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Abstract  
 

 

Osteoarthritis (OA) is a painful and debilitating disease of the human joints. Sufferers 

of OA face a lifelong struggle with the chronic disease. Current treatment options are 

directed at pain and inflammation management, occasionally culminating in total joint 

replacements for qualifying patients. To date, no comprehensive treatments have been 

developed, partially attributed to limitations in current OA research models. With the 

incidence of OA constantly on the rise, in part due to our aging population and increasing 

life spans, the necessity of comprehensive treatment options is becoming inevitable. 

A novel model for studying OA in a mouse model was developed. A first generation 

system capable of actuating and culturing amputated murine stifle joints was designed, 

fabricated and tested. The system comprises of: a mechanical device that maintains a 

stifle joint in a culture medium reservoir and actuates the joint through a controlled 

flexion-extension profile; and a microcontroller board used to run an open-loop controller 

supporting the deviceôs function. The system was used to investigate the effects of 

actuation and culture medium glucose concentration on the articular cartilage of stifle 

joints harvested from eight-week-old NFəB/Balb C mice. Results suggest that a high 

concentration of glucose (9.0 mg/ml) in Dulbeccoôs Modified Eagleôs Medium (DMEM) 

used to culture dynamically actuated joints promotes a higher degree of joint damage as 

measured by quantification of Safranin-O staining loss, as opposed to moderate (4.5 

mg/ml) and low (1.0 mg/ml) glucose concentrations. 

A second-generation system was then developed, addressing limitations identified in 

the first-generation system related to repeatability, reliability and usability. The design 
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process focused on developing a pair of robust coupled four bar linkage systems with the 

ability to repeatedly actuate the joint through a well-defined and repeatable flexion 

extension cycle. A novel joint clamping and mounting system was also developed to 

minimize user uncertainty associated with experimental set ups. The deviceôs function is 

supported by a closed-loop speed control system combining proportional-integral (PI) 

action with an iterative feed forward controller. The superior controllability of this 

system allowed investigation into the effects of actuation cycle rate and relative activity-

rest durations on joint health. Results demonstrate that the system is capable of causing a 

range of damage as measured by Safranin-O staining loss on joint samples by varying 

activity cycle durations.  

Finally, substantial work was directed towards extending the functionality of the 

second-generation system to implement active loading control, effectively allowing the 

device to control the loads at a mounted stifle joint as function of the cycle position. A 

second PI control system was developed to control load by sensing bending torque in a 

system link. Extensive experimental and analytical modeling was performed to develop a 

working control system. Several limitations of the controllability were determined due to 

the system geometry and assumptions made during the design process. Nevertheless, it 

was successfully demonstrated that with proper loading profile considerations, accurate 

control could be achieved, opening the door for a plethora of future research.   
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Introduct ion 
 

 

 

 

1.1 Background & Motivation  

This dissertation develops and validates an in vitro system capable of producing 

osteoarthritis (OA)-like joint damage in explanted stifle joints of laboratory mice, with the 

aim of studying the progression and treatment of OA. Joints are biomechanical 

components that are key to the healthy function of the body. Acting as connections and 

mating points between bones, joints enable motion of the limbs and provide the 

mechanical support necessary to maintain the dynamic integrity of the body during 

physical activity. A typical joint consists of articular cartilage attached to two or more 

tangential bone surfaces, with ligaments and other tissues maintaining structural 

components in place. This entire structure is enclosed in the joint capsule and synovial 

fluid present between the articular surfaces acts as a lubricant. Functionally, the joint 

provides resistance to compressive and shear stresses [1]. In particular, the knee joints of 

the human body are essential to the well-being of a person as they play a significant role in 

locomotion and several day-to-day activities.  

Given their critical role in supporting body function, joint diseases can greatly degrade 

quality of life. Although numerous medical conditions can affect joint function, 
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osteoarthritis (OA) is of particular interest to researchers and medical professionals due to 

its relatively high prevalence, and the limited availability of treatment options. Typically 

referred to as a ñwear and tearò disease due to the suspected role of repeated mechanical 

stresses in the initiation and propagation of the disease, OA causes inflammation, and loss 

of cartilage within the joint (Figure 1), triggering significant pain in patients [2].  Due to 

the high loads and large ranges of motion experienced, the knee is the most frequent joint 

to be affected by OA. Currently, no comprehensive treatment is available to reverse or halt 

the disease. Due to the chronic nature of OA, the only available treatment for sufferers is 

directed at pain management and slowing the progression.  

