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ABSTRACT 

 

This thesis comprises the area of oxygen binding, activation, and related oxygen 

atom transfer processes promoted by mononuclear transition metal complexes of 

vanadium(III), iron(II), and palladium(0). 

The first part of this thesis details the mechanistic studies of ligand binding and 

oxygen atom transfer (OAT) reactions to the three-coordinate complex VIII(N[ tBu]Ar)3 

(Ar = 3,5-Me2C6H3). The kinetics of OAT to V(N[ tBu]Ar)3 from N2O and other N-oxides 

is presented in Chapter 1, which revealed a wide range of kinetic behavior influenced by 

the mode and strength of coordination of the N-oxide and its ease of atom transfer. The 

importance of ligand binding, the initial step in the OAT reaction, is highlighted. Chapter 

2 presents the kinetics of nitrile (RCN) binding to V(N[ tBu]Ar)3, which serves as a 

comparative study with Mo(N[ tBu]Ar)3. Studies revealed much faster binding of nitriles 

to V(N[ tBu]Ar)3, which coordinate exclusively in an ɖ1-fashion. The differences in 

binding rates and affinities due to metal substitution are emphasized. The kinetic study of 

dioxygen binding to V(N[ tBu]Ar)3 is presented in Chapter 3. Formation of the novel (ɖ2-

O2)V(N[ tBu]Ar)3 adduct proceeds through a biphasic process involving rapid formation 

of (ɖ1-O2)V(N[ tBu]Ar)3 which subsequently isomerizes to the ɖ2-O2 product. The rates of 

formation and interconversion of (ɖ1-O2)V(N[ tBu]Ar)3 and (ɖ2-O2)V(N[ tBu]Ar)3 were 

quantified. 

Chapter 4 details the mechanistic study of dioxygen binding to Pd0(IPr)2 (IPr = 

1,3-bis(2,6-diisopropyl)phenylimidazol-2-ylidene), which forms an unprecedented trans-

(ɖ1-O2)2Pd(IPr)2 adduct. The unstable (ɖ2-O2)Pd(IPr)2 intermediate forms at low 
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temperatures and reacts further with O2 at higher temperatures to produce trans-(ɖ1-

O2)2Pd(IPr)2. The reaction is proposed to proceed through a steady state (ɖ1-O2)Pd(IPr)2 

intermediate that can trap a second molecule of O2 to form the unique final product. This 

work highlights how subtle changes in ligand sterics dramatically affect the relative 

stabilities of (ɖ2-O2)Pd(NHC)2 (NHC = N-heterocyclic carbene) adducts. 

The comparative study of biomimetic non-heme iron complexes supported by 

aminopyridine macrocyclic ligands (PyMACs) is presented in Chapter 5, including the 

preparation of two novel complexes that are potent oxygenation catalysts. This work 

highlights the effect of the axial donor on the structure and reactivity towards olefin 

epoxidation and provides preliminary insight into the nature of reactive intermediates.  
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PREFACE 

 

This thesis primarily comprises the area of oxygen binding, activation, and related 

atom transfer processes promoted by mononuclear transition metal complexes of iron(II), 

vanadium(III), and palladium(0). Oxygen atom transfer reactions to and from transition 

metal centers represent important steps in many transition metal catalyzed oxidation 

reactions and this work primarily involved the understanding of how these processes 

unfold at the molecular level. We rely on the stopped-flow technique in conjunction with 

UV/visible spectroscopic measurements to gain insight into the mechanisms of these 

rapid reactions. Insight from such studies is useful in that it may ultimately lead to novel 

complexes capable of carrying out environmentally friendly and selective aerobic 

oxidations. These systems reveal a wide array of kinetic behavior with sometimes 

surprising results, and the information gained from this work is essential for the 

advancement of small molecule activation by synthetic transition metal complexes. 

The detailed stopped-flow kinetic studies that are presented herein began during 

my second year of graduate school when I took over a project concerning the study of 

nitrile binding to the very air and moisture sensitive V(N[tBu]Ar)3 (Ar = 3,5-Me2C6H3) 

complex. This initial work subsequently evolved into several additional projects that 

spanned over several years, including studies of oxygen atom transfer kinetics with 

V(N[ tBu]Ar)3 and O2 binding reactions with V(N[ tBu]Ar)3 and Pd(IPr)2 (IPr = 1,3-

bis(2,6-diisopropyl)phenyl- imidazol-2-ylidene). In addition to the work devoted to 

understanding how small molecules like O2, RO (R = organic groups), and nitriles 

interact with the metal center (i.e., ligand binding and activation), investigation of how 
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such activated intermediates interact with substrates have also been undertaken for 

biomimetic non-heme model systems which promote catalytic olefin epoxidation in 

reactions with H2O2 or organic oxygen atom transfer donors.  

The kinetic studies presented in the first four chapters of the thesis is part of a 

collaborative effort with several research groups outside of Tufts, including those of 

Professors Carl Hoff (University of Miami, Coral Gables, FL), Kit Cummins (MIT, 

Cambridge, MA), and Manuel Temprado (Universidad de Alcalá, Madrid, Spain). I am 

grateful to have been a part of this talented team and the fact that these scientific 

investigations involved worldwide collaborations attests to the significance of the work 

and the results that we have published. I take this time to again acknowledge Drs. Carl 

Hoff, Kit Cummins, and Manuel Temprado, as well as their respective research groups, 

for their numerous contributions to this work. The detailed studies presented in Chapters 

1 through 4 were only made possible by their generosity in supplying compounds and 

their expertise in thermochemical, computational, and crystallographic analyses. 

Although working together and combining our areas has led to several significant 

publications, this thesis highlights these scientific stories from a mechanistic perspective 

and draws from the data collected by others in order to provide a greater understanding of 

the context of this work. 

