

2nd Annual Agriculture, Nutrition & Health (ANH) Academy Week and 5th Annual Feed the Future Innovation Lab for Nutrition Agriculture-Nutrition Scientific Symposium

Efficiency of Small Scale Vegetable Farms: Policy Implications for Rural Poverty Reduction and Nutrition Security in Nepal

Rudra B. Shrestha, PhD Senior Agricultural Economist

Ministry of Agricultural Development, Government of Nepal, 11th July, 2017

Contents

Introduction

Overview of Nutrition

ANH Challenges and Policy Framework

Research Results

Policy Implications

Research Gap and Future Research

Introduction

Conceptual Framework- Nutrition

Framework for Malnutrition: Food Insecurity and Vulnerability Mapping System

Care practices

External environment

Performance of the food economy:

- ➤ Availability
- > Access
- > Stability

Health and sanitation

Food consumption

Food utilization

Nutritional status

Fig.3. Conceptual Framework of FIVMS (Source: UNICEF, 1990)

Global Overview-Malnutrition

Undernutrition contributes to nearly half of all deaths in children under 5 and is widespread in Asia and Africa

Global Hunger Index in Nepal

Global Hunger Index Trend in Nepal

•GHI is a composite indicator of undernourished population, child underweight and child mortality. Extremely alarming 30.0 <; Alarming 20.0–29.9; Serious 10.0–19.9; Moderate 5.0–9.9; Low < 4.9

Child Undernutrition Trend in Nepal

Challenges-SDGs-ANH

SDG 1:

No poverty- all forms, everywhere by 2030;

SDG 2:

Zero hunger- achieve food security, improved nutrition, and promote sustainable agriculture.

Major Challenges in ANH

- Access to adequate and quality foods
 - Optimizing/efficiency of agriculture- inputs, outputs, and post-harvest;
 - Increase productivity, commercialization and competitiveness;
 - Enhance the economics of scale smallholders;
 - Resilience to climate change
- Reduce poverty (21.6%)-third highest in SAARC);

Major Challenges in ANH

- Behavioral change-maternal and child care and feeding practices;
- Water, sanitation and health services;
- Sustainability of the development goals;
- Zero- stunted, wasted, and underweight children

Policy Framework

- I. Agriculture Development Strategy (ADS), 2014;
- II. Zero Hunger Challenge National Action Plan, 2016 (2016 2025);
- III. Food and Nutrition Security Plan of Action (FNSPA) of Nepal, 2014;
- IV. Multi-Sector Nutritional Plan, 2012;
- V. National Nutritional Policy and Strategy, 2008;
- VI. National Agriculture Policy-2004;
- VII. Sector Policies (tea, coffee, fertilizer, irrigation..., etc.)

National Goal and Strategy

Goal 1: Poverty alleviation

Goal 2: Food and Nutrition Security

Best Strategic Option:

Optimization and efficiency in agriculture

- Resource use
- Production
- Marketing

Vegetable Sector should be the Priority Sector

Research Results

Efficiency of small scale vegetable farms: policy implications for the rural poverty reduction in Nepal

Available at:

Agricultural Economics

http://www.agriculturejournals.cz/web/agricecon/articles/81_2015-AGRICECON/

Study Site

Figure 8. Map of Nepal showing study areas

Materials and Methods

Analytical framework

Input oriented DEA model (Charnes et al., 1978)

$$\min \theta^{CRS}$$

$$\theta_i^{CRS} \lambda$$
Subject to: $Y_i \leq Y\lambda$

$$\theta_i^{CRS} X_i \geq X\lambda$$

$$\lambda \geq 0$$

Cost-minimizing DEA model (Fare et al., 1985, 1994)

$$\min W_i' X_i^*$$

$$x_i^* \lambda$$
Subject to: $Y_i \leq Y\lambda$

$$X_i^* \geq X\lambda$$

$$\lambda \geq 0$$

Materials and Methods

Tobit analysis

$$EE_i^* = \beta_0 + \sum_{m=1}^M \beta_m W_{im} + \varepsilon_{i,} \qquad \varepsilon_i \sim ind(0, \sigma^2)$$

