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Abstract

Osteoarthritis (OA) is a painful and debilitating disease of the human joints. Sufferers
of OA face a lifelong struggle with thehronic disease. Current treatment options are
directedat pain and inflammation management, occasionally culminatirigtal joint
replacements for qualifying patientBo date, © comprehensive treatments have been
developed partially attributed to limitations in current OA research models. With
inciderce of OA constantly on the rise, in pdtteto our aging population and increasing

life spansthe necessity of comprehensiveatment options is becoming inevitable.

A novel model for studying OA in a mouse model was developed. A first generation
systemcapable of actuating and culturing amputated murine stifle joints was designed
fabricatedand tested The system comprises:a mechanical device that maintains a
stifle joint in a culture medium reservoir and actuates the joint through a controlled
flexion-extension profileand a microcontroller board used to run an dpep controller
supporting the deviés function. The system was used to investigate the effects of
actuation and culture medium glucose concentration on the articular cartilagéeof sti
joints harvested from eighweekold NF,B/Balb C mice. Results suggest that a high
concentration of glucose (9.0 mg/ ml) in Dul bec
used to culture dynamically actuated joints promotes a higher degree of joint damage as
measured by quafitation of SafraninO staining loss, as opposed to moderate (4.5

mg/ml) and low (1.0 mg/ml) glucose concentrations.

A secondgeneration system was then developed, addressing limitadientfied in

the firstgeneration system related repeatability, reliability and usability. The design



process focused on developing a pairaifust coupled four bar linkage systewith the

ability to repeatedly actuate the joint through a wdellined and repeatable flexion

extension cycle. A novgbint clamping and mounting system was also developed to

minimize user uncertainty associated with experimental sefflupse devi cebds functi o
supported by a closddop speed control system combining proportientdgral (Pl)

action with an iterativefeed forward controllerThe superior controllability of this

system allowed investigation into the effects of actuation cycle rate and relative activity

rest durations ojoint health.Results demonstrate that the system is capable of causing a

range ofdamageas measured by Safradih staining loson joint samples by varying

activity cycle durations

Finally, substantialwork was directed towardsxtending the functionality of the
seconedgeneration system to implement active loading control, effectiaidbyving the
deviceto control the loads at a mounted stifle joint as function of the @addion A
second PI control system was developed to control load by sensing bending torque in a
system link Extensive experimental and analytical modeling wer§gomed to develop a
working contrd system. Several limitations tiie controllability were determined due to
the system geometry and assumptions made during the design process. Nevertheless, it
was successfully demonstrated that with proper loadingleradnsiderations, accurate

control could be achieved, opening the door for a plethora of future research.
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Introduct ion

1.1 Background & Motivation

This dissertation develops and validatesimarnvitro system capable of producing
osteoarthritis (OAJike joint damage in explanted stifle joints of laboratory migih the
aim of studying the progression and treatment @A. Joints are biomechanical
components thatre key tothe healthy function of the bodyActing as connectionand
mating points between bones, joints enabtaotion of the limbsand providethe
mechanical supporbecessary to maintain the dynamic intggritf the body during
physical activity. A typical joint consists of articular cartilage attached to two or more
tangential bone surfaces, with ligamerasd other tissuesmaintaining structural
components in placerhis entire structure i€nclosed in thgoint capsule andymovial
fluid present betweerhé articular surfaces acts as a lubricant. Functionally, the joint
provides resistance to compressive and shear strd$sés particular, the knee joiatof
the human body aressentiato the wellbeingof a person atheyplay a significant role in

locomotionand several dato-day activities

Given theircritical role in supporting body functiomipt diseasgcan greatly degrad

quality of life. Although numerous medical conditions can affect joifunction,



osteoarthritis (OA) is of particular interest to researchers and medical profesdiomats

its relatively high prevalencend the limited availability of treatment optiorig/pically
referred to as a 0 we asuspesdrdle df repeatedl mechasieala s e due
stresses ithe initiation and propagation tfe disease, OA causes inflammation, and loss

of cartilage within the join{Figure 1), triggeringsignificant painin patients[2]. Due to

the high lods and large ranges of motierperiencedthe knee is the most frequent joint

to be affected by OACurrently, no comprehensive treatment is available to reverse or halt

the diseaseDue to the chronic nature of Qhe only available treatment feufferersis

directed at pain management and slowing the progression.

