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ABSTRACT 

Two-photon excited fluorescence (TPEF) imaging is a robust and versatile non-

invasive, non-destructive, high-resolution technique for studying cell structure 

and function in 2- and 3-dimensional in vitro systems. This thesis describes three 

applications of TPEF for studying brain cell structure and function. In the first 

application, TPEF is used to capture endogenous fluorescence of NADH and FAD 

in 2D cultures of primary rat neurons and astrocytes, as well as in cultures of adult 

human neural progenitor cells (AHNPs). Analyzing distributions of pixel-wise 

optical redox ratios, defined as FAD/(FAD+NADH), reveals differences in 

astrocyte and neuron metabolism consistent with their known tendencies towards 

glycolysis and oxidative phosphorylation, respectively. Alterations in astrocyte 

and neuron redox ratio distributions in response to manganese toxicity are 

consistent with apoptosis and oxidative stress, and are recapitulated in a study 

with Parkinson’s Disease-derived AHNPs. The second application of TPEF 

utilizes an automated imaging approach to quantify network density of 3D 

bioengineered cortical tissue. The analysis successfully shows an increase in 

neurite density in cultures that incorporate ECM derived from adult or fetal brains 

vs. a collagen control. The third application describes efforts to calibrate a TPEF-

based optical tweezer instrument to assess local microrheometry of brain tissue 

models. In sum, these experiments demonstrate the broad applicability of TPEF 

for characterizing brain cell and tissue structure and function in vitro.  
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I. THESIS INTRODUCTION 

 The brain is one of the most complex and important organs in the human 

body, responsible for functions as diverse as motion control, sensory integration, 

learning, memory, and emotion, to name just a few [9]. Understanding brain 

function and dysfunction is a massive research effort across scientific disciplines 

and length scales, motivated largely by efforts to understand and treat 

neurodegenerative diseases and traumatic brain injury (TBI). Neurodegenerative 

diseases, such as Parkinson’s Disease and Alzheimer’s Disease, are characterized 

by progressive brain cell death [10]. In older adults, Alzheimer’s Disease is the 

major cause of dementia, a cognitive condition that impacts 6-7% of the North 

American population above age 60 [11]. Parkinson’s Disease has cognitive 

impacts in addition to severe effects on motor function; its prevalence is 1-2% in 

the 60+ population of developed nations [12]. TBI is another major public health 

concern, with an estimated 2.4 million cases in 2009; approximately 5.3 million 

individuals in the US are currently disabled due to TBI, placing a substantial 

emotional and psychological burden on caregivers, as well as a tremendous 

financial burden on the broader healthcare system [13, 14]. An improved 

understanding of cell-level dysfunction and injury mechanisms is desperately 

needed to devise novel diagnostics and treatments for neurodegenerative diseases 

and traumatic brain injury; advances in basic science are crucial to improve 
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quality of life for patients and caregivers and to reduce the public health burden of 

these conditions. 

 Optical imaging approaches are well-suited to study disease and injury 

mechanisms at the cellular level. Techniques such as two-photon excited 

fluorescence (TPEF) microscopy allow non-invasive, non-destructive assessment 

of cells either via endogenous fluorescence or with the aid of exogenous contrast 

agents [7]. TPEF has the advantage of providing high-resolution images with 

minimal photobleaching, enabling live cell imaging, as well as adequate depth 

penetration and optical sectioning for probing thick specimens such as 3D 

engineered brain tissue [15]. TPEF is therefore well-suited to both capture brain 

tissue structure and function in a variety of in vitro models. 

