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ABSTRACT

This thesis comprises the area of oxygen binding, activation, and related oxygen
atom transfer processes promoted by mononuclear transition metal complexes of
vanadium(lll),iron(Il), and palladium(Q)

The first part of this thesis details theechanisticstudiesof ligand binding and
oxygen atom transfer (OAT) reactions to theeecoordinate complex W(N['Bu]Ar)3
(Ar = 3,5Me2CsHs). Thekineticsof OAT to V(N['Bu]Ar)s from N.O and otheiN-oxides
is presentedn Chapter 1, whicmeveaéd awide range okinetic behaviorinfluenced by
the mode and strength of coordination of Mvexide and its ease of atom transféhe
importance of ligand binding, theitial step in the OAT reaction, is highlightedhapter
2 presens the kinetics of nitrile (RCN) binding toV(N['Bu]Ar)s, which serves asa
comparative studyith Mo(N['Bu]Ar)s. Studiesrevealed much faster binding of nitriles
to V(N['Bu]Ar)s, which coordinateexclusively in an d!-fashion. The differences in
bindingrates andffinities dueto metal substitutioareemphasizedThekinetic study of
dioxygen binding to/(N['Bu]Ar)s is presented in Chapter 3. Formation of the nogel (
O2)V(N['Bu]Ar)s adduct proceeds throughbi@phasic process involvingapid formation
of (d!-02)V(N['Bu]Ar)s which subsequentljsomerizes tdhe ¢?-O, product.The rates of
formation and interconversion offO2)V(N['BuJAr)s and ¢>-O2)V(N['BuU]Ar)s were
guantified.

Chapter 4 dails the mechanistic study of dioxygen binding RaP(IPr), (IPr =
1,3-bis(2,6diisopropy)phenylmidazol2-ylidene, which forms an unprecedentedns
(d-02)PdIPr), adduct The unstable(d>-O2)PdIPr), intermediate forms at low



temperatures and reacts further with & higher temperature® producetrans-(d-
0O2)2PdIPr).. The reaction is proposed to proceed throagieady statéd!-O2)Pd(IPr)
intermediatehatcantrap a second molecule ot @ form theuniquefinal product.This
work highlights how subtle changes in ligand sterics dramatically affect the velati
stabilities of(d>-O2)Pd(NHC) (NHC = N-heterocyclic carbene) adducts.

The comparative study of biomimetic ndreme iron complexes supported by
aminopyridinemacrocyclic ligand§PyMACSs) is presented in Chapter 5, includitige
preparationof two novel complexesthat are potent oxygenationatalysts This work
highlights the effect othe axial donoron the structure andeactivity towards olefin

epoxidationand provides preliminary insight into the natureesctive intermediates.
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The side and top view of a neighboring paimudlecules of ¢
O2)V(N['Bu]Ar)s from the crystal structure illustrating the C¢F
O hydrogen bonding pattern............ccccoevvveeveiiiiiiiii e 169
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Cross sections of the reactioetween V(N[Bu]Ar)s (0.3 mM)
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Figure 3A.b

Figure 3A16

Figure A.17

Figure 3A.B

Figure A.19

Figure A.20

Figure .21

Crystal structure of WYMesSINCHCH2)3N] with ellipsoids
drawn at the 50 % probability level. Hydrogen atoms are om
for clarity. Selected interatomic distances (A) and angles

VIiNL = 1.927(2); V1iN2 =
VIiN4A = 2.070(2); N27V1iN3
11954 8) ; N27TV1iN1l = 118.85(8

Chapter 2, re1for additional information................ccceevvvvnnnnnnn,

Left Toluene solution of YMesSINCHCH)sN] (1 mM) after
addition of pure @ at ambient temperatureRight Toluene
solution of \{(Me3SiNCHCH)sN] (1 mM) after addition of pure
Oz at low temperatur¢ & 1 7 8 A g(extra diy@y@dé) wa
sparged directly into each vial for approximately 15.s.............

UV/visible spectrum of the orange species (0.5 mM after mix
in toluene t aken -generated 5 gastgl
syringe by sparging 100 % ©into a 1 mM solution of
V[(MesSINCH.CH>)sN] at ambientT until the orange colo
(0 123V =1 o] o= o

(@) Timeresolved spectral changes (400 rm 1027 nm)
accompanying the reaction betweéf{fMesSINCH.CH,)sN] (0.5
mM)and Q (1. 7 mM) acquired ove
traces shown for clarity. (
single exponentialitf...............ccoooiiiiiiiiii s

For mation traces (& = 70 50.n

(@) Plots of kons versus [Q] for the reaction betwee
V[(MesSINCHCH)3N] (0.5 mM) and excessA@1.7 - 4.15 mM)
over the temperature range

(b) Eyring plot with derived activation parameters for the |
temMperature reaction...........ccuuveiieeeiiiiiiiiee e e e e

Time-resolved spectral changes accompanying the rea
between Y (MesSINCH.CH>)3N] (0.5 mM) and @ (1.7 mM) at
20 °C acquired over 80 s. The first 4 s of reaction is characte
by a growth phase at 705 nm (gray traces); this is followed
slower decay phase (pink traces) that ultimately ends witt
expected spectrum of the orange species (@)X The initial
time = 0 s trace is shown as a solid black line. The reaction
monitored for a total Of 80 .S.........coevviiiiiiiiiiiiii
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Figure .22

CHAPTER 4.

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

(a) Kinetic traces at jeat28 T’
with [V[(MesSINCH.CHz)sN]lo = 0.5 mM. (b) Representativ

Typical dioxygen binding modes in mononuclear transi
metatO. complexes. Figure adapted from #efFor superoxo an
peroxo compl exes, t he met al
and +2, reSPECHIVEIY.........coovvviiiiiiciee e

X-ray structure of Va9itCHEFDO).c
obtained from ref7. Hydrogen atoms andegeral disorderec
groups are omitted for clarity. The crystallographic informai
file is also available from the Cambridge Crystallographic L
Center (CCDC NO. 702730

X-ray structure of [Cu(TM@ren)Q]* drawn at the 50 ¥%
probability level. Hydrogen atoms, solvent molecules,

disordered O2 atom are omitted for clarity. TMG=
tris(tetramethylguanidino); tren = (tris@minoethyl)amine). The
crystallographic information file is available from the Cambric
Crystallographic Data Center (CCDC no. 287898). Relevant |
lengths are provided in the main teXt............ccceecvviiiiiiiieinnnnnnns,

