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Abstract 

 

Thirty-day unplanned hospital readmissions contribute to patient morbidity and healthcare 

costs, and are increasingly scrutinized as a quality measure.  Outpatient intravenous 

antibiotics are used by 250,000 patients per year in the U.S.  Awareness of the patient and 

healthcare associated factors at the time of hospital discharge associated with 30-day 

readmissions could facilitate targeted approaches to reduce readmissions and improve care.  

However, factors associated with readmission for patients prescribed intravenous 

antibiotics at hospital discharge have not been definitively identified to our knowledge.  

Studies of readmissions for other patient groups have shown conflicting results and 

predictive models of readmissions have been fair to moderate in their ability to discriminate 

readmission risk.   In this thesis, we describe a new predictive model for patients 

discharged with outpatient intravenous antibiotic therapy.  We conducted a retrospective 

cohort analysis of 784 patients treated in an outpatient intravenous antibiotic program at a 

single academic center.  We used clinical judgment and statistical criteria to develop a 

multivariable model of patient characteristics associated with 30-day readmissions.  Overall 

readmission rate was 26%.  Our final model included: age by decades (odds ratio 1.09, 

95% confidence interval 0.99, 1.21), aminoglycoside use (OR 2.33, 95% CI 1.17, 4.57), 

presence of resistant organisms (OR 1.57, 95% CI 1.03, 2.36), and number of prior 

admissions in the past 12 months (OR 1.2, 95% CI 1.09-1.32).   Model discrimination was 

fair (c-statistic 0.61), likely reflecting heterogeneity of the underlying population and post-

discharge events.  Further studies of outpatient intravenous antibiotics should focus on 

post-discharge factors that contribute to readmission and are potentially modifiable. 
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Introduction 
 

1.1 Introduction and Rationale for Study 
 

 Hospital readmissions, particularly within a 30-day window, are receiving increasing  

scrutiny from policy makers and payers as high rates of readmission may be markers of 

lower quality inpatient care or care transitions.  Avoiding preventable hospital admissions 

is important for patient health as well as managing costs of care.    Multiple studies have 

measured factors associated with hospital readmission including patient age (1, 2) male sex  

(2), length of stay (3, 4), complications during hospitalization (2, 3, 5), comorbidities  (2, 3, 

5), medical rather than surgical admissions (2), particular diagnoses (6), increased case 

complexity (7), lower socioeconomic status (8), day of discharge (9), insurance type (10), 

and prior hospital utilization  (2, 3, 5, 10-13).  The specific patient factors associated with 

readmission are inconsistent from study to study, which may be attributable to residual or 

unmeasured confounding, unmeasured influential covariates,  as well as heterogeneity in 

study populations and types of diseases studied (4). 

 

Outpatient intravenous antibiotic therapy (OPAT) allows patients to receive intravenous 

treatment at home rather than inpatient settings for the duration of their therapy.  Since its 

inception 30 years ago, OPAT has grown to serve approximately 250,000 persons in the 

US annually, with healthcare expenditures over $2 billion (14).  Multiple studies have 

demonstrated that OPAT is safe, effective and cost saving to the healthcare system (15-20). 

Cost-savings for OPAT could improve if rates of unplanned readmissions could be 
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reduced. OPAT programs coordinate care to avoid adverse events leading to hospital 

readmissions and other poor outcomes (14).  However, to our knowledge a complete 

understanding of patient and health system factors associated with higher rates of hospital 

readmissions for patients treated in OPAT programs is currently lacking and there are no 

developed predictive models to date.   

 

Therefore, we have created a predictive model for 30-day readmissions for patients 

discharged with outpatient intravenous antibiotic therapy.  The multivariable predictive 

model uses patient and healthcare utilization variables available to clinicians at time of 

hospital discharge. Identification of easily and reliably obtainable clinical characteristics at 

the time of discharge that are associated with higher rates of readmission may permit the 

development of OPAT program interventions with the goal of reducing readmission rates 

and improving patient outcomes.   

 

 

 

1.2 OPAT Background 
 

 The rationale for OPAT is simply that OPAT programs provide care that patients  

prefer, at lower cost compared to inpatient care.  In one study of patients receiving OPAT, 

96% would chose it again if needed (21), while another study demonstrated that 89% of 

patients queried prior to discharge would prefer home intravenous antibiotics (as opposed 

to inpatient) if possible (22). Another study used a priori willingness-to-pay metric as a 

proxy for personal valuation of inpatient vs. outpatient intravenous antibiotic treatment 

(23).  These researchers found that outpatient treatment was strongly preferred by 87% of 
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patients surveyed.  OPAT programs facilitate patients’ ability to have complex care at 

home, thus promoting a more rapid return to usual activities (i.e. school or work) and 

improving quality of life (14, 24).  Additionally, the provision of this care has been shown 

to be cost-saving in multiple settings including the United States (22), United Kingdon 

(21), Italy (25) Ireland (26), Taiwan (27), and Canada (28), focusing on multiple serious 

conditions such as endocarditis and osteomyelitis that require intravenous treatment for 

weeks.  With an aging population and diminishing funds for healthcare services, demands 

for OPAT services will likely continue to rise (24).    

 

Composition and Processes of OPAT programs 

While having clear quality of life and cost-saving benefits, the home provision of 

intravenous antibiotics is complicated care being given in a non-medical setting.  Patient 

toxicity, intravenous access problems and infection relapse can undermine the benefits 

listed previously.  One analysis of the processes of discharging a patient with OPAT found 

6 main processes and more than 200 sub-processes, any of which could compromise care if 

imperfectly executed (29).  Therefore published guidelines recommend that OPAT 

programs include communication among medical care providers, teamwork, monitoring 

and program improvement (30), (14). 

 

The overall composition of an OPAT program can be conceptualized in a framework 

adapted from the chronic care model described by Bodenheimer et al (31).  This OPAT 

model consists of three interacting domains: patient (patient, support system, comorbidities, 

and socio-economics), medical providers (physicians, nurses, laboratory technicians, 
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pharmacists) and a coordination system of patient tracking and iterative program 

improvement (Figure 1).  In addition to functional domains, OPAT can be thought of as 

having sequential processes, each of which may involve patients, providers and interaction 

with inpatient and/or outpatient systems.  According to published guidelines, OPAT 

programs should encompass the following processes: patient selection, patient education, 

Infectious Diseases specialist consultation, discharge planning, communication with 

outpatient services, tracking of laboratory studies and clinical progress, monitoring for drug 

toxicity, and periodic quality improvement assessment to facilitate iterative program 

improvement. 

