method of Design of Experiments, such as 

Design-Expert® and JMP®, do not allow the input of nonlinear constraints. Only 

linear constraints are permitted. Hence, a solution must be found in order to be 

able to do design the experiments in a way such that these nonlinear constraints 

are not violated. One way of doing this is by approximating the nonlinear 

constraints with a set of linearized constraints. Another solution is using 

MATLAB to generate the design of experiments, since MATLAB allows the 

input of nonlinear constraints when specifying the candidate set for the design. 
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4 Simulation Results for Penicillin 

The above-proposed methodology is applied to a penicillin biosynthesis process 

as a case study. Due to time constraints and for the purposes of this study, it was 

decided to simulate the production of penicillin, rather than perform the 

experiments.  

4.1 Model used for simulation 

The model developed by Bajpai and Reuss (Bajpai & Reuss, 1980) was used as 

the mechanistic model for simulation purposes. This model was developed based 

on enzyme kinetics models. The model consists of a set of ordinary differential 

equations. The model is presented below:  

€ 

dV
dt

=
U
SF

 

€ 

dX
dt

= µ ⋅ X − X
V
⋅
dV
dt

 

€ 

dS
dt

= −µ ⋅
X
YX / S

− ρ ⋅
X
YP / S

−mX ⋅ X + SF − S( ) ⋅ 1
V
⋅
dV
dt

 

€ 

dP
dt

= ρ ⋅ X −K ⋅ P − P
V
⋅
dV
dt
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€ 

dCL

dt
= −µ ⋅

X
YX /O

− ρ ⋅
X
YP /O

−mO ⋅ X + KLa ⋅ CL
∗ −CL( ) +

CL

V
⋅
dV
dt

 

where 

€ 

µ = µx ⋅
S

KX X + S
 

 
 

 

 
 ⋅

CL

KOX X + CL

 

 
 

 

 
 

 

€ 

ρ = µP ⋅
S

KP + S 1+ S KI( )

 

 
 

 

 
 ⋅

CL
P

KOPX + CL
P

 

 
 

 

 
 
 

V represents volume, S is the substrate concentration, X is the biomass 

concentration, P is the product (penicillin) concentration, and CL is the dissolved 

oxygen concentration.  

The parameter values used for this simulation are the same ones used by Birol et 

al. (Birol, Undey, & Cinar, 2002), who created a modular simulation package for 

penicillin production. 
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Table 4.1.1: Penicillin Model Parameters 

Parameter Value Unit 

µX 0.092 h-1 

µP 0.005 h-1 

KX 0.15 gS/gX 

KP 0.0002 g/l 

KI 0.1 g/l 

K 0.04 h-1 

YX/S 0.45 gX/gS 

YP/S 0.9 gP/gS 

CL
* 1.16 g/l 

KOX 0.02 gO/gX 

KOP 5.0 x 10-4 gOp/gX 

KLa 125 h-1 

mO 0.467 h-1 

YX/O 0.04 gX/gO 

YP/O 0.2 gP/gO 

p 2.74 N/A 

mX 0.014 h-1.gS/gX 

 

The fermentor was assumed to be a 10 liter reactor for the purposes of this study. 

This is a reasonable reactor size for a laboratory scale reactor. 

The following initial conditions were used: 
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Table 4.1.2: Initial Conditions for Penicillin Model Simulation 

Initial Condition Value Unit 

S 1.5 gS/l 

V 7 l 

P 0 gP/l 

CL 1.16 gO/l 
 

Some other variables need to be specified; the batch time and the substrate 

concentration of the feed: 

Table 4.1.3: Variables Used for Penicillin Model Simulation 

Variable Value Unit 

tb 150 h 

Sf 600 gS/l 
 

Error needs to be introduced into the simulated measurements. There is no exact 

amount of error that should be added. A reasonable error amount should be 

estimated to account for uncertainty in the parameters, as well as measurement 

errors. For the purpose of this study, a proportional error rate of 5% will be added. 

This is done by multiplying the simulated measurement by a random number from 

the normal distribution. In order to do this, the standard deviation required to 

sample random numbers that have a 95% chance of falling between -0.05 and 

+0.05 should be calculated. 

€ 

P −0.05 < X < 0.05( ) = 0.95 
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Normalizing: 

€ 

P −0.05
σ

≤ Z ≤ 0.05
σ

 

 
 

 

 
 = 0.95  

€ 

2*P Z ≤ 0.05
σ

 

 
 

 

 
 −1= 0.95 

€ 

P Z ≤ 0.05
σ

 

 
 

 

 
 = 0.975  

€ 

σ =
0.05
1.96

= 0.0255 

Therefore, a normal distribution with a mean of zero and standard deviation of 

0.0255 is used to generate the error fraction in the simulated measurements. 

€ 

PI = PI * 1+ N 0,0.0255( )( ) , 

where PI is the performance index. 

4.2 Centralized Design of Dynamic Experiments 

First, we shall look at the centralized design where the substrate feeding profile is 

treated as one continuous function over the entire batch time.  

4.2.1 Case 1 

The first case we will look at is a design with a flat base case i.e. flat center point, 

with only two dynamic subfactors. Initially, we did not know where the optimum 
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region lies. So, we chose to start with the following region in order to locate the 

optimum operating region: 

€ 

um = 0.008l /h

 

€ 

Δu = 0.002l /h

 

Since we are only working with two dynamic subfactors for this case, we can 

constrain the dynamic subfactors such that the flowrate is positive at τ=0 and τ=1 

without having to deal with nonlinear inequalities. These inequalities are found to 

be: 

€ 

a0 + a1 > −
um
Δu  

€ 

a0 − a1 > −
um
Δu  

The volume constraint derived earlier for a centralized design with a flat base case 

is: 

€ 

V0 + tb ⋅ um + Δu ⋅ a0( ) ≤Vreactor  

Substituting the values of V0, Vreactor, tb, um, and Δu into the above three 

inequalities yields: 

€ 

a0 + a1 > −4  

€ 

a0 − a1 > −4  
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€ 

a0 ≤ 6  

Applying these three inequalities results in the following allowable design space 

(the triangle formed in the middle): 

 

    Figure 4.2.1: Design Space for Case 1 

 

Even though we can operate in the entire space shown above, we cannot do one 

design that covers the entire region, as the model will not fit well at all. So we 

started off with a small design space at the left corner of the above design space 

(a0=-4, a1=0). The experimental results were simulated, a response surface model 

was developed, then optimized. The optimum was found to occur at the maximum 

value of a0, and a certain negative value of a1. This indicates that a new design 
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should be made, with a larger value of um, the average flow rate of the base case. 