Synthetic route to [Pd L) ( L &) ] compl exes
group (taken from refl9) with solid stée structure of ¢¢-
O2)Pd(IPr)(PPB) shown. Hydrogen atoms and second moles
in the asymmetric unit have been omitted for clarity. -
crystallographic information file is available from the Cambric
Crystallographic Data Center (CCDC no. 682048)..................
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Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Left X-ray structure of trans(d-02)Pd(IPry (CCDC no.
800883) with thermal ellipsoids shown at the 50 % probak
level. Hydrogen atoms and hexane molecule are omittec
clarity. Selected interatomic distame ( j ) and at

= 2.010(8), PdiO3 = 2.012¢(¢
2.065(11), 01102 = 1.314(11
= 178.8(3), O3iPdiC31 = 8¢
O3iPdiCl = 90.1(4), O17Pdi

178.24). Right X-ray structure otis-(¢?-O2)Pd(IMes} reported
by Stahl and cavorkers (ref21a) with ellipsoids shown at the £
% probability [€Vel........cccooieeeeiiiiieeeee e 194

Time-resolved spectral changes observed upeaction of
Pd(IPry (0.25mM)and @( 1. 7 mM) in tolwu
s. Selected traces are shown for clarity. The initial time =0 s
corresponding to absorbance of the starting Pd(IBomplex
( max=473 nm) is shown in red and the final spectrum in blue 196

(a) Timeresolved spectral changes accompanying the rea
between Pd(IMes)(0.1 mM) and @ (0. 1 mM) a
acquired over 3 s. Selected traces are shown for clarity.
initial time = 0 s trace is shown in red; gray traces were acq!
at 0.003 s intervals and the final spectrum after 3 s reacti
shown in blue. (b) Absorbance spectrum of 0.1 mM Pd(IMes
toluene highlighting its h
3,090 M cm'L. Most of the spectral decay that occurs upan
binding happens within the instrument dead time-8fr@s and is
therefore not resolvable with diode array detection................. 197

(a) Decay tr acaqiredin singlevaveledgih
mode at T80 ACa(b) Tempdrawre depénde
plots of kobs versus [Q] (markers) with linear fits (lines)

Intercepts are nemero and increase with increasiig................ 198
Eyringpl ot for the | ow temper a
Pd(IPry with Oz with derived activation parameters.................. 199

H NMR spectra of Pd(IPs)in tolueneds after addition of Q@ at
variable temperatures (170
peak. Data taken from réfor see also re2..................ccvvene. 200
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Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Time-resolved spectral changes for the reaction of Pd((Br25
mM) with varying [Q]o at 0 °C: (a) [Q]o = 0.8 mM (21 min
reaction); (b) [Qlo = 1.7 mM (21 min reaction); (c) [b = 2.5
mM (21 min reaction); (d) [€o = 4.2 mM (10 min reaction). li
all cases, the initial time = 0 s traces are shown in blue and
traces in red. A spectrum of the startird(IPry complex at 0.2t
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PREFACE

This thesigrimarily comprises the area of oxygen binding, activation, and related
atom transfer processes promoted by mononuclear transition metal complexes of iron(ll),
vanadium(lll), and palladium(0Oxygen atom transfer reactions to and from transition
metal centers repsent important steps in many transition metatalyzed oxidation
reactions and this work primarily involved thmderstanohg of how these processes
unfold at the molecular levéle rely on thestoppedflow technique in conjunction with
UV/visible spectoscopic measurements gain insight into the mechanisms of these
rapid reactionsinsight from such studies is useful in that it may ultimately lead to novel
complexes capable of carrying out environmentally friendly and selective aerobic
oxidations. Thee systems reveal a wide array of kinetic behavior with sometimes
surprising results, and the information gained from this worlessential for the
advancement admall molecule activation by synthetic transition metal complexes

The detailed stoppefibw kinetic studies that arpresented hereibegan dring
my second year of gdaiate schoolhen| took over a project concernirthe study of
nitrile binding tothe very air and moisture sensitive V(BLiJAr)s (Ar = 3,5Me2CsHa)
complex This initial work subsequentlgvolved into severaladditional projects that
spanned over several yeaiacluding studies ofoxygen atom transfer kinetiosith
V(N['Bu]Ar)s and O binding reactionswith V(N['Bu]Ar)s and Pd(IPry (IPr = 1,3
bis(2,6diisopropy)phenyl imidazol2-ylideng. In addition to the work devoted to
understandinghow small molecules like £ RO (R = organic groiwg), and nitriles
interact with the metal center (i.digand binding and activation)investigationof how
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such activated intermediates interact with substrates have also been undertaken for
biomimetic norheme model systemwhich promote catalytic olefin epoxidation in
reactions witiH>O» or organic oxygen atom transfer donors

The kinetic studiespresengd in the first four chapters of the thesis is part of a
collaborative effort with several research groups outside of Tufts, inclutiose of
Professors Carl Hoff (University of Miami, Coral Gables, FL), Kit Cummins (MIT,
Cambridge, MA), and Manuel Termgo Universidad de Alcad, Madrid, Spain)l am
grateful to have been a part of thialentedteam and the fact that these scientific
investigations involved worldwide collaborations attests to the significanteeefork
and the results that we have psibed. | take this time taagainacknowledge Drs. Carl
Hoff, Kit Cummins, and Manuel Temprado, as well as their respective research groups,
for their numerous contributiorts this work The detailedgstudiespresented in Chapters
1 through 4were only made possible by tiregenerosityin supplying compounds dn
their expertise in thermochemicatomputationgl and crystallographicanalyses
Although working together and combiginour areas has led teeveral significant
publications this thesis highligts these scientific stories from a mechanistic perspective
and draws from the data collected by others in order to provide a greater understanding of
the context of this work.

