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Abstract 

Measurement of thermophysical properties including the temperature-dependent viscosity of 

molten metals is important in material research. Microgravity Electromagnetically levitation 

(EML) experiments on board the International Space Station (ISS) were launched to measure 

the viscosity of levitated molten metal droplets through the analysis of the damping behavior 

of oscillations induced by pulse excitations.  

The work presented here contributes in the following areas. Firstly, the damping behavior of 

the oscillating droplet could be evaluated from the two-dimensional projected image signals of 

the sample droplet using an elliptical fit, and the time-temperature-dependent damping rate of 

the oscillating droplet could be derived through appropriate segmentations of the oscillating 

signals. Secondly, possible factors that would influence the damping rate analysis and viscosity 

measurement are evaluated, including the power settings of EML coil, test temperature of the 

molten metal liquid, and the magnitude and distribution of oscillation modes for droplet 

deformation. Thirdly, the oscillation transition behavior of the damped signal is presented 

which reflects in an overestimated damping rate and an increased apparent viscosity of the 

droplet primarily due to the turbulent convection inside the droplet induced from the heater 

pulse. An empirical estimation of the time scale for turbulence decay is established based on 

the experimental data and Magnetohydrodynamic(MHD) simulation results. Finally, a 

guideline is provided for parameter design for viscosity measurement experiments using the 

ISS EML facility. Based on these analyses, space results are compared to previous containerless 

results and although each data set shows similar accuracy, the precision of the measurements is 

shown to vary by 10.7% for ground-based electrostatic levitation, and 13.8% for parabolic flight 

EML as compared to 7.4% for the new space EML results presented in this work. 
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1 Introductions 

1.1 Purpose and Motivation 

This work systematically studies the damping behavior captured with a machine vision 

technique for an electromagnetically levitated (EML) molten metal droplet which is subjected 

to induced surface oscillation and develops analysis methods to conduct viscosity measurement 

for molten metals in microgravity. The objective of this work is to better understand and explain 

the damped oscillation behavior of a levitated molten metal droplet, determine the valid regime 

and improve the accuracy of the viscosity measurement, and provide a guideline for experiment 

parameter design using the EML technique. As the results, viscosities of several molten alloys 

are measured from the EML experiments on board the International Space Station (ISS) 

utilizing the techniques developed in this work. These results also demonstrate the theory 

presented in this work regarding the levitated droplet’s damped oscillation behavior. 

Thermophysical properties of molten metals, including viscosity, density, etc., are fundamental 

and crucial properties for widely-used industrial important alloys or various high-performance 

alloys. Accurate values of thermophysical properties are also required in the simulation of fluid 

flow during metal material solidification and processing, such as predictions of dendritic 

growth in the undercooled melts, modeling of casting, welding process, etc. However, it is 

usually hard to precisely measure the viscosity of molten metals at high temperature or in the 

undercooled region using traditional experiment equipment such as rotating cup viscometry due 

to the high reactivity between the melt and test container such that contamination prevents the 

melt from achieving deeply undercooled conditions.  

Containerless measurement techniques have been developed to overcome the existing 

difficulties; examples include aerodynamic levitation, electrostatic levitation, and 

electromagnetic levitation. Especially in the microgravity environment, the EML facility could 

levitated a relatively large-size molten metal droplet under a wide range of temperature from 

several hundreds of superheating to deep undercoolings; additionally control is demonstrated 

across various internal convection conditions from nearly negligible laminar flow to fully 

developed turbulence through careful selection of operating parameters. The viscosity of a 
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molten metal sample could be measured through the analysis of high-speed camera which 

captures the damping behavior of the droplet’s oscillation which can be induced using 

electromagnetic pulse forces applied to the sample. However, the current experiment design for 

viscosity measurement utilizing ISS EML facility is empirically-based. The timing and size of 

the pulse applied and the selection of camera operation conditions, etc., would significantly 

affect the validity (accuracy and precision) of the measurement using a machine vision 

technique, such as how the turbulent convection inside the molten droplet induced from 

electromagnetic momentum force could produce an overestimated apparent viscosity due to 

turbulent eddies that changes the momentum transfer mechanism, and how the camera settings 

could skew the assessment of captured damped oscillating signals. Thus, it is important and 

necessary to study the induced oscillation damping behavior of the levitated molten metal 

droplet under the influences of various factors to allow evaluation of the experimental 

techniques and provide a template for more parameterized experiment design in the future. 

 

1.2 Background 

1.2.1 Containerless measurement techniques 

A containerless levitation facility provides the capability to position and process a metal sample 

without requiring the use of a crucible to hold the sample. For the studies of metals with high 

reactivity, Electrostatic Levitation (ESL) and Electromagnetic Levitation (EML) are usually 

used.  

The principle of ESL is that a static electric field is applied to charge and levitate either a 

conductive or non-conductive sample from positioning electrodes in an evacuated chamber 

while the test temperature is controlled by a heating laser which is independent of the operation 

of the levitation system. Due to the limitations on levitation force, ESL facilities can only 

support relatively small samples – on the order of 50mg weight or 2-3 mm in diameter. While 

the heating laser is on, the molten sample is irradiated from a single side which could introduce 

Marangoni convection flow inside the droplet due to thermal gradients from unbalanced 
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temperature distribution. The internal Marangoni flow is usually laminar with moderate to 

negligible flow velocity.  

The principle of EML is that an alternating electromagnetic field is applied to a conductive 

sample located within a water-cooled high frequency electromagnetic coil.  Eddy currents 

induced inside the sample provide coupled sample heating and sample positioning functions. 

The test temperature is controlled by adjustment of the field, and the cooling rate of the sample 

is controlled by the flow of gas over the sample in terrestrial applications. In space, where the 

sample weight does not need to be overcome, two separate coil frequencies are utilized (one 

for heating and one for levitation positioning) and testing may be accomplished either in 

vacuum or in a gas environment without the need for cooling gas.  EML could support 

relatively large sample on the order of 1g weight or 5-7mm in diameter. While the 

electromagnetic field is imposed on a molten sample, convective flow inside the droplet is 

induced by the applied Lorenz force. The internal convection is significant when the heating 

power is on, and may cause turbulence flow inside the droplet during processing.  

The theory and model of the electromagnetically levitated droplet was developed from 

Okress[1]. Lohöfer presented the absorbed power, current distribution and impedance of an 

electromagnetically levitated metal sphere [2][3][4]. Szekely, et al. developed the mutual 

inductance method [5] to calculate electromagnetic forces in the spherical droplets, and 

discussed the shape of levitated droplet surface [6]. In this work, the SUPOS coil is utilized on 

board the ISS in a microgravity environment; the design basics of the coil are presented by 

Lohöfer [7].   

During the EML experiments, the MSL-EML facility may be used to conduct thermophysical 

property measurements and solidification studies. In the solidification experiments, nucleation 

phenomenon, growth mechanism, and phase selection, etc. are studied. In the thermophysical 

property measurement experiments, the viscosity, density, surface tension, resistivity, heat 

capacity, and emissivity of metal sample is usually of research interest. The measurement of 

viscosity is of primary concerned in this work. 
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1.2.2 Measurement of viscosity 

Fluid viscosity is a measure of resistance to shear or tensile stress. For Newtonian fluid 

including most molten metals, the shear stress is linearly proportional to shear rate connected 

with the coefficient of viscosity term. Viscosity has a simple functional dependence with 

temperature for most molten metals. An Arrhenius relation of viscosity versus temperature 

presented in Equation 3.2.1 is often most appropriate while it might be invalid for some glass 

forming alloy under deep undercoolings near the glass transition region due to change of the 

molecular interaction mechanism.  

Traditional viscosity measurement methods need containers to hold the molten sample, 

including rotational viscometers, oscillating vessel and oscillating plate methods, which are 

surveyed in [8][9].  

The contactless oscillating droplet method is usually used in containerless levitation techniques 

for viscosity measurement. The levitated droplet is subjected to an excitation force which is 

allowed to freely dampen out, and the viscosity can be evaluated through analysis of the 

damping rate related to the evolution of the deformed droplet shape with time. Lamb[10][11] 

and Rayleigh[12] developed the theory and expression for viscosity and surface tension in terms 

of the oscillation damping rate and resonant frequency. Further studies [13][14] discussed the 

damping behavior of viscous droplets subjected to different modes of oscillations including 

nonlinear effects. Recent work [15][16][17] has concentrated on the discussion of the influence 

of application of large amplitude oscillations on the viscosity and surface tension measurement. 

Egry [18] discussed the oscillation behavior for a sample with a difference in composition 

between bulk and surface, for example a contaminated sample with an oxide layer, and how 

these conditions influence droplet damping.  

Based on the oscillating droplet method, a number of experiments were conducted using 

containerless levitation techniques. Viscosity measurement using ground-based ESL[19][20] is 

reported and the influence of electrostatic positioning force [21][22] is discussed highlighting 

the effects of environmental oxygen on the evaluation of droplet damping rate. Ground-based 

EML [23][24], parabolic flight EML in reduced gravity [25-27], and space EML in 

microgravity [29-31] have all been used extensively. In addition, there are reports of viscosity 
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measurement using gas-levitation [32], and surface oscillation techniques [33][34] using 

electric inductive signals reflection. 

For the viscosity measurement using EML, the most influential factor is the induced 

convection; the measurement requires laminar flow and turbulence would make the measured 

results invalid [35][36]. Thus, during the experiment, the internal convection flow should be 

reduced appropriately for an effective viscosity measurement. 

 

1.2.3 Magnetohydrodynamic models 

The convective flow inside electromagnetically levitated droplets could have significant 

influence either on the solidification behavior of molten metals or on the validity of results from 

thermophysical property measurement. Previous research [37-39] showed that the nucleation 

behavior of the molten alloys, the dendritic growth, and the resulting microstructures will be 

affected by the internal convective flow. Work from the group of Szekely at MIT [35][36] states 

that turbulent convection will make the viscosity measurement impossible. A well-controlled 

and predictable convection flow condition is necessary to support related research and 

experiments. It is normally difficult to measure the internal convection velocity directly from 

experiment, and numerical methods have been developed to model the internal fluid flow of 

levitated droplets. 

Magnetohydrodynamic (MHD) numerical models for the EML droplets was previously 

developed [5][40] using a k-ε turbulence model (turbulent kinetic energy - turbulent energy 

dissipation) for both ground-based and microgravity conditions. Recent work [41][42] reported 

results from calculations for laminar flow in spherical droplets in a microgravity EML facility, 

and extended to turbulent flow of gravitationally-deformed droplets in ground-based EML. 

Berry et al. [43] surveyed the turbulence models and stated that RNG k-ε turbulence model 

(renormalization group method variation) is the most suitable model for EML droplets. For the 

laminar-turbulence transition behavior in an electromagnetically levitated droplet, Hyers [45] 

suggested that the convection is laminar for a Reynolds number below 600 with transition to 

turbulent flow above the number. This is indicated by the formation and perturbation of the 
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stagnation line around the droplet equator as evidenced by experiment observations. Lee [46] 

validated the k-ε turbulence model through MHD simulation of convection in a copper-cobalt 

droplet levitated in ground-based EML, whose predicted flow velocity along the sample surface 

showed agreement with the experiment. Lee [47] also predicted the convection flow velocity 

and laminar/turbulence status for iron-based alloys levitated in microgravity EML in support 

of the experiments on board the International Space Station(ISS). As presented in Figure 1.2.1, 

guidelines [48] can be established for flow convection conditions under ground-based ESL, 

ground-based EML, and microgravity EML with different sample size. The flow is mainly 

laminar in ESL, and fully turbulence in ground-based EML, and could achieve a wide range 

from negligible laminar to fully turbulent in microgravity EML. 

 

Figure 1.2.1: Ranges of Flow Velocity and Reynolds Number of Steel 

in ground ESL, ground EML, and Microgravity EML[48] 
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In addition to the k-ε turbulence models, other numerical methods have been developed. For 

the magnetic levitated liquid droplet, Bojarevics [49][50][51] used pseudospectral methods to 

solve the Navier-Stokes Equations with k-ω turbulence model (turbulent kinetic energy – 

dissipation rate), and extended the model to three-dimension. Easter [52][53] applied this 

method to simulate oscillating droplet subjected to multiple oscillation modes. Shatrov [54] 

analyzed the three-dimensional stability of the flow inside magnetic levitated droplet. Bjorkland 

[55] simulated the dynamics of a droplet subjected to an electric field with a Level-set method 

which is commonly applied in numerical analysis regarding surfaces and shapes. 

 

1.3 Organization 

This work consists of the following chapters:  

Chapter 2 – Measurement Methods, discusses video and image processing related techniques 

including elliptical fitting method, aliasing effect, and segmentation analysis of the projection 

image signals. 

Chapter 3 – Damped Oscillation Analysis, describes the transition behavior of the damped 

oscillating signals of the levitated droplet subjected to pulse excitation, and discusses multiple 

factors that might have potential influence on the droplet’s damping behavior and viscosity 

measurement, including the heater high testing temperature/heater pulse power, large sample 

deformations, skewness from the sample projection under different oscillation modes, and 

nonlinear effect from anharmonic oscillation. 

Chapter 4 – Magnetohydrodynamic simulation, introduces the MHD simulations for both 

equilibrium and transient status of the convective flow inside the electromagnetically levitated 

droplet. The laminar/turbulence region of the convective flow is predicted for various testing 

temperature and power settings, and an estimation of turbulence decay time is established based 

on the experimental data and simulation results. 

Chapter 5 – Results and discussion, summarizes the key points in viscosity measurement, and 

presents viscosity results for three molten alloys as examples of application of the methods 
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proposed in this work. The acceptable region of test temperature/pulse excitation is predicted 

numerically to provide suggestions for parameter selection and control in the design of future 

experiments. 

Chapter 6 – Conclusions, describes the achievements and contributions throughout this work. 

Chapter 7 – Future work is suggested.  
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2 Experimental Methods 

2.1 Electromagnetic Levitation on the International Space Station 

The experiment was conducted using the MSL-EML facility in microgravity on the 

International Space Station. The size of the sample is around 6.5 mm in diameter, and inert gas 

such as helium or argon is often used to limit evaporation although the tests may also be run in 

vacuum. The sample was positioned and heated using SUPOS coil system[56] as shown in 

Figure 2.1.1 where a sample holder cage is installed in the center of the coil set. SUPOS coil is 

a single-coil/dual-current type with upper and lower coils wound in one piece; the heating and 

positioning current is controlled independently. The alternating current through the coil runs at 

a frequency of 150 kHz for the positioner that generates a quadrupole electromagnetic force 

field to locate the sample near the center of the coil set, and 350 kHz for the heater generating 

a dipole electromagnetic field and heat the sample by resistive heating due to the eddy currents. 

The schematic of SUPOS coil is shown in Figure 2.1.2. The coil currents and the control voltage 

has the following linear relations, where 𝐼𝐻 is the heating current, 𝐼𝑃is the positioning current, 

𝑉𝐻
𝐶𝑡𝑟𝑙 is the heater control voltage, and 𝑉𝑃

𝐶𝑡𝑟𝑙 is the positioner control voltage.   

 
𝐼𝐻 = 19.09 + 19.00 ∙ 𝑉𝐻

𝐶𝑡𝑟𝑙 

𝐼𝑃 = 12.03 + 12.03 ∙ 𝑉𝑃
𝐶𝑡𝑟𝑙 

(2.1.1) 

 

Figure 2.1.1: ISS EML SUPOS coil used to position and heat the sample 
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Figure 2.1.2: Schematic of SUPOS coil 

2.2 Imaging and Signal Processing Technique 

For a typical MSL-EML cycle, there are two cameras installed to capture the motion of the 

molten droplet. The top-view axial camera is nominally set to 8-bit grayscale 384x384 pixels 

at 150 Hz for viscosity and surface tension measurement[31], and facility health monitoring 

mode at 25 Hz.  The side-view radial camera has two lens settings, high speed with 256x256 

pixels at 30 kHz for recalescence detection and high resolution with 600x600 pixels at 400 Hz 

for data acquisition during viscosity measurement. 