 

While specifics of patient selection and discharge planning will depend on the resources 

available at the home medical institution, certain aspects of patient selection are critical to 

ensure patient success with OPAT.  Both United States OPAT guidelines (14) and United 

Kingdom OPAT guidelines (30), support the careful selection of patients to ensure they are 

both willing and able to commit to OPAT.  For example, patients who lack housing, 

transportation or telephones must be carefully screened to ensure that OPAT remains the 

safest option for them.  Guidelines also recommend early involvement of Infectious 

Diseases (ID) specialists to ensure that the infection is under control and that OPAT is both 

appropriate and necessary to manage the patient’s condition.  Interventions by infectious 

diseases specialists during hospital admission to coordinate OPAT care have been found to 

improve patient outcomes and decrease costs of care (32), (33), (34), (21) by facilitating a 

switch from intravenous to oral antibiotics in more than one-fourth of patients prior to 

hospital discharge.  While the evidence base for OPAT patient education is lacking, expert 



6 
 

opinions in published guidelines recommend patient education as an important component 

of OPAT.  Patient monitoring is a key component of an OPAT program, and published 

guidelines suggest which laboratory studies should be monitored, and how often, 

depending on the specific antibiotic regimen (14).  Availability of infusion pharmacists and 

physicians 24 hours a day to trouble-shoot urgent problems is recommended.  Periodic 

program assessment and quality improvement are also recommended to monitor rates of 

treatment failure and hospital readmissions. 
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Materials and Methods 
 

2.1 Study Design 
 

The study is a retrospective cohort with data specifically collected for this study.  Index 

admission is defined as the subject’s first episode ever of hospitalization resulting in 

discharge with OPAT during the study period.  We reviewed each subject’s admissions 

prior to the index admission to ensure that they had no prior admissions resulting in 

discharge with OPAT.  We collected index admissions occurring from January 1, 2009 to 

December 31, 2011 with follow-up through January 31, 2012.  The primary outcome for 

this study is unplanned 30-day readmission, defined as a hospital admission occurring 

within 30 days of index admission discharge that was not part of a documented plan in the 

index admission discharge summary.  We planned to use the entire cohort in order to 

capture the range of infectious diseases conditions seen in actual practice.  A total cohort 

n=784 and a theoretical prevalence of a given risk factor of 10% yields 85% power with 

alpha = 0.05 to detect an absolute readmission rate difference of 15% - i.e. we could detect 

if subjects with the risk factor have 30% readmission rate while subjects without the risk 

factor have a 15% readmission rate. 

 

 

2.2 Participants 
 

The OPAT Research Cohort is a retrospective cohort of 784 patients age 18 and older 

discharged from Tufts Medical Center with intravenous (IV) antibiotics and followed in the 
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center’s OPAT program (described below) from January 2009 to December 2011.  The 

index admission was defined as the patient’s first hospital discharge with IV antibiotics.  

Patients followed in the OPAT program only on oral antibiotics (n=28), whose entire 

intravenous antibiotic course was outpatient (n=4), or who used chronic prophylactic 

intravenous antibiotics spanning multiple admissions (n=2) were excluded from the study 

(Figure 2).  Patients who were readmitted within 30 days for a planned procedure that was 

documented in the previous discharge summary were also excluded (n = 23, Figure 2).  

Patients discharged with outpatient intravenous antibiotics who (at the discretion of the 

primary physician) were not followed in the OPAT program were also not included in this 

study.  These patients constitute <10% of patients at our medical center.  This research was 

approved by the Institutional Review Board of Tufts Medical Center/Tufts University 

Health Sciences Campus. 

 

2.3 Tufts Medical Center OPAT Program 
 

The Tufts Medical Center OPAT program was developed in 2008 and formally began in 

2009 to improve the coordination of care from inpatient to outpatient settings for patients 

discharged with a requirement for treatment with intravenous antibiotics.  The OPAT 

program was created based on published guidelines advocating a multidisciplinary team 

approach of inpatient Infectious Diseases (ID) consultation and case management followed 

by outpatient Infectious Diseases physician clinic visits, home nursing and infusion 

pharmacists (14).  Lean Six Sigma techniques (35) and healthcare process mapping  

specific to OPAT (29) were utilized to define, create and refine the Tufts Medical Center 

OPAT program.   
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Tufts Medical Center OPAT Program Standard Operating Procedures 

Patients in the Tufts Medical Center OPAT program are first seen during their 

hospitalization by ID specialists, who determine medical appropriateness for OPAT.  

Physicians and case management nurses evaluate patients for potential barriers for home 

safety.  Case management ensures that insurance issues are cleared prior to discharge.  An 

infusion nurse teaches intravenous antibiotic administration techniques to the patient and/or 

other caregiver while inpatient.  Inpatient ID physicians send a template electronic form to 

the OPAT coordinator who ensures correct antibiotic and laboratory orders and books a 

follow-up appointment in the Infectious Diseases clinic.  If a different ID physician will 

follow the patient in clinic, the OPAT administrator facilitates communication between 

inpatient and outpatient physician teams.   

 

After hospital discharge, patients are met at home by a visiting nurse on the day of hospital 

discharge to review OPAT teaching, treatment plan and problem-solving.  Patients are seen 

in their homes at least once weekly by a visiting nurse who ensures antibiotic compliance, 

verifies vascular access function and performs phlebotomy for weekly laboratory studies.  

ID physicians will see patients in the outpatient ID clinic assess clinical response to therapy 

and manage side effects of medications.  Patients will have blood drawn for laboratory 

studies weekly or more often depending on their clinical situation.  Specialty infusion 

pharmacists oversee the dispensing and delivery of intravenous antibiotics in consultation 

with Infectious Diseases physicians.  Infusion pharmacists and physicians jointly review 

laboratory results to manage antibiotic drug levels and to detect development antibiotic 

toxicity and intervene before it becomes clinically evident.  The OPAT administrator 
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coordinates close communication between patients, pharmacists, laboratories, visiting 

nurses, outpatient clinic staff, and ID physicians.   