Chaptersl through3 deal with the study of thkinetic studiesof ligand binding
and oxygen atom transfer (OAT) reactionstle sterically shieldecthreecoordinate
vanadium(lll) complex, V(NBu]JAr)s. The rates and mechanisms of oxygen atom
transfer (OAT) toV(N['BuJAr)s from a variety ofN-oxides including NO, with varying

BDEs and steric environmenis presented in Chaptel. A wide range of kinetic
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behaviorwas observed and it wastimately shown that there is ndear correlation of
OAT rates with the NO bond dissociation energies of theygen atomdonos. OAT
from N2O proceeds through an overall third order reaction that requires two equivalents
of V(N['Bu]Ar)s for cleavage of thédT O bond The organic adducts of mesitgitrile
oxide (SPr/MesCNQ SIPr = 1,3-bis(2,6-diisopropyl)phenylimidazolif-ylideng or
nitrous oxide KPr/N2O [IPr = 1,3-bis(2,6diisopropyl)phenylimidazeb-ylidend and
dbabhNQ[ 7-nitrosc-2,3:5,6dibenze7-azabicycle[2.2.1]hepta2,5-diend) were found to
react much faster thafree MesCNO or NO, respectively despite increased steri
hindrance It was ultimately determinedthat the initial ligand binding step has a strong
influence on the rate dheoxygen atom transfeeaction

The kinetics of nitrile binding is presented@mapter2, which was performed in
an effort to quantifythe binding rates and compare these results with the analogous
molybdenumtris-anilide complex Mo(N['Bu]Ar)s. The significance of this study stems
from our knowledge of the differences in substrate binding rates and efficiencies in
molybdenum and vanadiumontaining nitrogenasesthe comparative study of the
binding rates of nitriles, which serve as substrate analogs to dinitrogen, has provided
useful information regarding the differences in the coordination modes, reactivity, and
formation rates of thesmetatnitrile adducts.Stoppedflow UV/visible spectroscopic
data ultimately revealed much faster binding of nitriles to the vanadium complex, which
coordinate to the vanadium cenexclusivelyin an d!-fashion.

The study of dioxygen binding t(N['Bu]Ar)s is presented in Chapt&r which
led to the structural characterizationtbé firstnonvanadyl (V) peroxidecomplex.A

two-step binding mechanism was deduced from stojfijpgdstudies and we were able to

Iviii



observe and quantify the rates of formatiow @onversion of the!-O; intermediate to
the d>-O product which is a pathway that has been proposed in the literature as well as
met with some controversy

Chapter4 presents the kinetic studyf dioxygen binding tahe two-coordinate
late transition metalPd(0) complex, Pd(IPr)(IPr = 1,3-bis(2,6diisopropy)phenyt
imidazol2-ylideng, which results in formation of a completely noveb ®nding mode
for Pd(ll). The unprecedentetlans(d*-O2).PdIPr), adduct binds two molecules of
dioxygen in an enan fashion, and appears to also form the typ{c&O2)PdIPr),
adduct only at low temperaturebhe reaction is proposed to proceed through a steady
state (¢['-O2)Pd(IPr} intermediate that can trap a sedomolecule of @ to form the
unique final produgtor dissociate back to free Pd(ilPand Q. Interestingly,trans-(d*-
0O2)2PdIMe9)2 is not formed from reactions between the structurally relRedMes)
complex (Mes = N,N-bis(2,4,6trimethyl)phenylimidazol2-ylideng and O»; the stable
(d?-O2)PdIMes), adduct is the sole produict this caseThis work ultimately highlights
how subtle changes in ligand sterics dramatically affect the relative stabiliti@s- of
O2)Pd(NHC)» (NHC = N-heterocyclic carbene) adduasd lead to different reactivity
channels

In Chapter 5, we focus more in depth thee study ofthe reactions of activated
oxygenated metal complexes towards substrates of inte#estethe results of research
regarding catlytic olefin epoxidation by novel biomimetic ndveme iron(ll) complexes
supported by aminopyridine macrocycles bearing a functionalized pendanararm
presentedThese simple systems serve as rigid scaffolds that are suitable for coordination

of an ironcenter while incorporation of a functionalized pendant arm can provide an
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additional donor atom and/or an intramolecular proton delivery pathway in reactions with
H20.. Severalferrous complexes supported dgrivatives of the ligands of interest have
been shown to be catalytically active iing r eatkené epoxidations with hydrogen
peroxide.Our new systems show enhanced reactivity towalelsn substrateand have
allowed for decreased catalyst loadingtive to earlier derivative3 he preparation and
characterization of two new complexesaportedalong with the studies of their catalytic
activity and insight into the identity of reaction intermediai@se primary goal of this
studywasto determinehow the functionalized pendant arm alters the reactivity of the
complex towards olefin epoxidation and related oxygen atom transfer proaesis#ss
work is still in progress

Lastly, Chapter 6presents thecrystal structures of new metal complexes

suppated by sevelaPyMAC ligands.



If you would be a real seeker after truth, it is necessary that at least once in your life you
doubt, as far as possible, all things.

Rene Descartes



Mechanistic Studies of Oxygen Activation and Atom Transfer Reactions
with Mononuclear Vanadium(lll), Iron(ll), and Palladium(0)

Complexes



CHAPTER 1

Kinetic, Computational, and Ther modynamic

Bond of N-Oxides by a Vanadium(lll) Tris-Anilide Complex*

1.1. Introduction

Understanding the factors that govern oxygen atom transfer reactions (OAT) from
nitrogen oxides (XNO) to mak complexes is of essential importance in the development
of catalytic oxidation chemistry, with emphasis on devising methods to incorporate
nitrous oxide as a terminal oxidant2\is a potent greenhouse gas and has recently been
classified as the majaontributor to stratospheric ozone depletidstilization of NzO in
oxidation reactions would be of high environmental and economic significance, however,
a barrier to this is its relatively inert nature as an oxid&ince the discovery by Armor
and Taibe that oxidation of Gf by N.O was accelerated by a factor of Xhen NO
was complexed by [Ru(N$k]?*,* a number of studies have focused on whether metal
mediated oxidation by XD proceeds by initial coordination through the terminal N or O
atom of the molecule. Recent computational studies by Lin &trakeal that OAT
reactions of MO to early and middle transition metal complexes proceed faster by initial
coordination through nitrogen to form &hnitrosoimide complex M= NT N=0O) whi
can then ndergo an essentially barrierless OAT to a second equivalent of metal complex,
resulting in overall third order reactivity. Caulton and coworkbesi earlier performed

computational studies in which novel binding modes fe© Nvere proposed, one of
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which includes a two electron reduction ob@I to yield anN-nitrosoimido resembling
that formulated by Lin et &l.Despite the logical assumption thatocdination is a
prerequisite for activation, metal adducts olONremain exceedingly rare and the only
structurally characterized example was reported recently in 2011. In that case,
(tpd"®V(N20) (tpa = tris(pyrrolylmethylamine)) was found to contaiinaar, Nbound
nitrous oxide ligand that was not consistent with the nitrosoimido binding hibhiére
are also relatively few experimental kinetic studies of OAT froi® kd metal complexes
in solution® and to the best of our knowledge, no exampleghofl order kinetics
implying a ternary transition state exist. Detailed kinetic, thermodynamic, and
computational studies of the reaction of Md@\[JAr)s (Ar = 3,5MezCsH3) with N2O,
whi ch resul ts i n cl eavage of t he NT N
NI Mo (BiAr)sa nd ONi'BapA)sNpve been reported earlfer.