Chapters 1 through 3 deal with the study of the kinetic studies of ligand binding 

and oxygen atom transfer (OAT) reactions to the sterically shielded, three-coordinate 

vanadium(III) complex, V(N[tBu]Ar)3. The rates and mechanisms of oxygen atom 

transfer (OAT) to V(N[ tBu]Ar)3 from a variety of N-oxides, including N2O, with varying 

BDEs and steric environments is presented in Chapter 1. A wide range of kinetic 
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behavior was observed and it was ultimately shown that there is no clear correlation of 

OAT rates with the NīO bond dissociation energies of the oxygen atom donors. OAT 

from N2O proceeds through an overall third order reaction that requires two equivalents 

of V(N[ tBu]Ar)3 for cleavage of the NīO bond. The organic adducts of mesityl nitrile 

oxide (SIPr/MesCNO, SIPr = 1,3-bis(2,6-diisopropyl)phenylimidazolin-2-ylidene) or 

nitrous oxide (IPr/N2O [IPr = 1,3-bis(2,6-diisopropyl)phenylimidazol-2-ylidene] and 

dbabhNO [7-nitroso-2,3:5,6-dibenzo-7-azabicyclo-[2.2.1]hepta-2,5-diene]) were found to 

react much faster than free MesCNO or N2O, respectively, despite increased steric 

hindrance. It was ultimately determined that the initial ligand binding step has a strong 

influence on the rate of the oxygen atom transfer reaction. 

The kinetics of nitrile binding is presented in Chapter 2, which was performed in 

an effort to quantify the binding rates and compare these results with the analogous 

molybdenum tris-anilide complex, Mo(N[ tBu]Ar)3. The significance of this study stems 

from our knowledge of the differences in substrate binding rates and efficiencies in 

molybdenum and vanadium containing nitrogenases. The comparative study of the 

binding rates of nitriles, which serve as substrate analogs to dinitrogen, has provided 

useful information regarding the differences in the coordination modes, reactivity, and 

formation rates of these metal-nitrile adducts. Stopped-flow UV/visible spectroscopic 

data ultimately revealed much faster binding of nitriles to the vanadium complex, which 

coordinate to the vanadium center exclusively in an ɖ1-fashion.  

The study of dioxygen binding to V(N[ tBu]Ar)3 is presented in Chapter 3, which 

led to the structural characterization of the first non-vanadyl V(V) peroxide complex. A 

two-step binding mechanism was deduced from stopped-flow studies and we were able to 
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observe and quantify the rates of formation and conversion of the ɖ1-O2 intermediate to 

the ɖ2-O2 product, which is a pathway that has been proposed in the literature as well as 

met with some controversy.  

Chapter 4 presents the kinetic study of dioxygen binding to the two-coordinate 

late transition metal Pd(0) complex, Pd(IPr)2 (IPr = 1,3-bis(2,6-diisopropyl)phenyl- 

imidazol-2-ylidene), which results in formation of a completely novel O2 binding mode 

for Pd(II). The unprecedented trans-(ɖ1-O2)2Pd(IPr)2 adduct binds two molecules of 

dioxygen in an end-on fashion, and appears to also form the typical (ɖ2-O2)Pd(IPr)2 

adduct only at low temperatures. The reaction is proposed to proceed through a steady 

state (ɖ1-O2)Pd(IPr)2 intermediate that can trap a second molecule of O2 to form the 

unique final product, or dissociate back to free Pd(IPr)2 and O2. Interestingly, trans-(ɖ1-

O2)2Pd(IMes)2 is not formed from reactions between the structurally related Pd(IMes)2 

complex (IMes = N,N-bis(2,4,6-trimethyl)phenylimidazol-2-ylidene) and O2; the stable 

(ɖ2-O2)Pd(IMes)2 adduct is the sole product in this case. This work ultimately highlights 

how subtle changes in ligand sterics dramatically affect the relative stabilities of (ɖ2-

O2)Pd(NHC)2 (NHC = N-heterocyclic carbene) adducts and lead to different reactivity 

channels. 

In Chapter 5, we focus more in depth on the study of the reactions of activated 

oxygenated metal complexes towards substrates of interest, where the results of research 

regarding catalytic olefin epoxidation by novel biomimetic non-heme iron(II) complexes 

supported by aminopyridine macrocycles bearing a functionalized pendant arm are 

presented. These simple systems serve as rigid scaffolds that are suitable for coordination 

of an iron center while incorporation of a functionalized pendant arm can provide an 
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additional donor atom and/or an intramolecular proton delivery pathway in reactions with 

H2O2. Several ferrous complexes supported by derivatives of the ligands of interest have 

been shown to be catalytically active in ñgreenò alkene epoxidations with hydrogen 

peroxide. Our new systems show enhanced reactivity towards olefin substrates and have 

allowed for decreased catalyst loadings relative to earlier derivatives. The preparation and 

characterization of two new complexes is reported along with the studies of their catalytic 

activity and insight into the identity of reaction intermediates. The primary goal of this 

study was to determine how the functionalized pendant arm alters the reactivity of the 

complex towards olefin epoxidation and related oxygen atom transfer processes and this 

work is still in progress. 

Lastly, Chapter 6 presents the crystal structures of new metal complexes 

supported by several PyMAC ligands. 



If you would be a real seeker after truth, it is necessary that at least once in your life you 

doubt, as far as possible, all things. 