 

2.4 Data Collection 

 

Patient data were abstracted by research assistants and the Principal Investigator (P.I.) 

(GMA) from medical charts into a secure electronic relational database using REDCap 

(Research Electronic Data Capture) (36).  All research assistants were trained and 

supervised by the P.I. to ensure accuracy of data collection.  The following measures were 

taken to ensure accuracy of data collection by research assistants.  All research assistants 

received training by P.I. (GA), and training modules of chart abstraction were performed 

until Cohen’s kappa score of agreement (37) was minimum 0.8 compared to PI’s 

abstraction.  The most challenging abstraction was the prior medical conditions for 

construction of the Charlson comorbidity index, so this portion of the database was 

completed by a single research nurse with more than 10 years clinical research experience.  

Her Cohen’s kappa scores of agreement with P.I. were 0.94 for abstraction of prior medical 

conditions.  To avoid temptation for research assistants to guess the correct abstraction 

categories, multiple questions include answers amounting to “not sure” – all of these 

responses were subsequently reviewed by P.I. and resolved.  All responses “other” for 

antibiotics, infectious disease diagnoses and vascular access were subsequently reviewed 

by P.I. (GMA) and resolved.   

 

Data collected included socio-demographic factors (age, race/ethnicity, housing status, 

social support, insurance status), measures of clinical/healthcare utilization (length of stay, 
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prior hospital admissions for any cause over past 12 months, laboratory values (admission, 

discharge, inpatient maximum, inpatient minimum), admission body mass index (BMI), 

infectious disease diagnoses, type of intravenous access, intensive care unit (ICU) 

admission, primary service (medicine vs. surgery), past medical history at time of hospital 

admission and antibiotic(s) at hospital discharge. A random subset of patients (n=414) had 

intensive data collection to include race, ethnicity, language, BMI, laboratory results and 

intensive care admission, with the plan to collect these variables for the entire cohort if they 

met significance level p<0.2, which none did.  Chart abstractors were not blinded to 

outcome.  All data collection was retrospective with regards to the index admission and 

readmission.   

 

Variables 

A total of 20 candidate variables, selected based on clinical reasoning and review of the 

literature, were considered in the initial univariate analysis.  Age (years), length of stay 

(days) and number of prior admissions were analyzed as a continuous variable. Intravenous 

antibiotics were analyzed as categories using a standard classification scheme.  Addition of 

oral antibiotics at discharge was configured as a binary variable.  History of any multidrug-

resistant organisms (“MDRO”) was binary and included any of the following: methicillin-

resistant Staphylococcus aureus, gram-negative bacteria with expanded-spectrum beta 

lactamases, or Clostridium difficile. Categories of infectious diagnoses were used in 

keeping with diagnosis categories previously published (20).  Diagnoses were not exclusive 

with the exception of “bacteremia without endocarditis” vs. “endocarditis”.  A modified 

Charlson comorbidity index was calculated from prior medical history using standard 
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methodology described by Quan et al (38).  We created a new variable representing 

immunosuppression (ever/never) which was defined as history of any of following: 

HIV/AIDS, cancer, transplantation. We initially collected details on type of vascular access 

then categorized them as either peripherally-inserted vs. central/surgical access.  

Peripherally inserted lines include peripherally inserted central catheters (PICC) and 

midlines.  Both types of lines are placed in the upper extremity and terminate in the 

superior vena cava (PICC) or in the mid-axillary region (midline).  Central/surgical lines 

include lines beginning in the neck or chest, or require a surgical procedure for placement 

(i.e. port-a-cath, dialysis catheter, tunneled line).   

The rationale for defining these two groups is that the central/surgical lines may reflect 

presence of serious medical comorbidities precluding peripheral vascular access placement. 

We recorded inpatient primary team (surgery, medicine, infectious disease) to measure 

whether results were affected by primary team and whether therefore these results could be 

generalized to facilities that utilize a hospitalist method rather than subspecialty primary 

services.  In order to categorize insurance status, we used the following classifications: 

Medicare, Medicaid, private, uninsured (=free care, self-pay, charity) as published by Jiang 

et al (39).  Commonwealth Care is a relatively new insurance type, held by 15 subjects in 

this study.  We classified Commonwealth care as Medicaid because of this published 

statement in 2012:  “CommCare [Commonwealth Care] is a subsidized market model of 

coverage for low-income adults. Adults with household income at 300 percent FPL or less 

may enroll in CommCare if they have no affordable offer of employer coverage and are 

ineligible for coverage in MassHealth (Medicaid), Medicare, Tricare, or certain other 

insurance programs. CommCare is offered through the Connector, Massachusetts’ flagship 
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health insurance exchange, but only in CommCare plans can eligible individuals obtain 

subsidies to offset all or part of the cost of their premiums. CommCare fully subsidizes 

premiums for adults with income below 150 percent of FPL and partially subsidizes 

premiums for those with income from 150 to 300 percent FPL, who in general are subject 

to Massachusetts’ individual mandate (40).” 

To improve overall project feasibility, we had an intensive data collection process for a 

randomly chosen subset of 414 subjects (see Figure 1, research subject cohort flow) 

involving race/ethnicity, language, laboratory values, body mass index (BMI) and intensive 

care unit admission.  Results from t-test comparing readmitted vs. non-readmitted groups at 

the p<0.05 level determined whether these covariates would be collected for the entire 

cohort.  Racial categories were based on Center for Disease Control (CDC) categories (41) 

(American Indian/Alaskan native, Asian/Pacific Islander, Black/African American, White, 

Other, Missing.  Hispanic ethnicity was collected as a binary variable separately from race 

in accordance with accepted CDC practice (41).  Primary language was collected as 

Chinese, English, Spanish, Other, Missing.  We recorded BMI if it was measured at time of 

hospital admission.  The following laboratory values were recorded for each patient as 

continuous variables: albumin as proxy for nutritional status, alanine aminotransferase 

(ALT) as proxy for liver inflammation, race-appropriate estimated glomerular filtration rate 

(GFR) as proxy for renal function (42), white blood cell count, absolute neutrophil count 

and Clostridium difficile stool toxin test results.  BMI (kg/m
2
) and laboratory studies were 

recorded as continuous variables.  WBC and ANC are measured as number of cells x10
9
/L, 

ALT measured as units/L, eGFR measured as ml/min/1.73 m
2
, albumin measured as g/L. In 

order to collect proxies of disease severity which could potentially affect readmissions, we 
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collected history of intensive care unit (ICU) admission during index admission as a binary 

variable.   