2.2.1 Video processing 

The videos captured from 150 Hz top-view and 400 Hz side-view video are analyzed frame-

by-frame to detect the projections of the sample, and synchronized the time-stamp with 

pyrometer profiles to obtain the time-temperature-oscillation data for further analysis. Figure 

2.2.1 showed a typical sample projection from the top-view and side-view cameras, where the 

white pixels represented the molten sample. The shadow across the surface is caused by 

interference in view by the sample holder wire cage. White lines represent reflections of the 

wires which are distorted when viewed on the mirror surface finish of the molten sample. 

Heater Positioner 
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(a) Top-view camera   (b) Side-view camera 

Figure 2.2.1: Typical projections of the sample 

For each frame, the 8-bit grayscale image was read into a logical matrix and converted to a 2 ×

𝑛  coordinate array 𝑃 , representing the 2-D Cartesian coordinate of the sample projection 

region. Khachiyan’s Algorithm[58][59] was adopted to apply an ellipse fit (in red on the figure), 

finding the minimum area enclosing ellipse of the 2-D region defined by 𝑃, the fitted ellipse 

equation is in the following form, 

 (𝑥 − 𝑐)𝑇  𝐴  (𝑥 − 𝑐)  =  1 (2.2.1) 

Where 𝐴 is a 2 × 2 matrix, and 𝑐 is a 2 dimensional vector representing the centroid of the 

ellipse. 

Khachiyan Algorithm: Find the 𝐴 and 𝑐 satisfing that,  

 
Minimize 𝑑𝑒𝑡(𝐴) 

subject to     (𝑃𝑖_𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛  −  𝑐)𝑇  ∗ 𝐴 ∗ (𝑃𝑖_𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛  −  𝑐)  <=  1 

(2.2.2) 

0. Initialize 𝑛 × 1 vector: 𝑢 = ⌈

𝑢1

…
𝑢𝑛

⌉ = ⌈

1

𝑛
…
1

𝑛

⌉, and 3 × 𝑛 matrix: 𝑄 = [
𝑃11 … 𝑃1𝑛

𝑃21 … 𝑃2𝑛

1 … 1
], 
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1. Calculate 3 × 3 matrix 𝑋 =  𝑄 ∗  𝑈 ∗  𝑄𝑇, and 𝑛 × 𝑛 matrix 𝑀 = 𝑄𝑇/ 𝑋 ∗  𝑄, 

2. Find maximum element 𝑚𝑎𝑥(𝑀)  on the diagonal of 𝑀  with index 𝑗 , 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 =

 
𝑚𝑎𝑥(𝑀)−3

3 (𝑚𝑎𝑥(𝑀)−1)
 

3. Update vector 𝑢:  

𝑢 =  (1 −  𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) ∗ 𝑢, and 𝑢𝑗  =  𝑢𝑗  +  𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 

4. Repeat Step 1 – 3 until  𝑒𝑟𝑟 =  𝑛𝑜𝑟𝑚(𝑢𝑢𝑝𝑑𝑎𝑡𝑒𝑑 − 𝑢) is less than preset accuracy tolerance 

value.  

Set 𝑛 × 𝑛 diagonal matrix: 𝑈 = [
𝑢1

…
𝑢𝑛

] and find 𝐴 and 𝑐 as follows, 

 𝐴 =  
1

2
 (𝑃 ∗ 𝑈 ∗ 𝑃𝑇  −  (𝑃 ∗ 𝑢) ∗ (𝑃 ∗ 𝑢)𝑇 )−1 

𝑐 =  𝑃 ∗ 𝑢 

(2.2.3) 

Thus, the fitted ellipse has the following properties, 

 

Length of Maximum semi-axis: 𝑅1  =  
1

√𝜎1
 

Length of Minimum semi-axis: 𝑅2  =  
1

√𝜎2
 

Deflection angle: 𝜃 =
1

2
𝑎𝑡𝑎𝑛(

2𝐴12

𝐴11−𝐴22
) 

Centroid: (𝑐1, 𝑐2) in Cartesian coordinate 

Fitted Ellipse Area: 𝑎𝑟𝑒𝑎 = 𝜋𝑅1𝑅2 

(2.2.4) 

Where 𝜎𝑖 is the singular value of matrix 𝐴, derived from singular value decomposition 

(SVD). 
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For example, for a typical damped oscillation following a pulse excitation, Figure 2.2.2 shows 

the maximum/minimum radius of the fitted ellipse from the top view, and Figure 2.2.3 shows 

the ellipse area. Fast Fourier transform (FFT) is usually used on the changing amplitude of the 

damped oscillation signal to filter the data within its primary oscillation frequency region. As 

shown in Figure 2.2.4, the natural frequency around 35 Hz has the largest amplitude in the FFT 

analysis, and the signal is filtered near the detected frequency for further analysis. 

 

Figure 2.2.2: Length of max/min semi-axis 𝑹𝟏/𝑹𝟐 in fitted ellipse 
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Figure 2.2.3: Area of fitted ellipse 

  

Figure 2.2.4: FFT of oscillation signals 

2.2.2 Aliasing effect 

The natural frequency for a 6.5mm diameter levitated molten droplet of selected alloy such as 

FeCrNi is normally 35-38 Hz, which could be revealed by Fast-Fourier Transform (FFT) 

analysis of the damped oscillation signal showing the shape deformation of the sample[57]. 

During the ISS EML experiments, the facility health monitoring video works at 25 Hz, and 

Top-view and Side-view video is normally set to 150 Hz and 400 Hz, respectively.  
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During facility checkout, the 25 Hz facility health monitoring video was the only available data 

source due to hardware configuration issues and aliasing played a significant role when data 

was evaluated. Consider the situation measuring a signal with natural frequency of 36.6 Hz 

with the video system at acquisition rate of 25 Hz.  The Nyquist frequency limit is 25/2=12.5 

Hz, and the actual 36.6 Hz signal is undersampling expecting information lost and aliasing. A 

simulated decaying sinusoidal signal is plotted in Figure 2.2.5, the signal frequency 36.6 Hz 

and the amplitude is arbitrarily reduced due to viscous damping, where the connected blue dots 

showed the beats formed from undersampling. The FFT analysis of the undersampled 

simulation showed the aliasing behavior at 11.72 Hz and 13.43 Hz as shown in Figure 2.2.6, 

and the simulated beats rate is 13.43-11.72=1.82 Hz as the effect combining the two aliases. 

For signal frequency 𝑓 = 36.6 𝐻𝑧  and sampling rate 𝑓𝑠 = 25 𝐻𝑧 (𝑛 = 1, 2, . . . ) , the 

theoretical value of the alias frequencies and beats rate could be calculated as follows, 

 

1st alias frequency: 𝑓𝑎
1 = 𝑓 − (𝑛)𝑓𝑠 =  11.6 Hz (𝑛 = 1) 

2nd alias frequency: 𝑓𝑎
2 = (𝑛)𝑓𝑠 − 𝑓 =  13.4 Hz  (𝑛 = 2) 

Beats Rate: 𝑓𝑏𝑒𝑎𝑡 = 𝑓𝑎
2 − 𝑓𝑎

1 = 1.8 Hz 

(2.2.5) 

 

For the FFT analysis above the 𝑓𝑠 = 25 𝐻𝑧 region, it also shows the frequency at 36.63 Hz and 

38.34 Hz, and the alias frequencies of the alias could be calculated as,  

 
alias frequency of 1st alias: 𝑓𝑎

1′ = 𝑓𝑎
1 + 𝑓 = 36.6 Hz 

alias frequency of 2nd alias: 𝑓𝑎
2′ = 𝑓𝑎

2 + 𝑓 = 38.4 Hz 

(2.2.6) 

Thus, the alias frequency of 1st alias represents the actual signal frequency which also has 

maximum signal amplitude in FFT analysis, and the oscillation frequency of the sample could 

be measured during undersampling situation, though it provides limited information for 

damping behaviour analysis. 
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Figure 2.2.5: Simulated decaying sinusoid signal at 36.6 Hz with undersampling at 25 Hz 

 

Figure 2.2.6: FFT of simulated sinusoid signal at 36.6 Hz with undersampling at 25 Hz 
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For an oversampling situation, if the sampling rate 𝑓𝑠 is expected to be greater than 100 Hz, the 

Nyquist frequency 
𝑓𝑠

2
> 50 𝐻𝑧 would be appropriate for most alloy samples. Figure 2.2.7 shows 

a simulated sinusoidal signal with acquisition rate of 150 Hz that is usually set in Top-view video, 

and FFT analysis provides the frequency value of 36.69 Hz as shown in Figure 2.2.8. The video 

under oversampled condition is normally expected for thermophysical property measurement, 

and the effect of aliasing could be diminished with increased acquisition rate. Note that during 

nominal operations following facility check-out, sampling rate was increased. Thus the  

undersampling issues were resolved. 

 

Figure 2.2.7: Simulated decaying sinusoid signal at 36.6 Hz with oversampling at 150 Hz 
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Figure 2.2.8: FFT of simulated sinusoid signal at 36.6 Hz with oversampling at 150 Hz 

2.3 Segmentation Error Analysis 

2.3.1 Time-Temperature profile 

During a typical ISS EML thermal cycle, the sample temperature is measured with a single-

color pyrometer, and the positioner and heater are maintained at a relatively large power level 

to maintain the stability of the sample and melt/superheat it quickly to reduce evaporation. The 

heater is then turned off or tuned to a moderate level to control the cooling rate of the molten 

sample, and the sample would be excited by one or more heater pulses at 5.0 ~ 9.0 Volts for 0.1 

second duration at selected times during the cooling process prior to recalescence. For each 

pulse excitation, the levitated sample will start to oscillate and the oscillations will be damped 

out over time. The viscosity can be measured during this period using oscillating droplet 

method[31]. Figure 2.3.1 presents a typical Time-Temperature profile and damping signal 

showing the deformation of the sample. In this example, a molten FeCrNi sample was 

superheated to 1650 °C with 10.0V positioner and 7.8V heater, then the positioner was set to 

5.2V and the heater was turn off to allow the sample to cool down freely. During the free cooling 
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process, two pulses of 6.0V and 7.0V were applied to excite the sample, and the change of the 

projected area of the sample could be detected from the Top-view video with synchronized 

time-stamps. 

 

Figure 2.3.1: Time-Temperature profile and Damping signal of the sample 

for a typical thermal cycle with pulse excitations 

 

 

 

Pulse 1 

Pulse 2 
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2.3.2 Error in the decay of the sinusoidal signal fit 

For a mode 𝑙 = 2 oscillation[36], the viscosity 𝜇  of the sample can be determined as follows,  

 𝜇 =
𝜌𝑅0

2

(𝑙 − 1)(2𝑙 + 1)𝜏
 (2.3.1) 

where 𝜏 is the damping constant representing the decaying rate of the damped oscillations, 𝜌 

and 𝑅0 is the density and initial radius of the sample. 

The variation of the deformation signal of levitated molten droplet changes with time, which 

can be expressed as an exponential decaying sinusoid with frequency 𝑓. 

 
𝑦(𝑡) = 𝑦0cos (2𝜋𝑓𝑡)𝑒− 

𝑡
𝜏 (2.3.2) 

The extreme value points in the sinusoidal signal are detected and can be used to fit the damping 

constant. The damping constant and viscosity changes with different sample temperature which 

was decreased with time. Thus, an appropriate segmentation of the decaying signal is necessary 

to fit the damping data for each small range of temperature change, showing the dependence of 

the thermophysical property on the temperature. 

To evaluate data fitting accuracy on the damping constant and viscosity, apply a linear 

regression on ln (|𝑦(𝑡)̅̅ ̅̅ ̅̅ |)  where 𝑦(𝑡)̅̅ ̅̅ ̅̅  is the extreme value points, assuming slope �̂�  and 

constant term �̂� conforms to normal distributions. 

 𝑙𝑛(|𝑦(𝑡)|) = �̂� ∙ 𝑡 + �̂� (2.3.3) 

In the 95% confidence interval,  

 �̂� = 𝑘±𝜎𝑘 (2.3.4) 

Thus, for the best fit of damping constant value 𝜏 we obtain viscosity 𝜇 = −
1

5
𝑘𝜌𝑅0

2 with error 

percentage ±
𝜎𝑘

𝑘
. Figure 2.3.2 represents a typical viscosity analysis for one segmentation of the 
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decaying sinusoid. The black curve shows the fitting for best damping constant, and two red 

curves show the boundaries of the fitting in 95% confidence interval.  

 

Damping constant: 𝜏 = −
1

�̂�
 

Viscosity: 𝜇 = −
1

5
(𝑘±𝜎𝑘)𝜌𝑅0

2 

Error in Viscosity Fitting: ±
𝜎𝑘

𝑘
∗ 100% 

(2.3.5) 

 

 

 

 

Figure 2.3.2: Preliminary Data fitting for damping constant 

For oscillations at natural frequency around 37 Hz, approximately 40% of data points are 

selected to for the preliminary data fitting. 

𝜏 = −
1

�̂�
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For each segmentation, a secondary data fitting is applied using all the data points (𝑡𝑖, 𝑦𝑖) in 

the current segmentation, to find optimized damping constant 𝜏 and oscillation frequency 𝑓 in 

Equation 2.3.2 minimizing the SSE defined as follows, 

 Minimized SSE= 
∑||𝑦(𝑡𝑖)|−|𝑦𝑖||

max (|𝑦(𝑡𝑖)|)
 (2.3.6) 

 

 

Figure 2.3.3: Secondary data fitting using all data points 
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2.3.3 Error in temperature range 

The temperate range can be synchronized from pyrometer profiles based on the elapsed time of 

selected segmentation, as shown in Figure 2.3.1.  

For each segmentation, the sample temperature has the following values, 

 

Median Temperature: �̅� = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇) 

Temperature range: ∆𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 

Error in Temperature: ∆𝑇/400 ∗ 100% 

(2.3.7) 

During a typical thermal cycle, the sample is usually superheated to 300 degrees above its 

molten temperature 𝑇𝑚, and undercooled to 100 degrees below 𝑇𝑚. The error percentage of 

temperature for each segmentation is approximated calculated as ∆𝑇/400. 

Statistically, the fitting error of the damping constant and viscosity decreases as more data 

points are included in the regression as a results of diminishing the influence of arbitrary 

scattered and noisy data points while the temperature range would be larger due to wider time 

frame selected. A trade-off and optimization between errors in viscosity and temperature is 

necessary to be considered to keep balance between viscosity analysis quality and 

corresponding sample temperature precision. 

In Figure 2.3.4, the errors in viscosity and temperature are represented together with the variable 

of number of frames or time steps. The two types of errors indicate opposite trends against the 

selected time frames, which intersect at around 100 frames for 150Hz data (0.67s). Thus, a 

reasonable range of time frames could be selected to moderate errors for both of viscosity and 

temperature.   
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Figure 2.3.4: Trade-off between fitting errors in viscosity and temperature 

 

2.3.4 Error in other factors 

Background noises: 

For each decaying oscillation excited by a pulse, the initial radius deformation of the sample is 

maximum at 4% - 9% depending on the sample’s thermophysical properties and pulse size, and 

the deformation is expected to decrease and decay to 0% in the end. Actually, a 0.1% - 0.5% 

fluctuation error of the signal in the tail of the damped oscillation was observed as the 

background noise due to video data compression or exposure issues. For segmentations near 

the end of the oscillation where the radius deformation is less than 0.5%, the background noise 

could have significant influence on the viscosity analysis that would lead to invalid data fitting 

results; otherwise, the background noise has limited influence on the measurement.  