The simulation and optimization procedure was repeated, and the optimum was 

again found to occur at the maximum value of a0, and a certain negative value of 

a1. For each design, the optimum always occurs at the maximum value of a0, so it 

is clear that we should operate at the highest possible average flowrate value, 

which is constrained by the volume constraint. The largest corresponding average 

flowrate (um) is 0.020 l/h. This also indicates the optimum penicillin production 

will occur when the reactor is completely filled, i.e. the final volume should equal 

to 10 liters. Details of these calculations are provided in the Appendix. 

So by doing a design with um=0.016, and Δu=0.004, and allowing a0 to range 

from -1 to 1, and a1 from -1 to 1, we obtain an optimum at a0=-0.35, a1=-1. In this 

case, no inequality constraints on the dynamic subfactors are necessary. This 

optimum occurs at the edge of the design space with respect to a1. 

This indicates that there is a possibility that a lower value of a1 could result in a 

higher optimum. So next, we repeat this design, except now let’s allow a1 to go 

from -2 to -1, in order to allow steeper decreasing profiles to be examined. 

The following design of experiments for this case was generated using Design 

Expert®. Also included in this table is the simulated performance index (mass of 

penicillin produced) for each of the runs. 
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Table 4.2.1: D‐Optimal Design of Experiments for Case 1 with Simulated Results 

Run a0 a1 PI (g) PI with error 

1 -1.00 -2.00 2.69 
 

2.67 

2 -1.00 -2.00 2.69 2.63 

3 -0.33 -2.00 4.68 4.64 

4 1.00 -2.00 11.78 11.64 

5 1.00 -2.00 11.78 11.66 

6 0.00 -1.75 9.08 8.96 

7 -1.00 -1.50 5.97 6.16 

8 -1.00 -1.50 5.97 6.06 

9 1.00 -1.50 20.57 20.60 

10 -0.50 -1.25 15.51 14.93 

11 0.50 -1.25 20.15 19.32 

12 -1.00 -1.00 15.96 15.16 

13 -1.00 -1.00 15.96 17.02 

14 0.00 -1.00 18.39 18.84 

15 1.00 -1.00 12.61 12.69 

16 1.00 -1.00 12.61 12.29 
 

After performing a stepwise regression, the following acceptable model in terms 

of coded factors was obtained with an R2
adj value of 0.9889 and a lack of fit 

statistic value of 0.3695: 

€ 

PI =14.29 + 7.19a0 + 9.30a1 + −3.12a0a1 −1.17a0
2 − 2.32a1

2 − 2.95a0
2a1 − 5.86a0a1

2 − 2.79a1
3

 

The parameter estimates along with the confidence intervals are presented below: 
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Table 4.2.2: Parameter Estimates with Confidence Intervals for Case 1 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 14.29 

7.19 

13.38 15.20 

a0 7.19 6.34 8.04 

a1 9.30 6.98 11.62 

a0a1 -3.12 -3.64 -2.61 

a0
2 -1.17 -2.09 -0.26 

a1
2 -2.32 -3.22 -1.42 

a0
2

 a1 -2.95 -4.18 -1.72 

a0a1
2 -5.86 -6.86 -4.85 

a1
3 -2.79 -5.42 -0.16 

 

The model was optimized using the fmincon function in MATLAB®. The 

optimum was found to occur at a0=+1, and a1=-1.41, which is at an intermediate 

value of a1, therefore, this is the optimum linear profile that can be obtained for 

this case, without violating the volume constraint. 

The optimum performance index obtained from the response surface is 20.61± 

1.31 grams. The performance index obtained by simulating the optimum profile 

was found to be 20.80 grams, which is within the confidence interval of the 

predicted optimum. 

4.2.2 Case 2 

Now that we have a good idea of the optimum region, Case 2 will be designed 

using the optimum profile from Case 1 as the linear base case. For this case, um, 
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as well as Δu, will be functions of dimensionless time, τ=t/tb. This can be 

accomplished by choosing um(τ) to be: 

€ 

um τ( ) = 0.0256 − 0.0112 ⋅ τ  

, since at τ=0, u=0.0256, and at τ=1, u=0.0112, according to the optimum profile 

obtained from Case 1. 

Δu was chosen in a way such that it is larger at τ=0 than at τ=1: 

€ 

Δu τ( ) = 0.007 − 0.003 ⋅ τ

 

This results in design space that looks like this: 

 

Figure 4.2.2: Feed Rate Range for Case 2 



DESIGN OF DYNAMIC EXPERIMENTS FOR THE OPTIMIZATION OF BATCH FERMENTATION PROCESSES 

 
 

38 
 

 

From the analysis of Case 1, it is clear that filling the reactor completely by the 

end of the batch time will give the maximum production. Therefore, instead of 

constraining the final volume to be less than the size of the reactor, we shall set 

the final volume equal to the reactor volume. Referring back to section 3.7.1.2, 

the constraint becomes: 

€ 

V0 + tb ⋅ A +
B
2

+ C +
D
2

 

 
 

 

 
 ⋅ a0 +

D
6
⋅ a1

 

 
 

 

 
 =Vreactor

 

In this case, A=0.0256, B=-0.0112, C=0.007, and D=-0.003. 

Substituting these values as well as those of V0 and Vreactor: 

€ 

7 +150 ⋅ 0.0256 − 0.0112
2

+ 0.007 − 0.003
2

 

 
 

 

 
 ⋅ a0 −

0.003
6

⋅ a1
 

 
 

 

 
 =10

 

€ 

⇒ a1 =11⋅ a0 

This reduces the number of independent factors by 1, and reduces the number of 

experiments needed. 

For this case, we shall evaluate the first 3 shifted Legendre polynomials. Also, for 

the rest of the cases, we will also evaluate the initial biomass concentration and 

the initial substrate concentration. Examining the first 3 shifted Legendre 

polynomials requires including only 2 dynamic subfactors in the design of 

experiments. Therefore, the four independent factors that will be included in the 

design will be a0, a2, X0, and S0. 