 

Sensitivity Analysis 

To address the threat of outcome misclassification bias due to loss to follow-up (i.e. 

patients potentially readmitted to a hospital other than Tufts Medical Center being 

classified as non-readmissions), we reviewed subsequent medical services for all subjects 

who were not readmitted within 30 days (n=575), and found that 78 (14%) subjects had no 

additional services at Tufts Medical Center following hospital discharge.  We performed 

two sensitivity analyses to address potential misclassification in the event that these 

subjects were actually readmitted elsewhere.  The first sensitivity analysis removed all 78 

subjects from the data set, and the second reclassified them as readmissions.   

 

2.5 Statistical Analyses 

 

Descriptive characteristics were summarized using means and standard deviations for 

normally distributed variables and using medians and interquartile ranges for skewed data.  

Clinical and demographic characteristics were compared between readmitted and non-

readmitted patients using the Student’s t, Wilcoxon rank-sum, Pearson χ
2 

and Fisher exact 

tests, as appropriate. Odds ratios and 95% confidence intervals were calculated using 

logistic regression.  P<0.2 was considered significant for candidacy of a variable in the 

multivariable predictive model.  Age was included in all multivariable models by a priori 

decision as advancing age has been found to be significantly associated with readmission  

(1, 2).  We then utilized backwards selection using Akaike’s information criterion (AIC) as 



15 
 

opposed to Bayesian information criterion (BIC) (43). AIC was chosen a priori as the 

underlying method as our goal was to find a best-fit model for the data, not the only correct 

model.  Model selection was followed by analysis of leverage and influence points, 

variable collinearity, and regularized regression using the Lasso (44).   The final model’s 

performance was characterized by receiver operator curve analysis (45), calibration curves 

and Hosmer-Lemeshow goodness-of-fit (46). We used the following model diagnostics: 

Cook’s distance to evaluate influence points, Lasso as correction for model overestimation.  

We examined age and readmissions for non-linear relationships. Statistical analyses used R 

Statistical Program version 2.13.1 (updated July 22, 2011, copyright R Foundation, from 

http://www.r-project.org).  All p-values are 2-sided. 

 
 
  

http://www.r-project.org/
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Results 
 

3.1 Main Results 
 

Study inclusion and exclusion details are presented in Figure 2.  Demographic and clinical 

characteristics of the cohort are summarized in Table 1a, antibiotics and infectious diseases 

diagnoses in Table 1b.  The mean age of the study population was 58 years, with 

readmitted patients being slightly older.  57% percent of patients were male.  Prior 

admission was significantly more common among readmitted patients (p<0.001) as was 

prevalence of MDRO (21% vs. 15%, p= 0.037).  Immunosuppression had higher 

prevalence among readmitted patients (31% vs. 21%), but this was not statistically 

significant (p=0.1).  Readmitted patients appeared somewhat less likely to be living with 

another adult 63% (130/207) than non re-admitted admitted patients, 69% (397/575), 

p=0.06). For the intensive data collection subset (n=414), we found race, ethnicity, English 

language as first language, and intensive care unit admission to be similar among non-

readmitted and readmitted subjects (see page 22, bottom of Table 1a). 

 

As shown in Table 1, five infectious disease diagnoses (cellulitis, endocarditis, 

pyelonephritis/urinary tract infections, pneumonia, and bacteremia) met criteria to be 

considered as candidates for the multivariable model.  Patients who were prescribed 

aminoglycosides were associated with a two-fold higher odds of readmission (p=0.04) 

compared to patients who did not use this drug class.  Anti-Staphylococcal penicillin class 

antibiotics (oxacillin, dicloxacillin, nafcillin) were associated with a 33% reduced odds for 

readmission compared to those who did not use this drug class, though this difference was 
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not statistically significant. Vancomycin was not associated with increased readmission risk 

(crude odds ratio 1.13, p=0.48). 

 

Multivariable Results 

We applied statistical criteria and clinical judgment to develop a final multivariable model 

that included age, prior admissions, MDRO and aminoglycoside use (Table 2). C-statistic is 

0.611 for final model.  Calibration curves (Figure 3) indicate that patients in the highest 

quintile of predicted readmission risk have more than double the readmission odds 

compared to the lowest quintile readmission risk (lowest = observed 17.8%, predicted 

18.3%, and highest = observed 43.6%, predicted 40.0%).  Hosmer-Lemeshow test result for 

goodness-of-fit was χ
2 
= 5.5 (p=0.7).  

 

3.2 Sensitivity Analyses 
 

Compared to the remaining cohort, the 78 patients who were potentially lost to follow-up 

after hospital discharge had fewer prior admissions in the preceding 12 months (0.5 vs. 1.1, 

p<0.01) and were more likely to get post-inpatient antibiotics in a rehabilitation facility as 

opposed to home (58% vs. 46%, p=0.05).  They were not significantly different from the 

remaining cohort in terms of age, sex, use of aminoglycosides, and length of stay, as shown 

in Table 3. Sensitivity analyses either leaving these patients out of the analysis or 

classifying all as readmissions did not meaningfully change the final model odds ratios, as 

shown in Table 2.  

 

3.3 Model Diagnostics 
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Using Cook’s distance, full model was examined for influence points.   4 subjects were 

found with leverage >0.06 (Figure 4). The initial full model included the following 

readmission predictors: age + bacteremia + cellulitis + urinary tract infections + pneumonia 

+ endocarditis + mdro + inpatient service + number of prior admissions + anti-

Staphylococcal penicillins (e.g. oxacillin) + aminoglycosides.  These 4 high-influence 

subjects were removed from the dataset and Cook’s distance was measured comparing the 

results with and without the influence points (Figure 5).  The full multivariable model was 

re-analyzed after removing these four outliers using backwards selection with AIC.  Using 

this selection scheme, bacteremia was no longer found to contribute significant information 

to the model, and the remaining model variables were age, prior admission, cellulitis, 

aminoglycosides and MDRO. In order to ensure the model was not driven by subjects with 

overly high influence, these four subjects remained out of the final model.  