General Changes in an Idiopathic Osteoarthritic Joint

NORMAL OSTEOARTHRITIS

Subchondral bone cyst
(focal loss of bone)

Thickened capsule
o % Limited synovitis
Normal synovium

Early focal degenerate lesion
Articular artilage

Synovial —_— Cartilage cap of osteophyte

cavity Subchondral bone

of osteophyte
Bone p

‘Fibrillated’ cartilage

1y Or by
ph.

Figure 1: Osteoarthritis is manifested by changes in all the tissues in the jointhe disease involved
degeneration of cartilage, subchondral bonas well as otler supporting structures of the joint. Figure
taken from Poole et al[3]



The progress of researoh comprehensive OA treatmeyis hindered bythe difficulty
in replicating the effects of repeated mechanical stresses within the joint inndeo
condtions [2]. Currently, two approaches are used to study the mechanisms and

treatments options related to OA:

1) in vivo animal models in which laboratory animals (typically mice and rats) are
encouraged to ovaxxercise to the point of Cke damage to thgoint. This
approach is I imited by the researcherso6 abi
exercise to the point of damage; and although destabilizing surgehiesical
interventions or genetic modificationan be used timitialize damageof thejoint,
such approaches do not accurately mimic the conditions oftéwngharmseen in
OA.

2) in vitro modelsin which cartilage tissue is cultured and mechanical loading is
applied directly to the tissue pieces. The limit of this approathaist does ot
account for the bionmaanical structure of the joimbr the biochemical interaction
between various tissues in the joi@onsequentially this results nonrealistic

stress dbtributions across the tissues.

The limitations of both approaches havada it difficult to studyOA and develop
effective treatment schemes fior Therefore, ther@xists a strong motivatioto develop

andinvestigate alternate approaches to study OA pathology and treatments.



1.2 Problem Statement

In order to make significanprogress in the research towards treating OA, it is
necessary to study therogressionof OA and potential reatment options in a
representativeyet controlled settingAn in vitro system, where whole joints can be
cultured and subjected to conditions @thiresult in OAlike injury of the joint structure
would provide a novel approach to studying the progression and treatment Gh@A.
successful development and employment of such a system could havbahiging

impacts on future OA patients.

1.3 ResearchObijectives

The ultimate goal of this work has been to develop an independent system that may be
used by biomedical researchers, with ease, to study OA pathology and screen treatment
options. As such the scope of this work has been fitted to include homachanical
design of the system, but to develop all supporting hardware and software components,
necessary analytical models, and experiment protodalsachievethese goak, the

following research objectivesesepursued and completed:

(i) Design and faricate a system capable of applying cyclic motion actve
mechanical loading profiles to explantedirine stiflejoints, while maintaining
joint viability;

(i) Developnent ofanalytical modes for the systemthat describes thikwading state
of the stifle joint during the loading cycle as a function of mechanazbiator

inputs;



(iii) Developnent and implementation of closetbop control systerafor controlling
the flexion angle of thetifle in concert with a specified loading profile at the
joint;

(iv) Investigatiom of the effea of different flexion cyclefrequency profileson

explanted mousstifle joints using the developed system.

1.4 Organization of the Dissertation

This dissertation presents a full record of the development of a novel system for the
study of OAiIn a murine model. Beginning with Chapter 2, a review of the past literature
will outline the anatomy and function of the human knee joint, the pathological features of
OA, the current state of research and treatment options for combating the disease, and
detailed history of the development and use of knee simulating systems for various
research applications. Chapter 3 describes the development and use of a first generation
system for studying OAn-vitro, capable of actuating an amputated mustiéle joint
over a predefined flexion profile. Theffects of glucose concentration the culture
medium on the health difie joints will be presented and discusselapter 4 presents the
development of a secomgbneration systemaddressing several shortcoméngf the
system described in the previous chapter. This chapter will coveslébhanechanical
design, analytical modelingontrol system design and experimental use of the system to
investigate the effects of flexion cycle profile on health of ampdtaterine stifles
Chapter 5 presesmmethods of extending the functionality of the secgaderation device
to includethe applicatiorof controlled forceprofiles at thestifle joint. Chapter 6 presents
concluding discussions and remarks, as well astdiions of the current system and

suggestions for future work.
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Review of Literature