While nitrous oxide represents an important substrate, other nitrogen oxides are
also of significance and generally require catalytic activation in OAT, the first step of
which is transfeto an active metal compléR. A general two step mechanism involving

initial oxidant binding followed by OAT is illustrated for XNO in Ef1 below.

kl k2
ML, + XNO === XNO-ML, —> OML, + XN 1.1)
k_, :

Although the reaction sequence appears simple, depictiogeiexric XNOG ML, adduct
neglects to illustrate its important features, including spin state, geometry, bond strength,

and charge transfer, which can undergo significant change depending on the exact nature
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of the X group. All of these factors will affeché magnitudes of the rate constants
involved with the OAT reaction. Comprehensive kinetic studies by Schultz andHolm
regarding OAT cycling between MgO)(‘BuLi NS), and Md¥O(BuLi NS), ((L-NS), =
2,6-bis(2,2diphenyt2-sulfidoethyl)pyridine(2)) showedthat the rates of OAT to the
reduced complex from a range of substrates with varying steric constraints, basicities, and
X1 0 BDEs, spanned more than four orders of magnitégufe 11). In some cases,

there was good correlation between the rates of OAT and the BDE of the substrate bond
being broken, but the substrate with the largest BDE studiedsPh(103 kcal moH),

had an activation energy thensa as that for the one with the smallest BDEJel® (43

kcal mol ).

R

H Ry=H,R;=F
' R;=Me or Ph, R, =H

............................

Figure 1.1. OAT reaction scheme involving [M{O)(BuLi NS)] with structures of XO
substrates reported in the study. Figure adapted frofriref

Studies of OAT to rhenium complexes by ABumar and coworket$ revealed
the importance of ligand binding, the first step in the OAT reaction scheme, and actual

atom transfer in the following step. The importance of electronic factors, symmetry, and
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geometry in OAT reactions involving trilox (silox = [(CHs)sC)sSiO] ) complexesof
Group 5 metals have been reported, where emphasis on achieving a {@xt M
transition state for successful OAT was highlighté@he effects of sphstate changes
on gas phase OAT to Cr(lll) porphyrin complexes were recently investigated by Mayer
and coworkers, who found that OAT reactions did not occur above a certain threshold
bond strengtA?i Ul t r af ast 0 and fdAul tr as-coordinate latat e s
transition metal complexes have been studied by Brownetratkerestingly, they found
that the rates of degenerate intermetal OAT between the {MEsfMes)IrVO and
(ArN)30s"/(ArN)30s™ O (Mes = 2,4,@rimethylphenyl; Ar = 2,&diisopropylphenyl)
couples differ by twelve orders of magnitude, despite similar rostal BDEs and
reactiviies toward PPhoxidation. Although much work has allowed us to understand
transition metal mediated OAT reactions in detail for specific systems, it is clear that no
single attribute governs the relative rates of OAT and comparisons from one system to
andher can only be made with considerable risk. Furthermore, discrepancies between the
thermodynamics and kinetics of metal mediated OAT reactions is ade@imented
theme in the literatuté'® and the range of factors controlling these reactions, particularly
for paramagnetic complexes, is complex and a number of questions remain unanswered.
We have recently reported studies of OAT from megiilyile oxide (MesCNO)
to main group PR(R = Me, Cy, Ph) acceptot$.During that work the blue nitrile
oxide/carbene adduct SIPr/MesCNO (SIPr =lisg2,6diisopropyl)phenylimidazolirp-
ylidene), in which the C atom of tid-heterocyclic carbene (NHC) ound to the Girile
atom of MesCNO, was isolated and structurally characterized by our collaborators. It was

also found that formation of NHC adducts with MesCNO suppressed oxygen atom
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transfer to main group elements. While reaction with Lewis basesstwaped by
blocking attack at the fzie atom, this was not observed to happen in reactions with the
Lewis acid metal complex V(INBu]Ar)s, presumably since attack in this case occurred
directly at the terminal O atom of MesCNO rather than at the @nt€jxiie atom.

The initial goal of the current work was to quantitatively compare the rates of
OAT to V(N['Bu]Ar)s from MesCNO and its NHC adduct SIPr/MesCNO simply to see
which was faster. During this time, Severin and coworfkeeported characterizan of
stable covalent adducts of NHCs withQNand also showed that these adducts readily
react with V(Mes).*° This prompted us to extend our work to compag® lnd IPr/NO
(IPr = 1,3bis(2,6diisopropyl)phenylimidazeR-ylidene) and to study a seridsoxides
with NITO bond dissociation enthal pies (BDESs
mol' .

(b) ° Dipp

Q _HXNO_ /k \|, >k [_N N=H—o0" LT/V—N

/ \ Dlpp

/ﬁ)\ 2} f ; dbabhNO IPr/N,0 N,O L;V-NNO
Dipp o) 0
+ _ NI Mes | N
:N—o >_< N
V(N['BuJAr) OV(N['BuJAr); [N — \=0 O @
\ 5

Dipp
MesCNO SIPr/MesCNO PyO PhNO

Figure 12. (a) General reaction scheme of OAT to V@UJAr)s. (b) Structure of all XNO
reagents studied. Ar = (3,BMe,CsHs); Dipp = 2,6diisopropylphenyl; Mes = 2,4,6
trimethylphenyl; L = (NBu]Ar). Note that the EV=NiN=0O species is proposed, based on
computational results, to be the precursor complex for dinuclear OAT fs@m N

This chapter preses the detailed kinetic studies of OAT to V(BIj]Ar)s from

the series oN-oxides shown irFigure 12. Stoppeeflow experiments showed a range of
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kinetic behavior that is influenced by both the mode and strength of coordination of the
N-oxide and its ease of atom transfer. While all bond cleavage reactions studied involve

V(N['BuJAr)s and a NJO bond, a wide range of kinetic behavior was observed, ialipw

us to characterize individual reaction steps in detail.