Rene Descartes 

 



Mechanistic Studies of Oxygen Activation and Atom Transfer Reactions 

with Mononuclear Vanadium(III), Iron(II), and Palladium(0) 
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CHAPTER 1 

 

Kinetic, Computational, and Thermodynamic Study of the Cleavage of the NīO 

Bond of N-Oxides by a Vanadium(III) Tris -Anilide Complex1 

 

 

1.1. Introduction  

Understanding the factors that govern oxygen atom transfer reactions (OAT) from 

nitrogen oxides (XNO) to metal complexes is of essential importance in the development 

of catalytic oxidation chemistry, with emphasis on devising methods to incorporate 

nitrous oxide as a terminal oxidant. N2O is a potent greenhouse gas and has recently been 

classified as the major contributor to stratospheric ozone depletion.2 Utilization of N2O in 

oxidation reactions would be of high environmental and economic significance, however, 

a barrier to this is its relatively inert nature as an oxidant.3 Since the discovery by Armor 

and Taube that oxidation of Cr2+ by N2O was accelerated by a factor of 108 when N2O 

was complexed by [Ru(NH3)5]
2+,4 a number of studies have focused on whether metal 

mediated oxidation by N2O proceeds by initial coordination through the terminal N or O 

atom of the molecule. Recent computational studies by Lin et al.5 reveal that OAT 

reactions of N2O to early and middle transition metal complexes proceed faster by initial 

coordination through nitrogen to form an N-nitrosoimide complex (LnM=NīN=O) which 

can then undergo an essentially barrierless OAT to a second equivalent of metal complex, 

resulting in overall third order reactivity. Caulton and coworkers6 had earlier performed 

computational studies in which novel binding modes for N2O were proposed, one of 
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which includes a two electron reduction of N2O to yield an N-nitrosoimido resembling 

that formulated by Lin et al.5 Despite the logical assumption that coordination is a 

prerequisite for activation, metal adducts of N2O remain exceedingly rare and the only 

structurally characterized example was reported recently in 2011. In that case, 

(tpaMes)V(N2O) (tpa = tris(pyrrolylmethylamine)) was found to contain a linear, N-bound 

nitrous oxide ligand that was not consistent with the nitrosoimido binding motif.7 There 

are also relatively few experimental kinetic studies of OAT from N2O to metal complexes 

in solution,8 and to the best of our knowledge, no examples of third order kinetics 

implying a ternary transition state exist. Detailed kinetic, thermodynamic, and 

computational studies of the reaction of Mo(N[tBu]Ar)3 (Ar = 3,5-Me2C6H3) with N2O, 

which results in cleavage of the NīN rather than the NīO bond to yield 

NſMo(N[tBu]Ar)3 and ONīMo(N[
tBu]Ar)3, have been reported earlier.9 

While nitrous oxide represents an important substrate, other nitrogen oxides are 

also of significance and generally require catalytic activation in OAT, the first step of 

which is transfer to an active metal complex.10 A general two step mechanism involving 

initial oxidant binding followed by OAT is illustrated for XNO in Eq. 1.1 below. 

 

 

 

Although the reaction sequence appears simple, depiction of a generic XNOīMLn adduct 

neglects to illustrate its important features, including spin state, geometry, bond strength, 

and charge transfer, which can undergo significant change depending on the exact nature 

(1.1) 
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of the X group. All of these factors will affect the magnitudes of the rate constants 

involved with the OAT reaction. Comprehensive kinetic studies by Schultz and Holm11 

regarding OAT cycling between MoVI(O)2(
tBuLīNS)2 and MoIVO(tBuLīNS)2 ((L-NS)2 = 

2,6-bis(2,2-diphenyl-2-sulfidoethyl)pyridine(2ī)) showed that the rates of OAT to the 

reduced complex from a range of substrates with varying steric constraints, basicities, and 

XīO BDEs, spanned more than four orders of magnitude (Figure 1.1). In some cases, 

there was good correlation between the rates of OAT and the BDE of the substrate bond 

being broken, but the substrate with the largest BDE studied, Ph3AsO (103 kcal molī1), 

had an activation energy the same as that for the one with the smallest BDE, Ph2SeO (43 

kcal molī1). 

 

 

Figure 1.1. OAT reaction scheme involving [MoIV(O)(tBuLīNS)2] with structures of XO 

substrates reported in the study. Figure adapted from ref 11. 

 

Studies of OAT to rhenium complexes by Abu-Omar and coworkers12 revealed 

the importance of ligand binding, the first step in the OAT reaction scheme, and actual 

atom transfer in the following step. The importance of electronic factors, symmetry, and 
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geometry in OAT reactions involving tris-silox (silox = [(CH3)3C)3SiO]ī) complexes of 

Group 5 metals have been reported, where emphasis on achieving a bent M-O-X 

transition state for successful OAT was highlighted.13 The effects of spin-state changes 

on gas phase OAT to Cr(III) porphyrin complexes were recently investigated by Mayer 

and coworkers, who found that OAT reactions did not occur above a certain threshold 

bond strength.14 ñUltrafastò and ñultraslowò rates of OAT involving low-coordinate late 

transition metal complexes have been studied by Brown et al.15 Interestingly, they found 

that the rates of degenerate intermetal OAT between the (Mes)3Ir
III / (Mes)3Ir

VO and 

(ArN)3OsVI/(ArN)3OsVIII O (Mes = 2,4,6-trimethylphenyl; Ar = 2,6-diisopropylphenyl) 

couples differ by twelve orders of magnitude, despite similar metal-oxo BDEs and 

reactivities toward PPh3 oxidation. Although much work has allowed us to understand 

transition metal mediated OAT reactions in detail for specific systems, it is clear that no 

single attribute governs the relative rates of OAT and comparisons from one system to 

another can only be made with considerable risk. Furthermore, discrepancies between the 

thermodynamics and kinetics of metal mediated OAT reactions is a well-documented 

theme in the literature12,16 and the range of factors controlling these reactions, particularly 

for paramagnetic complexes, is complex and a number of questions remain unanswered. 

We have recently reported studies of OAT from mesityl nitrile oxide (MesCNO) 

to main group PR3 (R = Me, Cy, Ph) acceptors.17 During that work the blue nitrile 

oxide/carbene adduct SIPr/MesCNO (SIPr = 1,3-bis(2,6-diisopropyl)phenylimidazolin-2-

ylidene), in which the C atom of the N-heterocyclic carbene (NHC) is bound to the Cnitrile 

atom of MesCNO, was isolated and structurally characterized by our collaborators. It was 

also found that formation of NHC adducts with MesCNO suppressed oxygen atom 
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transfer to main group elements. While reaction with Lewis bases was stopped by 

blocking attack at the Cnitrile atom, this was not observed to happen in reactions with the 

Lewis acid metal complex V(N[tBu]Ar)3, presumably since attack in this case occurred 

directly at the terminal O atom of MesCNO rather than at the interior Cnitrile atom. 