 

 

 

Figure 1: Osteoarthritis is manifested by changes in all the tissues in the joint. The disease involved 

degeneration of cartilage, subchondral bone as well as other supporting structures of the joint. Figure 

taken from Poole et al. [3] 
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The progress of research on comprehensive OA treatments is hindered by the difficulty 

in replicating the effects of repeated mechanical stresses within the joint under in vivo 

conditions [2]. Currently, two approaches are used to study the mechanisms and 

treatments options related to OA: 

 

1) in vivo animal models in which laboratory animals (typically mice and rats) are 

encouraged to over-exercise to the point of OA-like damage to the joint. This 

approach is limited by the researchersô ability to ethically encourage the animals to 

exercise to the point of damage; and although destabilizing surgeries, chemical 

interventions or genetic modifications can be used to initialize damage of the joint, 

such approaches do not accurately mimic the conditions of long-term harm seen in 

OA. 

2) in vitro models in which cartilage tissue is cultured and mechanical loading is 

applied directly to the tissue pieces. The limit of this approach is that it does not 

account for the biomechanical structure of the joint nor the biochemical interaction 

between various tissues in the joint. Consequentially this results in non-realistic 

stress distributions across the tissues.  

 

The limitations of both approaches have made it difficult to study OA and develop 

effective treatment schemes for it. Therefore, there exists a strong motivation to develop 

and investigate alternate approaches to study OA pathology and treatments.  
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1.2 Problem Statement 

In order to make significant progress in the research towards treating OA, it is 

necessary to study the progression of OA and potential treatment options in a 

representative yet controlled setting. An in vitro system, where whole joints can be 

cultured and subjected to conditions which result in OA-like injury of the joint structure 

would provide a novel approach to studying the progression and treatment of OA. The 

successful development and employment of such a system could have life-changing 

impacts on future OA patients.  

 

1.3 Research Objectives 

The ultimate goal of this work has been to develop an independent system that may be 

used by biomedical researchers, with ease, to study OA pathology and screen treatment 

options. As such the scope of this work has been fitted to include not only mechanical 

design of the system, but to develop all supporting hardware and software components, 

necessary analytical models, and experiment protocols. To achieve these goals, the 

following research objectives were pursued and completed:  

 

(i) Design and fabricate a system capable of applying cyclic motion and active 

mechanical loading profiles to explanted murine stifle joints, while maintaining 

joint viability; 

(ii)  Development of analytical models for the system that describes the loading state 

of the stifle joint during the loading cycle as a function of mechanical actuator 

inputs;  
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(iii)  Development and implementation of closed-loop control systems for controlling 

the flexion angle of the stifle in concert with a specified loading profile at the 

joint; 

(iv) Investigation of the effect of different flexion cycle frequency profiles on 

explanted mouse stifle joints using the developed system.  

 

1.4 Organization of the Dissertation 

This dissertation presents a full record of the development of a novel system for the 

study of OA in a murine model. Beginning with Chapter 2, a review of the past literature 

will outline the anatomy and function of the human knee joint, the pathological features of 

OA, the current state of research and treatment options for combating the disease, and a 

detailed history of the development and use of knee simulating systems for various 

research applications. Chapter 3 describes the development and use of a first generation 

system for studying OA in-vitro, capable of actuating an amputated murine stifle joint 

over a predefined flexion profile. The effects of glucose concentration in the culture 

medium on the health of the joints will be presented and discussed. Chapter 4 presents the 

development of a second-generation system, addressing several shortcomings of the 

system described in the previous chapter. This chapter will cover the electromechanical 

design, analytical modeling, control system design and experimental use of the system to 

investigate the effects of flexion cycle profile on health of amputated murine stifles.  

Chapter 5 presents methods of extending the functionality of the second-generation device 

to include the application of controlled force profiles at the stifle joint. Chapter 6 presents 

concluding discussions and remarks, as well as limitations of the current system and 

suggestions for future work.  
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2 
 

Review of Literature 
 

 

 

 

2.1 Overview of Knee Joint Anatomy 

The knee is a critical component of the human body, providing stability and mobility. 