1.2. Experimental Methods

General Considerations.Samples of V(NBuJAr)s (Ar = 3,5MexCsH3)?° were
graciously provided by members of the Cummins group (MIT, Cambridge, MA). Mesityl
nitrile oxide (MesCNOY! pyridine-N-oxide (PyO), nitrosobenzene (PhNO), IR

(IPr = 1,3bis(2,6diisopropyl)phenylimidazeR-ylidene), SIPr/MesCN& (SIPr = 1,3
bis(2,6diisopropyl)phenylimidazolifR-ylidene), and  +hitroso2,3:5,6dibenze7-
azabicycle[2.2.1]hepta2,5-diene (dbabhNG§ were graciously supplied by members of
the Hoff group (University of Miami, Coral Gables, FL). All acquired samples were
stored in a glove box freezar3b °C) and usedvithout further purification. Anhydrous
toluene (HPLC grade) 99.9%) was purchased from Sigma Aldrich and dried on an
Innovative Technologies PureSolv 400 solvent purification system. Electronic gsg@de N
(99.999%, Airgas) was passed through a columnotdgsium hydroxide pellets prior to
use to remove any residual higher nitrogen oxides. Additional characterizations,
crystallographic data, and calorimetric measurements were performed by collaborators at
MIT (Cummins group) and University of Miami (Hoffrgup). The reader is referred to

ref 1 for further details regarding these procedures.



Crystallographic DetailsDiffraction qualityred-orange crystals of OV(NBu]JAr)s were

grown via slow evaporation of as0s solution and were glued onto the end of a thin
glass fiber. Xray intensity data were measured by using a Bruker SMART APEX2-CCD
based diffractometer using Mo KUmesaetd ati on |
integrated with the SAINT+ program by using a narfoame integration algorithrf
Corrections for Lorentz and polarization effects were also applied with SAINT+. An
empirical absorption correction based on the multiple measurement of equivalent
reflections was applied using the program SADABSRII structures were solved by a
combination of direct methods and difference Fourier syntheses, and refined-by full
matrix leastsquares oifr?, by using the SHELXTL software packafeCrystal data, data
collection parameters, and results of the analyses are providagpendix 1 Table

1A.2. All non-hydrogen atoms were refinezhisotropically. All hydrgen atoms were
included at geometrically idealized positions and refined using a riding rfodel.
OV(N['Bu]Ar)z crystallized in the cubic crystal system and the systematic absences in the
intensity data were consistent with the unique space diot@d. Crystallographically,

this molecule lies on @ symmetry site and thus contains only ghied of a molecule in

the asymmetric unit.

Stoppedflow Kinetics. Due to the high O, and moisture sensitivity of (N['Bu]Ar)s,

particular care wastaken in solution prepaation. At the millimolar concentration
level it is difficult to avoid all contanination and same indications of this were
observedat either thebeginningor end of same kinetic runs. All reported data was

replicated to ensure thatthe major reation chanml was obsrved in all cases.
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Toluene solutions of V(NBuJAr)s and XNO reagents were prepared in an MBraun
glove box filled with ultra high purity argon (Airgas) and loaded into gastight Hamilton
syringes. Saturated solutions obQN were prepared by bubbling gas into gastight
syringes containing dry toluene for 20 minutes; dilutions of tb® Baturated solvent
were performed anaerobically to obtain the desire®D]Nbefore mixing in the stopped
flow cell. The solubility of NO in toluenewas taken as 133 mM at 25 CTime
resolved UVvisible spectra were acquired over a range of temperatu8@s°C to +25

°C) using a HiTech Scentific KinetAsyst SF61DX2 CryoStoppedrlow system (TgK
Scientific Ltd.) equipped with a quartz tungsten halogen light source, a J&M TIDAS
diode array detector and a Brandenburg 4479 Series PMT monochromator. The
instrument was equipped with stainlessekf@umbing lined with PEEK tubing and a
1.00 cni quartz mixing cell submerged in an ethanol cooling bath. The temperature in
the mixing cell was maintained to £ 0.1°C using a CAL 3200 automatic temperature
controller. Data acquisition was performed usiifpAS-DAQ and/or Kinetic Studio
software programs and mixing times were3 2ns. All flow lines were washed
extensively with argossaturated anhydrous toluene prior to charging the drive syringes
with reactant solutions and the driving syringe compartmexgt gontinuously flushed
with argon during the experiments to preserve anaerobigilyexperiments were
performed in a singlnixing mode of the instrument with a 1:1 (v/v) mixing ratio.
Reactions were studied under psefidst order conditions using egss XNO whenever
possible. All concentrations are reported after mixing in the stefipedcell. Data
analysis was performed using Kinetic Studio, IGOR Pro 5.0 (Wavemetrics, Inc.), and

ReactLab Kinetics Global Analysis software (JPlus Consulting Pty). lAdl.observed
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rate constants are reported Appendix land represent an average of three to seven
measurements which gave an acceptable stand

parameters derived from the kinetic data are reported with their statelaations.

Computational DetailsAll computational studies were performed by Manuel Temprado,
Universidad de Alcala Department of Physical Chemistry, Madrid, Sgdéctronic
structure calculations were carried out using the BP8&eénsity functional with the -6
311G(d,p) basis sets as implemented in the Gaussian 09 suite of préykdimisaum
energy structures were optimized by computing analytical energy gradients. The obtained
stationary points were characterized by performinggnsecond derivatives, confirming
them as minima by the number of negative eigenvalues of the hessian matrix of the
energy. Computed electronic energies were corrected forppanb energy, and thermal
energy to obtaii®. To derive binding energies, thasis set superposition error (BSSE)
was computed using counterpoise calculatfdriEhe Xi O bond dissociation enthalpies
were derived by determining the enthalpy of reaction with molecular oxygen for a certain
X/XO couple as previously describ&dFor the metatontaining species, optimizations
were performed using the Stuttg@tesden MDF1# fully relativistic effective core
potential and basisof V including a set of additiondl functions and the tripleeta
quality basis set (311G(d,p)) for all other elements. TD BP8@®51G(d,p) calculations

were additionally performed for selected species.



1.3. Results

The main point of this work is experimt@hmapping of the range of behavior of
the OAT reactivity of nitrogen oxides (XNO) with V(Mu]Ar)s. All XNO compounds
studied Figure 12) were found to react rapidly and cleanly with paramagnetic
V(N['BuJAr)s at room temperature in toluene to produce the diamagnetic CBL(QR|)3
complex as confirmed by NMR spectroscdpVhe experimental work has also been
supported by thermochemical analyses and theoretical calculations which will be
discussed as needed.