 This thesis describes three applications of TPEF imaging for the study of 

brain cells in in vitro cultures. The first application employs TPEF to capture cell 

function; brain cell metabolism is assessed via two-photon imaging of NADH and 

FAD autofluorescence. We use optical redox imaging, fluorescence lifetime 

imaging, and mitochondrial organization analysis to characterize metabolic 

differences between healthy brain cell types in addition to cell responses to 

manganese, a known neurotoxin. We also use optical redox imaging and 

mitochondrial organization analysis to characterize differences between healthy 

and Parkinson’s Disease-derived adult neural progenitor cells. The second 

application uses automated image analysis of TPEF z-stacks from engineered 
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brain tissue to identify differences in neurite network density between 

experimental extracellular matrix conditions. The third application discusses 

approaches to building a TPEF-based optical tweezing microrheometry 

instrument with potential applications in neural tissue engineering. Together, 

these projects illustrate how TPEF imaging is a robust and broadly applicable 

technique for studying brain tissue structure and function. 
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2. TPEF FOR THE CHARACTERIZATION OF 
METABOLISM IN HEALTHY BRAIN CELLS AND 
NEURODEGENERATIVE DISEASE MODELS 
2.A. BACKGROUND – HEALTHY AND DISEASED BRAIN CELL 
METABOLISM 

2.A.I. BRIEF MOTIVATION FOR STUDYING BRAIN CELL METABOLISM  

The brain is an energetically demanding organ; in spite of only making up 

2% of the body’s mass, it is responsible for 20% of its energy usage [16]. Proper 

glucose metabolism is responsible for both maintaining baseline brain 

electrophysiology (~30% of glucose usage), and for enabling spontaneous brain 

activity (~70% of glucose usage) [17].  Understandably, malfunctions in brain cell 

metabolism have grave consequences and are thought to be in part responsible for 

debilitating neurodegenerative diseases, including Alzheimer’s disease and 

Parkinson’s disease [10]. A concurrent and interdependent combination of 

mitochondrial dysfunction and oxidative stress are thought to be involved in 

neurodegeneration [10]; however, exact mechanisms are not yet well understood 

and continue to be a focus of research studies.  

An improved understanding of both healthy and diseased brain cell 

metabolism, on the cellular level, is needed in order to develop novel strategies 

for diagnosing and treating neurodegenerative diseases. Quantitative optical 

metabolic imaging utilizing two-photon microscopy provides a non-destructive, 

high-resolution approach to monitoring cellular metabolic function via cell auto-
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fluorescence [7]. Optimizing such imaging approaches for in vitro 2-dimensional 

brain cell cultures lays the groundwork for future studies in more complex 3-D 

cultures or in vivo systems, ultimately allowing researchers to tackle a range of 

questions regarding brain cell metabolism in both diseased and healthy tissues.  

2.A.II. METABOLIC PATHWAYS IN BRAIN CELLS 

Brain cells process glucose through three major metabolic pathways: 

glycolysis, mitochondrial processes (e.g., oxidative phosphorylation and the 

Krebs cycle), and the pentose phosphate pathway [8]. Glycolysis and 

mitochondrial processes each result in adenosine triphosphate (ATP) production 

(Figure 1). Glycolysis occurs outside of the mitochondria, when glucose is 

processed into pyruvate while converting NAD+ to NADH and producing ATP 

Figure 1: Schematic of glycolytic and mitochondrial ATP production. 
Reproduced from [7] 



 

 

  6 

 

[7, 8]. Glycolysis does not require oxygen and, in many cells, is preferred only in 

anaerobic conditions. However, some cell types, such as astrocytic brain cells, 

produce energy via both oxidative phosphorylation and glycolysis under normal 

oxygen conditions [8]. 

Mitochondrial processes, including the Krebs cycle (also known as the tri-

carboxylic acid cycle or citric acid cycle) and oxidative phosphorylation, have a 

much higher energy yield than glycolysis [8]. Processes in the mitochondria 

involve numerous reduction-oxidation reactions to produce ATP; these reactions 

lead to varying concentrations of coenzymes nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FAD) [7]. First, in pyruvate 

decarboxylation, pyruvate dehydrogenase (PDH) converts pyruvate into acetyl-

CoA, which reduces coenzyme FAD into FADH2, which may in turn reduce one 

NAD+ to NADH [7]. Next, acetyl-CoA will enter the Krebs cycle to produce 

ATP; for each acetyl-CoA molecule that undergoes this process, three NAD+ 

molecules are reduced to NADH with charge donated from FADH2 [7].  