2.1 Overview of Knee Joint Anatomy

The knee is @&ritical component of the human body, providing stability and mobility.
It is also one of the most mechanically irdtiejoint structures in the body, effectively
consisting of two asymmetrical bearing surfaces, the cartilage coated tibial and femoral
condylesThe patella (commonly referred as the
side of the joint.The compliant medial and lateral menisci lie betwe#re tibial and
femoral condyles The anterior cruciate ligament (ACL), posterior cruciate ligament
(PCL), lateral collateral ligament (LCL) and medial collateral ligament (M&ie) the
most importanbf a collection of fibers andigaments thatonnect and stabilize theint
structure[4]. The ligaments are composed of parallel running collagen fibers. In particular
the cruciate ligaments are fundamentahiaintainingmechanical stability of the kne8][
Thejoint components are enclosed in a capsule and synovial fluid is secreted between the
articular surfaces providing lubrication. Healthy operation of the knee joint is contingent
on the integrity of all the componen&eeFigure 2 for a full schematic representation of

the human knee.
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Figure 2: a) Posteremedial view of the knee joint showing major components. b) sagital sectiofi the
knee joint with major components. Figure taken from Girgis et al. ].

The knee primarily moves in flexignbut provides a significant amount of exo
endorotation(rotation around the tibial axi$4] and limited yet measurable motionah
other directionsEffectively it can be thought of as finodified hing® [7]. Motion is
actuated by a system of muscles: the knee extensors, flexors, adductors and atajiuctors [
(seeFigure3d). The physical state of the knee is primarily determined by the flexion angle,
and additionally described hbgternal/extenal rotations(i.e. rotation of the femur relative
to the tibia along the tibial axisanterior/posterior (AP) displacement and medial/lateral
(ML) displacementThe knee flexion angle is defined as the supplementary angle of the
internal angle between éhfemur and tibial n humans, the kneeds

motion ranges from a flexion angle of @.e. full extension) to 1458].

natur
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Figure 3: The major muscles of the knee jointA. Anterior view of major muscles of the kne:
Quadriceps group (VL, vastus lateralis; RF, rectus femoris; VM/ VML, vastus medialis; VI, vastus
intermedius; VMO, vastus medialis oblique fibers). B. Posterior view of the major muscles of the knee:
Posterior thigh muscles (ST, semitendinosus; SM, semémbranosus; Bi; biceps; TFL, tensor facia
lata). Figure and captiontaken from Most [5].

The kneejoint experiences loads in all three spatial dimensions, leading to a total of
six independent possible loads (including both linear and rotational Idaesgarchers
have quantified these loads for various activities including wall@ddl], running P, 13,
stair climbing [LO, 13 and cycling L4-16] using a variety of method¥he kneeypically
experiences compressidm the range of two to eight timeke body weight of the host
during suchactivities However, a healthy joint structure is capable of transmitting and
directing these loads without causing injury to the hiestther details of the knee as a

mechanical system can be found4i [



2.2 Ostearthritis in Humans

OA is a degenerative disease of the articular joints. In humans, the knee is most
commonly affeted joint in the body.The disease is painful and debilitating, causing a
significantand progressiveecreasén the quality of sufferefdife [17]. The progression
is often patient specific and can involve a single or multiple g¢g&jt Often the disease
progresses to a point where function of the affected jointsompletely inhibited.
Although dassicallythought to only affect the atular surface, OA is now understood to
affect nearly all components of the joint (séeure 1) [17]. However, cartilage

degeneration is the primasymptomof OA.

The disease is caused by a number of factmmbinations of gnetic, biological,
environmetal and mechanical elements contribute to the developmeédo€ommonly
cited risk factors include obesity, old age, prior joint injuaipd occupations involving
high activity levels 18]. The disease pathway and progressghighly complex and still
the subject of extensive researtlmwever, the role gpint mechanics and theroduction
of high or abnormal stresses within the joint structure are believed to be a significant
antecedentDriban et al[18] identified thatparticipation in certain sports such as soccer,
distancerunning, weighifting and wrestling are associatedtfvthe development of knee
OA likely due to: 1higher joint loads and?) higher incidence of joint injuryBoth causes
result in what can beonsidered abnormal stress conditions of the jédihhormally high
loads clearly result in abnormally high stressasd joint injury can result in a
redistribution of stresses throughout the joint structure resulting in an unnatural (i.e.
abnormal) stresdistribution.ln 2013 Felson19] argued that abnormal mechanics are a
direct cause of OA. Furthermore, it was shown that the presence of abnormal stresses and
development of OA results in a cyclic proce$goint degradationAs the joint degrades

overthe course of the diseadbe stress distribution evolvés account for changes in the
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spatial structureand newarticular surface This redistributionof stressesn turn resuls
further joint damagedeading to a vicious cycle dftressredistributionand joint damage,

Figure4.