Atmosphere: 

During the testing, inert gas is fulfilled over the sample to limit evaporation. Both of 

Helium(He) and Argon(Ar) were used individually as the inert gas. As shown in Figure 2.3.5, 

the sample is exposed to He and Ar atmosphere in different tests, with cooling rate at 50K/s 
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and 20K/s separately, the results shows agreement of the viscosity analysis and indicate no 

significant influence of the atmosphere on the measurement.  

 

Figure 2.3.5: Helium/Argon atmosphere 
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3 Damped Oscillation Analysis 

3.1 Preliminary Viscosity Analysis 

During ISS EML experiment batch 1.2, several alloy compositions including Fe72Cr21Ni19 at 

weight% (FeCrNi), LEK-94, and MC-2 were tested and performed oscillating droplet method 

and machine vision technique for viscosity measurement with pyrometer and high-speed 

camera system, which is described in the chapter 2. The excited oscillation is considered as 

mode 𝑙 = 2 oscillation, and the viscosity is calculated from Equation 2.3.1 through fitting of 

the damping constant.  

For each thermal cycle, the sample’s temperature is decreasing at a known cooling rate 

following superheating, and the temperature-dependent shape is measured continuously during 

cooling. Preliminary analysis would show apparent viscosity over this temperature range. 

Figure 3.1.1 shows an example of damping constant fitting for different segmentation in the 

same damped oscillation, and Figure 3.1.2 provides the time-temperature profile at the same 

time frame as the video, the vertical axis on left shows the cooling temperature vs. time, and 

the vertical axis on left shows the status of heater/pulse/positioner --- the positioner is normally 

kept at a constant voltage, and heater voltage is zero or at a less than 2 V moderate power setting 

except large pulse applied for 0.1 second to excite the sample. Corresponding to the 

synchronized elapsed time from pulse excitation, a relation between damping constant/viscosity 

and temperature will be established.  
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Figure 3.1.1: Damping constant measurement at successive segmentations 
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Figure 3.1.2: Time stamp synchronized pyrofile 

 

3.2 Transition Behavior of Damped Oscillation 

For each damped oscillation excited by a pulse, the preliminary analysis would show fitted 

damping constant as the function of temperature. Figure 3.2.1 represents a typical preliminary 

result where each data point stands for a segmentation in the oscillation signal, the error bar on 

the vertical direction shows the fitted error of damping constant as defined in Equation 2.3.5, 

and the error bar in the horizontal direction shows the testing temperature range near the median 

value for each segmentation. Figure 3.2.2 shows the corresponding viscosity values calculated 

from the damping constant. 
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Figure 3.2.1: Damping constant vs. Temperature 

 

 

Figure 3.2.2: Apparent viscosity vs. Temperature 
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The molten alloy is expected to be more viscous at lower temperature, and the viscosity-

temperature relation could be evaluated using an Arrhenius fit[8] in the form of, 

 
𝜇 = 𝑒(

𝐶1
𝑇

−𝐶2) (3.2.1) 

Where 𝜇 is the dynamic viscosity, 𝑇 is temperature, and 𝐶1, 𝐶2 > 0 is constant parameter. 

 

For actual viscosity measurement in the ISS EML facility, the preliminary analysis would give 

apparent values due to the experimental parameter settings and limitation of camera capability. 

Unexpectedly, the measured apparent viscosity shows an increasing high apparent value near 

the beginning of a pulse excited oscillation which corresponds to the higher temperature region, 

and jumps to a relative low value in a short time.  Values then increase again as the temperature 

decreases. This phenomenon can be universally observed for different alloy composition, 

testing temperature, and various heater/pulse power settings.  

As shown in Figure 3.2.3, three different alloys including FeCrNi, LEK-94 and MC-2 was 

applied pulse excitation at various voltage to enable damped oscillation for viscosity 

measurement at different temperature, each showing a similar humped-increasing pattern at 

temperature from high to low, where the second half of the hump usually takes temperature 

change of 10-15K. 
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Figure 3.2.3: Measured apparent viscosity from preliminary analysis 

The humped pattern can be divided into Phase-1 and Phase-2 regions. As shown in Figure 3.2.4, 

the apparent viscosity measured in phase-1 has a humped value as shown in Figure 3.2.3, and 

phase-2 is the region obtaining stable increasingly viscosity. In Phase-1, the first half of the 

hump indicates increased viscosity with decreased temperature, while the value is significantly 

higher than phase-2. For the second half of the hump, there is a transition between Phase-1 and 

Phase-2 as shown in Figure 3.2.4(b) and Figure 3.2.5, one segmentation in the damping constant 

analysis could usually take 0.5-1.5s corresponding to a 10-20K temperature change, thus with 

decreased temperature the fitted viscosity for segmentation across the higher apparent viscosity 

region Phase-1 and adjacent Phase-2 region with relatively lower viscosity value, would 

decrease as the portion of Phase-1 become less and Phase-2 become more for the damping 

constant fitting. 

Thus, the Phase-1 and Phase-2 region could be explicitly defined as follows, 

Beginning of Phase-1: The time of pulse application;  

End of Phase-1/Beginning of Phase-2: The median timestamp within the segmentation that 

the measured apparent viscosity achieves a relatively low value and then subsequently starts to 

increase steadily;  

End of Phase-2: The excited oscillation is damped out to levels obscured by noise. 
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Figure 3.2.4: Phase-1 and Phase-2 region of pulse excited oscillation 

 

Figure 3.2.5: Phase-1 and Phase-2 region in viscosity analysis 
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3.3 Apparent Damping Analysis 

3.3.1 Temperature and heater pulse settings 

In the current oscillation drop method used in ISS EML, the heater pulse is necessary to excite 

the sample droplet to induce an oscillation that decays during viscosity measurement. During 

the thermal cycle, the positioner is maintained at constant voltage that has limited influence on 

the internal convective flow inside the droplet; the heater stays at 0V to larger than 2V to control 

the cooling rate of the sample, and the heater pulse is applied at levels between 5V to 9V for 

durations of 0.1 seconds to excite sample oscillation.  

For constant heater less than 2V, the induced internal convection flow could be considered as 

laminar and has limited influence on the viscous damping; otherwise, turbulence could result 

with a concomitant increase in apparent viscosity. Stirring enhances eddy momentum transfer 

and hastens damping. Basically, 0.1 second of heater pulse is enough for the convection to 

develop turbulence, and a high apparent viscosity in the measurement is inevitable following 

the pulse application.  The Phase-1 region with convective flow eventually slows and becomes 

laminar in Phase 2. 

Conditions favoring an enhancement of Phase 1 occur for the sample at relatively high 

temperatures where the liquid is less viscous, or for application of large heater pulses to excite 

the sample. As shown in figure 3.3.1 for example, for LEK-94, a moderate 6.46V pulse was 

applied at superheated 156 K, and another large 8.42V pulse was applied at undercooled 33 K, 

either of which leads to a significantly high apparent viscosity from the preliminary analysis; 

the oscillation damped out before it could transition successfully to Phase-2. In both cases, the 

stirring induced under either high temperature or large pulse amplitude made the sample decay 

faster than the assumed duration of Phase-1, which could influenced by the viscous dissipation 

time scale. Further analysis regarding the MHD simulation of levitated molten droplets in the 

ISS EML facility quantitatively studied in Chapter 4 to show the relationship between internal 

convection condition and temperature/heater settings. 
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Figure 3.3.1: Apparent viscosity under high temperature/large pulse size 

 

3.3.2 Magnitude of sample deformation 

Following a pulse excitation, the sample is squeezed by the electromagnetic forces from the 

coil with forces primarily in the horizontal direction relative to the centerline of the coil. The 

sample will be deformed approximately into an ellipsoidal shape from the original spherical 

shape. The deformation achieves maximum extent immediately after the 0.1 second pulse is 

applied and released, and the initial deformation starts to decay from maximum to zero while 

the sample is oscillating freely. Based on the Top-view video reflecting the projection of the 

sample in the horizontal plane, define the degree of deformation as the ratio of initial length of 

maximum semi-axis 𝑅1 derived in Equation 2.2.4 to the radius 𝑅0 in the undeformed status, 

 Maximum deformation%: 𝜂0 =
max(𝑅1)−𝑅0

𝑅0
 (3.3.1) 

For the same sample, the degree of deformation would mainly rely on the pulse size. As shown 

in Figure 3.3.2 for tests of LEK-94, the initial deformation ranges from around 4% to 8%, which 

is increased with pulse set at 5.49V to 8.42V. 
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Figure 3.3.2: Maximum sample deformation vs. pulse size 

For a viscous droplet which is oscillating with internal convection in the turbulent status, the 

degree of deformation of the sample would also impact the apparent viscosity. Etay et al. [17] 

utilized a pseudo-spectral method developed by Bojarevics et al. [49], to dynamically simulate 

the behavior of oscillating droplet with stirrings inside induced from alternating 

electromagnetic fields, which is governed by Navier-Stokes and k-ω turbulence equations.  

While the droplet has more deformation, the distribution of effective viscosity inside the molten 

sample has higher intensity near the two poles that are perpendicular to the coil’s centerline, 

and the sample’s equator has lower effective viscosity. This unbalanced distribution sample 

with more deformation makes larger motion of the droplet near poles, and the droplet would 

damp faster than a sample with less deformation, thus presenting a higher value of apparent 

viscosity. 

Etay et al. [17] defined a Relevant Reynolds number 𝑅𝑒
∗, and an empirical formula estimating 

the measurement error was suggested based on the numerical simulation results, 

  𝑅𝑒
∗ = 2𝜋𝑓

𝜂𝜌𝑅0
2

𝜇
 (3.3.2) 
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 ∆𝜏

𝜏
≈ 0.0036𝑅𝑒 + 0.1853 for  𝑅𝑒

∗ ≤ 60 (3.3.3) 

Where 
∆𝜏

𝜏
 is error of apparent damping constant to the theoretical value. For  𝑅𝑒

∗ in the order 

of 102
 to 103,  

∆𝜏

𝜏
~ 𝑅𝑒

∗0.12
; for  𝑅𝑒

∗ >103, 
∆𝜏

𝜏
≫1.  

For molten FeCrNi with Tm=1715K, the suggested error of apparent viscosity 
∆𝜏

𝜏
 and Relevant 

Reynolds Number 𝑅𝑒
∗ is calculated as shown in Figure 3.3.3 and Figure 3.3.4. At the same 

temperature, the viscosity and density term is fixed and sample deformation 𝜂 is dominated in 

Equation 3.3.2, measurement viscosity error 
∆𝜏

𝜏
 is increased with larger deformation. For 

different temperatures, the deformation 𝜂  corresponding to region with  𝑅𝑒
∗ <60 allowing 

valid viscosity measurement is plotted in the shadowed area in Figure 3.3.4, and the suggested 

limits of deformation 𝜂 vs. temperature are represented in Figure 3.3.5. Above the curve of 

limits in Figure 3.3.5, both deformation and viscosity dominate the Relevant Reynolds Number 

and therefore impact the viscosity evaluation; below the limits, the overestimation of apparent 

viscosity caused by deformation is acceptable, and only the viscosity term, which is inversely 

proportional to Relevant Reynolds Number, is the dominating factor. 

 

Figure 3.3.3: Error of apparent viscosity vs. sample deformation% for FeCrNi 
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Figure 3.3.4: Relevant Reynolds Number vs. sample deformation% for FeCrNi 

 

Figure 3.3.5: Deformation limits vs. temperature for FeCrNi 
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3.3.3 Oscillation modes 

For an incompressible undeformed viscoelastic droplet of spherical shape with radius 𝑅0, in 

the spherical coordinate (𝑟, 𝜃, 𝜑), the sphere is defined as,  

 𝑟(𝜃, 𝜑) = 𝑅0 (3.3.4) 

Where 𝑟 is the radial distance, 𝜃 is the polar angle ranges from 0 to 𝜋, and 𝜑 is the azimuth 

angle ranges from 0 to 2𝜋. 

When a deforming force is applied and released on the spherical droplet, the droplet will start 

to oscillate such that the oscillating frequency and damping rate are dependent on the surface 

tension and viscosity of the liquid. The relation between viscosity and damping is formulated 

in Equation 2.3.1. From Lamb’s theory, the time-dependent deformed shape of the droplet can 

be described by the solution consisting of the superposition of a series of spherical harmonics 

where each representing a different oscillation mode[61], as follows, 

 𝑟(𝑡, 𝜃, 𝜑) = 𝑅0(1 + ∑ 휀𝑎𝑙,𝑚𝑌𝑙
𝑚(𝜃, 𝜑)𝑒𝑖𝜔𝑡−

𝑡
𝜏

𝑙=𝑙𝑁

𝑙=1
|𝑚|≤𝑙

) (3.3.5) 

Where 휀 is a parameter representing a relative magnitude of the deformation[60], 𝑤 is the 

oscillation frequency, 𝜏 is the damping constant, and 𝑎𝑙,𝑚 is the proportion of each mode 𝑙 

subjected to ∑𝑎𝑙,𝑚=1. 

𝑌𝑙
𝑚(𝜃, 𝜑) is the spherical harmonics in mode 𝑙 and index 𝑚 satisfying |𝑚| ≤ 𝑙[62], usually 

𝑙𝑁 ≤ 5 in most cases.  

 𝑌𝑙
𝑚(𝜃, 𝜑) = √

(2𝑙 + 1)

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃𝑙

𝑚(cos 𝜃)𝑒𝑖𝑚𝜑 (3.3.6) 

The spherical harmonics function is complete orthogonal and solved from classical Laplacian 

equation in the spherical form using separated-variable methods, which describes the oscillation 

behavior in both the 𝜃 and 𝜑 directions. It could be considered as an eigenfunction to the 
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eigenvalue problem of the Laplace operator where there are 2𝑙 + 1 eigenfunctions for each 

eigenvalue. In this circumstance, for each oscillation mode 𝑙, there are number of 2𝑙 + 1 types 

of oscillation behavior that the index 𝑚 could be valued in the range[−𝑙, 𝑙]. 