The constraints on the dynamic subfactors are: 
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€ 

−1≤ a0 + a1 ± a2 ≤1 

€ 

−1≤ a0 − a1 ± a2 ≤1 

Substituting the expression for a1 in terms of a0 simplifies the constraints to: 

€ 

−1≤12 ⋅ a0 + a2 ≤1 

€ 

−1≤12 ⋅ a0 − a2 ≤1 

€ 

−1≤ −10 ⋅ a0 + a2 ≤1 

€ 

−1≤ −10 ⋅ a0 − a2 ≤1 

The range of values tested for X0 and S0 are: 

€ 

X0 = 0.10 ± 0.05  

€ 

S0 = 0.75 ± 0.75 

A D-optimal design was generated using Design Expert, with the above 

constraints on the dynamic subfactors. The designed dynamic experiments were 

subsequently simulated in MATLAB. The designed experiments along with the 

simulated penicillin production are presented below: 
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Table 4.2.3: D‐Optimal Design for Case 2 with Simulated Results 

Run a0 a2 S0 X0 PI PI with error 

1 -0.08 0.00 -1.00 -1.00 2.79 2.83 

2 0.08 0.00 -1.00 -1.00 7.91 8.28 

3 0.08 0.00 -1.00 -1.00 7.91 7.46 

4 0.00 1.00 -1.00 -1.00 10.67 10.91 

5 0.00 -1.00 0.00 -1.00 6.96 7.02 

6 -0.08 0.00 1.00 -1.00 2.51 2.43 

7 -0.08 0.00 1.00 -1.00 2.51 2.48 

8 0.08 0.00 1.00 -1.00 8.06 8.13 

9 0.08 0.00 1.00 -1.00 8.06 8.79 

10 0.00 0.50 0.00 -0.05 14.11 15.11 

11 0.00 0.00 -1.00 0.00 20.79 20.08 

12 -0.04 -0.50 0.00 0.00 7.47 8.05 

13 0.00 -1.00 1.00 0.00 7.93 8.08 

14 0.00 1.00 1.00 0.00 10.17 10.15 

15 0.00 -1.00 -1.00 1.00 8.49 8.65 

16 -0.08 0.00 -1.00 1.00 6.69 6.66 

17 0.00 1.00 -1.00 1.00 9.56 9.52 

18 0.00 -1.00 0.00 1.00 8.39 8.70 

19 -0.08 0.00 0.00 1.00 6.59 6.83 

20 0.08 0.00 0.00 1.00 7.38 7.64 

21 0.08 0.00 0.00 1.00 7.38 7.50 

22 -0.04 -0.50 1.00 1.00 8.02 7.77 

23 -0.04 -0.50 1.00 1.00 8.02 8.17 

24 0.04 -0.50 1.00 1.00 16.77 17.47 

25 0.00 1.00 1.00 1.00 9.75 9.87 
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After performing a stepwise regression, the following acceptable model was 

obtained with an R2
adj value of 0.9594 and a lack of fit statistic value of 0.0237: 

€ 

PI =18.68 +19.16a0 + 0.97a2 + 0.57X0 − 213.65a0a2 −13.68a0X0 −1802.32a0
2 − 9.77a2

2

 

The parameter estimates along with the confidence intervals are presented below: 

Table 4.2.4: Parameter Estimates with Confidence Intervals for Case 2 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 18.68 17.53 19.82 

a0 19.16 12.73 25.59 

a2 0.97 0.39 1.54 

X0 0.57 0.17 0.97 

a0a2 -213.65 -260.90 -166.40 

a0X0 -13.68 -20.05 -7.31 

a0
2 -1802.32 -1989.46 -1615.17 

a2
2 -9.77 -11.13 -8.42 

 

As can be noticed from the above model, S0 has not been included, since it is 

statistically insignificant. The initial substrate concentration has no effect on the 

penicillin production over the range examined. This is expected since the 

substrate feed rate can be adjusted accordingly depending on how much the initial 

substrate concentration is. As a result, for the rest of the study, the initial substrate 

concentration shall be set at a fixed value of 1.5 g/l, and will not be varied as a 

factor in the experiments. 
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This model was then optimized by performing a nonlinear constrained 

optimization in MATLAB. The optimum factor levels found were 

€ 

a0 = −0.004      

€ 

a1 = −0.044      

€ 

a2 = 0.0933     

€ 

X0 =1.00  

The corresponding substrate feeding profile, along with the simulated substrate 

concentration, biomass concentration, and product concentration behaviors with 

time are shown below: 

 

Figure 4.2.3: Optimum Profile for Case 2 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The optimum performance index obtained from the response surface model was 

19.28±1.17 grams. The performance index obtained by simulating the optimum 

profile was found to be 20.26 grams, which is within the confidence interval of 

the predicted optimum. 

4.2.3 Case 3 

The next step is to repeat Case 2, except now we will include a third dynamic 

subfactor in our design corresponding to the fourth shifted Legendre polynomial. 

Also, the initial substrate concentration will no longer be included as a factor, and 

will be set to a fixed value of 1.5 g/l.  

The volume constraint remains the same as that of Case 2, since it applies 

regardless of how many polynomials are considered. 

€ 

⇒ a1 =11⋅ a0 

For this case, we will have four independent factors that will be included in the 

design: a0, a2, a3, and X0. 

We now have 8 constraints on the dynamic subfactors: 

€ 

−1≤12 ⋅ a0 + a2 ± a3 ≤1 

€ 

−1≤12 ⋅ a0 − a2 ± a3 ≤1 

€ 

−1≤ −10 ⋅ a0 + a2 ± a3 ≤1 

€ 

−1≤ −10 ⋅ a0 − a2 ± a3 ≤1 
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The range of values tested for X0 remains: 

€ 

X0 = 0.10 ± 0.05  

A D-optimal design was generated using Design Expert, with the above 

constraints on the dynamic subfactors. The designed dynamic experiments were 

subsequently simulated in MATLAB. The designed experiments along with the 

simulated penicillin production are presented below: 

 

Table 4.2.5: D‐Optimal Design for Case 3 with Simulated Results 

Run a0 a2 a3 X0 PI PI with error 

1 0.00 0.00 -1.00 -1.00 8.47 8.54 

2 0.00 -0.50 -0.50 -1.00 8.04 7.88 

3 0.00 0.50 -0.50 -1.00 17.87 18.49 

4 0.04 0.50 0.00 -1.00 9.17 8.77 

5 0.04 0.50 0.00 -1.00 9.17 9.15 

6 -0.08 0.00 0.00 -1.00 2.51 2.50 

7 -0.08 0.00 0.00 -1.00 2.51 2.53 

8 0.00 -1.00 0.00 -1.00 6.88 6.93 

9 0.00 0.50 0.50 -1.00 14.20 13.88 

10 0.00 0.00 0.50 -0.05 30.97 30.95 

11 0.00 0.00 -1.00 0.00 9.01 8.97 

12 -0.03 -0.33 -0.33 0.00 8.49 8.63 

13 0.08 0.00 0.00 0.00 7.65 7.87 

14 0.08 0.00 0.00 0.00 7.65 7.87 

15 0.00 1.00 0.00 0.00 10.17 9.94 
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16 0.00 -1.00 0.00 0.00 7.93 7.95 