Increased load over .- . Debris

narrowed side of joint (blue Remammg Car[llage .
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meniscal damage/ extrusion; .
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l’ More local
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Bone shape — warse'
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Figure 4: The vicious cycle of joint damage caused by malalignment. Rige and caption taken from
Felson [19]

OA is one of the most common diseases in the human populd}idhig estimated
that 55.7 million cases doctdiagnosedOA existed in 2015 within the United Stated
population. That number is expected to rise to 67 million cases by 2030, accounting for
25% of the adult population2Q]. With such a high prevalencd the disease, it is
expected that 25 milliorpeople will have some level of arthritiattributed activity
limitations [20]. Table1 summarizes predictions of OA in the U.S. from 2005 to 2030 by

Hootman et al. published in 2006.

1C
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Table 1: Projections of OA in the US. Table adapted from Hootman et al.Z0].

Year Estimated US Projected prevalence Projected prevalence of
population, in of doctor-diagnosed  arthritis -attributab le activity

thousands arthritis, in thousands limitations, in thousands

2005 216,096 47,838 17,610

2010 227,762 51,879 19,117

2015 238,154 55,725 20,601

2020 247,775 59,409 22,052

2025 257,469 63,209 23,565

2030 267,856 66,969 25,043

Despite the high prevalence and alarming mtézhs, there are few treatments for
OA. For less severe cases, patients are encouraged to exercise, practice physiotherapy and
lose weight. The role of pharmacological intervention is primarily directed towards
symptom relief consisting of corticosteraigections at the affected joints and general use
of nonsteroidal antinflammatory drugs. For more severe cases, surgical treatments are
used to either change the stress distribution in the joint (i.e. osteotomy) or to completely

replace the affectedijtt with a prosthetic implang].

The lack of comprehensiv@A treatment has been at least partially attributed to
deficiency in the knowledge of the disease pathol&@jy [Current research approaches
rely on in vitro cell models, which althoughighlighting cellular and molecular
mechanismsfail to accurately model the threffmensional structure of joint©n the
other handthe use ofn vivoanimal modelsioes account for the effects of OA within the
entire joint structure. However, the developmearf chronic stress induced OA in
laboratory animals is difficultand typicallyinvolveschemical or surgicalitervention to
promote joint degradation. Such interventions limit the relevance of the models as a
method to study OA in humans. A detailedcdission of the advantages, disadvantages

and current states of vivoandin vitro OA research can be found 2] [

The motivation to develop a novel system to study OA pathology and potential

treatments is cleaiThe proposed research is to developirawitro system capable of

11
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inducing OAlike pathology in explanted mouse jointhe goal is to effectively develop a
knee simulating system capable of dynamically actuating and loading knees in a controlled
manner while maintaining viability of the joint cage and surrounding tissueBhe
successful development of suahsystemwill allow researchers to investigate both OA

pathology and treatments a mouse model under controlled and known conditions.

2.3 A History of Knee Simulating Systems

The developmerand useof knee simulating systems is not entirely nov#dwever,
their use in biological and medical relevant applications has been highly limited in the
past and to date, no knee simulators have been repdhad maintain viability in
explanted jointover extended periods of timRegardless, it is helpful to consider the

history of knee simulating systems.

The use ofnechanisms to simulate knee motion and loadtiiag been reported in the
literature througbutthe past four decadeEBhis section sengeto summarize the history of
published research where investigators have developed or acquired systems that simulate
aspects of natural knee motion and loading. In general, three classes of knee simulators are
identified: Oxford style simulator2]-34], robotic arm driven simulator$] 3540], and
unique simulatorsq, 41-57, 63-65]. Unique simulators, simply put, are devices that are
not driven by robotic arms and are not of a fdactor comparable to Oxforstyle
devices. Each class of knee simulaterid be discussed in further detail in coming
sections. A timeline of major studies involving knee simulation is presenteune 5

and a general overview of each study is showraiole?2.

The majorly of past knee simulators have been developed to study human models,

using either cadaver knees, cadavers implanted with total knee replacements, or total knee

12
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replacements directly mounted onto the simulation devices. Similarly, the majority of
researchas focused on measuring and modeling the complex biomechanics of knees and
implants, or quantifying the wear and performance of total knee replacements and their
constitutive materials. The nature of these studies therefore does not hemqmgréssue.