ATP production subsequently occurs through oxidative phosphorylation 

via the electron transport chain (ETC) (Figure 2). The ETC involves a series of 

five complexes of the mitochondrial inner membrane which use energy released 

from oxidation of electron donors such as NADH and FADH2 to pump protons 

out of the inner mitochondrial membrane, producing a charge gradient across the 

inner mitochondrial membrane [7]. The first of these complexes (Complex I) 
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exchanges NADH for NAD+ and uses the energy released to pump a proton out 

of the inner membrane [18]. The second of these complexes performs a similar 

exchange with FADH2, reducing it to FAD [19]. Complexes III and IV continue 

to build the proton gradient while transporting the electrons from Complexes I 

and II; these electrons ultimately react with oxygen to form water [20]. ATP is 

finally is formed from adenosine diphosphate (ADP) via the ATP synthase (also 

known as Complex V), which is stimulated by charges flowing back into the cell 

along the charge gradient produced by the other complexes [7].  

 

The pentose 

phosphate pathway (PPP) 

is the final metabolic 

pathway used to process 

glucose in brain cells. 

Unlike glycolysis and 

mitochondrial processes, 

the PPP does not result in 

ATP production. 

However, the PPP is still essential to cell health, notably by producing reducing 

equivalents to maintain the redox balance of the cell by cycling NADP+ with 

NADPH [8, 21]. The PPP occurs in the cytosol [21]. 

Figure 2 : The electron transport chain (ETC)  
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2.A.III MITOCHONDRIAL DYNAMICS 

 Mitochondria are not static, separated organelles within cells, but rather 

undergo dynamic processes of fusion and fission in networks in order to carry out 

several key functions [22]. Mitochondrial networks generally allow for adaptive 

formation and distribution of ATP within a cell, based on energy demand in 

various parts of the cell [22]. The usual fusion-fission cycles of mitochondria 

preserve mitochondrial DNA and ensure structural, electrical, and chemical 

homeostasis of the mitochondrial networks [23]. Both fission and fusion play 

important roles in mitochondrial and cellular health. Mitochondrial fusion allows 

for mitochondrial DNA (mtDNA) exchange and complementation to occur, 

providing quality control for mtDNA [22]. Fusion also allows mitochondria to 

share proteins and metabolites and may also allow for continued energy 

production under stress conditions [23, 24]. Fission ensures proper distribution of 

mitochondrial DNA during mitochondrial reproduction, regulates mitochondrial 

placement within the cell, and triggers disposal of damaged DNA [22, 23]. When 

fission dominates over fusion, mitochondria appear fragmented or clumpy [22]. 

When fusion dominates over fission, mitochondria appear to form connected 

networks [22]. Defects in either fusion or fission may lead to an imbalance in the 

relative processes, potentially jeopardized mtDNA quality and accelerating 

apoptosis [22].  
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2.A.IV. ASTROCYTES AND NEURONS: 
METABOLIC AND FUNCTIONAL 
FEATURES, COUPLING 
 Neurons and astrocytes are two 

primary cell types within brain tissue, and 

each has a distinct function and metabolic 

profile. The relative number of astrocytes to 

neurons in the brain increases with brain 

complexity, with a ratio of roughly 1:3 in 

rodents and 2:3 in humans [25]. Neurons are 

the electrically active cells within the brain; 

their distinct morphology includes 

extensions known as axons and dendrites 

(Figure 3), which allow propagation of electrical signals between cells at 

junctions known as synapses [26]. These extensions typically form dense 

networks to allow for intercellular signaling. Astrocytes have broader cell bodies 

and extensions and support neurons both structurally and functionally (Figure 3). 

Astrocytes help maintain the ion balances necessary for neuron health [26]. They 

also convert glutamate, a neurotransmitter, to its precursor glutamine in order to 

prevent excitotoxicity at the synaptic cleft and allow for efficient neurotransmitter 

synthesis [26]. Astrocytes are also thought to support neuron metabolism, which 

we will now discuss in more detail [8].  