The initial goal of the current work was to quantitatively compare the rates of 

OAT to V(N[tBu]Ar)3 from MesCNO and its NHC adduct SIPr/MesCNO simply to see 

which was faster. During this time, Severin and coworkers18 reported characterization of 

stable covalent adducts of NHCs with N2O and also showed that these adducts readily 

react with V(Mes)3.
19 This prompted us to extend our work to compare N2O and IPr/N2O 

(IPr = 1,3-bis(2,6-diisopropyl)phenylimidazol-2-ylidene) and to study a series N-oxides 

with NīO bond dissociation enthalpies (BDEs) spanning a range of nearly 100 kcal 

molī1. 

 

 

Figure 1.2. (a) General reaction scheme of OAT to V(N[tBu]Ar)3. (b) Structure of all XNO 

reagents studied. Ar = (3,5-Me2C6H3); Dipp = 2,6-diisopropylphenyl; Mes = 2,4,6-

trimethylphenyl; L = (N[tBu]Ar). Note that the L3V=NïN=O species is proposed, based on 

computational results, to be the precursor complex for dinuclear OAT from N2O. 

 

This chapter presents the detailed kinetic studies of OAT to V(N[tBu]Ar)3 from 

the series of N-oxides shown in Figure 1.2. Stopped-flow experiments showed a range of 
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kinetic behavior that is influenced by both the mode and strength of coordination of the 

N-oxide and its ease of atom transfer. While all bond cleavage reactions studied involve 

V(N[ tBu]Ar)3 and a NӇO bond, a wide range of kinetic behavior was observed, allowing 

us to characterize individual reaction steps in detail. 

 

 

1.2. Experimental Methods 

General Considerations. Samples of V(N[tBu]Ar)3 (Ar = 3,5-Me2C6H3)
20 were 

graciously provided by members of the Cummins group (MIT, Cambridge, MA). Mesityl 

nitrile oxide (MesCNO),21 pyridine-N-oxide (PyO), nitrosobenzene (PhNO), IPr/N2O
18 

(IPr = 1,3-bis(2,6-diisopropyl)phenylimidazol-2-ylidene), SIPr/MesCNO17 (SIPr = 1,3-

bis(2,6-diisopropyl)phenylimidazolin-2-ylidene), and 7-nitroso-2,3:5,6-dibenzo-7-

azabicyclo-[2.2.1]hepta-2,5-diene (dbabhNO)22 were graciously supplied by members of 

the Hoff group (University of Miami, Coral Gables, FL). All acquired samples were 

stored in a glove box freezer (ī35 °C) and used without further purification. Anhydrous 

toluene (HPLC grade, Ó 99.9%) was purchased from Sigma Aldrich and dried on an 

Innovative Technologies PureSolv 400 solvent purification system. Electronic grade N2O 

(99.999%, Airgas) was passed through a column of potassium hydroxide pellets prior to 

use to remove any residual higher nitrogen oxides. Additional characterizations, 

crystallographic data, and calorimetric measurements were performed by collaborators at 

MIT (Cummins group) and University of Miami (Hoff group). The reader is referred to 

ref 1 for further details regarding these procedures. 
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Crystallographic Details. Diffraction quality red-orange crystals of OV(N[tBu]Ar)3 were 

grown via slow evaporation of a C6D6 solution and were glued onto the end of a thin 

glass fiber. X-ray intensity data were measured by using a Bruker SMART APEX2 CCD-

based diffractometer using Mo KŬ radiation (ɚ = 0.71073 ¡). The raw data frames were 

integrated with the SAINT+ program by using a narrow-frame integration algorithm.23 

Corrections for Lorentz and polarization effects were also applied with SAINT+. An 

empirical absorption correction based on the multiple measurement of equivalent 

reflections was applied using the program SADABS.24 All structures were solved by a 

combination of direct methods and difference Fourier syntheses, and refined by full-

matrix least-squares on F2, by using the SHELXTL software package.25 Crystal data, data 

collection parameters, and results of the analyses are provided in Appendix 1, Table 

1A.2. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were 

included at geometrically idealized positions and refined using a riding model.26 

OV(N[ tBu]Ar)3 crystallized in the cubic crystal system and the systematic absences in the 

intensity data were consistent with the unique space group Iī43d. Crystallographically, 

this molecule lies on a C3 symmetry site and thus contains only one-third of a molecule in 

the asymmetric unit. 

 

Stopped-flow Kinetics. Due to the high O2 and moisture sensitivity of V(N[ tBu]Ar)3, 

particular care was taken in solution preparation. At the millimolar concentration 

level it is difficult to avoid all contamination and some indications of this were 

observed at either the beginning or end of some kinetic runs. All reported data was 

replicated to ensure that the major reaction channel was observed in all cases. 
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Toluene solutions of V(N[tBu]Ar)3 and XNO reagents were prepared in an MBraun 

glove box filled with ultra high purity argon (Airgas) and loaded into gastight Hamilton 

syringes. Saturated solutions of N2O were prepared by bubbling gas into gastight 

syringes containing dry toluene for 20 minutes; dilutions of the N2O saturated solvent 

were performed anaerobically to obtain the desired [N2O] before mixing in the stopped 

flow cell. The solubility of N2O in toluene was taken as 133 mM at 25 °C.9b Time 

resolved UV-visible spectra were acquired over a range of temperatures (-80 °C to +25 

°C) using a Hi-Tech Scientific KinetAsyst SF-61DX2 CryoStopped-Flow system (TgK 

Scientific Ltd.) equipped with a quartz tungsten halogen light source, a J&M TIDAS 

diode array detector and a Brandenburg 4479 Series PMT monochromator. The 

instrument was equipped with stainless steel plumbing lined with PEEK tubing and a 

1.00 cm3 quartz mixing cell submerged in an ethanol cooling bath. The temperature in 

the mixing cell was maintained to ± 0.1°C using a CAL 3200 automatic temperature 

controller. Data acquisition was performed using TIDAS-DAQ and/or Kinetic Studio 

software programs and mixing times were 2-3 ms. All flow lines were washed 

extensively with argon-saturated anhydrous toluene prior to charging the drive syringes 

with reactant solutions and the driving syringe compartment was continuously flushed 

with argon during the experiments to preserve anaerobicity. All experiments were 

performed in a single-mixing mode of the instrument with a 1:1 (v/v) mixing ratio. 