In Equation 3.3.6, 𝑃𝑙
𝑚  is the associated Legendre functions; when 𝑚=0, 𝑃𝑙

𝑚  becomes the 

original 𝑙-th degree Legendre polynomial 𝑃𝑙,  

 

𝑃𝑙(𝑥) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑥𝑙
(𝑥2 − 1)𝑙 

𝑃𝑙
𝑚(𝑥) = (−1)𝑚(1 − 𝑥2)

𝑚
2

𝑑𝑚

𝑑𝑥𝑚
𝑃𝑙(𝑥) 

(3.3.7) 

 

For the application of oscillating droplet, mode 𝑙=0 is independent of 𝜃 and 𝜑 which is not 

observed, mode 𝑙=1 describes the sample with pure translating movement, mode 𝑙=2 describes 

an oscillating sample subjected to deforming forces which reflects the real oscillation behavior 

of liquid droplet[36], as defined in Equation 3.3.8. For mode 𝑙=2, 𝑚=0, the oscillation is 

excited by a symmetric force, and the deformation is symmetric along the z-axis, usually for 

sample located in the centroid of the EML coil while the excitation pulse is applied; for mode 

𝑙=2, 𝑚= ±1, the oscillation is excited by a shear force, and mirror symmetric about z-φ plane 

but the sample is deformed along the directions off the z-axis by an polar angle, which usually 

occurs for a sample located off the centerline of the coil or due to inhomogeneity introduced by 

a skewed coil; for mode 𝑙=2, 𝑚= ±2, the oscillation is similar to 𝑚= ±1, but has approximately 

twice the frequency and half the amplitude of 𝑚= ±1 and 0.2 times of the amplitude of 𝑚=0, 

which could be considered as lower order term in the overall oscillation defined in Equation 

3.3.5. Thus, the oscillation mode 𝑙=2, 𝑚=0, ±1, which was also usually observed in the ISS 

EML experiments, is the dominating spherical harmonic that describes the oscillation behavior 

for the pulse excited sample experimentally. 
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𝑌2
0(𝜃, 𝜑) = √

5

4𝜋
(
3

2
𝑐𝑜𝑠2𝜃 −

1

2
) 

𝑌2
±1(𝜃, 𝜑) = ∓√

5

24𝜋
3𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑒±𝑖𝜑 

𝑌2
±2(𝜃, 𝜑) = √

5

96𝜋
3𝑠𝑖𝑛2𝜃 𝑒±2𝑖𝜑 

(3.3.8) 

 

Thus, for oscillation of pure mode 𝑙=2, 𝑚=0,  

 𝑟(𝑡, 𝜃, 𝜑) = 𝑅0(1 + 휀√
5

4𝜋
(
3

2
𝑐𝑜𝑠2𝜃 −

1

2
) 𝑒𝑖𝜔𝑡−

𝑡
𝜏) (3.3.9) 

 

And for oscillation of pure mode 𝑙=2, 𝑚=±1, 

 𝑟(𝑡, 𝜃, 𝜑) = 𝑅0(1 ∓ 휀√
5

24𝜋
3𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑒±𝑖𝜑𝑒𝑖𝜔𝑡−

𝑡
𝜏) (3.3.10) 

 

Figure 3.3.6 and Figure 3.3.7 shows simulations of the sample deformation at continuously 

different time during single one oscillation period in mode 𝑙=2, 𝑚=0 and mode 𝑙=2, 𝑚=±1 

separately. In each oscillation period, the sample droplet is initially a standard sphere which 

deforms consistently with the appropriate mode, and then reverts back to spherical shape at the 

end of the oscillation period. 
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Figure 3.3.6: Oscillation mode 𝒍=2, 𝒎=0 

 

 

 

Figure 3.3.7: Oscillation mode 𝒍=2, 𝒎=±1 
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In practice, the deformation of the damped oscillating sample is observed using the Top-view 

and Side-view cameras, which record the projection of the sample in the x-y plane and the x-z 

plane. The apparent damping constant/viscosity deformation is measured through an elliptical 

fitting of the projection that changes with time. When the oscillation has mixture of mode 𝑙=2, 

𝑚=0, ±1, the measurement could be skewed from the theoretical damping constant 𝜏 defined 

in Equation 3.3.5. Thus, it is necessary to examine the skew factor of the measured values of 

two-dimensional projections to establish the true damping constant value. 

For convenience, assume 𝑅0 =1 in Equation 3.3.5, 3.3.9, and 3.3.10, and 𝑟  becomes a 

dimensionless radius. In the Cartesian coordinates,  

 
𝑥 = 𝑟 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃 
𝑦 = 𝑟 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜃 
𝑧 = 𝑟𝑐𝑜𝑠𝜃 

(3.3.11) 

And,  

 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝜃 = arccos
𝑧

√𝑥2 + 𝑦2 + 𝑧2
 

𝜑 = arctan
𝑦

𝑥
 

(3.3.12) 

Thus,  

 
𝑠𝑖𝑛 𝜃 =

√𝑥2 + 𝑦2

√𝑥2 + 𝑦2 + 𝑧2
 

𝑐𝑜𝑠 𝜃 =
𝑧

√𝑥2 + 𝑦2 + 𝑧2
 

(3.3.13) 

(i). For oscillation mode 𝑙=2, 𝑚=0, set 𝐶0 = √
5

4𝜋
휀, and Equation 3.3.9 can be rewritten as, 

 𝑟 = 1 + 𝐶0 (
3

2
𝑐𝑜𝑠2𝜃 −

1

2
) 𝑒𝑖𝜔𝑡−

𝑡
𝜏 (3.3.14) 

In x-y plane where 𝜃 =
𝜋

2
, the cross section is bounded by a standard circle with equal radius, 
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 𝑅𝑥𝑦 = 1 −
𝐶0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏 (3.3.15) 

In x-z plane where 𝜃 = 0, the shape deformation has the maximum elongation/shortening along 

the z-axis, 

 𝑅𝑧 = 1 + 𝐶0 cos𝜔𝑡 𝑒−
𝑡
𝜏 (3.3.16) 

Thus, the initial and maximum deformation is, 

 
𝑚𝑎𝑥 𝑅𝑥 = 𝑚𝑎𝑥 𝑅𝑦 = 1 ∓

𝐶0

2
 

𝑚𝑎𝑥 𝑅𝑧 = 1 ± 𝐶0 

(3.3.17) 

For the maximum deformation 𝜂0 defined in Equation 3.3.1, which is usually 4% to 10% in 

observation,  

 𝜂0 =
𝐶0

2
≈ 0.3154휀 (3.3.18) 

Thus, the value of relative deformation magnitude 휀 is expected to be in the range from 0.12 to 

0.32 in practice. The relation between 휀 and 𝜂0 is shown in Figure 3.3.8. 

 

Figure 3.3.8: Relative deformation magnitude 휀 vs. deformation 𝜼𝟎 
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Convert the spherical coordinates to Cartesian coordinate: 

In the x-y plane from Top-view, the projection of the sample is bounded by a circle,  

 
𝑥2

(1 − 𝜂0 cos𝜔𝑡 𝑒−
𝑡
𝜏)2

+
𝑦2

(1 − 𝜂0 cos𝜔𝑡 𝑒−
𝑡
𝜏)2

= 1 (3.3.19) 

In the x-z plane from Side-view where  𝑦 =0, substitute Equation 3.3.13 into 3.3.14, the 

projection is bounded by the following closed curve, 

 
𝑥2

(1 − 𝜂0)𝑅𝑥𝑧
+

𝑧2

(1 − 𝜂0)𝑅𝑥𝑧
2/(𝑅𝑥𝑧 − 3𝜂0)

= 1 (3.3.20) 

Where 𝑅𝑥𝑧 = √𝑥2 + 𝑧2 ∈ [1 − 2𝜂0, 1 + 2𝜂0]. 

Combine Equation 3.3.15 and 3.3.16, the ellipse with length of semi-axis 𝑅𝑥 and 𝑅𝑧 can be 

expressed as, 

 
𝑥2

(1 − 𝜂0 cos𝜔𝑡 𝑒−
𝑡
𝜏)2

+
𝑧2

(1 + 2𝜂0 cos𝜔𝑡 𝑒−
𝑡
𝜏)2

= 1 (3.3.21) 

Thus, the closed curve described by Equation 3.3.20 has the same form as Equation 3.3.21, and 

can be approximated by an ellipse while the deformation 𝜂0 has a relatively small value. This 

indicates that the approach using an elliptical fit is valid in such circumstance. The error 

between the fitted ellipse area and actual projection area in the x-z plane is less than 5% for a 

deformation 𝜂0<10%. Thus, for both Top-view and Side-view video, measurement of damping 

constant/viscosity deformations will obtain values indistinguishable from theory for an 

oscillation consisting only of mode 𝑙=2, 𝑚=0.  

Based on the simulation, Figure 3.3.9 and 3.3.10 shows the projection of the oscillating sample 

in the x-y plane and the x-z plane separately, with an initial deformation 𝜂0=6%. From the Top-

view, the projection area changes from large to small then back and forth, while the projection 

in Side-view elongates in the x-axis and then the z-axis. After a certain period, the projections 

in both planes will be convergent to unit sphere when the oscillation is damped out. 
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Figure 3.3.9: Oscillation mode 𝒍=2, 𝒎=0 projection in x-y plane (Top-view) 

 

 

    

Figure 3.3.10: Oscillation mode 𝒍=2, 𝒎=0 projection in x-z plane (Side-view) 
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Define the length of maximum/minimum semi-axis for projection in the x-z plane as, 

 
𝑅1 = max(𝑅𝑥 , 𝑅𝑧) = max (1 − 𝜂0 cos𝜔𝑡 𝑒−

𝑡
𝜏, 1 + 2𝜂0 cos𝜔𝑡 𝑒−

𝑡
𝜏) 

𝑅2 = min (𝑅𝑥, 𝑅𝑧) = min (1 − 𝜂0 cos𝜔𝑡 𝑒−
𝑡
𝜏, 1 + 2𝜂0 cos𝜔𝑡 𝑒−

𝑡
𝜏) 

(3.3.22) 

For the x-y plane, the length of semi-axis equals the radius of circle, 

 𝑅1 = 𝑅2 = 𝑅𝑥𝑦 = 1 − 𝜂0 cos𝜔𝑡 𝑒−
𝑡
𝜏 (3.3.23) 

Figure 3.3.11 and 3.3.12 shows the converging 𝑅1 and 𝑅2 in the x-y plane and the x-z plane. 

The radius deformation in the x-z plane is twice of that observed in the x-y plane, which is 

expected from evaluation of Equation 3.3.17 due to the double elongation in the z-axis. 

 

 

Figure 3.3.11: Damping under oscillation mode 𝒍=2, 𝒎=0 in x-y plane (Top-view) 
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Figure 3.3.12: Damping under oscillation mode 𝒍=2, 𝒎=0 in x-z plane (Side-view) 

 

 

(ii). For oscillation mode 𝑙=2, 𝑚=±1, set 𝐶1 = 3√
5

24𝜋
휀 = √6𝜂0. Due to the symmetry, only 

𝑚=1 is discussed here for convenience, and Equation 3.3.10 can be rewritten as, 

 𝑟 = 1 − 𝐶1 sin 𝜃 cos 𝜃 𝑒𝑖𝜑𝑒𝑖𝜔𝑡−
𝑡
𝜏 (3.3.24) 

When the sample has the maximum deformation,  

 𝑟 = √1 − 𝐶1 sin 2𝜃 cos𝜑 +
𝐶1

2

4
sin2 2𝜃 (3.3.25) 
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For projection in the x-z plane from Side-view where 𝜑=0,  

 𝑟 = 1 −
𝐶1

2
sin 2𝜃 (3.3.26) 

At 𝜃 = ±
𝜋

4
, the sample has maximum/minimum radius, 

 

max𝑅1 = 1 +
𝐶1

2
= 1 +

√6𝜂0

2
 

min𝑅2 = 1 −
𝐶1

2
= 1 −

√6𝜂0

2
 

(3.3.27) 

For any time at 𝜃 = ±
𝜋

4
, the length of maximum/minimum semi-axis is, 

 

𝑅1 = max(1 −
√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏, 1 +

√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏) 

𝑅2 = min(1 −
√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏, 1 +

√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏) 

(3.3.27) 

In the Cartesian coordinates where 𝑦=0, substitute Equation 3.3.13 into 3.3.26, the projection 

is bounded by the following closed curve, where 𝑅𝑥𝑧 = √𝑥2 + 𝑧2 ∈ [𝑅2, 𝑅1]. 

 
𝑥2 + 𝑧2

𝑅𝑥𝑧
+

𝑧𝑥

𝑅𝑥𝑧
2/√6𝜂0

= 1 (3.3.28) 

While  cos𝜔𝑡 ≥ 0 , 𝑅1 = 1 +
√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡

𝜏  and  𝑅2 = 1 −
√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡

𝜏 . Consider an 

ellipse with semi-axis 𝑅1 and 𝑅2 in the x’-z’ coordinates as shown in Figure 3.3.13. 

 

Figure 3.3.13: Ellipse Rotated by angle of 
𝝅

𝟒
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The equation of the ellipse in the x’-z’ coordinates is,  

 

𝑥′2

(1 −
√6𝜂0

2 cos𝜔𝑡 𝑒−
𝑡
𝜏)2

+
𝑧′2

(1 +
√6𝜂0

2 cos𝜔𝑡 𝑒−
𝑡
𝜏)2

= 1 
(3.3.29) 

With rotation of the coordinate by 𝜋/4, 

 [𝑥′
𝑧′

] = [
cos 𝜋/4 sin 𝜋/4

− sin 𝜋/4 cos 𝜋/4
] [

𝑥
𝑧
] (3.3.30) 

Hence, the equation of the ellipse in the x-z coordinates can be expressed as,  

𝑥2 + 𝑧2

[1 − (
√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏)2]2/[1 + (

√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏)2]

+
𝑧𝑥

[1 − (
√6𝜂0

2
cos𝜔𝑡 𝑒−

𝑡
𝜏)2]2/2√6𝜂0 cos𝜔𝑡 𝑒−

𝑡
𝜏

= 1 (3.3.31) 

Thus, the closed curve described by Equation 3.3.31 has the same form as and could be 

approximated to the Equation 3.3.28 of ellipse, for small 𝜂0. The error between fitted ellipse 

area and actual projection area in x-z plane is less than 7% for deformation 𝜂0<10%.  

For projections in the x-y plane from Top-view, the radius in y-axis is constant at 𝜃 =
𝜋

2
, 

 𝑅𝑦 = 𝑟(𝑡,
𝜋

2
, 𝜑) = 1 (3.3.32) 

The radius in the x-axis has the same value of max 𝑥 solved from Equation 3.3.31 which is also 

shown in Figure 3.3.13. Using the method of Lagrange multipliers,  

 
Maximize 𝑓(𝑥, 𝑧) = 𝑥 

s.t. 𝑔(𝑥, 𝑧) = 0 
(3.3.33) 

Where the constraint 𝑔(𝑥, 𝑧) is defined from Equation 3.3.31. 
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The Lagrange function is defined as,  

 

𝐿 = 𝑓 + 𝜆𝑔 

s.t. 
𝜕𝐿

𝜕𝑥
= 0, 

𝜕𝐿

𝜕𝑧
= 0, 

𝜕𝐿

𝜕𝜆
= 0 

(3.3.34) 

The maximum 𝑥 can be found as,  

 𝑅𝑥 = max 𝑥 = √1 +
√6𝜂

0

2
cos 𝜔𝑡 𝑒

−
𝑡

𝜏 (3.3.35) 

Thus, the projection of the sample in the x-y plane is approximately bounded by an ellipse as 

shown in Figure 3.3.14, with length of maximum/minimum semi-axis as follows,  

 
𝑅1 = 𝑅𝑥 = √1 +

√6𝜂
0

2
cos 𝜔𝑡 𝑒

−
𝑡

𝜏 

𝑅2 = 𝑅𝑦 = 1 

(3.3.36) 

 

 

Figure 3.3.14: Ellipse projected in x-y plane for mode 𝒍=2, 𝒎=±1 

As shown in Figure 3.3.15-3.3.16 and Figure 3.3.18-3.3.19, for the sample projection in the x-

y plane from Top-view with initial 𝜂0=6%, the deformation regarding to 𝑅1 is limited and 

decreased monotonously; from Side-view, the oscillating sample is deformed along the x’-axis 

and z’-axis in the directions of 𝜃 = ±
𝜋

4
. Both damped out and converges to the standard sphere 

for a certain decaying time. 