Figure 3: Diagrams of neuron (a) 
and astrocyte (b) morphology. 
Reproduced from [2],[6] 
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Astrocytes and neurons have contrasting, complementary metabolic 

characteristics. Many studies have asserted that astrocytes tend to produce energy 

primarily through glycolysis, likely due to gene expression leading to the 

deactivation of PDH, reducing their ability to generate energy via mitochondrial 

processes (Figure 4) [8, 27]. However, it is important to note that astrocytes do 

have mitochondria, and other studies have demonstrated that TCA cycle enzymes 

are highly expressed in these cells [28]. It seems likely that both glycolytic and 

mitochondrial processes occur within astrocytes, but that relative rates of 

glycolysis vs. 

oxidative 

metabolism are 

higher than in 

neurons. 

Metabolism type 

may depend on 

specific energy 

demands and 

spatial location within astrocytes. Oxidative metabolic activities are thought to 

more typically occur in astrocytes’ cell bodies while more glycolytic activities 

occur in extensions [29].  

Figure 4: The role of PDH and Pfkfb3 in neuron and 
astrocyte metabolism. Modified from [8] 
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Neurons tend to generate energy through oxidative processes. In contrast 

to astrocytes, neurons have high activation of pyruvate dehydrogenase, allowing 

for import of pyruvate into the mitochondria (Figure 4) [8] [27]. Neurons also 

degrade PFKFB3, a glycolysis-promoting enzyme, preventing them from 

responding with glycolysis when mitochondrial energy production is inhibited 

(Figure 4) [8] [30]. Given that PFKFB3 degradation would also prevent neurons 

from fully processing glucose, it has been postulated that neurons generate energy 

from external sources of lactate / pyruvate and use glucose primarily to produce 

reducing equivalents through the pentose phosphate pathway to reduce oxidative 

stress [8].  

As their complementary metabolic profiles might suggest, astrocytes and 

neurons are thought to have interdependent metabolisms. The “astrocyte-neuron 

Figure 5: The Astrocyte-Neuron Lactate Shuttle – reproduced from [8] 
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lactate shuttle” is one theory of brain cell metabolic coupling; it postulates that 

energy demands at the synapse cause astrocytes to produce lactate via glycolysis, 

which is shuttled to neurons as an energy substrate for oxidative phosphorylation 

(Figure 5) [8]. The coupling is further enhanced by astrocytes’ ability to store 

glucose as glycogen, which can be synthesized into lactate and offered to neurons 

as an energy substrate as needed [31]. Though exact mechanisms may remain up 

for debate, it is agreed that astrocytes play an essential role in promoting healthy 

neuronal metabolism and oxidative balance. 

2.A.V. METABOLISM IN PARKINSON’S DISEASE 

 Parkinson’s 

disease (PD) is a 

common 

neurodegenerative 

condition that 

impacts ~1-2% of 

the population over 

60 years old in 

developed 

countries [12, 32]. 

PD is typically diagnosed based on clinical features including bradykinesia, 

rigidity, tremor, or balance difficulty, and may be confirmed post-mortem based 

Figure 6: Parkinson’s Disease is characterized by loss of 
pigmented dopaminergic neurons in the substantia nigra. 
Reproduced from [5, 6] 
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upon brain features [12]. PD is characterized by loss of dopaminergic neurons in 

the substantia nigra, a portion of the basal ganglia essential to motor control (), 

and accumulation of protein aggregates known as Lewy bodies [32, 33]. In 

addition to the motion consequences of the disease, patients with PD may be more 

likely to suffer from psychiatric or cognitive difficulties and die sooner their non-

PD counterparts [12]. There are numerous potential causes of PD; old age and 

smoking are the main risk factors tied to Parkinson’s, but genetic and other 

environmental causes have been proposed as well [12]. Only about 10% of cases 

are believed to be caused by strict Mendelian inheritance; others are thought to 

result from a complex combination of genetic susceptibilities and environmental 

factors [12].  