17 0.00 0.00 1.00 0.00 27.96 27.10 

18 0.00 0.00 -1.00 1.00 9.18 8.92 

19 0.04 0.00 -0.50 1.00 14.21 14.21 

20 0.04 0.00 -0.50 1.00 14.21 14.77 

21 0.00 1.00 0.00 1.00 9.75 9.56 

22 -0.08 0.00 0.00 1.00 6.48 6.54 

23 -0.08 0.00 0.00 1.00 6.48 6.44 

24 0.00 -1.00 0.00 1.00 8.33 8.57 

25 0.04 0.00 0.50 1.00 9.55 9.29 
 

A square root transformation was necessary to obtain a good model. After 

performing a stepwise regression on the square root of the response variable, the 

following acceptable model was obtained, with an R2
adj value of 0.9422, and a 

lack of fit statistic value <0.0001: 

€ 

PI = 5.09 +1.03a3 − 42.50a0a2 − 41.07a0a3 − 6.48a0X0 − 3.10a2a3
−365.19a0

2 −1.93a2
2 − 0.86a3

2 − 0.39X0
2

 

The parameter estimates along with the confidence intervals are presented below: 
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Table 4.2.6: Parameter Estimates with Confidence Intervals for Case 3 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 5.09 4.69 5.48 

a3 1.03 0.80 1.25 

a0a2 -42.50 -61.61 -23.39 

a0a3 -41.07 -54.36 -27.78 

a0X0 -6.48 -9.09 -3.87 

a2a3 -3.10 -4.18 -2.03 

a0
2 -365.19 -424.17 -306.21 

a2
2 -1.93 -2.35 -1.50 

a3
2 -0.86 -1.36 -0.36 

X0
2 -0.39 -0.60 -0.17 

 

This model was then optimized by using the fmincon function in MATLAB. 

The optimum factor levels found were: 

€ 

a0 = −0.0181     

€ 

a1 = −0.1991     

€ 

a2 = −0.1039      

€ 

a3 = 0.6783     

€ 

X0 = 0.1508  

The corresponding substrate feeding profile, along with the simulated substrate 

concentration, biomass concentration, and product concentration behaviors with 

time are shown below: 
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Figure 4.2.4: Optimum Profile for Case 3 

 

The optimum performance index obtained from the response surface model was 

34.86±4.14 grams. The performance index obtained by simulating the optimum 

profile was found to be 32.03 grams, which is within the confidence interval of 

the predicted optimum. This is a significant improvement from Case 2. 
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4.2.4 Case 4 

The next step is to repeat Case 3, with the inclusion of a fourth dynamic subfactor 

in the design corresponding to the fifth shifted Legendre polynomial. 

As before, the volume constraint remains the same as that of Case 3, since it 

applies regardless of how many polynomials are considered. 

€ 

⇒ a1 =11⋅ a0 

For this case, we will have five independent factors that will be included in the 

design: a0, a2, a3, a4, and X0. 

We now have 16 constraints on the dynamic subfactors: 

€ 

−1≤12 ⋅ a0 ± a2 ± a3 ± a4 ≤1 

€ 

−1≤ −10 ⋅ a0 ± a2 ± a3 ± a4 ≤1 

The range of values tested for X0 remains: 

€ 

X0 = 0.10 ± 0.05  

A D-optimal design was generated using Design Expert, with the above 

constraints on the dynamic subfactors. The designed dynamic experiments were 

subsequently simulated in MATLAB. The designed experiments along with the 

simulated penicillin production are presented below: 
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Table 4.2.7: D‐Optimal Design for Case 4 with Simulated Results 

Run a0 a2 a3 a4 X0 PI PI with error 

1 0.00 0.00 0.00 -1.00 -1.00 9.59 9.72 

2 0.04 0.00 0.00 -0.50 -1.00 13.50 14.13 

3 0.04 0.00 0.00 -0.50 -1.00 13.50 12.72 

4 0.00 -1.00 0.00 0.00 -1.00 6.88 7.03 

5 -0.04 0.00 -0.50 0.00 -1.00 7.95 8.02 

6 -0.04 0.00 0.50 0.00 -1.00 15.56 15.04 

7 0.00 1.00 0.00 0.00 -1.00 10.94 10.82 

8 0.00 0.00 1.00 0.00 -1.00 31.11 31.38 

9 0.00 0.00 1.00 0.00 -1.00 31.11 33.95 

10 0.04 0.00 0.00 0.50 -1.00 12.54 13.42 

11 0.04 0.00 0.00 0.50 -1.00 12.54 12.10 

12 0.00 0.00 0.00 1.00 -0.50 27.88 30.03 

13 0.00 -0.25 -0.25 0.00 -0.25 13.13 13.37 

14 0.00 0.00 0.50 -0.50 0.00 18.36 18.33 

15 0.00 -1.00 0.00 0.00 0.00 7.93 8.08 

16 0.00 0.50 0.00 0.50 0.00 14.34 14.27 

17 0.00 0.00 0.50 0.50 0.00 29.44 29.34 

18 0.00 0.00 -1.00 0.00 0.00 9.01 9.35 

19 0.00 0.50 0.00 -0.50 0.50 14.65 15.18 

20 0.00 0.00 -0.50 0.50 0.50 20.58 21.32 

21 0.00 0.00 0.00 -1.00 1.00 9.89 10.06 

22 -0.04 -0.50 0.00 0.00 1.00 8.02 7.77 

23 -0.08 0.00 0.00 0.00 1.00 6.48 6.59 

24 -0.08 0.00 0.00 0.00 1.00 6.48 6.74 

25 0.00 0.50 -0.50 0.00 1.00 16.62 16.83 

26 0.04 -0.50 0.00 0.00 1.00 16.77 17.21 
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27 0.08 0.00 0.00 0.00 1.00 7.43 7.57 

28 0.08 0.00 0.00 0.00 1.00 7.43 7.38 

29 0.00 0.50 0.50 0.00 1.00 11.59 11.68 

30 0.00 0.00 1.00 0.00 1.00 15.92 15.60 

31 0.00 0.00 0.00 1.00 1.00 27.60 28.22 
 

After performing a stepwise regression, the following acceptable model was 

obtained with an R2
adj value of 0.9487, and a lack of fit statistic value of 0.073: 

€ 

PI =16.18 + 7.67a3 + 9.87a4 − 226.48a0a2 + 238.37a0a3 − 252.84a0a4
−21.55a2a4 − 9.28a3X0 −1395.02a0

2 − 7.51a2
2 + 3.33a4

2
 

The parameter estimates along with the confidence intervals are presented below: 

Table 4.2.8: Parameter Estimates with Confidence Intervals for Case 4 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 16.18 14.92 17.44 

a3 7.67 5.96 9.37 

a4 9.87 8.14 11.60 

a0a2 -226.48 -353.72 -99.24 

a0a3 238.37 96.71 380.03 

a0a4 -252.84 -351.90 -153.77 

a2a4 -21.55 -32.71 -10.40 

a3X0 -9.28 -11.31 -7.26 

a0
2 -1395.02 -1733.89 -1056.15 

a2
2 -7.51 -10.10 -4.93 

a4
2 3.33 0.96 5.69 
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This model was then optimized by using the fmincon function in MATLAB. 