It is also one of the most mechanically intricate joint structures in the body, effectively 

consisting of two asymmetrical bearing surfaces, the cartilage coated tibial and femoral 

condyles. The patella (commonly referred as the ñkneecapò) is a third bone on the anterior 

side of the joint. The compliant medial and lateral menisci lie between the tibial and 

femoral condyles. The anterior cruciate ligament (ACL), posterior cruciate ligament 

(PCL), lateral collateral ligament (LCL) and medial collateral ligament (MCL) are the 

most important of a collection of fibers and ligaments that connect and stabilize the joint 

structure [4]. The ligaments are composed of parallel running collagen fibers. In particular 

the cruciate ligaments are fundamental in maintaining mechanical stability of the knee [5]. 

The joint components are enclosed in a capsule and synovial fluid is secreted between the 

articular surfaces providing lubrication. Healthy operation of the knee joint is contingent 

on the integrity of all the components. See Figure 2 for a full schematic representation of 

the human knee.   
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Figure 2: a) Postero-medial view of the knee joint showing major components. b) sagital section of the 

knee joint with major components. Figure taken from Girgis et al. [6]. 

 

The knee primarily moves in flexion, but provides a significant amount of exo-

endorotation, (rotation around the tibial axis) [4] and limited yet measurable motion in all 

other directions. Effectively it can be thought of as a ñmodified hingeò [7]. Motion is 

actuated by a system of muscles: the knee extensors, flexors, adductors and abductors [5] 

(see Figure 3). The physical state of the knee is primarily determined by the flexion angle, 

and additionally described by internal/external rotations (i.e. rotation of the femur relative 

to the tibia along the tibial axis), anterior/posterior (AP) displacement and medial/lateral 

(ML) displacement. The knee flexion angle is defined as the supplementary angle of the 

internal angle between the femur and tibia. In humans, the kneeôs natural envelope of 

motion ranges from a flexion angle of 0̄ (i.e. full extension) to 145̄ [8].  
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Figure 3: The major muscles of the knee joint: A. Anterior view of major muscles of the knee: 

Quadriceps group (VL, vastus lateralis; RF, rectus femoris; VM/ VML, vastus medialis; VI, vastus 

intermedius; VMO, vastus medialis oblique fibers). B. Posterior view of the major muscles of the knee: 

Posterior thigh muscles (ST, semitendinosus; SM, semimembranosus; Bi; biceps; TFL, tensor facia 

lata). Figure and caption taken from Most [5]. 

 

 

The knee joint experiences loads in all three spatial dimensions, leading to a total of 

six independent possible loads (including both linear and rotational loads). Researchers 

have quantified these loads for various activities including walking [9-11], running [9, 12], 

stair climbing [10, 13] and cycling [14-16] using a variety of methods. The knee typically 

experiences compression in the range of two to eight times the body weight of the host 

during such activities. However, a healthy joint structure is capable of transmitting and 

directing these loads without causing injury to the host. Further details of the knee as a 

mechanical system can be found in [4]. 
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2.2 Osteoarthritis in Humans  

OA is a degenerative disease of the articular joints. In humans, the knee is most 

commonly affected joint in the body. The disease is painful and debilitating, causing a 

significant and progressive decrease in the quality of sufferersô life [17]. The progression 

is often patient specific and can involve a single or multiple joints [2]. Often the disease 

progresses to a point where function of the affected joints is completely inhibited. 

Although classically thought to only affect the articular surface, OA is now understood to 

affect nearly all components of the joint (see Figure 1) [17]. However, cartilage 

degeneration is the primary symptom of OA.  

The disease is caused by a number of factors; combinations of genetic, biological, 

environmental and mechanical elements contribute to the development of OA. Commonly 

cited risk factors include obesity, old age, prior joint injury, and occupations involving 

high activity levels [18]. The disease pathway and progression is highly complex and still 

the subject of extensive research. However, the role of joint mechanics and the production 

of high or abnormal stresses within the joint structure are believed to be a significant 

antecedent. Driban et al. [18] identified that participation in certain sports such as soccer, 

distance-running, weight-lifting and wrestling are associated with the development of knee 

OA likely due to: 1) higher joint loads and, 2) higher incidence of joint injury. Both causes 

result in what can be considered abnormal stress conditions of the joint. Abnormally high 

loads clearly result in abnormally high stresses, and joint injury can result in a 

redistribution of stresses throughout the joint structure resulting in an unnatural (i.e. 

abnormal) stress distribution. In 2013 Felson [19] argued that abnormal mechanics are a 

direct cause of OA. Furthermore, it was shown that the presence of abnormal stresses and 

development of OA results in a cyclic process of joint degradation. As the joint degrades 

over the course of the disease, the stress distribution evolves to account for changes in the 
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spatial structure and new articular surface. This redistribution of stresses in turn results 

further joint damage leading to a vicious cycle of stress redistribution and joint damage, 

Figure 4. 