 PD’s pathogenesis is complex and not well-defined, but is thought to 

involve mitochondrial dysfunction and oxidative stress among other factors [33]. 

Many patients with PD have shown reduced mitochondrial complex I activity in a 

range of cell types; however, the reduction in complex I activity alone is 

insufficient to explain the degree of neuronal death seen in PD patients, and may 

therefore play a greater role in cell death by increasing susceptibility to 

neurotoxins than by directly causing energy failure [32]. Complex I inhibition or 

dysfunction may also promote the formation of reactive oxygen species (ROS), 

such as superoxide, which then go on to critically damage mitochondrial DNA, 

lipids, and proteins essential to healthy cell function, including complex I itself 
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[23, 32]. Oxidative stress and ROS generation can also jeopardize the integrity of 

the mitochondrial membrane by leading to the formation of the mitochondrial 

permeability transition pore, a pore in the inner mitochondrial membrane which 

initiates apoptosis , resulting in subsequent apoptosis-inducing factor (AIF) 

release and caspase pathway initiation [34]. 

 Mitochondrial dysfunction in PD (e.g., complex I inhibition) can also 

impact mitochondrial morphology and typical cycles of fission and fusion [32]. A 

number of studies have suggested that complex I inhibition disrupts the typical 

fusion-to-fission balance, resulting in an increase in mitochondrial fragmentation 

and ultimately cell death [35]. In some genetic cases of PD, problems with 

mutations in the PINK1 and parkin genes, normally involved in protein autophagy 

and quality control, may disrupt mitochondrial fission and fusion; parkin may also 

play a role in sporadic (non-genetic) cases of PD [36, 37].  

2.A.VI. MANGANESE POISONING AS A PARKINSON’S DISEASE MODEL 

 Manganism is a condition caused by environmental exposure to toxic 

levels of manganese (Mn) which mimics the effects of PD [38]. Manganese 

exposure may occur through many routes, including water or food ingestion, 

inhalation while performing an occupation such as mining or welding, or 

intravenous delivery of total parenteral nutrition or medical imaging contrast 

agents containing Mn [38]. Manganism is characterized in its early stages by 

psychotic episodes, and later by motion-related symptoms similar to PD, 
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including rigidity, bradykinesia, and dystonia [39]. Mn accumulation in the brain 

also mimics the tissue-level effects of Parkinson’s disease, including neuronal 

death and glial scarring in brain regions associated with motion signaling and 

control, including the substantia nigra [39]. As with PD, the way in which Mn 

specifically causes selective neuronal death and glial activation cannot be 

attributed to a single pathway or effect, but rather to a variety of interacting 

effects whose relative contribution and causal interdependence are not yet well-

established [39, 40]. However, similar to PD, many of these effects involve the 

mitochondria, where manganese is actively sequestered [41]. 

 Manganese can lead to cell death through a variety of interconnected 

pathways (Figure 7). Studies have consistently shown that manganese alters cells’ 

oxidative energy metabolism and increases mitochondrial reactive oxygen species 

(ROS) production, however the direct site and mode of impact remain an area of 

active research [39, 40]. Studies report that manganese treatment results in 

depolarization of the mitochondria and inhibition of the respiratory chain [39, 40, 

42]. With regard to site of action, studies report that (as with PD) complex I is 

inhibited by Mn, but that other mitochondrial complexes may also see decreased 

activity as well [43, 44]. Inhibition of the respiratory chain increases ROS 

production, which can cause further mitochondrial damage via oxidation [40]. Mn 

itself can also change oxidation states and either directly oxidize other molecules 

in the mitochondria, or generate ROS in the process of changing oxidation states 
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[38]. These effects may also be caused in part by calcium increases in the 

mitochondria resulting from Mn toxicity. Mn increases Ca2+ within mitochondria 

because it is imported into mitochondria via the Ca2+ uniporter and can 

competitively inhibit Ca2+ efflux from the cells [41, 45]. Calcium imbalances are 

associated with increased ROS production and may also play a role in neuronal 

excitotoxicity [39, 46].  