𝑅1 = max 𝑥 

𝑅2 = 1 

x 

y 
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Figure 3.3.15: Oscillation mode 𝒍=2, 𝒎=±1 projection in x-y plane (Top-view) 

 

   

   

Figure 3.3.16: Oscillation mode 𝒍=2, 𝒎=±1 projection in x-z plane (Side-view) 

The Side-view high-speed camera is also used to capture the solidification phenomenon of 

levitated molten alloy and provides an ultra-high frame rate. When the Side-view camera is set 

to 30 kHz acquisition rate, it would sometimes capture the oscillation motion of the molten 

droplet a few seconds before solidification during recalescence. Figure 3.3.17 clearly shows a 

sample oscillation under mixed mode of 𝑚=0 and 𝑚=±1 at 30 kHz from the Side-view camera, 

and the oscillation pattern shows agreement with the current theoretical predictions. 

x 

y 
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z 
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Figure 3.3.17: Side-view 30 kHz video showing mixed oscillation mode 𝒎=0, ±1 

 

Figure 3.3.18: Damping under oscillation mode 𝒍=2, 𝒎=±1 in x-y plane (Top-view) 
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Figure 3.3.19: Damping under oscillation mode 𝒍=2, 𝒎=±1 in x-z plane (Side-view) 

 

Consider the ratio of length of maximum and minimum semi-axis for sample projections on 

x-y plane and x-z plane in each oscillation mode 𝑙=2,  𝑚=0, ±1. 

When deformation 𝜂0 < 10%, we have the following predictions, 

(i). For mode 𝑙=2,  𝑚=0,  

In the x-y plane from Top-view, 
𝑅1

𝑅2
= 1 

In the x-z plane from Side-view, 
𝑅1

𝑅2
<

1+2𝜂0

1−𝜂0
< 1.35 

(ii). For mode 𝑙=2,  𝑚=±1,  

In the x-y plane from Top-view, 
𝑅1

𝑅2
< 1.04 

In the x-z plane from Side-view, 
𝑅1

𝑅2
<

1+
√6

2
𝜂0

1−
√6

2
𝜂0

< 1.30 
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Thus, in either oscillation mode with a reasonable degree of maximum/initial deformation  𝜂0, 

the radius ratio 𝑅1/𝑅2 in the x-z plane from the Side-view is expected to be less than 1.35 in 

theory, and the observations from video analysis of ISS EML experiments are usually in the 

same range. The radius ratio 𝑅1/𝑅2 in the x-y plane from the Top-view is expected to be near 

1.0 or slightly higher when oscillation mode 𝑙=2,  𝑚=0 is dominated; for oscillation dominated 

by mode 𝑙=2, 𝑚=±1 or with large  𝜂0, the theoretical radius ratio is still expected to be a small 

value less than 1.04, which also agrees with the experiments in most circumstances. In some 

cases, the x-y plane radius ratio could be far larger than the 1.05 limit especially after a rapid 

heater voltage change is applied. Other than the freely damped oscillation, the sample could 

have an inclination angle when the sample is subjected to an immediate unbalanced force, it 

would be inclined and the movement would be similar to a rigid body over a short time interval. 

After a brief recovery period, the influence of the EML positioner coil will stabilize the sample 

and it will turn back to the orientation vertical to the coil’s centerline. Thus, for a thermal cycle 

consisting of multiple pulse excitations, the sample will be usually more stable for the latter 

pulse. The Top-view projection has smaller radius ratio for a better viscosity measurement. 

Figure 3.3.20 and 3.3.21 shows a typical cycle performing pulse excited oscillation, from Top-

view and Side-view separately. In 0.2 and 5.8 seconds, two pulses were applied to excite the 

oscillation, and Figure 3.3.20(a) and 3.3.21(a) shows the responds of radius change through the 

ellipse fitting of projections in x-y plane and x-z plane. The changing radius shows agreement 

with the oscillating pattern analyzed above. In Figure 3.3.20(b) and 3.3.21(b), the radius ratio 

in each plane is plotted. In the x-y plane, the radius ratio is maximized at 1.04 for the first pulse, 

and decreases to less than 1.01 and become stable for the second pulse. In the x-z plane, the 

radius ratio is maximized at around 1.3 and converges to 1.0 as the sample damped out.  

During the oscillation process, the sample may be rotating along the z-axis or mis-oriented by 

an inclination angle. These conditions make it difficult to track a fixed semi-axis of the sample 

especially when the sample is also undergoing mode 𝑚=±1 oscillation. Thus, all the successful 

analyses using elliptical fitting use the length of the maximum semi-axis 𝑅1 and the length of 

the minimum semi-axis 𝑅2 for explicit computational convenience. 
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(a) Top-view length of radius vs. time 

 

(b) Top-view radius ratio vs. time 

Figure 3.3.20: Decaying oscillation analysis from Top-view video 

LEK-94 

cycle 20 -osc#1 -osc#2 
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(a) Side-view length of radius vs. time 

 

(b) Side-view radius ratio vs. time 

Figure 3.3.21: Decaying oscillation analysis from Side-view video 

LEK-94 

cycle 20 -osc#1 -osc#2 
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The radius ratio  𝑅1/𝑅2  in the x-y plane is more sensitive to oscillations mixed with 

mode  𝑚=±1. Referring to Equation 3.3.36 that describes the radius of a fitted ellipse in the x-

y plane subjected to oscillation mode 𝑙=2,  𝑚=±1, the damping term is nonlinear and the 

measurement of damping constant will be skewed, and thus an apparent viscosity would be 

obtained for oscillation mixed with 𝑚=±1 from Top-view. Otherwise, the measurement of 

damping constant in the x-z plane from Side-view is subjected to oscillation mode 𝑚=±1, 

would have limited influence due to linearity of the damping term in Equation 3.3.27, or in 

either the x-y plane or the x-z plane subjected to oscillation mode 𝑚=0, the damping term is 

linear in Equation 3.3.15 and Equation 3.3.16, which is directly reflected in the oscillating 

signal. 

During actual oscillation processes excited by a pulse, the result is usually a mixture of 

mode 𝑙=2, 𝑚=0 and mode 𝑙=2, 𝑚=±1. Based on the radius ratio 𝑅1/𝑅2 in both the x-y plane 

and the x-z plane, the proportion of each mode could be estimated and used to predict the 

skewness of the apparent viscosity measurement.  

Based on Equation 3.3.5 describing the droplet deforming shape, various values of 𝑎𝑙,𝑚 are 

selected to represent the mixture of different oscillation mode, from proportion of 𝑎𝑙=2,𝑚=0=1, 

𝑎𝑙=2,𝑚=±1=0 to 𝑎𝑙=2,𝑚=0=0, 𝑎𝑙=2,𝑚=±1=1, and the apparent damping constant 𝜏 is measured 

from simulation with a preset 𝜏=1. As shown in Figure 3.3.22, the damping constant is 

measured through pure oscillation mode 𝑙=2, 𝑚=0 to pure mode 𝑙=2, 𝑚=±1 at different sample 

deformation levels. Figure 3.3.22(a) and Figure 3.3.22(b) shows the measurement from the 

Top-view and the Side-view separately. In line with this approach, for an oscillation only 

subjected to mode 𝑙=2 without any other sample movement the simulation shows that the 

measured 𝜏  from the Side-view stays at 𝜏=1 with less than 5% error regardless of the 

oscillation mode; for measurement from the Top-view, the apparent 𝜏 ≈1 from 100% mode 

𝑚=0 to mixture of 50% mode 𝑚=0 and 50% mode 𝑚=±1, then the apparent 𝜏 decreases as 

the proportion of mode 𝑚=±1 increases to 100%. An error of 30% to 40% is introduced and 

results in an overestimation of the apparent value of for the measured apparent viscosity.  
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(a) Measurement damping value from Top-view 

 

 

(b) Measurement damping value from Side-view 

Figure 3.3.22: Measured damping constant in mixed oscillation mode 
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(a) Radius Ratio 𝑹𝟏/𝑹𝟐 from Top-view 

 

(b) Radius Ratio 𝑹𝟏/𝑹𝟐 from Side-view 

Figure 3.3.23: Radius Ratio 𝑹𝟏/𝑹𝟐 in mixed oscillation mode 
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Figure 3.3.23 shows the predicted Radius Ratio 𝑅1/𝑅2 subjected to the mixture of oscillation 

modes. From the Top-view, 𝑅1/𝑅2 is expected to be 1.0 and increased as more proportion of 

𝑚=±1 introduced, the behavior is more obvious for larger sample deformation; from the Side-

view, 𝑅1/𝑅2  has significant higher value while the deformation is large, since the fitted 

maximum radius 𝑅1 represents the dynamic longer z’-axis that has more elongation than 𝑅2.  

During a typical pulse excited oscillation, the radius ratio 𝑅1/𝑅2 from the Side-view is usually 

around 1.2 to 1.3 immediately following the pulse, and quickly drop below 1.1 to 1.2 then 

gradually decreased to 1.0 for the damping process, while the Top-view 𝑅1/𝑅2 usually has a 

larger than 1.04 value following the pulse, then decreases below 1.03 and is stabilized near 1.0. 

As shown in Figure 3.3.2 and Figure 3.3.24, pulse size has significant influence on the initial 

and/or maximum deformation of the sample, either the radius deformation in the x-y plane from 

the Top-view and radius ratio in the x-z plane from the Side-view increases linearly with the 

pulse volts, where the Top-view initial and/or maximum radius deformation is in the range of 

4.3% to 8.5%, and the Side-view initial and/or maximum radius ratio 𝑅1/𝑅2 is in the range of 

1.19 to 1.34 upon the analysis from ISS EML experiments. 

 

Figure 3.3.24: Maximum Radius Ratio 𝑹𝟏/𝑹𝟐(Side-view) vs. pulse size 
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As mentioned above, in practice the Top-view initial and/or maximum radius ratio 𝑅1/𝑅2 could 

exceed the theoretical limit of 1.04 following a pulse excitation. The sample was subjected to 

unbalanced force that makes the deformed droplet inclining or rotating in addition to the self-

oscillation. For a deformed sample with a large inclination angle to vertical z-axis, the 

projection of the sample on the x-y plane that is recorded using the Top-view camera would be 

approximately of elliptical shape with relatively smaller eccentricity, i.e. the radius ratio 𝑅1/𝑅2 

could be higher than ideal situation. The unbalanced force is assumed to be from a pulse that 

hit the sample inhomogeneously. During an ISS EML experiment, due to the stabilization 

function of coil positioner, the sample would move periodically such that it is offset from the 

centroid of the coil in a steady frequency about 1-2 Hz, and the sample could be in any arbitrary 

offset position relative to the centroid of the coil at the instant the heater pulse is applied. We 

define the magnitude of the offset as the percentage of distance from the centroid of the sample 

to the centroid of the coil relative to the radial size of the sample in an undeformed status. 

Figure 3.3.25 shows a typical pattern representing sample movement from the Side-view during 

nominal operations. The magnitude of the offset is plotted in the x-axis and the z-axis 

separately, and the specific position of the sample is denoted at the time when the pulse was 

applied. The offset magnitude in the z-axis, vertical to the centerline of the coil, is the 

dominating factor for the inhomogeneous pulse force on the sample where the sample would 

be subjected to more force near the pole of its longer semi-axis. The induced force is much 

stronger in the horizontal direction than the vertical direction and thus inducing an inclined 

angle relative to the z-axis is easy. Figure 3.3.26 shows the Top-view radius ratio vs. magnitude 

of the offset in the z-axis from the Side-view. The measured radius ratio from the Top-view 

shows an increasing trend with the offset magnitude between sample and the centerline of the 

coil. While the sample is located at a longer distance from the coil’s centerline, there would be 

more imbalance of the pulse force on a single pole of the longer semi-axis of the ellipsoid 

shaped droplet sample, and the torque on the sample would become larger thus causing the 

sample to incline and rotate further. It should be noted that the measured radius ratio is nominal 

and exaggerated which can be also be influenced by the deflection due to pulse application, 

thus the ratio might be larger than the predicted limits of 1.04. Figure 3.3.27 shows how the 

fraction of oscillation mode 𝑚=±1 will be increased with larger offset from centerline of coil 
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at the time of pulse application. When the offset is larger than 4%, mixed-mode oscillations 

result with a proportion greater than 50% 𝑚=±1. 

 

Figure 3.3.25: Magnitude of the offset between sample and coil vs. time 

 

Figure 3.3.26: Radius ratio (Top-view) vs. magnitude of the offset 

between sample centroid and coil’s centerline (Side-view) 
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Figure 3.3.27: Mixed oscillation mode vs. magnitude of the offset 

between sample centroid and coil’s centerline (Side-view) 

Usually after a short recovering time less than 0.5 to 1.0 seconds, the inclination of the sample 

caused from the inhomogeneous pulse force would be suppressed by the positioner. However, 

the sample might still keep rotating along the z-axis at a level of around a few Hertz. The 

damping constant/viscosity measurement from the Top-view would not influenced by this 

rotation, since the shape of the sample projection in the x-y plane is unchanged. In contrast, the 

projection of the sample on the x-z plane from the Side-view would have a distinctive shape 

change over time that skews the oscillation signal and generates a wavy pattern for the fit of 

𝑅1 and 𝑅2 superimposed on the original oscillation curve.  This effect introduces difficulty in 

interpreting the signals used for viscosity measurement from the Side-view videos. 
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3.3.4 Anharmonic oscillation 

The damped oscillation of a levitated viscoelastic droplet could be considered as a spring-mass-

damper system[32]. The harmonic oscillation of the ellipsoidal droplet is governed by the 

classical 2nd ordinary differential vibrating equation as follows, 

 
𝑑2𝑅

𝑑𝑡2
+ 2𝛿

𝑑𝑅

𝑑𝑡
+ 𝜔0

2𝑅 = ℎ cos(𝜔𝑒𝑥𝑡 𝑡) (3.3.37) 

Where 𝑅 is the deformable radius of the droplet, the damper 𝛿 = 1/𝜏 is governed by damping 

constant 𝜏 of the liquid which is usually in range of 0.2 to 5.0, and 𝛿 has the corresponding 

value of 5.0 to 0.2, the spring elastic term 𝜔0 = 2𝜋𝑓0 is governed by the surface tension of the 

droplet where the oscillation frequency 𝑓0 is usually in the range of 30 to 40 Hz for most 

sample alloy with 6.5mm in diameter, and the term ℎ = 𝐹/𝑚  for external force 𝐹  and 

mass 𝑚. The oscillation is a free vibration when ℎ = 0, and for ℎ ≠ 0 the oscillation is a forced 

vibration subjected to external periodical forces at angular frequency 𝜔𝑒𝑥𝑡. For electromagnetic 

levitated droplet, the external force is induced from positioner that stabilizes the sample, where 

𝜔𝑒𝑥𝑡=150 kHz for the SUPOS coil. 

For 𝛿 ≪ 𝜔0 and 𝜔0 ≪ 𝜔𝑒𝑥𝑡, the analytical solution to Equation 3.3.37 is, 

 𝑅(𝑡) = 𝐴0𝑒
−

𝑡
𝜏 cos(√𝜔0

2 − 𝛿2 ∙ 𝑡 + 𝜑0) + 𝑏0 sin(𝜔𝑒𝑥𝑡𝑡 + 𝜑𝑒𝑥𝑡) (3.3.38) 

Where 𝐴0 = √𝑅(𝑡0)2 +
𝛿𝑅(𝑡0)2

𝜔0
2−𝛿2 ≈ 𝑅(𝑡0) is the amplitude subjected to initial deformation,  

and 𝑏0 =
ℎ

√(𝜔𝑒𝑥𝑡
2−𝜔0

2)2+4𝛿2𝜔𝑒𝑥𝑡
2

≈ 0. 

Thus, the solution could be approximately expressed in Equation 3.3.39, which has the same 

form in Equation 2.3.2 that is used to the damping constant fitting and viscosity fitting. 