 

 

Figure 4: The vicious cycle of joint damage caused by malalignment. Figure and caption taken from 

Felson [19] 

 

OA is one of the most common diseases in the human population [2]. It is estimated 

that 55.7 million cases doctor-diagnosed OA existed in 2015 within the United Stated 

population. That number is expected to rise to 67 million cases by 2030, accounting for 

25% of the adult population [20]. With such a high prevalence of the disease, it is 

expected that 25 million people will have some level of arthritis-attributed activity 

limitations [20]. Table 1 summarizes predictions of OA in the U.S. from 2005 to 2030 by 

Hootman et al. published in 2006. 
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Table 1: Projections of OA in the US. Table adapted from Hootman et al. [20]. 

Year 

 

Estimated US 

population, in 

thousands 

Projected prevalence 

of doctor-diagnosed 

arthritis, in thousands 

Projected prevalence of 

arthritis -attributab le activity 

limitations, in thousands 

2005 216,096 47,838  17,610 

2010 227,762 51,879 19,117 

2015 238,154 55,725 20,601 

2020 247,775 59,409 22,052 

2025 257,469 63,209 23,565 

2030 267,856  66,969 25,043 

 

Despite the high prevalence and alarming predictions, there are few treatments for 

OA. For less severe cases, patients are encouraged to exercise, practice physiotherapy and 

lose weight.  The role of pharmacological intervention is primarily directed towards 

symptom relief consisting of corticosteroid injections at the affected joints and general use 

of non-steroidal anti-inflammatory drugs. For more severe cases, surgical treatments are 

used to either change the stress distribution in the joint (i.e. osteotomy) or to completely 

replace the affected joint with a prosthetic implant [2].  

The lack of comprehensive OA treatment has been at least partially attributed to a 

deficiency in the knowledge of the disease pathology [2].  Current research approaches 

rely on in vitro cell models, which although highlighting cellular and molecular 

mechanisms, fail to accurately model the three-dimensional structure of joints. On the 

other hand, the use of in vivo animal models does account for the effects of OA within the 

entire joint structure. However, the development of chronic stress induced OA in 

laboratory animals is difficult, and typically involves chemical or surgical intervention to 

promote joint degradation. Such interventions limit the relevance of the models as a 

method to study OA in humans. A detailed discussion of the advantages, disadvantages 

and current states of in vivo and in vitro OA research can be found in [2] 

The motivation to develop a novel system to study OA pathology and potential 

treatments is clear. The proposed research is to develop an in vitro system capable of 
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inducing OA-like pathology in explanted mouse joints. The goal is to effectively develop a 

knee simulating system capable of dynamically actuating and loading knees in a controlled 

manner while maintaining viability of the joint capsule and surrounding tissues. The 

successful development of such a system will allow researchers to investigate both OA 

pathology and treatments on a mouse model under controlled and known conditions.  

 

2.3 A History of Knee Simulating Systems 

The development and use of knee simulating systems is not entirely novel. However, 

their use in biological and medical relevant applications has been highly limited in the 

past, and to date, no knee simulators have been reported that maintain viability in 

explanted joints over extended periods of time. Regardless, it is helpful to consider the 

history of knee simulating systems. 

The use of mechanisms to simulate knee motion and loading has been reported in the 

literature throughout the past four decades. This section serves to summarize the history of 

published research where investigators have developed or acquired systems that simulate 

aspects of natural knee motion and loading. In general, three classes of knee simulators are 

identified: Oxford style simulators [21-34], robotic arm driven simulators [5, 35-40], and 

unique simulators [8, 41-57, 63-65]. Unique simulators, simply put, are devices that are 

not driven by robotic arms and are not of a form-factor comparable to Oxford-style 

devices. Each class of knee simulators will be discussed in further detail in coming 

sections. A timeline of major studies involving knee simulation is presented in Figure 5 

and a general overview of each study is shown in Table 2. 

The majority of past knee simulators have been developed to study human models, 

using either cadaver knees, cadavers implanted with total knee replacements, or total knee 
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replacements directly mounted onto the simulation devices. Similarly, the majority of 

research has focused on measuring and modeling the complex biomechanics of knees and 

implants, or quantifying the wear and performance of total knee replacements and their 

constitutive materials. The nature of these studies therefore does not require living tissue. 