 Apoptosis is another well-documented result of Mn toxicity. Studies have 

reported increases in various apoptosis markers in primary neurons, astrocytes, 

and PC-12 cells with administration of varying doses of Mn [47-50]. Calcium 

increases in mitochondria are thought to contribute to apoptosis by accelerating 

the mitochondrial membrane permeability transition [45, 51]. ROS production 

Figure 7: Pathways of manganese toxicity in brain cells. 
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and complex I inhibition have also been proposed as factors triggering apoptosis, 

however some have argued that Mn2+ itself has antioxidant capacities which could 

neutralize some of the ROS to reduce the chance of apoptosis [40, 48]. 

Manganese affects astrocytes’ and neurons’ metabolisms differently, and 

can upset coupling between them (Figure 8). While astrocytes sequester 

manganese in higher concentrations than neurons and do experience alterations in 

metabolism, they have multiple robust energy production avenues (e.g., oxidative 

phosphorylation, glycolysis, glycogenolysis) and are therefore more resilient to 

Mn’s effects than neurons [39, 50]. However, astrocytes’ metabolic response to 

Mn reallocates energy resources normally devoted to several functions meant to 

Figure 8: Manganese toxicity disrupts normal metabolic coupling between 
astrocytes and neurons 
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promote neuronal health [52]. Astrocytes affected by Mn may produce fewer 

energy substrates for neurons, fewer antioxidants, and have less capacity for 

recycling glutamate neurotransmitters into glutamine [53, 54]. As a result, 

neurons may face energy failure, ROS damage, and excitotoxicity due to 

excessive extracellular glutamate [50]. 

Relatively recent research has also connected manganese toxicity with 

changes in mitochondrial dynamics and associated genes. Two studies observed 

changes in mitochondrial-shaping proteins Opa-1 (associated with fusion) and 

Drp-1 (associated with fission) in rat astrocytoma C6 cells and Gli36 cells [55, 

56]. In both studies, researchers observed shifts in Mn-treated cells toward 

mitochondrial fragmentation in conjunction with Opa-1 and Drp-1 changes and 

increased apoptosis markers [55, 56]. Other studies examined the effect of Mn 

treatment on expression of parkin in SH-SY5Y cells and concluded that Mn may 

up-regulate parkin expression in an effort to protect cells against apoptosis [57, 

58]. These initial studies suggest that manganese treatment may impact 

mitochondrial shaping in ways similar to PD.  
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2.B. BACKGROUND - TWO-PHOTON EXCITED FLUORESCENCE IMAGING  

2.B.I. INTRODUCTION TO FLUORESCENCE AND TWO-PHOTON EXCITATION 

Fluorescence is a radiative process that can provide a source of contrast in 

optical imaging (Figure 9). When an incident photon is absorbed by a molecule in 

tissue, it may excite that molecule to a higher electronic energy state, if there is a 

match between the energy carried by the photon and the distance between 

electronic energy states in the molecule [59]. Once excited, the molecule may 

relax to a lower vibrational energy state within the same electronic state, a process 

known as vibrational relaxation; it may also relax to a lower excited electronic 

Figure 9: Jablonski diagram of processes involved in fluorescence 
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state, a process known as internal 

conversion [59]. Once it is in the 

lowest vibrational energy state of 

the first excited electronic state, it 

will relax back to the ground 

state; if the molecule emits a 

photon during this relaxation, the 

process is known as fluorescence 

[59]. The wavelength of the molecule is determined by the energy emitted during 

the relaxation, which depends on the distance between the lowest vibrational 

energy state of the first excited electronic state and the vibrational energy state of 

the ground electronic state to which the 

molecule relaxes, providing a range of 

potential emitted fluorescent light 

wavelengths [59]. Because the energy 

radiated by the photon is less than the 

energy originally absorbed by the 

molecule, the photon emitted will have a 

longer wavelength than the photon 

absorbed, known as a Stokes’ shift 

(Figure 10) [59].  