 𝑅(𝑡) = 𝑅(𝑡0)𝑒
−

𝑡
𝜏 cos(𝜔0𝑡 + 𝜑0) (3.3.39) 
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Consider ellipse area  𝐴 = 𝜋𝑅1𝑅2 , where 𝑅1  and 𝑅2  is the radius of the maximum and 

minimum semi-axis. Assume 𝑅2 = 𝑐𝑅1 for 𝑐 ≤ 1, substitute 𝐴 into Equation 3.3.37, and the 

equation becomes, 

 
𝑑2𝑅1

𝑑𝑡2
+ 2𝛿

𝑑𝑅1

𝑑𝑡
+

𝜔0
2

2
𝑅1 +

1

𝑅1
(
𝑑𝑅1

𝑑𝑡
)2 =

ℎ

2𝜋𝑐𝑅1
cos(𝜔𝑒𝑥𝑡 𝑡) (3.3.40) 

Here, the lower order term (
𝑑𝑅1

𝑑𝑡
)2 could be neglected, and Equation 3.3.40 has the similar form 

as Equation 3.3.37 with the same damping term. Thus, it is feasible to use either the time 

dependent radius or area of an ellipse as the oscillating signal to fit the damping constant and 

measure the viscosity.  

During an oscillation subjected to mixed-mode or large deformation, there would exist 

anharmonic nonlinear effects. For a deformed ellipsoidal droplet, it has less surface energy near 

the poles of the shorter semi-axis where the curvature is smaller, than the longer semi-axis, and 

such droplet is prone to elongate along the z-axis as a spring that is easier to expand than 

suppress[32]. For the anharmonic oscillation, it may behave as the spring-mass-damper system 

consisting of multiple frequencies in the modal analysis. Introducing the high order nonlinear 

terms to Equation 3.3.37, Equation 3.3.41 represents the nonlinear anharmonic oscillations, 

 
𝑑2𝑅

𝑑𝑡2
+ 2𝛿

𝑑𝑅

𝑑𝑡
+ 𝜔0

2𝑅 + 𝜔1
2𝑅3 + ⋯ = ℎ cos(𝜔𝑒𝑥𝑡 𝑡) (3.3.41) 

From the ISS EML experiments, secondary or multiple frequencies could sometimes be 

observed from the FFT analysis of the oscillation signal. Figure 3.3.28 represents an example 

showing the oscillation subjected to two frequencies. For molten FeCrNi, the primary 

oscillation frequency is around 𝑓0 =37.5 Hz, and occasionally the secondary frequency is 

around 𝑓1=37.5 Hz. Thus, it is necessary to examine the influence of the anharmonic nonlinear 

effects on the oscillating signal for damping fitting and viscosity measurement. 
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Figure 3.3.28: Oscillation subjected to primary and secondary frequency 

 

The ‘ode45’ method in Matlab[63] is used to solve Equation 3.3.41 numerically. For the 

simulated oscillation, the dimensionless radius 𝑅=1, damping constant 𝜏=1, the primary 

frequency 𝑓0 =37.5 Hz, and secondary frequency 𝑓1 =32.0 Hz. Figure 3.3.29 shows the 

numerical simulation of the anharmonic oscillation, and compared to harmonic oscillation. 

Under current experimental parameters, there is no significant variance between the two types 

of oscillation, and the nonlinear effect of this type could considered to be negligible for the 

application of damping constant fitting and viscosity measurement. 

FeCrNi 

cycle 13 -osc#2 

 

Primary frequency:  

𝑓0=37.5 Hz 

 

Secondary frequency:  

𝑓1=32.0 Hz 
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Figure 3.3.29: Simulation of harmonic and anharmonic oscillation 
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4 Magnetohydrodynamic Simulation 

4.1 Magnetohydrodynamic Modeling 

Magnetohydrodynamics (MHD) of the electromagnetically levitated (EML) molten alloy 

droplet is the interacting phenomenon consisting of the electromagnetic field through the 

conductive liquid induced from the EML coil and the convection flow inside the droplet that is 

stirred from the induced electromagnetic force[47]. The predications of the convection velocity 

and flow pattern inside the levitated droplet is essential for thermophysical properties 

measurement and investigations of alloy solidification which depends on the velocity and status 

of the internal convection flow during the experiment.  

The flow inside the levitated droplet could be assumed as compressible and viscous, which is 

governed by the dimensionless variable Navier-Stokes equations, 

 

∇ ∙ �⃑� = 0 

𝜕�⃑� 

𝜕𝑡
+ �⃑� ∙ ∇�⃑� = −∇𝑝 +

1

𝑅𝑒
∇2�⃑� + 𝐹  

(4.1.1) 

where �⃑�  is the velocity vector, 𝑝 is the pressure, 𝜇 and 𝜌 is the viscosity and density of the 

liquid, and 𝐹  is the momentum source. For the EML coil, the momentum source term 𝐹  is the 

electromagnetic force per unit volume. The Navier-Stokes equations above could be solved 

using appropriate numerical methods. 

The boundary conditions are assumed to be a slip wall, where there is no shear stress on the 

free surface, and no flux across the surface, 

 
𝜏 ∙ 𝑖̂𝑡|𝑟=1 = 0 

𝑢𝑟|𝑟=1 = 0 
(4.1.2) 

Where 𝜏 is the shear stress, and 𝑖 𝑡 is the tangent unit vector. 

The convection flow could be characterized by the Reynolds number (Re) indicating the ratio 

of inertial effects to viscous effects. Based on the Reynolds number, the laminar or turbulent 
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status of the internal convection flow could be evaluated and support further analysis of the 

thermophysical properties or solidification data. The Reynolds number is defined as,  

 𝑅𝑒 =
𝜌𝑢𝑑

𝜇
 (4.1.3) 

where 𝜇 is the viscosity, 𝜌 is the density, 𝑢 is the convection velocity, and 𝑑 is the diameter 

of the sample droplet. 

 

4.1.1 Simulation methodology 

The electromagnetic forces in the molten alloy droplet induced from the EML coil could be 

solved through use of Maxwell’s equations.  

In the EML simulation, the induced eddy current in the levitated sample is responsive to the 

change in the coil current, and the system could be treated as magnetoquasistatic and a reduced 

form of Maxwell’s equations could be defined in Equation 4.1.4, where the time derivative of 

the electric displacement field term in the third equation of Maxwell’s could be neglected[36].  

 

∇ × �⃑� = 0 

∇ × �⃑� = −
𝜕�⃑� 

𝜕𝑡
 

∇ × �⃑⃑� = 𝐽  

(4.1.4) 

where 𝐽  is the induced current, �⃑⃑�  is the magnetic field, �⃑�  is the magnetic flux density, and �⃑�  

is the electric field.  

The electromagnetic force which is also known as Lorentz force is written as, 

 𝐹 = 𝐽 × �⃑�  (4.1.5) 

The reduced Maxwell’s equations could be solved numerically and the Lorentz forces per unit 

volume could be calculated using the method of mutual inductances[5]. A subroutine was 
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developed[41] to calculate the electromagnetic force, and the calculated force field could be 

implemented into the Navier-Stokes equations as the momentum source term. 

The MHD model is developed using the commercial package ANSYS Fluent[65] to simulate 

the internal fluid flow and predict the convection velocity in the electromagnetic levitated 

droplet under different thermophysical conditions and power settings of coil. The model was 

validated with the experimental data of an EML Co16Cu84 droplet by the flow velocity on the 

surface of the sample[46]. 

The geometry of two-dimensional axisymmetric semi-sphere with radius of 3.25 mm is used, 

and the mesh consists of optimized number of 550 cells and 591 nodes as shown in Figure 4.1.1. 

The electromagnetic force is calculated using the subroutine and implemented into the mesh as 

shown in Figure 4.1.2. The estimated skin depth is about 2.5mm[66] where the electromagnetic 

force dominates around 77% of the sample’s depth from its surface. 

 

Figure 4.1.1: Two-dimensional axisymmetric model for levitated droplet 
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Figure 4.1.2: Implemented electromagnetic momentum force 

For a typical pattern of the convection flow inside the liquid droplet in a heater dominated 

electromagnetic field, there are two circulation loop near the stagnation lines at the equator of 

the sphere, where the induced electromagnetic force has the maximum magnitude. Figure 4.1.3 

shows the distribution of the electromagnetic force and vector of convection velocity on the left 

and right of the sphere separately. 

 

Figure 4.1.3: Electromagnetic force and convection flow inside the droplet 
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4.1.2 Laminar and turbulent model 

With the introduced electromagnetic force as the momentum source term, both of laminar and 

turbulent model is used in the simulation to predict the convection velocity.  

For the convection flow of Newtonian fluid with relative low velocity and Reynolds number, 

the laminar model is appropriate and accurate. The ANSYS fluent solves the Navier-Stokes 

equations using the finite volume method. For a levitated molten droplet, when the Reynolds 

number as defined in Equation 4.1.3 is larger than 500 to 600, the internal flow could be 

considered as developed to be turbulence upon observation of experiments[45].  

For turbulence simulation, many models were developed including the approaches of Reynolds-

averaged Navier–Stokes equations (RANS), direct numerical simulation (DNS), and Large 

eddy simulation (LES). The DNS method directly computes the turbulent eddies at all the scales 

which requires very fine mesh grid and tremendous computing resources. The LES method 

filters out the small scale eddies and computes the large scale eddies only, and uses a universal 

model to characterize the smaller scale eddies that are filtered out, based on the assumption that 

the turbulence has certain similarity in the scales that are small enough. Actually, the turbulence 

at intermediate scale may have some similarities when it has a relative high Reynolds number, 

and this type of scale could be defined as the inertial subrange. In practice, it is feasible to filter 

the eddies at the inertial subrange to reduce computing intensity, however the inertial subrange 

is usually still quite small in the near wall region where also requires very fine mesh grid and 

large computing intensity. Instead of computing the turbulent eddies directly, the RANS 

method solves the Navier–Stokes equations for multiple times and averages the results 

statistically. The RANS method actually convert the non-steady state turbulence problem to a 

steady-state problem with an extra Reynolds stress term, and only seeks the time-averaged 

results for a rough estimation, while it has loose requirement for the mesh grid and moderate 

computing intensity. 

The RANS method which requires less computing resources is used in the turbulence model 

for a preliminary estimation of the turbulence status of the convection flow inside the droplet. 

The renormalization group (RNG) 𝑘-휀 turbulence model is one of the RANS methods which 
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is effective for the simulation of levitated molten alloy droplets[43]. The vector of turbulence 

velocity 𝑢 consists of the time-averaged velocity �̅� and the fluctuation �̅�′,  

 

𝑢 = �̅� + 𝑢′ 

�̅� = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑢 𝑑𝑡

𝑇

0

 
(4.1.6) 

And Equation 4.1.1 becomes the time-averaged Navier–Stokes equations,  

 
𝜕�̅�

𝜕𝑡
+ �̅� ∙ ∇�̅� = −∇�̅� +

𝜇

𝜌
∇2�̅� + 𝐹 − ∇ ∙ (𝑢′𝑢′̅̅ ̅̅ ̅̅ ) (4.1.7) 

where �̅�  is the averaged pressure, and 𝑢′𝑢′̅̅ ̅̅ ̅̅  is the Reynolds stress term describing the 

additional stresses generated from turbulent fluctuations. 

Additional two equations are included in the 𝑘-휀 turbulence model, including the turbulent 

kinetic energy equation and energy dissipation equation representing the dissipation rate of the 

turbulent kinetic energy, 

 

𝜕𝑘

𝜕𝑡
+ �̅� ∙ ∇𝑘 = (𝑢 +

𝑢𝑡

𝜎𝑘
) ∇2𝑘 + 𝑃𝑘 − 휀 

𝜕휀

𝜕𝑡
+ �̅� ∙ ∇휀 = (

μ

𝜌
+

𝑢𝑡

𝜎
)∇2휀 + 𝐶1

휀

𝑘
𝑃𝑘 − 𝐶2

휀2

𝑘
 

(4.1.8) 

With additional boundary conditions, 

 

𝜕𝑘

𝜕𝑟
|
𝑟=1

= 0 

𝜕휀

𝜕𝑟
|
𝑟=1

= 0 

(4.1.9) 
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Where the turbulent kinetic energy is defined as 𝑘 =
1

2
𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅ ̅, 𝑃𝑘 = 𝜏𝑖𝑗(𝜕�̅�𝑖 𝜕𝑥𝑗⁄ ) is the kinetic 

energy production, 𝑢𝑡 = 𝐶𝜇(𝑘
2 휀⁄ ) is the kinematic eddy viscosity, and ε =

μ

𝜌

𝜕u𝑖′̅̅ ̅̅

𝜕𝑥𝑗

𝜕u𝑖′̅̅ ̅̅

𝜕𝑥𝑗
 is the 

dissipation rate. 

In Equation 4.1.8, the RNG 𝑘-휀 model uses the following coefficients,  

 

𝐶1 =1.42 

𝐶2 =1.68 

𝐶𝜇=0.085 

𝜎𝑘=0.72 

𝜎 =0.72 

(4.1.10) 

 

4.2 Simulation Results 

4.2.1 Steady-state model 

For the levitated droplet subjected to a constant heater power or positioner only, the internal 

convection flow will achieve and maintain at a steady-state status in a short time after the 

electromagnetic force is imposed on the sample. With a fixed positioner power, the convection 

velocity inside the droplet is predicted for various heater power levels and different 

thermophysical propriety values that depends on the temperature. Based on the magnitude of 

the corresponding Reynolds number, the flow conditions are evaluated to be either laminar, 

turbulence, or laminar-turbulence transition status. 

Figure 4.2.1 shows the simulation results of the convection velocity of FeCrNi molten droplet 

with Tm=1715K, the positioner is maintained at 5.21V, the heater voltage is set from 0.0V to 

6.5V, under the temperature from Tm-200 to Tm+200. There is a heat limit that the sample could 

never achieve certain lower temperature while the heater is constant on. Figure 4.2.2 shows the 

corresponding Reynolds number, the laminar flow starts to transit to turbulence from Re = 450, 

and considered as fully developed turbulence above Re = 600. 
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Figure 4.2.1: Convection velocity vs. Heater voltage for FeCrNi 

 

Figure 4.2.2: Reynolds Number vs. Heater voltage for FeCrNi 
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Both the laminar and turbulent models are utilized in the simulation. While the results from the 

𝑘-휀 turbulence model is time-averaged with less accuracy, it is feasible to use the results from 

the laminar model to calculate the Reynolds number for convective flow in the laminar or 

transitional states. In Figure 4.2.3, the critical heater voltage versus different droplet 

temperature is plotted where the flow is considered as turbulent above the critical curve and it 

is laminar or transitional below the curve. This provides a guideline for recommending heater 

power settings when quiescent/laminar flow is desired such as during viscosity measurement. 

 

Figure 4.2.3: Critical Heater voltage vs. Temperature for FeCrNi 

 

4.2.2 Transient model 

During the ISS EML thermal cycles designed for thermophysical property measurement, the 

heater is usually off or maintained at a small voltage to allow the sample to freely cool down 

with minimal flow. For viscosity measurement, the molten droplet is excited by a heater pulse 

for a duration of 0.1 seconds with pulse size varying from 5V to 9V. It is necessary to examine 

the internal flow status after the heater pulse is applied to determine if residual turbulence 

induced by the heater pulse is sufficient to influence the viscosity measurement significantly. 
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Figure 4.2.4: Developing convection flow inside levitated droplet 

 

 

t=0.02 s t=0.04 s t=0.06 s 

t=0.08 s t=0.10 s t=0.20 s 
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In the transient model, we assume the application of a heater voltage pulse which is not 

subsequently released. Figure 4.2.4 shows the convective flow as a function of time after pulse 

application. The flow initiates on the droplet surface and transitions to the inside of the droplet 

as the two circulation loops near the surface develop and move towards the interior; during this 

process, the stagnation line at the equator gradually becomes clear. The convective velocity is 

maximized near the droplet surface and below refers to this extreme value as the toroidal loop 

causes internal recirculation. 