Reactions were studied under pseudo-first order conditions using excess XNO whenever 

possible. All concentrations are reported after mixing in the stopped-flow cell. Data 

analysis was performed using Kinetic Studio, IGOR Pro 5.0 (Wavemetrics, Inc.), and 

ReactLab Kinetics Global Analysis software (JPlus Consulting Pty. Ltd.). All observed 
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rate constants are reported in Appendix 1 and represent an average of three to seven 

measurements which gave an acceptable standard deviation (Ò 10 %). All remaining 

parameters derived from the kinetic data are reported with their standard deviations. 

 

Computational Details. All computational studies were performed by Manuel Temprado, 

Universidad de Alcalá Department of Physical Chemistry, Madrid, Spain. Electronic 

structure calculations were carried out using the BP8627 density functional with the 6-

311G(d,p) basis sets as implemented in the Gaussian 09 suite of programs.28 Minimum 

energy structures were optimized by computing analytical energy gradients. The obtained 

stationary points were characterized by performing energy second derivatives, confirming 

them as minima by the number of negative eigenvalues of the hessian matrix of the 

energy. Computed electronic energies were corrected for zero-point energy, and thermal 

energy to obtain H0. To derive binding energies, the basis set superposition error (BSSE) 

was computed using counterpoise calculations.29 The XïO bond dissociation enthalpies 

were derived by determining the enthalpy of reaction with molecular oxygen for a certain 

X/XO couple as previously described.17 For the metal-containing species, optimizations 

were performed using the Stuttgart-Dresden MDF1030 fully relativistic effective core 

potential and basis for V including a set of additional f functions and the triple-zeta 

quality basis set (6-311G(d,p)) for all other elements. TD BP86/6-311G(d,p) calculations 

were additionally performed for selected species. 
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1.3. Results 

The main point of this work is experimental mapping of the range of behavior of 

the OAT reactivity of nitrogen oxides (XNO) with V(N[tBu]Ar)3. All XNO compounds 

studied (Figure 1.2) were found to react rapidly and cleanly with paramagnetic 

V(N[ tBu]Ar)3 at room temperature in toluene to produce the diamagnetic OV(N[tBu]Ar)3 

complex as confirmed by NMR spectroscopy.1 The experimental work has also been 

supported by thermochemical analyses and theoretical calculations which will be 

discussed as needed. 

In an effort to give insight into structural factors that can influence OAT reactivity 

in this particular system, the structural parameters for V(N[tBu]Ar)3 and OV(N[tBu]Ar)3 

are briefly discussed. In the absence of crystallographic characterization of V(N[tBu]Ar)3, 

DFT calculations yielded the minimum energy structure as shown in Figure 1.3. The 

most stable configuration is a high spin d2 species that exhibits one close contact with 

two carbons atoms in one of the aryl rings, a structural feature that has been observed 

previously in the X-ray structure of the related V(N[Ad]Ar)3 complex (Ad = 

adamantyl).31 Ligand binding to V(N[tBu]Ar)3 will involve displacement of this ɖ3-

allylic-like interaction, which will influence both the thermodynamics (enthalpy of 

reaction) and kinetics (enthalpy of activation) of the OAT reaction. This process can in 

theory proceed through either associative displacement of this interaction by the 

incoming ligand, or by an intramolecular dissociative mechanism in which a vacant site is 

generated prior to ligand association. DFT calculations confirm, however, that the 

corresponding conformer without this interaction is not a minimum in the potential 

energy surface, indicating that the ligand most likely associatively attacks the metal 
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complex to displace the allylic interaction. Removal of this interaction in V(N[tBu]Ar)3 

by constrained optimizations accounts for about 4 kcal molī1 in the thermochemistry of 

ligand binding, and likely in the enthalpy of activation as well.1 

 

 

Figure 1.3. Optimized structure of V(N[tBu]Ar)3 at the bp86/6-311G(d,p) (MDF10 for V with an 

additional set of f functions) level. Selected interatomic distances (¡) and angles (Á): VīC1 = 

2.45; VīC2 = 2.42; VīN1īC1 = 92.1; VīN1īC3 = 138.3; C1īN1īC3 = 124.6; Ɇ(NīVīN) = 

356.1. 

 

The crystal structure of the diamagnetic tetrahedral OV(N[tBu]Ar)3 complex 

resembles related chalcogenide structures of V(N[Ad]Ar)3 and V(N[tBu]Ar)3 reported 

previously.31,32 As shown in Figure 1.4, the tert-butyl groups of all three amido ligands 

point upwards and the three aryl rings point away from the oxo ligand. The short VīO 

distance of 1.590(3) Å is consistent with it being a triple bond.33 Space-filling 

representation of the structure shown in Figure 1.4 illustrates the lack of free space 

available for access to the O atom of OV(N[tBu]Ar)3, and by inference that an 

intermediate XNOïV(N[ tBu]Ar)3 complex leading to OV(N[tBu]Ar)3 would have 

considerable steric constraint in the placement of the XN group. 
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Figure 1.4. Left: Thermal ellipsoid plot of OV(N[tBu]Ar)3 drawn at the 50 % probability level. 

Hydrogen atoms omitted for clarity. Selected interatomic distances (¡) and angles (Á): V1īO1 = 

1.590(3); V1īN1 = 1.883(2); O1īV1īN1 = 107.87(5); N1īV1īN1* = 111.03(5). Right: Space 

filling model highlighting restricted access to the bound oxo group (red). Also shown: V (green); 

N (blue); C (gray); H (white). 