The optimum factor levels found were: 

€ 

a0 = 0.0041     

€ 

a1 = 0.0451     

€ 

a2 = 0      

€ 

a3 = 0.9507      

€ 

a4 = 0     

€ 

X0 = −1 

The corresponding substrate feeding profile, along with the simulated substrate 

concentration, biomass concentration, and product concentration behaviors with 

time are shown below: 

 

Figure 4.2.5: Optimum Profile for Case 4 

 

The optimum performance index obtained from the response surface model was 

33.20±2.50 grams. The performance index obtained by simulating the optimum 
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profile was found to be 31.76 grams, which is within the confidence interval of 

the predicted optimum. This is almost identical to what was obtained in Case 3. In 

addition, the optimum value for the dynamic subfactor corresponding to the fifth 

shifted Legendre polynomial is zero. Therefore, we can conclude that adding this 

term in our design has no improvement on the production of penicillin. 

We notice that towards the end of the batch time, the concentration of penicillin 

begins to decrease. This indicates that the product is being metabolized. This may 

occur when the biomass concentration goes below a certain value, as can be seen 

in the fermentation model.  

4.3 Decentralized Design of Dynamic Experiments 

Next, we shall look at the decentralized design where the substrate feeding profile 

is split into two parts; a growth phase and a production phase.  

From the optimum found in Case 3, we can approximate an appropriate base case 

to start with. For the decentralized designs, two separate feeding profiles must be 

designed. The values of the variables defining the range of the two profiles were 

chosen as follows: 

 

Table 4.3.1: Values of variables defining the range of the substrate feeding 
profiles in both phases 

Variable Value Unit 

um1 0.025 l/h 
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Δu1 0.005 l/h 

um2 0.015 l/h 

Δu2 0.005 l/h 

 

The volume constraint for the decentralized case is: 

€ 

V0 + t f um1 + Δu1a10( ) + tb − t f( ) ⋅ um2 + Δu2a20( ) ≤Vreactor  

Since we are setting the final volume to be equal to the maximum working reactor 

volume, we can rearrange the constraint to obtain an expression for the feed 

switch time as a function of the dynamic subfactors: 

€ 

t f =
Vreactor −V0 − tb ⋅ um2 + Δu2a20( )
um1 − um2 + Δu1a10 −Δu2a20  

Substituting the values of the variables: 

€ 

t f =
0.75 − 0.75 ⋅ a20

0.01+ 0.005 ⋅ a10 − a20( )  

However, some other restrictions must be places on the feed switch time. This 

must be done in order to prevent the feed switch time from exceeding the batch 

time. Also, in order to make a smaller design space, we shall restrict the feed 

switch time to fall between 0.2*tb and 0.4*tb. This is where the optimum switch 

time usually falls (Riascos & Pinto, 2004): 
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€ 

⇒ 30 ≤ 0.75 − 0.75 ⋅ a20
0.01+ 0.005 ⋅ a10 − a20( )

≤ 60 

This yields the following two inequality constraints: 

€ 

a10 + 4 ⋅ a20 ≤ 3 

€ 

0.5 ≤ a10 +1.5 ⋅ a20 

These constraints apply disregarding how many Legendre polynomials are used in 

designing the feeding profiles. 

4.3.1 Case 1 

For this case, we shall evaluate the first 2 shifted Legendre polynomials, as well 

as the initial biomass concentration. Examining the first 2 shifted Legendre 

polynomials requires including 2 dynamic subfactors for each profile in the 

design of experiments. This results in five independent factors that will be 

included in the design: a10, a11, a20, a21, and X0. 

The constraints on the dynamic subfactors are: 

€ 

−1≤ a10 + a11 ≤1 

€ 

−1≤ a10 − a11 ≤1 

€ 

−1≤ a20 + a21 ≤1 

€ 

−1≤ a20 − a21 ≤1 
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A D-optimal design was generated using Design Expert, with the above 

constraints on the dynamic subfactors, as well as the constraints on the feed 

switch time. The designed dynamic experiments were simulated in MATLAB. 

The designed experiments along with the simulated penicillin production are 

presented below: 

 

Table 4.3.2: D‐Optimal Design for Case 1 with Simulated Results 

Run a10 a11 a20 a21 X0 PI PI with error 

1 0.50 -0.50 0.00 -1.00 -1.00 1.40 1.37 

2 0.50 -0.50 0.00 -1.00 -1.00 1.40 1.43 

3 0.50 0.50 0.00 -1.00 -1.00 1.40 1.43 

4 1.00 0.00 0.25 -0.75 -1.00 7.60 7.55 

5 0.00 -1.00 0.75 -0.25 -1.00 10.19 10.24 

6 0.00 1.00 0.75 -0.25 -1.00 10.19 9.89 

7 1.00 0.00 -0.33 0.00 -1.00 3.99 3.87 

8 1.00 0.00 -0.33 0.00 -1.00 3.99 4.00 

9 1.00 0.00 0.50 0.50 -1.00 7.28 7.76 

10 1.00 0.00 0.50 0.50 -1.00 7.28 7.16 

11 0.00 -1.00 0.33 0.67 -1.00 8.14 8.18 

12 0.50 0.50 0.00 1.00 -1.00 9.72 9.70 

13 1.00 0.00 0.00 -1.00 0.00 2.72 2.58 

14 0.00 -1.00 0.75 -0.25 0.00 9.44 9.34 

15 0.00 1.00 0.75 -0.25 0.00 9.45 9.01 

16 0.27 0.00 0.15 0.00 0.00 20.04 20.47 

17 0.27 0.00 0.15 0.00 0.00 20.04 19.59 

18 0.00 -1.00 0.33 0.67 0.00 7.89 7.78 

19 0.00 1.00 0.33 0.67 0.00 7.89 7.95 
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20 0.00 1.00 0.33 0.67 0.00 7.89 7.77 

21 1.00 0.00 0.00 1.00 0.00 8.88 8.99 

22 1.00 0.00 -0.17 -0.83 1.00 2.88 2.94 

23 0.00 -1.00 0.33 -0.67 1.00 20.14 21.02 

24 0.00 1.00 0.33 -0.67 1.00 20.12 20.02 

25 1.00 0.00 0.50 -0.50 1.00 21.46 20.29 

26 0.50 -0.50 0.63 0.38 1.00 6.64 6.87 

27 0.50 0.50 0.63 0.38 1.00 6.64 6.46 

28 1.00 0.00 -0.33 0.67 1.00 31.32 32.09 
 

Three of the runs were removed, as they caused the denominator term in the 

expression for the feed switch time to be zero. This occurs when a10=-1 and  

a20=+1. This means that in the range of substrate feeding profiles we are 

examining, when a10=-1 and a20=+1, it is impossible to fill the reactor to 10 liters. 