Figure 10: The Stokes Shift 

Figure 11: Two-photon absorption 
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Two-photon excited fluorescence (TPEF) is a non-linear optical process 

that can be utilized for microscopic imaging. TPEF occurs when two photons of 

half the required energy (or approximately twice the wavelength) are 

simultaneously absorbed by a molecule, exciting it to a higher electronic energy 

state (Figure 11) [15]. When the molecule radiatively relaxes, it emits a single 

photon with a wavelength reflecting the energy gap between the excited electronic 

and ground energy states [15]. TPEF requires a very high photon flux in order to 

achieve simultaneous absorption of two photons and is therefore implemented 

using femtosecond pulsed lasers with high maximum intensity but low average 

intensity focused with a high numerical aperture objective lens [15]. TPEF is 

utilized for microscopy by raster-scanning the excitation light over a field of view 

and reconstructing an image from the emission collected at each excited focal 

volume [15]. 

Two-photon microscopy has many advantages for imaging live cells. 

Because the excitation light is confined to the focal volume, this technique 

provides high axial and lateral spatial resolution relative to traditional 

fluorescence microscopy and also minimizes photo-bleaching to samples relative 

to confocal microscopy [15]. Because all of the emission light at a given point is 

attributable to the single excited focal volume, two-photon microscopy also 

somewhat simplifies the required instrumentation relative to confocal microscopy 

by eliminating the need for a pinhole and emitted light de-scanning [15]. Signal-
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to-noise ratio is also improved relative to traditional or confocal microscopy 

because there is a large distance between the excitation and emission light 

wavelengths [15]. For imaging thick specimens, TPEF allows for greater depth 

penetration into samples due to reduced scattering at increased excitation 

wavelengths [15].  

2.B.II. TPEF FOR MONITORING CELL METABOLISM USING OPTICAL REDOX 

RATIOS 

While TPEF is frequently used in conjunction with exogenous dyes, it can 

also provide a non-destructive technique for assessing tissue metabolism via 

endogenous fluorophores. Notably, mitochondrial coenzymes NADH and FAD 

absorb infrared light and emit fluorescence, while their oxidized and reduced 

counterparts (NAD and FADH2) do not (Figure 12). Both NADH and FAD 

undergo two-photon excitation well in the mid-700nm range, while only FAD 

Figure 12: (a) Two-photon absorption spectra of NADH and FAD (b) 
Fluorescence emission spectra of NADH and FAD; Reproduced from [7] 
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absorbs well above 850nm [7]. NADH and FAD emit fluorescence light with 

peaks around 460 and 525nm, respectively [7]. By selectively exciting the two 

fluorophores, it is possible to describe relative fluorescence intensities of the 

NADH and FAD via an optical redox ratio defined as (FAD)/(FAD+NADH) [7].   

Optical redox ratios have been used in a variety of applications to describe 

cellular metabolic activity. Typically, cell autofluorescence at ~755nm excitation 

and ~460nm emission is attributed to mitochondrial NADH, while fluorescence at 

~860nm excitation and ~525nm emission is attributed to mitochondrial FAD [7]. 

In healthy cells, higher optical redox ratio, indicating greater FAD relative to 

NADH, is indicative of highly oxidative metabolic activity, while a lower optical 

redox ratio, resulting from an increase in NADH relative to FAD, is indicative of 

enhanced glycolytic activity [7]. 

In cells subject to various stress conditions, redox ratio changes may be 

associated with other metabolic modulations. For example, when potassium 

cyanide is added to cells to block the respiratory chain, NADH builds up relative 

to FAD, lowering the redox ratio; when the mitochondrial membrane potential is 

depolarized using carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 

(FCCP), respiratory chain activity increases, increasing FAD concentration 

relative to NADH thus increasing the redox ratio [7]. Multiple spectroscopic and 

imaging studies have reported increasing redox ratio in relation to apoptosis [60, 
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61]. Other studies have tied a decrease in NADH/FAD (or an increased redox 

ratio) to oxidative stress [62-64]. 