For a molten FeCrNi droplet at Tm, Figure 4.2.5 shows the increasing recirculation velocity 

versus the elapsed time from the heater on with voltage of 5.0V to 8.0V. The recirculation flow 

achieves equilibrium after 0.2 seconds, and the transient velocity achieves 80% to 90% of the 

steady-state velocity in 0.1 seconds depending on the power level. After 0.1 seconds, the 

corresponding Reynolds number is increased to well above the critical value of 600, indicating 

that the heater pulse could introduce fully turbulent conditions in only 0.1 seconds. As shown 

in Figure 4.2.6, for FeCrNi at Tm, the Reynolds number at 0.1 seconds elapsed time is plotted 

versus different applied pulse voltage magnitudes. 

 

Figure 4.2.5: Convection velocity vs. time for FeCrNi at Tm 
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Figure 4.2.6: Reynolds number vs. 0.1s Pulse for FeCrNi at Tm 

For sample droplet subjected to a 0.1 seconds heater pulse, the droplet will be squeezed in the 

equator by the electromagnetic momentum forces induced from the coil. As discussed 

previously, the squeezed sample will shrink in the x-y plane, and elongate along the z-axis 

accordingly. When the pulse is released after 0.1 seconds, the sample will achieve the 

maximum/initial deformation of the equator radius, which is usually from 4% and up to 9%, 

and then it will start the damped oscillation process.  

Additionally, consider the influence of the shape of droplet on the convection velocity by 

comparing flow in the spherical state versus the deformed shape. Compared to the spherical 

droplet, the maximum recirculation velocity in the squeezed droplet will be reduced due to the 

decrease in electromagnetic momentum forces. As shown in Figure 4.2.7, the simulation 
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(a) Undeformed droplet (b) Squeezed droplet 

Figure 4.2.7: Convection flow inside undeformed and squeezed droplet 

 

4.3 Turbulence Decaying Time 

For viscosity measurement using oscillating droplet technique in space, the sample is excited 

by a heater pulse to start the damped oscillation. Application of the 0.1 seconds heater pulse 

inevitably induces turbulent flow. The magnitude of the turbulence can be characterized using 

the Reynolds number calculated from the convection velocity and thermophysical properties 

that depend on temperature.  

Turbulent stirring inside the molten droplet can significantly influence the overall damping 

behavior of the droplet oscillation, such that the droplet would damp out much quicker than 

under quiescent conditions due to the added momentum transfer from the turbulent eddies, and 

the measured apparent viscosity from the damped oscillating signal would be overestimated 

while the turbulence exists. Thus, for a valid viscosity measurement, the induced turbulence 

from the pulse should be allowed to decay, and it is necessary to evaluate the time required to 

achieve appropriate laminar flow conditions.  
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For each oscillation of a molten FeCrNi droplet with 0.1 seconds pulse excitation, the Reynolds 

number is calculated based on its maximum recirculation velocity from the transient MHD 

simulation at different pulse application temperatures, and the duration of the Phase-1 region is 

evaluated from the oscillating signals as described in Section 3.2. Figure 4.3.1 plots the Phase-

1 duration time for FeCrNi oscillations subjected to 0.1 seconds of 6.01V and 7.01V pulse at 

temperature from 1680K to 1840K, and compared with the estimated turbulence decay 

timescale reported in the references. 

Hyers [41] defined time scale for viscous relaxation where the viscous drag reduces the internal 

flow inside the droplet to zero, which is also shown as the dash curve in the figure, 

 𝑡 =
𝜌𝑙2

𝜇
 (4.3.1) 

Where 𝜌  and 𝜇  is the temperature dependant density and viscosity of the liquid, 𝑙  is the 

characteristic length of the flow, for levitated droplet 𝑙 ≈
𝑅

3
 for the droplet radius 𝑅.  

Vassilicos [68-70] developed a theory of turbulent decay through evaluation of flow energy 

reduction based on the von Karman-Howarth turbulence equation[67], derived from the Navier-

Stokes Equation, and developed a correlation which is also shown as a dotted curve in Figures 

4.3.1 – 4.3.4. 

 𝑢′2 = 𝑢0′
2(1 + 𝑐𝑡)𝑛 (4.3.2) 

Where 𝑢′ is the fluctuating velocity as defined in Equation 4.1.6, and could be estimated as 

square root of two times of the turbulence kinetic energy  𝑢′ = √2𝑘 , 𝑐 > 0  is a constant 

coefficient, 𝑛 lies between 1.2 and 1.43, and 𝑡 is the elapsed time. 

Here, 𝑢0′ is the fluctuating velocity at the time pulse is applied and released, and the internal 

convection reaches a maximum, 𝑢′ has the value corresponding to when the Reynolds number 

leaves the turbulence region just below the value of 500-600, and the elapsed time 𝑡 required 

for turbulence decay could be estimated accordingly under different pulse and temperature 

settings,. 
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Figure 4.3.2 and Figure 4.3.3 shows the Phase-1 duration time versus temperature for LEK-94 

and MC-2 subjected to different pulse sizes. The duration of Phase-1 region has increased value 

with both pulse voltage and temperature, and shows agreement with the theoretical estimation. 

 

Figure 4.3.1: Phase-1 duration time vs. Temperature/Pulse voltage for FeCrNi 

 

Figure 4.3.2: Phase-1 duration time vs. Temperature/Pulse voltage for LEK-94 
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Figure 4.3.3: Phase-1 duration time vs. Temperature/Pulse voltage for MC-2 

Figure 4.3.4 shows the Phase-1 duration time versus different values of Reynolds number for 

all of the different compositions (note that previous figures were plots as a function of 

temperature). By selecting the Reynolds number, which includes the effects of both temperature 

dependent thermophysical properties and pulse size that would introduce different level of 

turbulence, a summary of normalized behavior is apparent. The duration of the Phase-1 region 

increases approximately linearly with the magnitude of Reynolds number, indicating that the 

turbulent decay time is the dominating factor in the Phase-1 region of the pulse excited 

oscillation. Finally, an empirical formula could be given to estimate the turbulence decay time 

as a function of Reynolds number. 

 Turbulence decaying time:  

 𝑡 = 1.413 ∙ log10(𝑅𝑒) − 3.317 (4.3.3) 
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Figure 4.3.4: Phase-1 duration time vs. Reynolds Number 
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5 Results and Discussions 

5.1 Viscosity Analysis 

Section 3.1-3.2 discussed the damping-transition for the pulse-excited sample droplet.  This 

transition which could be divided into two distinct behavioural regimes - Phase-1 and Phase-2. 

The damping of the sample in Phase-1 region is assumed to be significantly influenced by the 

internal turbulent convection induced by the excitation pulse and to a lesser extent by the large 

shape-deformation which occurs during the initial stages of surface oscillation and sample 

motion. When the droplet is subjected to a 5V to 9V heater pulse, the sample showed an 

apparent viscosity 2-4 times larger than the reference values. As shown in Figure 5.1.2, the 𝑘-

휀  turbulence model shows a ratio of 2-9 of the turbulence effective eddy viscosity to the 

molecular viscosity with an average value around 5.5.  This is on the same order of magnitude 

as for the present work. Prior to the decay of turbulence, the oscillation will have a faster 

damping rate. Thus, an overestimated apparent viscosity would be introduced in the Phase-1 

region while the turbulence exists, and the time length of Phase-1 region could be considered 

as the same time scale for turbulence decay which as discussed in Section 4.3. In the Phase-2 

region, the droplet becomes quiescent with an associated reduction in deformation with 

conditions favoring accurate measurement of viscosity. 

Figure 5.1.1 and 5.1.3 shows the measured viscosity in the Phase-1 and the Phase-1 regions, 

respectively. In the Phase-1 region, the measured viscosity is overestimated which could be up 

to two times larger than the viscosity measured in the Phase-2 region. After the transition from 

Phase-1 to Phase-2 oscillation, the damping rate steadily increases as well as the viscosity. In a 

limited number of cases the heater was turned on to a desired constant voltage setting to control 

the cooling rate of the sample during oscillations. As discussed in Section 4.2.1, during a 

thermal hold with constant heater voltage, the internal convection of the sample droplet will 

achieve and maintain a steady-state value. Specifically, for FeCrNi cycle 12, the 2.01V constant 

heater would induce fully turbulent conditions during all oscillations based on predictions using 

MHD simulations. While the sample transitions from Phase-1, with pulse-induced turbulence 

at elevated levels, it continues to maintain a relatively smaller-scale turbulence level induced 

from the heater constantly throughout the Phase-2 region. The viscosity measured in Phase-2 
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also shows an overestimated value and thus should be considered as an invalid measurement 

result. 

 

Figure 5.1.1: Measured viscosity in Phase-1 region for FeCrNi 

 

Figure 5.1.2: Turbulent viscosity ratio in MHD simulation for FeCrNi 
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Figure 5.1.3: Measured viscosity in Phase-2 region for FeCrNi 

As discussed in Section 3.3.2, larger deformation of the sample induces internal turbulent 

convection which would dampen oscillation faster and skew the viscosity measurement. 
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these conditions render analysis result to be viewed as an invalid measurement.  The measured 

viscosity has acceptable error below the limits. 
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Figure 5.1.4 shows the viscosity and deformation dominated regions for FeCrNi at different 

temperatures, and compares the transition limit with experimental data including the magnitude 

of the deformation and the temperature at the end of the Phase-1 region. The suggested 

deformation limit is between 5% to 1% for temperatures from Tm-40 to Tm+10, and between 

3% and 1% for temperatures from Tm+10 to Tm+100. The deformation at the end of Phase-1 

region is basically observed to be in-line with or below the critical deformation limits, 

indicating that the sample would already have damped to a state characterized by relatively 

small deformations before the turbulence fully decayed.  

Figure 5.1.5 and Figure 5.1.6 shows the deformation limits for priority LEK-94 and MC-2 

respectively, which represents similar observations. For LEK-94, the deformation limit is 

between 4.5% to 3% for temperature from Tm-75 to Tm+10, and between 3% to 1.5% for 

temperature from Tm+10 to Tm+100. For MC-2, the deformation limit is between 7.5% to 3% 

for temperature from Tm-60 to Tm+40, and between 3% to 2.0% for temperature from Tm+40 

to Tm+100. 

 

Figure 5.1.4: Viscosity and deformation dominated region for FeCrNi sample droplet 
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Figure 5.1.5: Viscosity and deformation dominated region for LEK-94 sample droplet 

 

Figure 5.1.6: Viscosity and deformation dominated region for MC-2 sample droplet 
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Figure 5.1.7 shows the sample deformation at end of Phase-1 region versus the Phase-1 duration 

time. The deformation shows linearly decreasing behavior with the duration of the Phase-1 

region indicating that the transition of the damping from Phase-1 to Phase-2 is not bounded by 

a specific magnitude for the deformation and could happen at an arbitrary deformation in a wide 

range – from 5% to below 1%. Since the length of the Phase-1 region is basically related to the 

pulse induced turbulence decay time, the critical sample deformation at the transition point 

could be assumed to be primarily determined by the turbulence intensity, which could also be 

characterized from the corresponding Reynolds number (determined by the thermophysical 

properties and applied heater pulse power). The Phase-1 duration time could be estimated from 

empirical formula defined in Equation 4.3.2 representing the turbulence decay time scale. 

 

Figure 5.1.7: Deformation vs. duration time at end of Phase-1 region 
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deformation increases linearly with pulse voltage if oscillations are dominated by mode 𝑚=0. 

If mode m=±1 dominates, the deformation behaviour is significantly different. Although there 

were only two data points for 9.4V pulses, the difference in initial deformation was strikingly 

different due to a change from mode m=0 to m=±1. When mode m=±1 dominates, as seen in 

thermal cycle 7 of the LEK-94, initial deformation was limited to 4.6% which is well below the 

expected value of around 10%. Thermal cycle 8 of the LEK-94 alloy at the same 9.4V pulse 

application showed m=0 behavior and the initial deformation followed the expected trend with 

excitation voltage. As more oscillation mode 𝑚=±1 is added, the apparent viscosity will 

display up to 35% error as predicted in section 3.3.3 – which is not appropriate for viscosity 

measurement.   

 

Figure 5.1.8: Maximum sample deformation vs. pulse size (oscillation modes) 
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Wunderlich’s data[27][71] from parabolic flight, and Brillo’s data[24] using high-temperature 

oscillating cup viscometer, and show good agreement near the melting point Tm. For either 

composition, most of the measurements well above Tm are invalid due to the pulse induced 

turbulence, large shape deformation, and mixture of oscillation modes due to sample offset 

from the coil center when the pulse excitation is applied. In the Phase-2 region, the droplet is 

quiescent and stable allowing for valid viscosity measurements as low as from 50K to 100K 

undercooling. 

The temperature dependent viscosity and density data are used to calculate Reynolds number 

and for MHD simulation in previous sections. The density (kg/m3) relationships are 

summarized as, 

        FeCr19Ni21 (ESL data[31]):  𝜌 = -0.71∙T + 8209 

       LEK-94[28]: 𝜌 = -0.95∙T + 8712 

       MC-2[28]: 𝜌 = -1.30∙T + 9721 

Table 5.2.1 lists the Arrhenius fit for viscosity for each composition from ISS EML experiments 

using the standard form of the equation such that 𝜇 = 𝑒(
𝐶1
𝑇

−𝐶2)
 (mPa·s), 

Table 5.2.1: Viscosity of FeCr19Ni21, LEK-94, and MC-2 

Composition Tliquidus (K) 𝐶1 𝐶2 
Temperature 

range (K) 

FeCr19Ni21 1715 4.303 ± 0.487 ∙ 104 22.85 ± 2.9 1650-1715 

LEK-94 1666 1.743 ± 0.068 ∙ 104    8.39 ± 0.4 1560-1690 

MC-2 1661 2.849 ± 0.165 ∙ 104 14.60 ± 1.0 1610-1680 
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Figure 5.2.1: Viscosity of molten FeCr19Ni21 

 

Figure 5.2.2: Viscosity of molten LEK-94 
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Figure 5.2.3: Viscosity of molten MC-2 
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space. Through well designed experiment plans with appropriate parameter settings, the length 

of Phase-1 region during the pulse excited oscillation could be controlled. 

In subsequent discussion, we define the duration time of Phase-1 and Phase-2 region as 𝑡𝑝ℎ𝑎𝑠𝑒1 

and 𝑡𝑝ℎ𝑎𝑠𝑒2, and the duration through the whole damped oscillation is 𝑡𝑜𝑠𝑐 = 𝑡𝑝ℎ𝑎𝑠𝑒1 + 𝑡𝑝ℎ𝑎𝑠𝑒2. 

Thus, the ratio of 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 represents the fraction of Phase-1 region within the oscillation 

process. Figure 5.3.1 shows a histogram of the 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 ratio from ISS EML experiments 

for the three compositions. Based on statistical analysis, 80% of the data are distributed in the 

range of 0.2 to 0.4, and the remainder of the data could reach values up to 1.0 indicating that a 

minority of cycles are mostly Phase-1 due to inappropriate settings of the size or timing of the 

heater pulse.  

 

Figure 5.3.1: Histogram of Phase-1/Oscillation time ratio 𝒕𝒑𝒉𝒂𝒔𝒆𝟏/ 𝒕𝒐𝒔𝒄 

The duration of the Phase-1 region 𝑡𝑝ℎ𝑎𝑠𝑒1 could be estimated in a fashion similar to Equation 

4.3.3 such that, 
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 𝑡𝑝ℎ𝑎𝑠𝑒1 = 𝐶
1
log10(𝑅𝑒) + 𝐶

2
 (5.3.1) 

In the empirical formula, 𝐶
1
=1.413 and 𝐶

2
= -3.317. 