 

To account for potential overestimation of regression coefficients, we used the Lasso (least 

absolute shrinkage and selection operator).  Using regularized logistic regression, squared 

error of coefficients was minimized at 3 variables: prior admissions, aminoglycosides, and 

MDRO.  Lambda (optimal model complexity) was estimated using 10-fold cross-

validation. Using a less restrictive lambda 0.026 optimized the model with six variables: 

age, bacteremia, pneumonia, aminoglycoside, prior admission, and MDRO.   

 

Given that bacteremia, cellulitis and pneumonia were not consistently part of final models 

described above, they were eliminated from the final model on both statistical and clinical 

grounds.  Therefore the final model variables are: age, prior admission, MDRO and 
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aminoglycoside use.  Collinearity of these final model variables was measured using the 

variance inflation factor (vif).  Vif was < 1.02 for each variable, with vif > 5 indicating 

collinearity.  Thus we concluded that these variables were not collinear. 

 

Testing for Linearity of Age and Prior Admissions 

Age was assessed for nonlinear relationships with readmission risk using a spline function 

with 4 knots. This demonstrated a monotonic relationship of age with increased 

readmission risk, likely modeling a monotonic relationship with some variability (Figure 

6).  Given the inflection point at approximately age 50 year, we tested for higher order 

interactions of age with readmission and examined the effect on the multivariable model of 

adding a variable of age
 
to second, third and fourth power respectively.  None of these 

higher-order age variables had a statistically significant association with 30-day 

readmissions.  Also, the estimated betas for the non-age-related variables in the 

multivariable model (prior admission, MDRO and aminoglycosides) changed by 1% or less 

when adding higher-order age variables. (Table 4).  T-test of coefficients showed no 

significant difference between these iterations of the model (p=0.287).  Akaike information 

criterion (AIC) was maintained between 886 and 888, showing no additional model 

improvement with adding higher power age variables.  

 

We also assessed whether prior admissions could have a nonlinear relationship with 

readmission risk.  Spline function of prior readmissions demonstrated linear relationship 

(see Figure 7). When adding prior admission as a quadratic term, model was not 

significantly difference by t-test of coefficients (p=0.3129) 
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Discussion 
 

Among patients followed within our OPAT program, the overall rate of 30 day readmission 

was high (26%) but similar to those in other published OPAT cohorts (47-49).  Patients 

who were readmitted were similar in most respects to patients not readmitted.  However, 

they were more likely to be older, have a prior admission within the last year, have an 

infection with a multidrug resistant organism, or to have been receiving an aminoglycoside 

rather than another antibiotic.  Using these easily obtainable variables permitted 

stratification of the OPAT population into risk quintiles, such that the highest risk quintile 

had a readmission risk that was 2-fold higher than the lowest.  C-statistic for the model is 

0.61, with modest discrimination ability.  While this gives some discrimination at the 

extremes, the discrimination ability for the mid-range risk is not as strong, where guidance 

is needed more. The Hosmer-Lemeshow test statistic p=0.7 implies that the observed and 

expected values are not significantly different and the model fits the data acceptably well. 

 

Similar to other studies (2, 3, 5, 10-13), prior admissions had the strongest association with 

readmissions.  We did not find vancomycin associated with readmissions.  Our model 

found that use of aminoglycoside was associated with a doubling of risk of 30-day 

readmission.  Given the nephrotoxicity of aminoglycosides, and their reservation for use in 

serious conditions, this increase in risk seems clinically plausible, though the relationship 



21 
 

may not be causal.  Similarly, MDRO may be a marker for difficult-to-treat organisms or 

for overall disease severity.   

  

Unlike other studies of hospital readmissions (8, 10), we did not find any demographic 

characteristics were associated with readmission risk, aside from a borderline association of 

readmission with higher age.  It is possible that the additional support – both inpatient and 

outpatient – of patient teaching and care coordination in OPAT programs help address 

unmeasured healthcare disparities that usually cause readmission rates to be higher among 

minority or lower socio-economic populations.  Overall model discrimination was in a 

range usually considered modest (C-statistic 0.611), but this performance is in alignment 

with many other hospital readmission scores calculated from substantially larger cohorts 

(reviewed by Kansagara et al, 2011 (50)). Overall, all the subjects in this study are at high 

risk for readmission.  Therefore the model may serve to identify higher risk patients who 

might benefit from additional home resources to avoid readmission as opposed to 

identifying low-risk patients who need less intervention.  Further prospective studies are 

needed to measure whether identification and intervention for high-risk patients improves 

outcomes in the OPAT setting. 

 

Some authors have raised concern regarding the use of 30-day readmission as a quality 

metric.  Vaduganathan (51) argued that the 30-day time frame is not biologically relevant 

and this focus may have unexpected adverse consequences such as hospitals that improve 

post-discharge mortality being penalized for increased readmissions, due to removal of the 

competing risk.  Additionally, others have raised concerns about the use of a quality metric 
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that is influenced by so many factors outside the inpatient team’s control, including 

noncompliance, trauma, and worsening of other unrelated comorbidities (52).  These 

concerns notwithstanding, the use of 30-day readmission rates as an important quality 

metric creates intense interest on identifying especially high risk patients.   Yet the 

influence of post-discharge factors that are difficult to control and measure may make 

readmission prediction highly challenging. 

 

One limitation is that we did not analyze subsequent readmissions, so this model may only 

be applicable for the first readmission.  Another limitation is the possibility of 

misclassification bias for subjects who do not return to the study institution. However, we 

found in sensitivity analyses that removing these subjects from the data set or reclassifying 

them as readmissions did not meaningfully influence our results.   The heterogeneity of 

conditions treated may have contributed to the low discrimination of the model, with the 

potential for different predictors of readmission among the subpopulations.  Our prediction 

model strictly utilized medical record data that was collected at the time that care was being 

provided, thus we minimized the risk of recall bias in a retrospective cohort study.   