This is because: 

€ 

V0 + t f um1 + Δu1a10( ) + tb − t f( ) ⋅ um2 + Δu2a20( ) =Vfinal  

becomes, 

€ 

8.5 =Vfinal  

Design Expert® does not allow the input of an equality constraint, so we cannot 

specify the design space to include such points. One way around this, would be to 

redefine the range of the substrate feeding profiles in a way that excludes these 

runs. 
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A natural log transformation was necessary to obtain a good model. After 

performing a stepwise regression on the natural log of the response variable, the 

following acceptable model was obtained, with an R2
adj value of 0.9838, and lack 

of fit statistic value of 0.0052: 

€ 

ln PI( ) = 3.13− 0.41a10 + 0.77a21 + 0.45X0 +1.29a10a20 − 3.41a20a21 − 0.67a20X0

−0.14a21X0 − 2.17a20
2 −1.17a21

2  

The parameter estimates along with the confidence intervals are presented below: 

 

Table 4.3.3: Parameter Estimates with Confidence Intervals for Case 1 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 3.13 2.99 3.27 

a10 -0.41 -0.52 -0.30 

a21 0.77 0.69 0.86 

X0 0.45 0.39 0.52 

a10a20 1.29 1.06 1.51 

a20a21 -3.41 -3.72 -3.09 

a20X0 -0.67 -0.82 -0.51 

a21X0 -0.14 -0.22 -0.049 

a20
2 -2.17 -2.52 -1.82 

a21
2 -1.17 -1.33 -1.01 
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The second dynamic subfactor for the growth phase feeding profile was found to 

be insignificant. This is in agreement with the optimization results of Riascos and 

Pinto (Riascos and Pinto, 2003). 

This model was then optimized by performing a nonlinear constrained 

optimization in MATLAB. The optimum factor levels found were: 

€ 

a10 = 0.62     

€ 

a20 = −0.08      

€ 

a21 = 0.30      

€ 

X0 =1.00  

The corresponding substrate feeding profile, along with the simulated substrate 

concentration, biomass concentration, and product concentration behaviors with 

time are shown below: 

 

Figure 4.3.1: Optimum Profile for Case 1 
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The optimum performance index obtained from the response surface model was 

32.18±4.63 grams. The performance index obtained by simulating the optimum 

profile was found to be 36.12 grams, which is within the confidence interval of 

the predicted optimum. 

Again, we notice that towards the end of the batch time, the concentration of 

penicillin begins to decrease. This indicates that the product is being metabolized. 

This may occur when there is not enough biomass concentration in the system.  

 

4.3.2 Case 2 

The next step is to repeat Case 1, except now we will only include one factor for 

the growth phase, and increase the number of subfactors for the production phase 

by 1. This results in five independent factors that will be included in the design: 

a10, a20, a21, a22, and X0. 

The constraints on the dynamic subfactors are: 

€ 

−1≤ a20 + a21 + a22 ≤1 

€ 

−1≤ a20 + a21 − a22 ≤1 

€ 

−1≤ a20 − a21 + a22 ≤1 

€ 

−1≤ a20 − a21 − a22 ≤1 
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A D-optimal design was generated using Design Expert, with the above 

constraints on the dynamic subfactors, as well as the constraints on the feed 

switch time. The designed dynamic experiments were simulated in MATLAB. 

The designed experiments along with the simulated penicillin production are 

presented below: 

Table 4.3.4: D‐Optimal Design for Case 2 with Simulated Results 

Run a10 a20 a21 a22 X0 PI PI with error 

1 1.00 0.00 0.00 -1.00 -1.00 8.46 8.24 

2 -0.25 0.50 0.00 -0.50 -1.00 15.93 15.46 

3 1.00 0.50 -0.50 0.00 -1.00 24.64 24.30 

4 1.00 0.50 0.50 0.00 -1.00 7.28 7.46 

5 1.00 0.50 0.50 0.00 -1.00 7.28 7.38 

6 0.50 0.00 1.00 0.00 -1.00 9.72 9.72 

7 1.00 0.00 -0.50 0.50 -1.00 12.37 12.36 

8 1.00 0.00 -0.50 0.50 -1.00 12.37 12.12 

9 -0.25 0.50 0.00 0.50 -1.00 9.83 10.08 

10 1.00 0.00 0.50 0.50 -1.00 20.60 20.53 

11 1.00 0.00 0.50 0.50 -1.00 20.60 20.22 

12 0.50 0.00 -1.00 0.00 -0.75 2.02 2.09 

13 1.00 -0.33 0.00 -0.67 0.00 9.61 9.56 

14 1.00 -0.33 -0.67 0.00 0.00 0.76 0.75 

15 0.60 0.60 0.00 0.00 0.00 9.04 8.97 

16 0.50 0.00 1.00 0.00 0.00 9.58 9.31 

17 1.00 0.00 0.00 1.00 0.00 20.65 21.98 

18 0.50 0.00 0.00 -1.00 1.00 10.00 10.42 

19 1.00 0.50 0.00 -0.50 1.00 15.26 15.38 
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20 1.00 0.50 0.00 -0.50 1.00 15.26 14.77 

21 1.00 0.00 -1.00 0.00 1.00 4.21 4.12 

22 1.00 0.00 -1.00 0.00 1.00 4.21 4.19 

23 -0.25 0.50 -0.50 0.00 1.00 19.72 20.12 

24 0.00 0.75 0.25 0.00 1.00 6.50 6.11 

25 -0.25 0.50 0.50 0.00 1.00 7.21 6.94 

26 1.00 0.00 1.00 0.00 1.00 8.71 8.78 

27 1.00 0.50 0.00 0.50 1.00 8.28 8.36 

28 1.00 -0.33 0.00 0.67 1.00 0.27 0.27 
 

Three of the runs were removed, as they caused the denominator term in the 

expression for the feed switch time to be zero. This occurs for the same reasons 

explained in Case 1. 