In cases where natural knees are studied, research focuses on biomechanical 

characterization in which the knee is subjected to forces and displacements comparable to 

those encountered in human activity. The measurement of forces, displacements or strains 

is typically the output of such experiments.  Since these kinds of experiments focus only 

on the mechanical behavior of the knee joint as a mechanical system and have no interest 

in determining the biological response of tissues, no effort is made to culture the knee. In 

many instances defrosted knees from frozen cadavers are utilized as well, leading the 

assumption that the tissue is effectively dead.  

A comparatively small number of systems have been developed to study animal 

models too. Studies have been performed using in vitro bovine [42, 63, 65], in vitro 

porcine [57], in vitro murine [64] and in vivo murine [52, 53, 55] models. The bovine and 

porcine modeled investigations focus on investigating cartilage wear due to repeat loading, 

and in one case the effects of passive motion loading on tissue biology. The research on in 

vitro murine joints focused on measuring joint friction in a cultured stifle. In the case of 

the in vivo murine models, the research goals were to investigate the effects of passive 

motion loading on tissue following invasive knee surgeries. These represent the only 

studies found where a knee simulation device is used in a diagnostic or medical capacity 

and where there is an explicit effort in measuring the biological response. The 

methodology and mechanisms used in these studies will be expanded upon in coming 

sections.  
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Figure 5: Timeline of majors published works related to knee simulators 

 



15 

 15 

Table 2: Summary of significant published works related to knee simulators (*Study does not report 

usage on intended specimen) 

Year Author Animal 
Model 

Specimen 
Type 

Test Specimen 
Environment 

Area of Study Rig Style 

1971 Radin et al. [41] Bovine Tissue Lubricant bath Cartilage wear Unique 

1973 Shaw et al. [42] Human Implant 
(mounted 

on cadaver) 

Not enclosed Implant testing Unique 

1975 Perry et al. [21] Human Tissue Not enclosed Knee biomechanics Pre-Oxford 

1978 Bourne et al. 
[22] 

Human Implant Not enclosed Implant testing Oxford 

1988 Blankervoort et 
al. [43] 

Human Tissue Not enclosed Knee biomechanics Unique 

1988 Lewis et al. [44] Human Tissue Not enclosed Knee biomechanics Unique 

1990 Berns et al. [45] Human Tissue Not enclosed Knee biomechanics Unique 

1993 McLean et al. 
[46] 

Human Implant and 
Tissue 

Not enclosed Implant testing and Knee 
biomechanics 

Unique 

1993 More et al. [24] Human Tissue Not enclosed Knee biomechanics Oxford 

1993 Fujie et al. [35] Human Tissue Not enclosed Knee biomechanics Robotic arm 

1994 Pavlovic et al. 
[23] 

Human Tissue Not enclosed Knee biomechanics Oxford 

1995 Bach et al. [8]  Human Tissue Not enclosed Knee biomechanics Unique 

1996 Rudy et al. [36] Human Tissue Not enclosed Knee biomechanics Robotic arm 

1997 Walker et al. 
[47] 

Human Implant Not enclosed Implant testing Unique 

1997 Zavatsky et al. 
[26] 

Human Tissue Not enclosed Knee biomechanics Oxford 

1998 MacWilliams et 
al. [48] 

Human Tissue Not enclosed Knee alignment Unique 

1998 Churchill et al. 
[25] 

Human Tissue Not enclosed Knee biomechanics Oxford 

2000 Desjardins et al. 
[49] 

Human Implant Lubricant bath Implant testing Unique 

2000 Walker et al. 
[50] 

Human Implant Lubricant bath Implant testing Unique 

2000 Most [5] Human Implant Not enclosed Implant testing Robotic arm 

2000 D'Lima et al. 
[27]  

Human Implant and 
Tissue 

Not enclosed Knee vs. Implant 
biomechanics 

Oxford 

2001 D'Lima et al. 
[29] 

Human Implant and 
Tissue 

Not enclosed Knee vs. Implant 
biomechanics 

Oxford 

2001 Miller et al. [28] Human Implant 
(mounted 

on cadaver) 