 

Study strengths include capture of planned versus unplanned nature of the readmission, 

which is not always accomplished in readmission studies (50).  We studied a wide range of 

patient demographic and clinical variables and our study was powered to detect changes in 

readmission rates with relatively low prevalence risk factors on the order of 10%. The 

breadth of conditions treated may promote generalizability of this model among 

hospitalized patients and ensures that this model is relevant to actual clinical practice.  
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Since subjects were referred to the OPAT program by their inpatient infectious diseases 

consultants, we presume that data on infectious diagnoses and antibiotic treatments were 

correctly documented in the medical record.  Diagnoses and treatment were abstracted from 

individual patient medical records as opposed to billing or other administrative data, further 

increasing the accuracy of exposure and covariate classification. 

 

Future directions for this research could include additional medical factors that could be 

related to readmissions. Additional medical history variables that could be collected 

retrospectively include day of discharge (i.e. weekend vs. weekday) and antibiotic switches 

prior to discharge.  Rationale for studying antibiotic switches is that if a patient’s first dose 

of the OPAT drug is on day of discharge, clinically meaningful side effects will not 

manifest until the patient is an outpatient.  Would inpatient antibiotic switches be 

associated with higher risk of readmissions? This study could be quite complicated, as 

some of the switches may be from less tolerated to better tolerated drugs, while other 

switches could be the reverse. 

 

Additional variables that could be collected prospectively that could add some insight into 

previously unmeasured OPAT processes could include: confidence of OPAT success in the 

opinion of the infectious diseases consultant; confidence of OPAT success in the opinion of 

the patient; formal assessment of medical literacy of the patient – low medical literacy has 

been shown in general medicine wards to be associated with readmission risk.  Does the 

OPAT teaching overcome patients’ baseline medical literacy gaps? 
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In summary, readmission was a common issue in our OPAT cohort.  We created a 

predictive model for hospital readmissions for OPAT patients that relies on 4 easily 

obtainable clinical variables: age, prior admissions in past 12 months, aminoglycoside use 

and history of resistant organisms.  In keeping with many other researchers’ experiences, 

model discrimination was modest by conventional standards.  Not surprisingly, the 

strongest predictor of readmission was the number of prior hospitalizations.  Future work 

should examine the influence of potentially modifiable post-hospital OPAT care activities 

and characteristics of different OPAT programs on readmission rates and clinical cures, and 

consider additional variables such as day of discharge and inpatient antibiotic changes that 

may also increase risks of readmissions. 
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Figure 1. Conceptual Model of OPAT. 
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Figure 2. OPAT Research Cohort Subject Flow Diagram 

 

 
Patients tracked in clinical OPAT Program  

January 2009 – December 2011 
Assessed for eligibility (n=841) 

Excluded (n=34) 

 Discharged on oral antibiotics (n=28) 

 Chronic prophylactic intravenous antibiotics (n=2) 

 Intravenous antibiotics only given outpatient (n=4) 

Entered into research database 
Charts Extracted and Analysed (n=807) 

 
 

Excluded (n=23) 

 Planned Readmission within 30 days (n=23) 

 

Final Model 
(n=784) 

Data Extraction and Analysis 
 

Intensive Data Extraction 
Detailed Demographics, Labs, BMI 

(n=414) 
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Figure 3. Calibration curve for multivariable model 
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Figure 4. Influence points 

 
Figure 4 illustrates that four subjects have a high influence on the performance of the initial 

full model as measured by Cook’s distance.  

Initial full model: readmission predictors: age + bacteremia + cellulitis + urinary tract 

infections + pneumonia + endocarditis + mdro + inpatient service + number of prior 

admissions + anti-Staphylococcal penicillins (e.g. oxacillin) + aminoglycosides.   
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Figure 5. Cook’s distance with and without influence points 

 
Figure 5, left graph, illustrates Cook’s distance for the initial full model with all subjects, 

while Figure 5, right graph, illustrates Cook’s distance for the initial full model with 4 high-

leverage subjects removed. 

Initial full model: readmission predictors: age + bacteremia + cellulitis + urinary tract 

infections + pneumonia + endocarditis + mdro + inpatient service + number of prior 

admissions + anti-Staphylococcal penicillins (e.g. oxacillin) + aminoglycosides.   
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Figure 6. Age Splines 

 
Figure 6 demonstrates a monotonic relationship with age and readmission risk, with 

inflection points likely related to intrinsic variability.  As shown in Table 4, adding higher-

power age variables did not improve the model performance. 
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Figure 7. Estimated prior admission splines. 

 
Figure 7 demonstrates a monotonic relationship with age and readmission risk. 
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Tables 

Table 1a. Demographic and clinical characteristics of study cohort (N=784)   

Characteristic Total study Readmitted Not Readmitted 
p 

value 

 n = 784 n =  207 n =  575  

Demographics        

Age, years: mean 

(SD) 
58 (16) 61 (15) 58 (16) 0.06 

        

Sex: n,%        

Male 446 57% 123 59% 326 57% 0.50 

        

Insurance: n, %       

Medicare 338 43% 93 45% 245 43% 0.71 

Medicaid 102 13% 25 12% 77 13%  

Private 337 43% 89 43% 248 43%  

Self-pay 5 1% 0 0% 5 1%  

        

Support Status: n, 

% 
      0.07 

Lives alone, no 

supports 
53 7% 12 6% 41 7%  

Lives alone, has 

friend/family 

support 

139 18% 40 19% 99 17%  

Lives with at least 

one adult 
527 67% 130 63% 397 69%  

Missing support 

status 
63 8% 25 12% 38 7%  

        

Comorbidities        

Charlson 

comorbidity index: 

median (IQ range) 

2 (0, 3) 2 (1,3) 2 (0, 3) 0.34 

Diabetes mellitus 

without 

complications 

140 18% 40 19% 100 17% 0.23 

Diabetes mellitus 

with complications 
95 12% 31 15% 64 11%  

No Diabetes 547 70% 136 66% 411 71%  

Renal disease,       

no dialysis 
130 17% 38 18% 92 16% 0.36 

Renal disease, 

dialysis 
59 8% 19 9% 40 7%  

No Renal disease 593 76% 150 72% 443 77%  
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Table 1a continued. Demographic and clinical characteristics of study cohort (N=784)   