In an effort to give insight into structural factohat can influence OAT reactivity
in this particular system, the structural parameters for B{(NAr)s and OV(N[Bu]Ar)s3
are briefly discussed. In the absence of crystallographic characterization &8¥@\)s,
DFT calculations yielded the minimum energlyucture as shown ikigure 13. The
most stable configuration is a high smihspecies that exhibits one close contact with
two carbons atoms in enof the aryl rings, a structural feature that has been observed
previously in the Xray structure of the related V(N[Ad]Ar)complex (Ad =
adamantyl®! Ligand binding to V(N[BuU]Ar)s will involve displacement of thisf>-
allylic-like interaction, whichwill influence both the thermodynamics (enthalpy of
reaction) and kinetics (enthalpy of activation) of the OAT reacfltnis process can in
theory proceed through either associative displacement of this interaction by the
incoming ligand, or by an intrartexular dissociative mechanism in which a vacant site is
generated prior to ligand association. DFT calculations confirm, however, that the
corresponding conformer without this interaction is not a minimum in the potential

energy surface, indicating thatet ligand most likely associatively attacks the metal
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complex to displace the allylic interaction. Removal of this interaction in "B(Jir)3
by constrained optimizations accounts for about 4 kcal 'nolthe thermochemistry of

ligand binding, and likelyn the enthalpy of activation as well.

Figure 1.3. Optimized structure of V(NBU]JAr)s at the bp86/6811G(d,p) (MDF10 for V with an

additional set of f functions) l evel . Sel ected
2.45; VI C2 = 2.42; VIN1I1TCl = 92.1FE(NIMNMLINC3== 1:
356.1.

The crystal structure ofhe diamagnetic tetrahedral OV(R{iJAr)s complex
resembles related chalcogenide structures of V(N[Ad]And V(N[Bu]Ar)s reported
previously®3? As shown inFigure 1.4, thetert-butyl groups 6 all three anido ligands
point upwardsand the threaryl rings pointaway fromthe oxo ligand The short i O
distance of 1.590(3)A is consistent with it being a triple bortl.Spacefilling
representation of the structure shownHigure 14 illustrates the lack of free space
available for access to the O atom of OVBY[JAr)s, and by inference that an
intermediate  XNOV(N['Bu]Ar)s complex leading to OV(NBuJAr)s would have

considerable steric constraint in the placement of the XN group.
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Figure 1.4. Left Thermal ellipsoid plot of OV(NBu]Ar)s drawn at the 50 % probability level.
Hydrogen atoms omitted for clarity. Selected in
1.590(3); VI1IIN1I = 1.88gd302) ;N10M1V INiRight Spacel1(L7 .08 ( 5)
filling model highlighting restricted access to the bound oxo group (red). Also shown: V (green);

N (blue); C (gray); H (white).

Thermochemical analysis of theT® BDE in OV(N[BuUJAr)s (experimental
value of 154+ 3 kcal mol!; DFT calculated value of 151.3 kcal m9lreveal it to be one
of the strongest metal oxo bonds to be determined experimefit@lli.e NT O BDEs i n
the N-oxides studiedTable 11) ar e al | significantly weaker

OV(N['BuJAr)s; making NI O bond cleavagellexother mic

Table 11. Experimental and computational bond dissociation energies (BDE) for BUJN)3
and theN-oxide series.

Bond Compound BDEcaic (kcal mol?) BDEexpt (kcal mol %) Ref
VIO OV(N[BulAns  151.3 154+ 3 1
NT O N20 40 - 35
NT O PyO 63 - 36
NT O PhNO 1082 - 1
NT O IPr/N2O 62.¢ - 1
NTO  SIPr/MesCNO 46 e 1
NTO  dbabhNO 10.4° 97 +3.0° 1
NT O MesCNO 58 e 36

2 Calculated at the bp86/&11G(d,p) level (MDF10 with an additional set of f functions for®he BDE
value includes rearrangement of the dbabhN fragment to anthracene.and N
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Thekinetics of the OAT reactions were studied by the stogloed method and
in all cases timeesolved visible spectra showed conversion of YBNJAr)s to
OV(N['BUJAr)s ( mx = 453 nm) in toluene. For PhNO, variable temperature NMR
experiments were necesgao study the kinetics of OV(NBu]JAr)s formation. Four
categories of kinetic behavior were observed and are discussed individually in the
following sections: (I) Dinuclear OAT following an overall third order rate lawQ)\
(I) Formation of stable ox@htbound complexes followed by OAT in a separate step
(PyO and PhNO); (lll) Transient formation and decay of metastable oxdamid
intermediates on the timescale of OAT (SIPr/MesCNO and #)N1V) Steady state

kinetics in which no detectable inteedliates are observed (dbabhNO and MesCNO).

1.3.1. Category I: Dinuclear OAT Following an Overall Third Order Rate Law

Oxygen atom transfer from29 to V(N['Bu]Ar)s occurs within minutes at room
temperature in toluene as evidenced by the characteristic colagecfram dark green to
golden orangeTimer es ol ved spectra acquired over
+25 °C) showed clean conversion t&/@I['Bu]Ar)s with no detectable intermediates
(Figure 15a). Kinetic tracesg= 453 nm) obtained at the three highest temperatures (+7,
+16 and +25 °C) under pseutist order conditions (excess®) did not fit to a rate law
that is first order in\(N['Bu]Ar)3]; instead, as shown iRigure 15b, excellent fits were
obtained from a rate law that is second orderM(N['Bu]Ar)s]. The observed second
order rde constants (with respect to metal complex) obtained from these fits varied
linearly with [N2O] which confirmed first order behavior in 8] and yielded third order

rate constants for the high temperature OAT reaction.
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Figure 15. (a) Timeresolved spectra obtained from the reaction betvié@‘Bu]Ar)s (0.3 )
mM)andNO (66 mM) in toluene over 75 s at 25 AC.
second order fit (black dashed line).