 

Thermochemical analysis of the VīO BDE in OV(N[tBu]Ar)3 (experimental 

value of 154 ± 3 kcal molī1; DFT calculated value of 151.3 kcal molī1) reveal it to be one 

of the strongest metal oxo bonds to be determined experimentally.34 The NīO BDEs in 

the N-oxides studied (Table 1.1) are all significantly weaker than the VīO BDE in 

OV(N[ tBu]Ar)3, making NīO bond cleavage exothermic by 46 to 144 kcal mol
ī1.1 

 

Table 1.1. Experimental and computational bond dissociation energies (BDE) for OV(N[tBu]Ar)3 

and the N-oxide series. 

Bond Compound BDEcalc (kcal molī1) BDEexpt (kcal molī1) Ref 

VſO OV(N[ tBu]Ar)3 151.3a 154 ± 3 1 

NīO N2O 40 ----- 35 

NīO PyO 63 ----- 36 

NīO PhNO 108.2a ----- 1 

NīO IPr/N2O 62.0a ----- 1 

NīO SIPr/MesCNO 74.6a ----- 1 

NīO dbabhNO 10.4a,b 9.7 ± 3.0b 1 

NīO MesCNO 53 ----- 36 
a Calculated at the bp86/6-311G(d,p) level (MDF10 with an additional set of f functions for V). b The BDE 

value includes rearrangement of the dbabhN fragment to anthracene and N2. 
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The kinetics of the OAT reactions were studied by the stopped-flow method and 

in all cases time-resolved visible spectra showed conversion of V(N[tBu]Ar)3 to 

OV(N[ tBu]Ar)3 (ɚmax = 453 nm) in toluene. For PhNO, variable temperature NMR 

experiments were necessary to study the kinetics of OV(N[tBu]Ar)3 formation. Four 

categories of kinetic behavior were observed and are discussed individually in the 

following sections: (I) Dinuclear OAT following an overall third order rate law (N2O); 

(II) Formation of stable oxidant-bound complexes followed by OAT in a separate step 

(PyO and PhNO); (III) Transient formation and decay of metastable oxidant-bound 

intermediates on the timescale of OAT (SIPr/MesCNO and IPr/N2O); (IV) Steady state 

kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). 

 

1.3.1. Category I: Dinuclear OAT Following an Overall Third Order Rate Law 

Oxygen atom transfer from N2O to V(N[ tBu]Ar)3 occurs within minutes at room 

temperature in toluene as evidenced by the characteristic color change from dark green to 

golden orange. Time-resolved spectra acquired over a broad temperature range (ī62 to 

+25 °C) showed clean conversion to OV(N[ tBu]Ar)3 with no detectable intermediates 

(Figure 1.5a). Kinetic traces (ɚ = 453 nm) obtained at the three highest temperatures (+7, 

+16 and +25 °C) under pseudo-first order conditions (excess N2O) did not fit to a rate law 

that is first order in [V(N[ tBu]Ar)3]; instead, as shown in Figure 1.5b, excellent fits were 

obtained from a rate law that is second order in [V(N[ tBu]Ar)3]. The observed second 

order rate constants (with respect to metal complex, keff) obtained from these fits varied 

linearly with [N2O] which confirmed first order behavior in [N2O] and yielded third order 

rate constants for the high temperature OAT reaction. 
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Figure 1.5. (a) Time-resolved spectra obtained from the reaction between V(N[ tBu]Ar)3 (0.3 

mM) and N2O (66 mM) in toluene over 75 s at 25 ÁC. (b) Kinetic trace at ɚ = 453 nm (red) with 

second order fit (black dashed line). 

 

Derived third order rate constants (k3) of 4,670 ° 285 Mī2 sī1 (25 °C), 5,380 ° 512 

Mī2 sī1 (16 °C) and 6,870 ° 136 Mī2 sī1 (7 °C) were obtained from the slopes of the 

linear plots of the observed second order rate constant (keff) versus [N2O] as shown in 

Figure 1.6a. An Eyring plot yielded activation parameters for the high temperature third 

order reaction: DHÿ3rd order = ī4.1 ° 0.5 kcal molī1 and DSÿ3rd order = ī56 ° 2 cal molī1 Kī1. 

The large negative activation entropy is in keeping with a ternary transition state while 

the negative composite activation enthalpy suggests an exothermic binding of N2O to 

V(N[ tBu]Ar)3 followed by formation of a dinuclear transition state L3VïNNOïVL3 (L = 

N[ tBu]Ar) with a low barrier to oxidative addition. 
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Figure 1.6. (a) Plots of keff versus [N2O] at various concentrations (27 - 66 mM) over a 

temperature range of 7 to 25 °C with [V(N[tBu]Ar)3]0 = 0.3 mM. (b) Eyring plot for the high 

temperature third order (overall) reaction with derived activation parameters. 

 

At an intermediate temperature of ī14 ÁC, kinetic traces did not fit well to either 

first or second order rate laws with respect to [V(N[ tBu]Ar)3] (see Appendix 1, Figures 

1A.1 and 1A.2). As discussed later, the behavior at intermediate temperature could be 

successfully modeled in terms of an overall mechanism of mixed reaction order, but 

temperature resolution into two limiting regimes, overall third order kinetics (second 

order in metal complex, first order in N2O) at high T and overall second order kinetics 

(first order in both metal complex and N2O) at low T, provided the initial convincing 

evidence for the mechanism. At low temperatures (ī62, ī53, ī35 ÁC) the reaction was 

found to obey pseudo-first order kinetics. Traces at ɚ = 453 nm fit well to as single 

exponential equation (Appendix 1, Figure 1A.3b) and observed rate constants depended 

linearly on [N2O] as shown in Figure 1.7a. Derived overall second order rate constants 

(k1) were 0.055 ° 0.005 Mī1 sī1 (ī62 ÁC), 0.119 ° 0.006 Mī1 sī1 (ī53 ÁC) and 0.386 ° 

0.007 Mī1 sī1 (ī35 ÁC). Activation parameters for the low temperature second order 

reaction were DHÿ = 6.7 ° 0.3 kcal molī1 and DSÿ = ī32 ° 1 cal molī1 Kī1 (Figure 1.7b). 
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Figure 1.7. (a) Plot of kobs versus [N2O] at various concentrations (27 - 66 mM) over the 

temperature range of ī62 to ī35 ÁC with [V(N[tBu]Ar)3]0 = 0.3 mM. (b) Eyring plot with derived 

activation parameters for the low temperature second order (overall) reaction. 