The Reynolds number calculated from Equation 4.1.3 is obtained from MHD simulation, which 

could be treated as a linear function of temperature for different pulse settings,  

 𝑅𝑒 = 𝐶𝑅𝑒1

𝑃𝑢𝑙𝑇0 + 𝐶𝑅𝑒2

𝑃𝑢𝑙 (5.3.2) 

Where 𝑇0 is the temperature while heater pulse is applied, and for temperature 𝑇 which is 

decreasing with time and cooling rate 𝛾, 

 𝑇 = 𝑇0 − 𝛾𝑡 (5.3.3) 

Thus, 𝑡𝑝ℎ𝑎𝑠𝑒1 could be expressed as follows, 

 𝑡𝑝ℎ𝑎𝑠𝑒1 = 𝐶
1
log10(𝐶𝑅𝑒1

𝑃𝑢𝑙𝑇0 + 𝐶𝑅𝑒2

𝑃𝑢𝑙) + 𝐶
2
 (5.3.4) 

When the oscillating sample droplet is damped to a small magnitude, the oscillation 

deformation 𝜂𝑑 could be considered as damped out where 𝜂𝑑 is assumed to be around 0.5% or 

equivalent to the level of the background noise, as described in Section 2.3.4. At the end of 

Phase-1 region, 𝜂𝑑0
 is related with the duration time of Phase-1, as shown in Figure 5.1.7, and 

can be approximated with the following linear fit, 

 𝜂𝑑0
= 𝐶𝜂1

𝑡𝑝ℎ𝑎𝑠𝑒1 + 𝐶𝜂2
 (5.3.5) 

Where the fitted parameters 𝐶𝜂1
=−0.0236, 𝐶𝜂2

=0.05534. 

During the Phase-2 region, the magnitude of the deformation is subjected to exponential 

decaying from the deformation remaining at the end of the Phase-1 region, with damping 

constant 𝜏,  

 𝜂𝑑 = 𝜂𝑑0
𝑒−

(𝑡𝑜𝑠𝑐−𝑡𝑝ℎ𝑎𝑠𝑒1)

𝜏  (5.3.6) 
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The damping constant 𝜏 is defined in Equation 2.3.1, for oscillation mode 𝑙=2, 𝜏 has the 

following expression, 

 𝜏 =
𝜌𝑅0

2

5𝜇
 (5.3.7) 

Where the viscosity 𝜇 is subjected to Arrhenius fit, where 𝐶𝜇1
 and 𝐶𝜇2

 is the coefficient for 

specific alloy composition,  

 𝜇 ≈ 𝑒
(

𝐶𝜇1
𝑇0−𝛾(𝛼𝑡𝑝ℎ𝑎𝑠𝑒1)

+𝐶𝜇2)
 

(5.3.8) 

During the damped oscillation in the Phase-2 region, the viscosity 𝜇 is increasing with time as 

well, and thus an averaged viscosity in the Phase-2 region is used. Usually 𝑡𝑝ℎ𝑎𝑠𝑒2 could be 

less than 𝑡𝑝ℎ𝑎𝑠𝑒1 while the length of Phase-1 region is large, or up to 4 times of 𝑡𝑝ℎ𝑎𝑠𝑒1 while 

the Phase-2 region is dominant. For 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 with a ratio of 0.2 to 0.4, the value of 𝛼 

could be estimated as 1.5 to 2.5. 

Thus, the duration of oscillation 𝑡𝑜𝑠𝑐 could be expressed as follows, 

 

𝑡𝑜𝑠𝑐 = 𝑡𝑝ℎ𝑎𝑠𝑒1 + 𝜏 log (
𝜂𝑑0

𝜂𝑑
) 

= 𝑡𝑝ℎ𝑎𝑠𝑒1 +
𝜌𝑅0

2

5𝑒
(

𝐶𝜇1
𝑇0−𝛾(𝛼𝑡𝑝ℎ𝑎𝑠𝑒1)

+𝐶𝜇2)
log(

𝐶𝜂1
𝑡𝑝ℎ𝑎𝑠𝑒1 + 𝐶𝜂2

𝜂𝑑
) 

(5.3.9) 

Both of 𝑡𝑝ℎ𝑎𝑠𝑒1  and  𝑡𝑜𝑠𝑐  defined in Equation 5.3.4 and Equation 5.3.9 are functions of 

temperature 𝑇0  and heater pulse voltage  𝑉𝐻
𝑃𝑢𝑙 , and 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐  ratio could be calculated 

accordingly for different temperature and pulse settings. 
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As an example using data from the LEK-94, the Reynolds number has the following fit based 

on MHD simulations,  

 

𝑉𝐻
𝑃𝑢𝑙=5.49V, 𝑅𝑒 = 15.10𝑇 − 2.30 ∙ 104 

𝑉𝐻
𝑃𝑢𝑙=6.46V, 𝑅𝑒 = 18.45𝑇 − 2.82 ∙ 104 

𝑉𝐻
𝑃𝑢𝑙=7.44V, 𝑅𝑒 = 21.63𝑇 − 3.30 ∙ 104 

𝑉𝐻
𝑃𝑢𝑙=8.42V, 𝑅𝑒 = 24.78𝑇 − 3.77 ∙ 104 

(5.3.10) 

And the coefficients of viscosity are,  

 
𝐶𝜇1

= 1.743 ∙ 104/ log103
 

𝐶𝜇2
= −8.39/ log 103          

(5.3.11) 

If sample is cooling down with heater off, the cooling rate will be 𝛾 ≈ 19.5 𝐾/𝑠. In contrast, 

with the heater set to 0.3V the cooling rate becomes 𝛾 ≈ 14.5 𝐾/𝑠. 

Figure 5.3.2 shows the predicted 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐  ratio for various pulse sizes as applied at 

different temperature. For pulses larger than 6.46V, the 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 ratio increases rapidly 

from superheated 1700K to 1750K, and could achieve the value from 0.6 to 1.0 for a large pulse 

applied at a highly superheated temperature, indicating the corresponding pulse excited 

oscillation is Phase-1 dominated and thus not appropriate for viscosity measurement purposes 

for these experimental parameters. For pulses below 6.46V, the 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 ratio is expected 

to be in the range from 0.2 to 0.5 for a moderately superheated sample.  

Statistically, the existing experiments show agreement with the above predictions where most 

of the pulses for LEK-94 are applied with magnitude of 6.46V and at temperature in the range 

of 1600K to 1730K, and the 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 ratio is primarily in the range of 0.2 to 0.4. 
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Figure 5.3.2: Ratio of 𝒕𝒑𝒉𝒂𝒔𝒆𝟏/ 𝒕𝒐𝒔𝒄 vs. temperature/pulse voltage 

For a well-designed experiment, the pulse excited oscillation should not be Phase-1 dominated, 

and the 𝑡𝑝ℎ𝑎𝑠𝑒1/ 𝑡𝑜𝑠𝑐 ratio should be less than 0.5. For 5.49V pulse, the ratio is expected to be 

in the acceptable range; for 6.46V pulse, the critical temperature is around 1710K; for 7.44V 

and 8.42V pulse, the critical temperature is around 1630K and 1590K respectively, indicating 

that the oscillation would be possibly Phase-1 dominated when the sample is under less than 

200K superheating. Similar observations are apparent for LEK-94 as shown in Figure 4.3.2. 

The Phase-1 duration times for the oscillation excited by 7.44V and 8.42V pulse are 

significantly higher than the pulses below 6.46V.  

Based on these predications, several recommendations are apparent. A heater pulse larger than 

7.44V should be applied at an undercooling temperature well below Tm, while a 6.46V pulse 

should be applied at a moderate superheating less than 40K, and a 5.49V pulse should be 

applied at a relatively larger superheating. Figure 5.3.3 shows the critical temperature for each 

pulse setting, the pulse application temperature should be limited to below the suggested limit 

curve based on identification of a critical temperature for viscosity measurement. There is an 

Phase-1 region dominated oscillation 

excited by heater pulse 

Tm 
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estimated error of 30K to 60K in this critical temperature curve due to the sum of uncertainties 

from viscosity precision, Reynolds number estimation error, and fitting errors in the 

experimental data.  

 

Figure 5.3.3: Critical temperature for pulse application 

Thus, an appropriate pulse voltage could be selected for certain testing temperatures, and pulses 

below 6.46V are suitable for measurement above Tm. However, pulse application with much 

lower voltage may not result in a successful measurement either. The excitation pulse needs of 

appropriate magnitude to excite sufficient initial and/or maximum deformation of the sample 

droplet to allowing tracking of the decay of the deformation. For an oscillation starting with a 

deformation below 4%, at the end of Phase-1 region the sample deformation would quickly 

decreases to below 3% to 2%, and the evaluation of damping rate in Phase-2 region would be 

limited if not fully obscured by the limited video resolution or accumulation of background 

noise. As shown in Figure 3.3.2, the maximum deformation 𝜂0 has the following approximate 

linear relation with the heater pulse,  

 𝜂0 = 𝐶𝐻1
𝑉𝐻

𝑃𝑢𝑙 + 𝐶𝐻2
 (5.3.12) 
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Where 𝑉𝐻
𝑃𝑢𝑙 is the heater pulse voltage in the range of 5.49V to 8.42V, and fitted parameters 

𝐶𝐻=0.01233, 𝐶𝐻2
= -0.02067. 

The maximum deformation 𝜂0 is usually around 4.5% for 5.49V pulse, 6.5±0.5% for 6.46V 

pulse, and larger than 7.3% for pulse above 7.44V. Thus, a pulse below 5.49V might not be 

able to provide enough sample deformation at the beginning of the pulse excited oscillation for 

accurate viscosity measurement. A magnitude of 5% to 7% initial sample deformation at the 

start of Phase-1 region is considered to be appropriate to avoid the limitations imposed by either 

too small or too large a sample deformation. 
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6 Conclusions 

The damping behavior of induced surface oscillation of electromagnetically levitated molten 

metal droplets has been modeled and evaluated for viscosity measurement purposes. Through 

this work, the accomplishments could be drawn in the following aspects:  

1. Oscillation Signal Processing:  

 Oscillation damping of levitated droplets is captured using high-speed cameras and an 

elliptical fit of the droplet’s projection image could be used to track deformation decay with 

time. This technique is an improvement over previous protocol because of capability to 

dynamically capture the shape change of oscillating droplet under arbitrary deflection angle. 

 The influence of aliasing of captured deformation signals due to selection of a reduced 

camera acquisition rate settings is presented. An acquisition rate larger than 100Hz is acceptable 

for signal processing with droplet natural frequencies between 30Hz to 40Hz. 

 The oscillation damping rate of the molten metal droplet under different temperatures could 

be evaluated through use of a fitting coefficient to optimize segmentation of the decay curve 

for different test temperatures with error of 10K-20K and curve fitting error less than 5%. 

2. Oscillation Behavior Analysis:  

 The droplet oscillation excited by the EML heater pulse is shown to be subjected to 

different oscillation modes governed by spherical harmonics. It is mathematically proven that 

the two-dimensional projection of the deformed droplet could be approximated to be an ellipse 

for radius deformation less than 10%, indicating the validity of the elliptical fitting method used 

for oscillating signal analysis and tracking of deformation decay. 

 The damped oscillation induced from heater pulse could be separated into Phase-1 and 

Phase-2 regions based on the difference in characteristic damping behavior. The apparent 

viscosity measured from Phase-1 region is nominally 2-4 times higher than the expected values, 

while Phase-2 region is reliable for viscosity measurement. The duration of Phase-1 region 

could be determined based on a damping behavior transition time and during this period decay 

is dominated by turbulence induced from the heater pulse.  

 Magnetohydrodynamic (MHD) modeling is used to predict the internal recirculation 

velocity of the molten metal droplet under various heater/pulse power settings and a wide range 

of testing temperature, and the flow condition could be characterized by Reynolds number that 
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is positively correlated with the heater pulse voltage and molten sample’s thermophysical 

properties regarding to the temperature. Turbulence induced from either high temperature or 

with large pulse size is the dominating factor influencing the viscosity measurement and will 

make the apparent viscosity up to 4 times higher than expected values.  This is of the same 

order of magnitude as predictions from MHD simulation using the 𝑘-휀 turbulence model. A 

new formula is established to estimate the turbulence decay time as function of the Reynolds 

number which is validated by comparison to data from ISS EML experiments.  

 Potential factors other than turbulence that would skew the damping rate analysis and 

viscosity measurement are evaluated. (1) A larger distance greater than 4% between the sample 

droplet and centerline of the EML coil at the time of the pulse application would induce a 

fraction of more than 50% oscillation mode 𝑙=2, 𝑚=±1 mixed in with the normal mode 𝑚=0, 

which could make the damping rate overestimated 10%-35% using the Top-view camera (2) 

The magnitude of the droplet deformation is not the primary factor influencing determination 

of apparent viscosity in the Phase-1 region because the effects of induced turbulence dominate. 

Deformation can introduce less than 20% error during viscosity measurement in the Phase-2 

region. (3) The influence of anharmonic oscillation due to nonlinear effect is shown to be 

negligible during damping analysis for current experimental conditions using the ISS EML. 

3. Viscosity Analysis and Results:  

 Temperature dependent viscosities of FeCrNi, LEK-94, and MC-2 are measured in the 

Phase-2 oscillation region. 

 Viscosity is not measured in superheat because of Phase-1 dominates the region. 

 The viscosity of FeCrNi measured using ISS-EML shows an accuracy of 10.1% less than 

ESL, 10.7% less than parabolic flight data, and 16.1% larger than Brillo’s results near melting 

temperature. 

 Over the entire temperature range the precision is 7.4% for the new space EML results. 

This compares well other levitation measurements where the observed precision was 10.7%, 

13.8% for the ESL and parabolic flight EML respectively. Ground based rotating cup 

measurements showed a precision of 2.1% but it is unclear if these results are influenced by 

contamination issues associated with test conditions where the molten liquid is in contact with 

a crucible. 
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4. Experiment Parameters Design:  

 Restrictions on the pulse application temperature are predicted for effective viscosity 

measurement during the ISS EML experiment. For the experiment design, an appropriate pulse 

voltage could be selected based on the suggested temperature limits. 

 Pulse voltage has lower limit at 5V to provide enough time for the droplet to damp out for 

data analysis purpose. 

 Pulse voltage has upper limit at 8V to avoid occupation of turbulence during most time of 

the droplet oscillation to allow effective viscosity measurement.  



107 

 

7 Future Work 

The future work includes the following aspects:  

 Extend the viscosity measurement utilizing EML in microgravity to a broad range of alloy 

systems of interest, including glass-forming alloys with high viscosity, and validate the criterion 

of experiment design for viscosity measurement in future ISS missions. 

 

 Extrapolate the damping analysis method to viscosity measurement utilizing ESL.  Of 

particular interest is the observation that the dominating factor involving turbulence effects in 

EML is not applicable for ESL since flow inside an ESL droplet is laminar and induced by fluid 

motion alone. The mechanism for excitation is different when comparing EML and ESL and 

operational limits will be dramatically different.  

 

 Develop a numerical model to predict the magnitude of droplet deformation in EML 

subjected to different pulse voltage and sample temperature. 

 

 For better accuracy, develop dynamic MHD models utilizing the method of direct 

numerical simulation or large eddy simulation instead of the 𝑘-휀 turbulence model to predict 

the flow conditions inside the levitated droplet in EML. 
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