 

Characteristic Total study Readmitted Not Readmitted 
p 

value 

 n = 784 n =  207 n =  575  

History of 

Multidrug Resistant 

Organism 

130 17% 44 21% 86 15% 0.04 

Immunocompromis

ed 
211 27% 52 25% 180 31% 0.10 

        

Healthcare 

Utilization 
       

Oral antibiotic yes 176 23% 50 24% 126 22% 0.51 

Oral antibiotic no 602 77% 155 75% 447 78%  

missing oral 

antibiotics, n 
4 1% 2 1% 2 0%  

        

Length of stay, 

days: median (IQ 

range) 

6 
(4,10

) 
7 

(4, 

10) 
6 

(4,10

) 
0.68 

Quintiles (based on 

equivalent density) 
      0.75 

1-4 227  53  174   

5 95  24  71   

6-7 149  41  108   

8-12 170  49  121   

13-102 140  39  101   

        

Number of Prior 

admissions in past 

12 months: mean, 

(std) 

1.1 (1.8) 1.5 (2.2) 0.9 (1.5) <0.001 

Peripheral access 

(PICC, Midline) 
      

 679 87% 181 88% 486 85% 0.257 

Inpatient Service        

Medicine 330 42% 97 47% 233 41% 0.160 

Surgery 288 37% 75 36% 213 37%  

Infectious Disease 

Ward 
164 21% 35 17% 129 22%  
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Table 1a continued. Demographic and clinical characteristics of study cohort (N=784)   

 Subset study Readmitted Not Readmitted  

 n = 413 n =  140 n =  273  
p 

value 

Race, Ethnicity, 

Language: n, % 
       

Caucasian 314 76% 108 77% 201 74% 0.40 

Hispanic 14 3% 4 3% 14 5% 0.20 

English first 

language 
359 87% 124 89% 236 86% 0.54 

Intensive care unit 

admission 80 19% 30 21% 50 18% 0.510 
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Table 1b. Antimicrobial and infectious disease diagnoses of study cohort 

 

 

Class 

description 

Specific 

antimicrobial

s 

Total 

n=784 

n, % 

Readmitte

d n=207 n, 

% 

Not 

readmitted 

n=575 n, % 

 

% 

(ratio) 

admitte

d if Risk 

Factor 

present 

% (ratio) 

admitted 

if Risk 

Factor  

not 

present 

Odds 

Ratio 

Cephalosporin 

cephalexin, 

cefuroxime, 

cefazolin, 

ceftriaxone, 

cefoxitin, 

cefepime, 

ceftaroline, 

ceftazidine 

199 
25

% 
53 26% 146 25% 0.95 

27% 

(53/199) 

26% 

(154/583) 
1.01 

Carbapenems 

aztreonam, 

ertapenem, 

imipenem, 

meropenem 

149 
19

% 
42 20% 107 19% 0.60 

28% 

(42/149) 

26% 

(165/633) 
1.11 

anti-

Staphylococca

l beta-lactams 

dicloxacillin, 

nafcillin, 

oxacillin 

104 
13

% 
21 10% 83 14% 0.12 

20% 

(21/104) 

27% 

(186/678) 
0.67 

Fluoro-

quinolones 

ciprofloxacin, 

levofloxacin, 

moxifloxacin 

63 8% 21 10% 42 7% 0.20 
33% 

(21/63) 

26% 

(186/719) 
1.43 

Daptomycin 41 5% 11 5% 30 5% 0.96 
27% 

(11/41) 

26% 

(196/741) 
1.02 

Aminoglycosi

de amikacin, 

gentamicin, 

tobramicin, 

inhaled 

tobramicin 

39 5% 16 8% 23 4% 0.03 
41% 

(16/39) 

26% 

(191/743) 
2.01 
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Table 1b continued. Antimicrobial and infectious disease diagnoses of study cohort 

 

Class 

description 

Specific 

antimicrobial

s 

Total 

n=784 

n, % 

Readmitte

d n=207 n, 

% 

Not 

readmitted 

n=575 n, % 

 

% (ratio) 

admitted 

if Risk 

Factor 

present 

% 

(ratio) 

admitted 

if Risk 

Factor  

not 

present 

Odds 

Ratio 

Synthetic 

nucleoside 

analog 

antivirals: 

acylovir, 

famciclovir, 

ganciclovir, 

valacyclovir, 

vanganciclovir 

37 5% 9 4% 28 5% 0.76 
24% 

(9/37) 

27% 

(198/745

) 

0.89 

anti-

Pseudomonal 

beta-lactams 

piperacillin-

tazobactam 

31 4% 7 3% 24 4% 0.62 
23% 

(7/31) 

27% 

(200/751

) 

0.80 

Azole 

antifungals: 

fluconazole, 

itraconazole, 

ketoconazole, 

posaconazole, 

voriconazole 

29 4% 11 5% 18 3% 0.15 
38% 

(11/29) 

26% 

(196/753

) 

1.74 

Metronizadole 28 4% 9 4% 19 3% 0.49 
32% 

(9/28) 

26% 

(198/754

) 

1.33 

           

Infectious 

Disease 

Diagnosis 

Total 

n=784 

n,% 

Readmit 

n=207 n,% 

Not 

readmitted 

n=575 n,% 

 

% (ratio) 

admitted 

if RF 

present 

% 

(ratio) 

admitted 

if RF not 

present 

Odds 

Ratio 

Bacteremia 190 
24

% 
61 29% 129 22% 0.04 

32% 

(61/190) 

25% 

(146/592

) 

1.44 

Osteomyelitis 

or Septic 

Arthritis of 

Native Joint 

159 
20

% 
39 19% 120 21% 0.53 

25% 

(39/159) 

27% 

(168/623

) 

0.88 
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Pyelonephritis 

or Urinary 

Tract Infection 

103 
13

% 
34 16% 69 12% 0.11 

33% 

(34/103) 

25% 

(173/679

) 

1.44 
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Table 1b continued. Antimicrobial and infectious disease diagnoses of study cohort 