A square root transformation was necessary to obtain a good model. After 

performing a stepwise regression on the square root of the response variable, the 

following acceptable model was obtained, with an R2
adj value of 0.8518, and a 

lack of fit statistic value <0.0001: 

€ 

PI = 2.09 − 2.46a10 + 2.22a20 + 0.71a21 − 0.48a10X0 − 5.56a20a21 −1.06a22X0

+0.33a10
2 + 0.84a21

2 +1.52a22
2 − 0.73X0

2  

The parameter estimates along with the confidence intervals are presented below: 
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Table 4.3.5: Parameter Estimates with Confidence Intervals for Case 2 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 2.09 

-2.46 

2.2 

1.38 2.80 

a10 -2.46 -3.81 -1.12 

a20 2.22 1.34 3.09 

a21 0.71 0.38 1.03 

a10X0 -0.48 -0.70 -0.25 

a20a21 -5.56 -7.09 -4.02 

a22X0 -1.06 -1.49 -0.63 

a10
2 3.33 1.80 4.86 

a21
2 0.84 0.06 1.62 

a22
2 1.52 0.64 2.40 

X0
2 -0.73 -1.25 -0.20 

 

This model was then optimized by performing a nonlinear constrained 

optimization. The optimum factor levels found were: 

€ 

a10 =1.00     

€ 

a20 = 0.50     

€ 

a21 = −0.50      

€ 

a22 = 0.00     

€ 

X0 = −0.80  

The corresponding substrate feeding profile, along with the simulated substrate 

concentration, biomass concentration, and product concentration behaviors with 

time are shown below: 
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Figure 4.3.2: Optimum profile for Case 2 

 

The optimum performance index obtained from the response surface model was 

27.31±6.01 grams. The performance index obtained by simulating the optimum 

profile was found to be 25.48 grams, which is within the confidence interval of 

the predicted optimum. 
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The optimum value of the third dynamic subfactor for the production phase 

feeding profile is zero, which indicates a linear production phase feeding profile is 

preferable over a quadratic profile. 

When comparing the optimum of Case 2 with the optimum of Case 1, it appears 

that the optimum of Case 2 is lower than that of Case 1. However, the RSM 

optimum prediction from Case 2 has a larger uncertainty than that of Case 1, and 

when comparing the two confidence intervals, they are very close. The simulated 

optimum from Case 2, however, is lower than that of Case 1. This can be 

attributed to the large prediction uncertainty of the RSM from Case 2. Another 

reason for the difference in the optimum predictions could be due to the different 

design spaces used for each case. This could result in slightly different response 

surfaces, with slightly different optimum values. 
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5 Conclusions 

 Design of Dynamic Experiments is an effective technique for optimizing batch 

fermentation processes. This technique was applied to two main cases: centralized 

and decentralized designs. We observed that initial substrate concentration was 

not an important factor in the region we examined. However, initial biomass 

concentration had an impact on the final production of penicillin, though not a 

large one. 

For the centralized design, we observed a big improvement in penicillin 

production when going from using 3 shifted Legendre polynomials to describe the 

substrate feed flow rate, to using 4 shifted Legendre polynomials. However, 

increasing the number of dynamic subfactors to include 5 shifted Legendre 

polynomials had no improvement on the amount of penicillin produced. In effect, 

the dynamic subfactor attributed to the 5th shifted Legendre polynomial was found 

to be zero for optimal penicillin production. 

For the decentralized design, we observed that only one dynamic subfactor was 

significant in characterizing the growth phase feeding profile. However, for the 

production phase, it was found that the second dynamic subfactor was significant, 

and that the optimal profile was a linearly decreasing one. The addition of a third 

dynamic subfactor for the production phase feeding profile was optimized to be 
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zero for optimal penicillin production. This indicates that there is no improvement 

in antibiotic production when using the 3rd shifted Legendre polynomial. 

Comparing the best case from the centralized design, with the best case from the 

decentralized design, the optimum penicillin production is almost the same. Both 

designs also contain the same number of runs, so using either design will require 

the same amount of effort. However, centralized designs have the advantage of 

using more shifted Legendre polynomials with less experiments than the 

decentralized designs, since two feeding profiles need to be designed. Thus, to 

test the same number of polynomials, the decentralized design will require almost 

double the number of dynamic subfactors to be included in the design, which 

increases the number of experiments needed to be run. In reality, if these 

experiments were to be run, it would take a significant amount of time to run the 

decentralized designs with several dynamic subfactors for each feeding phase. 

Having had a model that could be simulated to describe penicillin fermentation 

meant time was not a factor in doing these designs. However, in reality, if such a 

process is to be optimized, especially if no first-principles model is available to 

describe the system, the experiments will have to be run. Time will be of great 

importance in such a case. One will not have the liberty to run all the different 

designs that were done in this study. However, from the outcomes and 

conclusions of this study, we can recommend what design to run. I would 

recommend using the centralized design with dynamic subfactors to represent up 
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to the fourth Legendre polynomial. This will require 31 runs if using a D-optimal 

design. 
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7 Appendix 

7.1 Case 1 

The first case we will look at is at the left corner of the design space shown in 

Figure 1.  

€ 

um = 0.008l /h

 

€ 

Δu = 0.002l /h

 

We shall choose the design space such that a0 and a1 range between: 

€ 

−4 < a0 < 0
 

€ 

−2 < a1 < 2
 

We also need to impose the constraints derived in Section 4.2.1: 

€ 

a0 + a1 > −4  

€ 

a0 − a1 > −4  

The following design of experiments for this case was generated using Design 

Expert®. Also included in this table is the simulated performance index (mass of 

penicillin produced) for each of the runs. 
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Table 7.1.1: D‐Optimal Design of Experiments for Case 1 with Simulated Results 

Run a0 a1 PI (g) PI with error 

1 -2.00 -2.00 0.82 0.86 

2 -2.00 -2.00 0.82 0.77 

3 0.00 -2.00 5.40 5.52 

4 0.00 -2.00 5.40 5.45 

5 -3.00 -1.00 0.53 0.51 

6 -1.30 -1.00 8.99 8.89 

7 0.00 -0.67 9.77 9.85 

8 -4.00 0.00 0.00 0.00 

9 -4.00 0.00 0.00 0.00 

10 -0.80 0.00 6.24 6.02 

11 0.00 0.67 4.92 5.30 

12 -1.30 1.00 3.73 3.80 

13 -2.00 2.00 0.00 0.00 

14 -2.00 2.00 0.00 0.00 

15 0.00 2.00 3.27 3.26 

16 0.00 2.00 3.27 3.26 
 

After performing a stepwise regression, the following acceptable model in terms 

of coded factors was obtained with an R2
adj value of 0.9082, and a Lack of Fit 

statistic value <0.0001: 

€ 

PI =1.62 +1.54a0 − 0.42a1 −1.10a1
2
 

The parameter estimates along with the confidence intervals are presented below: 
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Table 7.1.2: Parameter Estimates with Confidence Intervals for Case 1 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 1.62 

7.19 

1.33 1.92 

a0 1.54 1.25 1.82 

a1 -0.42 -0.66 -0.17 

a1
2 -1.10 -1.54 -0.67 

 

The model was optimized using a nonlinear constrained optimization in 

MATLAB®. The optimum was found to occur at a0=0, and a1=-0.38, which is at 

the maximum value of a0, and at an intermediate value of a1. 