$$EE_{i} = 1 \text{ if } EE_{i}^{*} \ge 1$$

$$EE_{i} = y_{i}^{*} \text{ if } 0 \le EE_{i}^{*} \le 1$$

$$EE_{i} = 0 \text{ if } EE_{i}^{*} \le 0$$

 EE_i^* is latent variable represent efficiency index

Efficiency Scores: CRS

Results

Table 1. OLS estimates and standardized coefficients in vegetable farms

Variables	Ordinary le	ast square	Std. coefficient		
	Coefficient	Std. error	Beta value	Rank	
lnLabor	0.286ª	0.067	0.243	1	
lnChemical fertilizer	0.200 ^a	0.030	0.239	2	
lnOrganic matter	0.257 ^a	0.042	0.214	3	
lnLand	0.159 ^a	0.060	0.153	4	
InTraction power	0.104 ^b	0.045	0.091	5	
InSeed	0.059 ^b	0.033	0.056	6	
InOther input cost	-0.016	0.038	-0.012	7	

Supersoripes astraitedicate significant at 6.450 and 10 % levels, respectively

Results

Table 2. Factors affecting EE, AE, and SE (winter season)

Superscripts a, b, c indicate significant at 1, 5 and 10 % levels, respectively

Explanatory variables	EE		AE		SE	
1. External support index (fertilizer, irrigation, seed, pesticide, production materials, extension service, post-harvest materials)	0.010 (0.005)	b	-0.003 (0.005)		-0.016 (0.007)	b
2. Women participation index (land preparation, plantation, crop management, harvesting-marketing, decision making)	0.002 (0.002)	С	-0.002 (0.002)		-0.001 (0.002)	
3. Credit access	0.020 (0.013)	С	0.044 (0.015)	a	-0.033 (0.017)	b
4. Market access	0.021 (0.016)	С	0.029 (0.018)	С	-0.014 (0.022)	
5. Improved seed type	0.021 (0.015)	С	0.046 (0.017)	a	-0.008 (0.020)	

Results

Table 3. EE, actual cost, min. cost, and potential cost reduction (Ha)

Variables	Medii EE			Reduction (%)
Cost minimization by farm size (small farm-Efficient)	0.28 ^a	40030ª	9188ª	74.38ª

" seed types 0.31^b 35842° 9063

74.70^c (improved seedefficient)

" trainings 37866a 9169.5a 0.30 75.95^a

" credit access 9158.5ª 0.30 37203^c 75.37°

Results

Table 3. EE, actual cost, min. cost, and potential cost reduction (Ha)

Variables	Mean EE	Actual Cost (Rs./ha)	Min. Cost (Rs./ha)	Potential Cost Reduction (%)
Cost minimization by market access	0.31 ^b	34822.5ª	8972.5	74.03 ^a
,, external support	0.30 ^c	36745ª	9054.5 ^b	75.205ª
,, gender of farm manager	0.32 ^a	33933.89ª	8902 ^c	73·43 ^a
,, women participation index	0.30 ^b	36427.5ª	9043	75.09ª
Mean EE	0.30 (0.39)			75 [%]

Conclusions

- 1. Mean EE: 0.30;
 - A wide range and great extents of inefficiencies
- 2. Potential cost reduction: 75 %;

- 3. Important input variables (based on standardized coefficient):
 - Labor, organic matter, improved seeds.

Conclusions

- 4. External factors affecting inefficiency (decreasing order):
 - ✓ Credit access;
 - ✓ Market access;
 - ✓ External support index;
 - ✓ Women participation index.
- 5. Optimization in production and cost reduction–contribute to poverty reduction;
- 6. Consumption of diverse vegetables contribute to improve nutrition security.

Policy Implications

- 1. Increase labor productivity and encourage organic matter.
- 2. Promote research and development:
 - Demand based, stress tolerances, and disease pest susceptible.
- 3. Empower and encourage women farmers
- 4. Market access
- 5. Credit access.

Research Gap

Smallholder Farm Efficiency, Food Supply and Consumption, Nutrition Security and Health Gain in Earthquake Prone Areas of Nepal

- Assess the relationship of farm efficiency- food supply and consumption- nutrition security-health gain;
- Determine the factors influencing food production and consumption, and nutrition security;
- Suggest policies to enhance the food production and improve the nutrition security.

Research Gap

Methodology:

Data: - DHS-1996, DHS-2011, DHS-2015;

- Cross-sectional data

Analytical tools: Econometric (will develop model);

Variables:

Agriculture and non-agriculture economic activities, labor migration, education (women), gender role and women empowerment, household income, health and sanitation, clean drinking water, environmental, social protection, and other socio-economic variables, etc.

Government of Nepal Ministry of Agricultural Development

THANK YOU FOR YOUR ATTENTION!!!