Infectious 

Disease 

Diagnosis 

Total 

n=784 

n,% 

Readmit 

n=207 n,% 

Not 

readmitte

d n=575 

n,% 

p 

% 

(ratio) 

admitte

d if RF 

present 

% (ratio) 

admitted 

if RF not 

present 

Odds 

Ratio 

Intra-

abdominal 
86 

11

% 
22 11% 64 11% 0.84 

26% 

(22/86) 

27% 

(185/696) 
0.95 

Endocarditis 78 
10

% 
26 13% 52 9% 0.15 

33% 

(26/78) 

26% 

(181/704) 
1.44 

Pneumonia 74 9% 27 13% 47 8% 0.04 
36% 

(27/74) 

25% 

(180/708) 
1.68 

Cellulitis 61 8% 12 6% 49 9% 0.21 
20% 

(12/61) 

27% 

(195/721) 
0.66 

Prosthetic 

Joint Infection 
59 8% 14 7% 45 8% 0.62 

24% 

(14/59) 

27% 

(193/723) 
0.85 

Sepsis 38 5% 10 5% 28 5% 0.98 
26% 

(10/38) 

26% 

(197/744) 
0.99 

Central 

nervous 

system 

36 5% 7 3% 29 5% 0.33 
19% 

(7/36) 

27% 

(200/746) 
0.66 

Cardio/ 

Vascular 

Device 

34 4% 11 5% 23 4% 0.43 
32% 

(11/34) 

26% 

(196/748) 
0.48 

Epidural 

abscess 
25 3% 7 3% 18 3% 0.86 

28% 

(7/25) 

26% 

(200/757) 
1.08 

Diabetic Foot 

Infection 
20 3% 3 1% 17 3% 0.24 

15% 

(3/20) 

27% 

(204/762) 
0.48 

Cytomegalo-

virus infection 
20 3% 3 1% 17 3% 0.24 

15% 

(3/20) 

27% 

(204/762) 
0.48 

 

Antibiotics used in fewer than 20 subjects are not included in table (n): penicillin (19), 

echinocandins (19), trimethoprim-sulfamethoxizole (18), amoxicillin/ampicillin group (16), oral 

vancomycin (15), macrolides (14), linezolid (11), oral rifamycins (11), tigecycline (6), 

tetracycline group (4), amphotericins (1), atovaquone (1), macrodantin (1), and nonabsorbed 

oral antifungals (1). 

Infectious diseases diagnoses occurring in fewer than 20 subjects are not in table (n): septic 

shock (12), oto-laryngeal (9), invasive fungal infection (9), diarrhea (5), myositis (3), 

babesiosis (1), Whipple's disease (1), source unknown (1).
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Table 2. Final Model Adjusted Odds Ratios and Sensitivity Analyses 

 

Multivariable 

Model          

Sensitivity 

analysis 1 

Sensitivity 

analysis 2 

  

Odds 

Ratio 

95% 

confidence 

interval p 

Odds 

Ratio 

% 

change 

from 

origina

l 

Odds 

Ratio 

% 

change 

from 

original 

age, per 10 years 1.09 0.99 1.21 0.10 1.10 0.9% 1.10 0.9% 

aminoglycoside 

use 2.33 1.17 4.57 0.01 2.24 -4.1% 1.95 -16.5% 

MDRO 1.57 1.03 2.36 0.03 1.46 -6.8% 1.36 -13.2% 

prior admissions, 

n 1.20 1.09 1.32 

<0.00

1 1.17 -2.4% 1.09 -9.1% 

 

Sensitivity analysis 1: eliminate 78 subjects from model who never had follow-up at study 

institution 

 

Sensitivity analysis 2: Change outcome of 78 subjects to "yes readmission" who never had 

follow-up at study institution (in case they were readmitted elsewhere) 
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Table 3. Demographics of lost to follow-up subjects 

  

lost to 

follow-

up, n=78 

not lost to 

follow-up, 

n= 704 p value 

age, mean years,   60 59 0.66 

% male 63% 57% 0.31 

% history MDRO 15% 17% 0.76 

Mean Number of 

prior admissions in 

past 12 months 0.53 1.13 <0.01 

Median Length of 

stay, days 10 9 0.21 

% Received 

antibiotics at 

rehabilitation facility 58% 46% 0.05 

% Received 

Aminoglycosides 5% 5% 0.95 
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Beta: 

age 

linear p

Beta: 

age
2

% change 

from age 

linear 

model p

Beta: 

age
2
 + 

age
3

% 

change 

from 

age 

linear 

model p

Beta: 

age
2
 + 

age
3
 + 

age
4

% 

change 

from 

age 

linear 

model p

(Intercept) -1.91 0.00 -2.72 43% <0.01 -3.98 109% 0.08 -3.25 71% 0.55

age per 10 

years 0.09 0.08 0.40 334% 0.20 1.17 1179% 0.37 0.55 506% 0.90

MDRO 0.44 0.04 0.44 0% 0.04 0.44 1% 0.04 0.45 1% 0.04

Number of 

Prior 

Admissions, 

past 12 

months 0.17 0.00 0.17 0% <0.001 0.17 1% <0.001 0.17 1% <0.001

Aminoglyco-

side 0.75 0.03 0.74 0% 0.03 0.75 1% 0.03 0.75 1% 0.03

age
2
 per 10 

years n/a -0.03 n/a 0.32 -0.17 549% 0.47 0.01 -136% 0.99

age
3
 per 10 

years n/a 0.01 n/a 0.54 -0.01 -262% 0.93

age
4
 per 10 

years n/a 0.00 n/a 0.88

AIC 886 886 888 888

Table 4. Higher order variables for age

 

MDRO = multidrug resistant organisms 

AIC = Akaike information criterion 

Table 4 demonstrates that adding age squared, cubed or to a fourth power does not change 

the estimated betas for the other model variables by more than 1%.  Large changes of 

lower-order age variables are expected when adding higher-order variables because of 

adding unnecessary degrees of freedom.  AIC is essentially unchanged with adding higher 

power age variables, demonstrating no improvement in the model with adding these 

additional variables.  Thus we conclude that keeping age as a linear variable is reasonable. 

 

 

 

 

 

 

 

 