 

The change in reaction order and in the sign of effective activation enthalpy as a 

function of temperature also suggests stepwise bimetallic activation of N2O in which the 

rate determining step changes with temperature. Dinuclear activation of N2O by the 

mechanism shown in Eq. 1.2 and assuming a steady state in [(N[ tBu]Ar)3VïNNO] (in 

keeping with the clean isosbestic points and failure to detect a spectroscopically 

observable intermediate) yields the rate law shown in Eq. 1.3. 

 

 

 

 

 

(1.2) 

(1.3) 
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This will yield two limiting rate laws: if kī1 >> k2[V(N[ tBu]Ar)3], overall third 

order kinetics will be observed with kobs = (k1k2/kī1). On the other hand, if 

k2[V(N[ tBu]Ar)3] >> kī1, second order kinetics will be followed with kobs = k1. The 

observed kinetic behavior over the entire temperature range is consistent with this type of 

mechanism. The method described above was useful to delineate behavior. This was 

followed by full computer simulation of the kinetic data over all temperatures to the 

three-step mechanism in Eq. 1.4 using the ReactLab Kinetics program. 

 

 

 

Although individual rate constants k1, kī1, and k2 could be determined by the 

program, a range of values for kī1 and k2 were found to be acceptable provided the proper 

kī1/k2 ratio was fulfilled. Steady-state analysis described earlier supports this observation, 

and identifies kī1/k2 as the kinetic parameter that, along with k1, describes the system. As 

a result, the kī1/k2 ratio is reported and used in kinetic discussions, since it is known to a 

higher accuracy than poorly-defined individual rate constants kī1 and k2. Calculated 

values for k1 were consistent and are in excellent agreement with k1 values derived from 

the experimental low temperature data. Singular value decomposition (SVD) analysis 

suggested three colored components in the reaction system and the spectra for these 

components (V(N[ tBu]Ar)3, ONNīV(N[ tBu]Ar)3, and OV(N[ tBu]Ar)3) were calculated 

(1.4) 
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during the fitting procedure. The calculated spectra for V(N[ tBu]Ar)3 and OV(N[ tBu]Ar)3 

are in excellent agreement with the experimental data and remained consistent across all 

modeled datasets. The calculated spectrum of ONNīV(N[ tBu]Ar)3, however, was 

variable due to the fact that this steady-state intermediate never builds up to an 

appreciable extent. Calculated spectra and concentration profiles obtained from the model 

at the intermediate temperature of ī14 °C are shown in Figure 1.8. Calculated rate 

constants are provided in Table 1.2. 

 

 

Figure 1.8. (a) Representative calculated spectra of colored components obtained from modeling 

at ī14 ÁC (intermediate temperature) with [V(N[tBu]Ar)3]0 = 0.3 mM and [N2O]0 = 27 mM. 

Although the calculated spectrum for ONNïV(N[ tBu]Ar)3 is shown, it could not be accurately 

determined since its concentration remains close to zero throughout the reaction. (b) 

Concentration profiles for colored components. 

 

The activation parameters derived from the kinetic model are as follows: DH1
ÿ = 

6.3 ° 0.3 kcal molī1 and DS1
ÿ = ī34 ° 1 cal molī1 Kī1 for k1; DHī1

ÿ = 13 ° 1 kcal molī1 

and DSī1
ÿ = ī6 ° 2 cal molī1 Kī1 for kī1; and DH2

ÿ = 3.0 ° 0.1 kcal molī1 and DS2
ÿ = ī27 

° 1 cal molī1 Kī1 for k2. The predicted third order activation parameters of DHÿ3rd order = 

DHÿ(k1 + k2 ī kī1) = (6.3 + 3.0 ī 13) = ī3.7 kcal molī1 and DSÿ3rd order = DSÿ(k1 + k2 ī kī1) = (ī34 
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+ (ī27) ï (ī6)) = ī55 cal molī1 Kī1 are in excellent agreement with the direct 

experimental estimates from the high temperature data discussed above. The crossover in 

reaction mechanism is due to the high activation energy for the dissociation step (kī1) 

causing it to overtake k2 at higher T. The enthalpy of binding of N2O, DH0 = (DHÿk1 ī 

DHÿkī1) = (6.3 ī 13) = ī6.7 kcal molī1, is in agreement with the DFT calculated enthalpy 

of binding of N2O (N-bound, singlet) of ī7.1 kcal molī1 (see Table 1A.1). The high 

temperature third order reaction has an apparent negative enthalpy of activation and 

appears to speed up with decreasing temperature. If this reaction were an elementary third 

order step rather than a composite one, the change to second order kinetics and 

concomitant slowing down with temperature would not be observed. Provided kī1 has a 

higher enthalpy of activation than does k2, the rate will decrease more rapidly with 

decreasing temperature and cause the observed change in the rate-limiting step. This 

observed behavior is predicted from the analysis of time-resolved spectral data, 

supporting the proposed stepwise bimetallic mechanism depicted in Eq. 1.2. 
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Table 1.2. Rate constants and activation parameters obtained from modeling the 

V(N[ tBu]Ar)3/N2O system over a range of temperatures (ī62 to +25 ÁC) to the three-step model 

in Eq. 1.4. Average values of rate constants from two separate datasets are reported along with 

standard deviations. Initial concentrations of reactants were fixed at 0.3 mM for V(N[tBu]Ar)3 

and either 27 mM or 66 mM for N2O. Activation parameters associated with each process were 

derived from Eyring plots (see Appendix 1, Figure 1A.6) and are discussed in the main text. 