In cases where natural knees are studied, research focuses on biomechanical
characterization in which the knee is subjected to forces and displacements comparable to
those encountered in human activity. The measurement of forces, displacements or strains
is typically the output of such experiments. Since these kinds of experiments focus only
on the mechanical behavior of the knee joint as a mechanical system and have no interest
in determining the biological response of tissues, no effort is made toectiiriknee. In

many instances defrosted knees from frozen cadavers are utilized as well, leading the

assumption that the tissue is effectively dead.

A comparatively small nhumber of systems have been developed to study animal
models too. Studies have beparformed usingn vitro bovine §2, 63, 69, in vitro
porcine p7], in vitro murine B4] andin vivomurine[52, 53, 55] models. The bovine and
porcine modeled investigations focus on investigating cartilage wear due to repeat, loading
and in one case ¢heffects ofpassive motion loading on tissue biolo@e research oim
vitro murine joints focused on measuring joint friction in a cultured stifiehe case of
the in vivo murine modek, the research goals were to investigate the effects of passive
motion loading on tissue following invasive knee surgeries. These represent the only
studies found where a knee simulation device is used in a diagnostic or medical capacity
and where there is an explicit effort in measuring the biological response. The
methodology and mechanisms used in these studies will be expanded upon in coming

sectiors.
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Figure 5: Timeline of majors published works related to knee simulators
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1997 Zavatsky et al. _

_ kuan: Miller et al

L |
2005 Guesset al

' ' i

2005 Maletsky etal.
I I

2005 Patil et al.

@ 2010 Halloran et al
|

2009 Ylidirim et al.

!

& 2000 Most

» 1996 Rudy et al.

b 1993 Fujie et al.

2004lietal

® 2011loetal

p 2006 Liet al. ® 2010 Noble et al

Color Legend
Red — Testing performed on natural knees

Blue — Testing performed on prosthetic knees
Green — Comparative study of natural and prosthetic knees

Unless otherwise specified, devices use human models

(B) — Indicates bovine model
(M) — Indicates murine model

(P)

— Indicates porcine model
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Table 2: Summary of significant publishedworks related to knee simulators (*Study does not report
usage on intended specimen)

Year Author Animal Specimen  Test Specimen Area of Study Rig Style
Model Type Environment
1971 Radinetal[4l] Bovine Tissue Lubricant bath Cartilage wear Unique
1973 Shawetal.#2] Human Implant Not enclosed Implant testing Unique
(mounted
on cadaver)

1975 Perryetal.21] Human Tissue Not enclosed Knee biomechanics Pre-Oxford

1978 Bourne et al. Human Implant Not enclosed Implant testing Oxford
[22]

1988 Blankervertet Human Tissue Not enclosed Knee biomechanics Unique

al. 43|

1988 Lewisetal.44 Human Tissue Not enclosed Knee biomechanics Unique

1990 Bernsetal.45 Human Tissue Not enclosed Knee biomechanics Unique

1993 McLeanetal. Human Implantand Notenclosed Implanttesting and Knee Unique
[46] Tissue biomechanics

1993 Moreetal. R4 Human Tissue Not enclosed Knee biomechanics Oxford

1993 Fujie et al. 35] Human Tissue Not enclosed Knee biomechanics Robotic arm

1994 Pavlovic etal. Human Tissue Not enclosed Knee biomechanics Oxford
[23]

1995 Bach et al.g§] Human Tissue Not enclosed Knee biomechanics Unique

1996 Rudyetal.36) Human Tissue Not enclosed Knee biomechanics Robotic arm

1997 Walker et al. Human Implant Not enclosed Implart testing Unique
[47]

1997 Zavatsky et al. Human Tissue Not enclosed Knee biomechanics Oxford
[26]

1998 MacWilliams et Human Tissue Not enclosed Knee alignment Unique

al. 48]

1998 Churchilletal. Human Tissue Not enclosed Knee biomechanics Oxford
(25

2000 Desjardins etal. Human Implant Lubricant bath Implant testing Unique
[49]

2000 Walker et al. Human Implant Lubricant bath Implant testing Unique
[50]

2000 Most [B] Human Implant Not enclosed Implant testing Robotic arm

2000 D'Limaetal. Human Implantand Not enclosed Knee vs. Implant Oxford
[27] Tissue biomechanics

2001 D'Lima et al. Human Implantand Not enclosed Knee vs. Implant Oxford
[29] Tissue biomechanics

2001  Miller etal. P8] Human Implant Not enclosed Implant testirg Oxford

(mounted
on cadaver)
2004 Li et al. B7] Human Tissue Not enclosed Knee biomechanics Robotic arm
2005 Patil et al. 80] Human Implantand Not enclosed Knee vs. Implant Oxford
Tissue biomechanics