Derived third order rateonstantsks) of 4,670° 285 M?s 1 (25 °C), 5,380 512
M'2 81 (16 °C) and 6,870 136 M2 s! (7 °C) were obtained from the slopes of the
linear plots of the observed second order rate condtantuersus [NO] as shown in
Figure 16a. An Eyring plot yielded activation parameters for the high temperature third
order reactionDHY3rq order= T #Q.51kcalmol’t andDS srd order= T °526&almol * K™,
The large negative activation entropy is in keeping with a ternary transition state while
the negative composite activation enthalpy suggastexothermic binding of XD to
V(N['Bu]Ar)s followed by formation of a dinuclear transition stat®/ TNNOi VL3 (L =

N['Bu]Ar) with a low barrier to oxidative addition.
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Figure 16. (a) Plots ofket versus [NO] at various concentrations (2766 mM) over a
temperature range of 7 to 25 °C with [V{BIlJAr)s]o = 0.3 mM. (b) Eyring plot for the high
temperature third order (overall) reaction with derived activation parameters.

At an intermediate temperature of 114 AC
first or second order rate laws with respect\@N['Bu]Ar)s] (see Appendix 1, Figures
1A.1 and 1A.2). As discussed later, the behavior at intermediate temperature could be
successfully modeled in terms of an overall mechanism of mixed reaction order, but
temperature resolution into two limiting regimesemll third order kinetics (second
order in metal complex, first order ino®) at highT and overall second order kinetics
(first order in both metal complex anck®) at low T, provided the initial convincing
evidence for the mechanism. At low temperature ( T 6 2 , 153, T35 AC) th
found to obey pseudfirst order kinetics. Traces & = 453 nm fit well to as single
exponential equation (Appendix Eigure 1A3b) and observed rate constants depended
linearly on [NO] as shown irFigure 17a. Deived overall second order rate constants
(k1) were 0.055° 0.005 M*s'( 162 AC900060M*&d41 (91 53 AC) °and 0. 3.
0.007 M's' (1735 AC). Activation parameters for

reaction werdHY = 6.7° 0.3 kcalmol'tandDS' = 1 °312almol't K'! (Figure 17b).
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Figure 1.7. (a) Plot of kevs versus [NO] at various conagrations (27- 66 mM) over the
temperature range o fBulAnge= 0.8 mM. (bBEyring ot with derived] V ( N[
activation parameters for the low temperature second order (overall) reaction.

The change in reaction order and in the sign of effectiveaitin enthalpy as a
function of temperature also suggests stepwise bimetallic activatiopQpofriNwhich the
rate determining step changes with temperature. Dinuclear activationQfbiX the
mechanism shown in Ed..2 and assuming a steady state (N[[Bu]Ar)sVi NNO] (in
keeping with the clean isosbestic points and failure to detect a spectroscopically

observable intermediate) yields the rate law shown inlBg.

A 4
/V'llllL

/N;O /N;0

N N o

L L
L\V/ . ky \lll +L\V/ ky \|l| fast I|VI + N +L\V/L
N=N—O0 — S E— - — " 2
|I_ M W ‘\L II_ N ‘\L N ‘\L II. (12)
-1 L L L

Rate — k1k,[V(N['Bu]Ar);]*[N,0]
e T T IV(N['Bu]AD)] (1.3)
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This will yield two limiting rate laws: ifki1 >> ko[V(N['Bu]Ar)3], overall third
order kinetics will be observed witlkons = (kike/kiz). On the other hand, if
ko[V(N['Bu]Ar)s] >> ki1, second order kinetics will be followed witns = ki. The
observedinetic behavior over the entire temperature range is conswtinthis type of
mechanism. The method described above was useful to delineate behavior. This was
followed by full computer simulation of the kinetic data over all temperatures to the

threestep mechanism in Ed.4 using the ReactLab Kinetics program.

k
(1) VIN['BuJA); + N,O —>  ONN-V(N['Bu]An);

k_
(2) ONN-V(N['Bu]Ar); — V(N['Bu]Ar); + N,0 (1.4)

k
(3) ONN=V(N['BuJAr); + V(N['BuJAr); ——» OV(N['BuJAr); + N, + V(N['Bu]Ar);

Although individual rate constants, ki1, andkz could be determined by the
program, a range of values fiar andk. were found to be acceptalpeovided the proper
ki 1/ko ratio was fulfilled. Steadgtate analysis described earlier supports this observation,
and identifieds 1/kz as the kinetic parameter that, along withdescribes the system. As
a result, thek 1/ko ratio is reported and used in kinetic discussions, since it is known to a
higher accuracy than poortefined individual rate constantg: and k.. Calculated
values fork; were consistent and are in excellent agreement kyitlalues derived from
the exgrimental low temperature data. Singular value decomposition (SVD) analysis
suggested three colored components in the reaction system and the spectra for these

components \((N['Bu]Ar)s, ONNI V(N['Bu]Ar)s, and O/(N['Bu]Ar)s) were calculated
17



during the fittig procedure. The calculated spectraf@N['Bu]Ar)s and O/(N['Bu]Ar)s

are in excellent agreement with the experimental data and remained consistent across all
modeled datasets. The calculated spectrumOOdNT V(N['Bu]Ar)s, however, was
variable due to thdact that this steadgtate intermediate never builds up to an
appreciable extent. Calculated spectra and concentration profiles obtained from the model
at the intermediate temperature i0f4 °C are shown inFigure 18. Calculated rate

constants are provided Trable 12.

(@ 1.0- (b) 3
Y — V(N[{Bu]Ar),

T 087 - ~-ONN-V(N[{Bu]Ar), 3
?5 Y — OV(N[tBU]Ar), s 2 — V(N[tBUJAr);

s \ S - -ONN=V/(N[{Bu]Ar),
o 0.4 ey — OV(N[BU]Ar),

x Lo 517

w 02— 7 S~ N ©

0.0 | T T 0 | | 1 |
400 500 600 700 800 0 50 100 150 200 250
Wavelength (nm) Time (s)

Figure 18. (a) Representative calculated spectra of colored components obtained from modeling

at T14 AC (inter medi BulA)sot=e0@pm&iraadt[NOjoe 27 mM. t h [ V( N]
Although the calculated spectrum for ONIX(N['Bu]Ar)s is shown, it cold not be accurately

determined since its concentration remains close to zero throughout the redbjion.
Concentration profiles for colored components.