The optimum performance index obtained from the response surface is 10.22± 

2.69 grams. The performance index obtained by simulating the optimum profile 

was found to be 8.22 grams, which is within the confidence interval of the 

predicted optimum. 

7.2 Case 2 

The next case we will look at is a repetition of Case 1, but with different ranges of 

the dynamic subfactors. We shall choose the design space such that a0 and a1 

range between: 

€ 

0 < a0 < 4
 

€ 

−2 < a1 < 2
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The following design of experiments for this case was generated using Design 

Expert®. Also included in this table is the simulated performance index (mass of 

penicillin produced) for each of the runs. 

Table 7.2.1: D‐Optimal Design of Experiments for Case 2 with Simulated Results 

Run a0 a1 PI (g) PI with error 

1 0.00 -2.00 5.40 5.55 

2 0.00 -2.00 5.40 5.56 

3 4.00 -2.00 18.39 17.98 

4 4.00 -2.00 18.39 18.42 

5 2.00 -1.00 10.49 10.16 

6 0.00 0.00 6.47 6.29 

7 0.00 0.00 6.47 6.47 

8 3.00 0.00 6.52 6.78 

9 4.00 0.00 6.43 6.31 

10 1.00 1.00 4.68 4.72 

11 2.00 1.00 4.85 4.82 

12 0.00 2.00 3.27 3.37 

13 0.00 2.00 3.27 3.18 

14 2.00 2.00 3.80 3.81 

15 4.00 2.00 4.05 4.11 

16 4.00 2.00 4.05 4.16 
 

After performing a stepwise regression, the following acceptable model in terms 

of coded factors was obtained with an R2
adj value of 0.9989, and a Lack of Fit 

statistic value of 0.5585: 
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€ 

PI = 7.04 − 5.76a1 − 2.94a0a1 − 0.70a0
2 +1.45a1

2 + 0.57a0
2a1 + 3.38a0a1

2 +1.10a1
3
 

The parameter estimates along with the confidence intervals are presented below: 

Table 7.2.2: Parameter Estimates with Confidence Intervals for Case 2 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 7.04 

7.19 

6.83 7.24 

a1 -5.76 -6.33 -5.19 

a0a1 -2.94 -3.07 -2.82 

a0
2 -0.70 -0.97 -0.42 

a1
2 1.45 1.22 1.69 

a0
2a1 0.57 0.11 1.04 

a0a1
2 3.38 3.25 3.51 

a1
3 1.10 0.34 1.85 

 

The model was optimized using a nonlinear constrained optimization in 

MATLAB®. The optimum was found to occur at a0=4.00, and a1=-2.00, which is 

at the maximum value of a0. 

The optimum performance index obtained from the response surface is 18.20± 

0.25 grams. The performance index obtained by simulating the optimum profile 

was found to be 18.16 grams, which is within the confidence interval of the 

predicted optimum. 
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7.3 Case 3 

The next case we will look at is a repetition of Case 2, but with different ranges of 

the dynamic subfactors. We shall choose the design space such that a0 and a1 

range between: 

€ 

2 < a0 < 6
 

€ 

−2 < a1 < 2  

This is also equivalent to choosing the following design, which will be used: 

€ 

um = 0.016l /h

 

€ 

Δu = 0.004l /h

 

€ 

−1< a0 <1
 

€ 

−1< a1 <1 

The following design of experiments for this case was generated using Design 

Expert®. Also included in this table is the simulated performance index (mass of 

penicillin produced) for each of the runs. 

Table 7.3.1: D‐Optimal Design of Experiments for Case 3 with Simulated Results 

Run a0 a1 PI (g) PI with error 

1 -1.00 -1.00 15.96 16.08 

2 -1.00 -1.00 15.96 16.22 

3 -0.33 -1.00 18.74 18.70 

4 1.00 -1.00 12.61 12.78 
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5 1.00 -1.00 12.61 12.20 

6 0.00 -0.50 9.06 9.31 

7 -1.00 0.00 6.58 6.41 

8 -1.00 0.00 6.58 6.27 

9 1.00 0.00 6.21 6.43 

10 -0.50 0.50 4.95 4.94 

11 0.50 0.50 5.01 5.06 

12 -1.00 1.00 3.80 3.77 

13 -1.00 1.00 3.80 3.70 

14 0.00 1.00 4.05 3.73 

15 1.00 1.00 4.14 4.21 

16 1.00 1.00 4.14 4.11 
 

After performing a stepwise regression, the following acceptable model in terms 

of coded factors was obtained with an R2
adj value of 0.9989, and a Lack of Fit 

statistic value of 0.6228: 

€ 

PI =1/(0.15 + 0.089a1 − 0.011a0a1 − 0.0074a1
2 − 0.015a0

2a1 − 0.0021a0
3 + 0.018a1

3)
 

The parameter estimates along with the confidence intervals are presented below: 

Table 7.3.2: Parameter Estimates with Confidence Intervals for Case 3 

Factor Coefficient Estimate 95% CI Low 95% CI High 

Intercept 0.15 

7.1 

0.15 0.16 

a1 0.089 0.079 0.098 

a0a1 -0.011 -0.013 -0.0093 
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a1
2 0.0074 0.0039 0.011 

a0
2a1 -0.015 -0.02 -0.01 

a0
3 -0.0021 -0.0039 -0.0003 

a1
3 0.018 0.0071 0.028 

 

The model was optimized using a nonlinear constrained optimization in 

MATLAB®. The optimum was found to occur at a0=-0.35, and a1=-1.00, which is 

at the minimum value of a1. 

The optimum performance index obtained from the response surface is 18.60± 

1.38 grams. The performance index obtained by simulating the optimum profile 

was found to be 18.98 grams, which is within the confidence interval of the 

predicted optimum. 

 

 