2005 Guessetal3l] Human Implant* Not enclosed Implant testing Oxford

2005 Maletsky et al. Human Tissue Not enclosed Knee biomechanics Oxford
(32

2006 Li et al. Bg] Human Tissue Not enclosed Knee biomechanics Robotic arm

2007 White etal. p1] Human Implant Not enclosed Implant testing Unique

2007 NugentDerfus  Bovine Tissue Culture Medical Unique

et al. [65] medium

2009 Ylidirim et al. Human Implantand Not enclosed Knee vs. Implant Oxford

[33] Tissue biomechanics

1t
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2010 Stasiak etal.  Murine Tissue in vivo Medical Unique
(52]

2010 Gu et al. 53] Murine Tissue in vivo Medical Unique

2010 Halloran etal. Human Implant Not enclosed Implant testing Oxford
[34]

2010 Nobleetal.39] Human Tissue Not enclosed Knee biomechanics Robotic arm

2010 Sutton etal.$4] Human Tissue Not enclosed Knee biomechanics Unique

2011 Lo et al. 40] Human Implant Not enclosed Implant testing Robotic arm

(mounted
on cadaver)

2012 Drewniak et al. Murine Tissue Culture Knee biomechanics Unique
[64] medium

2013 Stasiak etal.  Murine Tissue in vivo Medical Unique
[59]

2014 Lin B3] Bovine Tissue Culture Validation of culture Unique

medium system

2015 Liu etal. [56] Porcine Tissue Lubricant bath Cartilage wear Unique

2015  Vestraete etal. Human Tissue* Not enclosed Knee biomechanics Unique
[57]

2.3.1 Unique Simulators

Radin et al. 41] reported the development ohe of the earliest knee simulation and
testing devices in 1971. The system, showRigure6, was built to investigate the wear
properties of cartilage using thawed bovine metacgrpalangeal joits. The system was
based on a modified anthrotripsometer, a device used to metlguiestantaneous
coefficient of frictionbetween two surface$he knee was maintained in a veronate buffer
lubricant bath, witlthe intent of the simulating synovial flujgtesent in the natural joint.

The authors investigated the effects of combined oscillation, static loads up to 1000 Ib and
intermittent impact loading on the rate of wear of cartilage. Static load application was
accomplished by hanging weights, and dyitaimpact loads were realized through a

pneumatic cylinder. The experiments were run for up to 500 hours at a time.

16



17

_..|--Pneumatic Cylinder
(Dynamic Load )

Force

_ - Center of
um‘"ml = - Rotation
- — Lubricant
Reservoir
Oscilloting _ {1 e | any an
Proximal
Phalonx L

e
Static
Load

Figure 6: Cartilage wear testing systeman early knee simulation system developed by Radin et.al
Figure adapted from Radin et al. 1]

In 1973 Shaw et al[42] reported on a device used to test total knee replacements
installed on human cadaver legs. The system, showkigare 7, was developed to
simulate the walk gait cycle and wassijned based on the understanding that two classes
of physiological forces act on the knee: (1) forces transmitted that accelerate the body
mass; (2) forces from muscle groups acting on the knee to control motion. The device has
effective hip and ankle jots with flexion controlled by a hydraulic cylinder and chain
system. Ultimately the device was used to study the effects of tolerance in implant

placement and how it affects the mechanics of the joint.
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Figure 7: Shaw et al. Knee Joint Simulation: (1) load cell instrument recorder; (2) lead weights; (3)
micro-switches; (4) cadaver joint and prosthesis; (5) hydraulic pump; (6) logic control circuitry, Figure
and caption taken from Shaw et al[42]

In 1988, Blankervoot et al43] measured the passive envelopes of knee motion. This
was accomplished by constructing a system for mounting cadaver knees, which left the
joint free in six degreesf-freedom. By applying external loads and torques to the joint
(i.e. tibial torques, axlaforces and anterigposterior forces), the authors were able to

measure the passive displacement envelopes of the knee.

In the same year, Lewis et 4] studiedin vitro knee ligament mechanics by
applying similar external loads to cadaver knees. ddeloped apparatus is presented in
Figure 8. Loading is accomplished with pneumatic cylinders. Ligament foreee
measured using buckle transducers, constructed of steel frames instrumented with strain
gauges. Thredimensionajoint motion is measured using an instrumented spatial linkage

system, consisting of six joints and seven links. Utilizing potentiometers at the joints, the
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