The activation parameters derived from the kinetic model are as folldiy%:=
6.3° 0.3kcalmol't andDSY = 3#° 1 calmol'* K" for ky; DHi ¥ = 13° 1 kcal mol'?
andDS Y = 6P 2calmol 1K' for ki 1; andDHY = 3.0° 0.1kcalmol ! andDSY = 27
° 1 calmol'! K™ for k.. The predicted third order activation parameterBld¥sq order=

DHY g +ioikkp= (6. 3 + 3. 0 mol'!dan@Fsd5derT DYk #o1 Kp&a I( T 3 4
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+  (T12(71)6) ) = mol'5 B'! aceaih excellent agreement with the direct
experimental estimates from the high temperature data discussed above. The crossover in
reaction mechanism is due to the high activation energy for the dissociatiorkisjep (

causing it to overtak& at higherT. The enthalpy of binding of 4D, DH® = (DHY, 1
DH%,) = (6.3 1 nioB)isinragréementwittktieedDFT calculated enthalpy

of binding of NO (N-b ound, si ngl eolj (seeTablei1A&l). The kigha |
temperature third order reaction has an apparent negative enthalpy of activation and
appears to speed up with decreasing temperature. If this reaction were an elementary third
order sép rather than a composite one, the change to second order kinetics and
concomitant slowing down with temperature would not be observed. Prayidbds a

higher enthalpy of activation than doks the rate will decrease more rapidly with
decreasing temperature and cause the observed change in thenitiage step. This
observed behavior is predicted from the analysis of -teselved spectral data,

supporting the proposed stepwise bimetallic ma@csm depicted in E4..2.
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Table 12. Rate constants and activation parameters obtained from modeling the
V(N['BUJAr)s/IN.O system over a range of tensgepmael ures (71
in Eqg. 1.4 Average valuesf rate constants from two separate datasets are reported along with

standard deviations. Initial concentrations of reactants were fixed at 0.3 mM foBWJAH)s

and either 27 mM or 66 mM for . Activation parameters associated with each process were

derived from Eyring plots (see AppendixRigure 1A6) and are discussed in the main text.

TCC) ki(M'ts?h ki1 (s ke (x10PM™1 Y  kia/kz (M)

162 (3.8+1.3 A1 0 (25+05 A1 0 356+0.04 (7.0 +1.2)-10’
153 (1.1+0) A10 (14+08 A10 593+0.01 (2.3 +1.3)-10°
135 (3.8+03 A10 (87+19 A10 10%1 (8.6 + 2.5)-10°
114 1.4+0.1 1.93+0.01 21+1 (9.2 +0.6)-10°
+7 2.9+0.2 7.2+ 04 28+ 3 (2.6 £ 0.4)-10
+16 3.7+0.2 22+ 0.5 38+1 (5.8 +0.1)-10*
+25 49+0.7 42+2.9 43+1 (9.8 £ 0.5)-10*
aqHY 6.3° 0.3 13° 1 3.0° 0.1 kcal mol

a5 134° 1 16°2 127° 1 cal mol 1K'

1.3.2. Category II: Formation of Stable Oxidant-Bound Complexes Bllowed by

OAT in a Separate Step
1.3.2.1. PyO. The reaction between excess PyO andN['Bu]Ar)s could be
readily separated into |Iigand binding at | ov
the Py V(N['Bu]Ar)s adduct at higher temperatures (0 to 20 °C). Low temperature
time-resolved spectral changes assigned to PyO binding@&tC are shown irFigure
1.9a. A rapid rise in lower energy absorption bands was detected within the first second
of reacti on, with concomitant decay occurri
near 570 nm. This was followed by slow conversion to the expected B[N[)s
complex which was too slow to monitor conveniently via stopfled at low
temperature. Pseudist order kinetics were obeyed and absorbance versus time traces
(& 650 nm, formation) fit well to a single exponential function wktks = ki[PyO] +

ki 1. Resoluibn of kopsinto its k1 andk: 1 components was carried out graphically via plots

20



of kobs Versus [PyO] which have slopeslafand intercepts df; 1. Data for the slopek()

is generally known to higher accuracy than data for the interkapta§ istypical in this

type of analysis. Secoratder rate constantkif representing formation of a PyO
V(N['Bu]Ar)s; adduct were obtained as shown in Appendikigjure 1A7. The near zero
intercepts suggest that this process can be regarded as irreversible over the temperature
range studied. An Eyring plot was used to obtain activation parametBk$,0f 6.8°
0.4kcalmolltandDSY = P 2 calmol'! K'%. Notable is the low entropy of activation

for ligand binding in this system, which is expected to involve cleavage of the aryl
contact inV(N['Bu]Ar)s to yield a less restricted structure. Temperature dependent
second order rate constants for PyO bindireggprovided inmrable 13.

Near room temperature, formation of the PyO adduct is too fast for measurement
by the standard stoppdldw method and its rapidly produced upon mixing of reactants.
This allowed for convenient following of the second step in the OAT reaction sequence
as the PyOV(N['Bu]Ar)s complex converts to OV(NBu]Ar)s and pyridine. Time

resolved spectral data corresponding to thiggss are shown Figure 19b.
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Figure 19. (a) Timeresolved spectral changes accompanying the reaction be(EBU]Ar)3

(0.3 mM) and PyO (2 mM) at 180 AC acguired o\
V(N['Bu]Ar)s (longer wavelengths) with decay ®{N['Bu]Ar)s at shorter wavelengths and an
isoshestic point near 570 nffopright 3 s ki neti ¢ t ma.dangerreattionrss = 453

times show slow conversion toMIN['BuJAr)s (seeFigure 1A8 for an example). (b) Time
resolved spectral changes accompanying the reaction betweeiBY¥@)s (0.2 mM) and PyO

(10 mM) at 0 °C acquired over 18 seconds, showing formation of CBA(Ms ( = = 453 nm)
with concomitant decay of rapidly formed PWZN['Bu]Ar)s occurring at longer wavelengths.
Bottomright Ki netic trace at & = 453 nm with fit to ¢

The broad, lower energy absorbance band assigned toVPMOBU]AI)3 (a-=
6007 800 nm) decays steadily as OVIBIfiJAr)s ( @ = 453 nm) grows in, with a sharp
isosbestic point located near= 525 nm. The observed rate constants measured at high
temperatures showed no dependence on [P¥RQjufe 110a). Since ligand binding
occurs much faster than OAK:[PyO] >> ko), the PyGbound complex rapidly builds up
and kobs values corresponding to the OAT step measured at higke in the limits of

saturation with respect to [PyOlhe reaction was thus treated as zero order in PyO and

22
































































































































































































































































































































































































































































































































































































































































































































































