T (°C) k1 (M
ī1 sī1) kī1 (s

ī1) k2 (×103 Mī1 sī1) kī1/k2 (M) 

ī62 (3.8 ± 1.2)Ā10ī2 (2.5 ± 0.5)Ā10ī3 3.56 ± 0.04 (7.0 ± 1.2)·10ī7 

ī53 (1.1 ± 0.1)Ā10ī1 (1.4 ± 0.8)Ā10ī2 5.93 ± 0.01 (2.3 ± 1.3)·10ī6 

ī35 (3.8 ± 0.2)Ā10ī1 (8.7 ± 1.9)Ā10ī2 10 ± 1 (8.6 ± 2.5)·10ī6 

ī14 1.4 ± 0.1 1.93 ± 0.01 21 ± 1 (9.2 ± 0.6)·10ī5 

+7 2.9 ± 0.2 7.2 ± 0.4 28 ± 3 (2.6 ± 0.4)·10ī4 

+16 3.7 ± 0.2 22 ± 0.5 38 ± 1 (5.8 ± 0.1)·10ī4 

+25 4.9 ± 0.7 42 ± 2.9 43 ± 1 (9.8 ± 0.5)·10ī4 

ȹHÿ 6.3 ° 0.3 13 ° 1 3.0 ° 0.1 kcal molī1 

ȹSÿ ī34 ° 1 ī6 ° 2 ī27 ° 1 cal molī1 Kī1 

 

1.3.2. Category II: Formation of Stable Oxidant-Bound Complexes Followed by 

OAT in a Separate Step 

1.3.2.1. PyO. The reaction between excess PyO and V(N[ tBu]Ar)3 could be 

readily separated into ligand binding at low temperatures (ī80 to ī53 ÁC) and OAT from 

the PyOïV(N[ tBu]Ar)3 adduct at higher temperatures (0 to 20 °C). Low temperature 

time-resolved spectral changes assigned to PyO binding at ī80 °C are shown in Figure 

1.9a. A rapid rise in lower energy absorption bands was detected within the first second 

of reaction, with concomitant decay occurring under å 550 nm and an isosbestic point 

near 570 nm. This was followed by slow conversion to the expected OV(N[tBu]Ar)3 

complex, which was too slow to monitor conveniently via stopped-flow at low 

temperature. Pseudo-first order kinetics were obeyed and absorbance versus time traces 

(ɚ = 650 nm, formation) fit well to a single exponential function with kobs = k1[PyO] + 

kī1. Resolution of kobs into its k1 and kī1 components was carried out graphically via plots 
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of kobs versus [PyO] which have slopes of k1 and intercepts of kī1. Data for the slope (k1) 

is generally known to higher accuracy than data for the intercept (kī1) as is typical in this 

type of analysis. Second-order rate constants (k1) representing formation of a PyOï

V(N[ tBu]Ar)3 adduct were obtained as shown in Appendix 1, Figure 1A.7. The near zero 

intercepts suggest that this process can be regarded as irreversible over the temperature 

range studied. An Eyring plot was used to obtain activation parameters of DH1
ÿ = 6.8 ° 

0.4 kcal molī1 and DS1
ÿ = ī7 ° 2 cal molī1 Kī1. Notable is the low entropy of activation 

for ligand binding in this system, which is expected to involve cleavage of the aryl 

contact in V(N[ tBu]Ar)3 to yield a less restricted structure. Temperature dependent 

second order rate constants for PyO binding are provided in Table 1.3. 

Near room temperature, formation of the PyO adduct is too fast for measurement 

by the standard stopped-flow method and it is rapidly produced upon mixing of reactants. 

This allowed for convenient following of the second step in the OAT reaction sequence 

as the PyOïV(N[ tBu]Ar)3 complex converts to OV(N[tBu]Ar)3 and pyridine. Time-

resolved spectral data corresponding to this process are shown in Figure 1.9b. 
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Figure 1.9. (a) Time-resolved spectral changes accompanying the reaction between V(N[ tBu]Ar)3 

(0.3 mM) and PyO (2 mM) at ī80 ÁC acquired over 580 ms, showing growth of PyOï

V(N[ tBu]Ar)3 (longer wavelengths) with decay of V(N[ tBu]Ar)3 at shorter wavelengths and an 

isosbestic point near 570 nm. Top right: 3 s kinetic traces at ɚ = 453 and 650 nm. Longer reaction 

times show slow conversion to OV(N[ tBu]Ar)3 (see Figure 1A.8 for an example). (b) Time-

resolved spectral changes accompanying the reaction between V(N[tBu]Ar)3 (0.2 mM) and PyO 

(10 mM) at 0 °C acquired over 18 seconds, showing formation of OV(N[tBu]Ar)3 (ɚ = 453 nm) 

with concomitant decay of rapidly formed PyOïV(N[ tBu]Ar)3 occurring at longer wavelengths. 

Bottom right: Kinetic trace at ɚ = 453 nm with fit to a single exponential function. 

 

The broad, lower energy absorbance band assigned to PyOïV(N[ tBu]Ar)3 (ɚ = 

600 ī 800 nm) decays steadily as OV(N[tBu]Ar)3 (ɚmax = 453 nm) grows in, with a sharp 

isosbestic point located near ɚ = 525 nm. The observed rate constants measured at high 

temperatures showed no dependence on [PyO] (Figure 1.10a). Since ligand binding 

occurs much faster than OAT (k1[PyO] >> k2), the PyO-bound complex rapidly builds up 

and kobs values corresponding to the OAT step measured at high T are in the limits of 

saturation with respect to [PyO]. The reaction was thus treated as zero order in PyO and 
































































































































































































































































































































































































































































































