Not enclosed Implant testing Oxford 

2004 Li et al. [37] Human Tissue Not enclosed Knee biomechanics Robotic arm 

2005 Patil et al. [30] Human Implant and 
Tissue 

Not enclosed Knee vs. Implant 
biomechanics 

Oxford 

2005 Guess et al. [31] Human Implant* Not enclosed Implant testing Oxford 

2005 Maletsky et al. 
[32] 

Human Tissue Not enclosed Knee biomechanics Oxford 

2006 Li et al. [38] Human Tissue Not enclosed Knee biomechanics Robotic arm 

2007 White et al. [51] Human Implant Not enclosed Implant testing Unique 

2007  Nugent-Derfus 
 et al. [65] 

Bovine Tissue Culture 
medium 

Medical Unique 

2009 Ylidirim et al. 
[33] 

Human Implant and 
Tissue 

Not enclosed Knee vs. Implant 
biomechanics 

Oxford 
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2010 Stasiak et al. 
[52] 

Murine Tissue in vivo Medical Unique 

2010 Gu et al. [53] Murine Tissue in vivo Medical Unique 

2010 Halloran et al. 
[34] 

Human Implant Not enclosed Implant testing Oxford 

2010 Noble et al. [39] Human Tissue Not enclosed Knee biomechanics Robotic arm 

2010 Sutton et al. [54] Human Tissue Not enclosed Knee biomechanics Unique 

2011 Lo et al. [40] Human Implant 
(mounted 

on cadaver) 

Not enclosed Implant testing Robotic arm 

2012 Drewniak et al. 
[64] 

Murine Tissue Culture 
medium 

Knee biomechanics Unique 

2013 Stasiak et al. 
[55] 

Murine Tissue in vivo Medical Unique 

2014  Lin  [63] Bovine Tissue Culture 
medium 

Validation of culture 
system 

Unique 

2015 Liu et al. [56] Porcine Tissue Lubricant bath Cartilage wear Unique 

2015 Vestraete et al. 
[57] 

Human Tissue* Not enclosed Knee biomechanics Unique 

 

2.3.1 Unique Simulators 

Radin et al. [41] reported the development of one of the earliest knee simulation and 

testing devices in 1971. The system, shown in Figure 6, was built to investigate the wear 

properties of cartilage using thawed bovine metacarpal-phalangeal joints. The system was 

based on a modified anthrotripsometer, a device used to measure the instantaneous 

coefficient of friction between two surfaces. The knee was maintained in a veronate buffer 

lubricant bath, with the intent of the simulating synovial fluid present in the natural joint. 

The authors investigated the effects of combined oscillation, static loads up to 1000 lb and 

intermittent impact loading on the rate of wear of cartilage. Static load application was 

accomplished by hanging weights, and dynamic impact loads were realized through a 

pneumatic cylinder. The experiments were run for up to 500 hours at a time.  
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Figure 6: Cartilage wear testing system; an early knee simulation system developed by Radin et al. 

Figure adapted from Radin et al. [41] 

 

 

In 1973 Shaw et al. [42] reported on a device used to test total knee replacements 

installed on human cadaver legs. The system, shown in Figure 7, was developed to 

simulate the walk gait cycle and was designed based on the understanding that two classes 

of physiological forces act on the knee: (1) forces transmitted that accelerate the body 

mass; (2) forces from muscle groups acting on the knee to control motion. The device has 

effective hip and ankle joints with flexion controlled by a hydraulic cylinder and chain 

system. Ultimately the device was used to study the effects of tolerance in implant 

placement and how it affects the mechanics of the joint.  
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Figure 7: Shaw et al. Knee Joint Simulation: (1) load cell instrument recorder; (2) lead weights; (3) 

micro-switches; (4) cadaver joint and prosthesis; (5) hydraulic pump; (6) logic control circuitry, Figure 

and caption taken from Shaw et al. [42] 

 

In 1988, Blankervoot et al. [43] measured the passive envelopes of knee motion. This 

was accomplished by constructing a system for mounting cadaver knees, which left the 

joint free in six degrees-of-freedom. By applying external loads and torques to the joint 

(i.e. tibial torques, axial forces and anterior-posterior forces), the authors were able to 

measure the passive displacement envelopes of the knee.   

In the same year, Lewis et al [44] studied in vitro knee ligament mechanics by 

applying similar external loads to cadaver knees. The developed apparatus is presented in 

Figure 8. Loading is accomplished with pneumatic cylinders. Ligament forces were 

measured using buckle transducers, constructed of steel frames instrumented with strain 

gauges. Three-dimensional joint motion is measured using an instrumented spatial linkage 

system, consisting of six joints and seven links. Utilizing potentiometers at the joints, the 






















































































































































































































































































































































