2.B.III. TWO-PHOTON EXCITED FLUORESCENCE LIFETIME IMAGING 

 While much TPEF microscopy captures total fluorescence intensity over a 

fixed integration period, time-resolved fluorescence imaging approaches can yield 

additional information about molecules. Fluorescence lifetime imaging (FLIM) 

may be implemented by using time-correlated single photon counting (TCSPC), a 

technique which detects 

individual photons and tracks 

their emission timing relative 

to the laser pulse (Figure 13) 

[65]. TCSPC detects photons 

over an extended integration 

period (~1-3 minutes), 

allowing for generation of a histogram of photon counts relative to laser pulse 

timing. The decay profile of this histogram can be quantified to yield information 

about the fluorophore. For example, NADH has been demonstrated to have 

multiple distinct fluorescence lifetimes based upon its conformational folding and 

binding status [66]. Fluorescence lifetimes of ~350 and ~750ps have been 

reported for stretched and folded free NADH, while lifetimes from ~600-6000ps 

have been reported for varying species of bound NADH [66-68]. 

Figure 13: Schematic of time-correlated single 
photon counting (TCSPC). Modified from [1] 
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 One approach to quantifying NADH fluorescence decay is to fit 

multiexponential curves to the decay. In this approach, the fluorescence decay 

curve of each pixel within an image is fit to the following form. 

𝐹 =  �𝛼𝑛

𝑛

1

𝑒
−𝑡
𝜏𝑛  

In this expression, n indicates the number of underlying NADH species 

contributing to the signal, α is the relative weight of that species to the overall 

decay, and τ is the characteristic time constant of the decay, also known as the 

fluorescence lifetime [69]. Ratios of component lifetimes or weights may be used 

to characterize metabolic activity [67, 70]. Typically, an increased concentration 

in free NADH is associated with glycolytic activity, while increased bound 

NADH is more associated with oxidative metabolic activity [67].  

 An alternative approach to analyzing fluorescence lifetime data uses 

phasor transforms. In this approach, each decay curve is mapped onto a polar plot 

in frequency space using the following relationships [71]. 
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In this expression,  I  is the exponential decay, ω is the laser repetition frequency, 

(i,j) represent the pixel coordinates, and g and s represent the coordinates in the 

phasor plot. In the case where the decay is monoexponential, the mathematics 

simplify as follows. 

𝑔𝑖,𝑗(𝜔) =  
1

1 + (𝜔𝜏)2 

𝑠𝑖,𝑗(𝜔) =  
𝜔𝜏

1 + (𝜔𝜏)2 

In this case, the phasor transform point will necessarily fall on a “universal circle” 

within the polar plot, where each position on the circle corresponds to a certain 

characteristic lifetime [71]. A biexponential decay will be found along a line 

drawn through its two monoexponential components, while a triexponential decay 

will be found within a triangle 

drawn between its three 

monoexponential components  

(Figure 14) [71]. The phasor 

transform provides a simple 

graphical approach for 

identifying fluorophores with 

distinct decay profiles present in 

an image, without requiring any 

exponential fitting [71]. 

Figure 14: Phasor plot of a biexponential 
decay 
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2.B.IV. PRIOR STUDIES OF NADH AND FAD AUTOFLUORESCENCE IN BRAIN 

TISSUE 

 Many studies of brain tissue autofluorescence have focused on identifying 

changes associated with neuronal firing, in part to distinguish the metabolic 

functions of different cell types. Multiple studies in brain slices have reported an 

initial dip in NADH fluorescence upon neuronal activation, followed by an 

increase in NADH intensity [72, 73]. Some have cited this phenomenon as 

evidence for the astrocyte-neuron lactate shuttle, suggesting that the initial dip is 

due to oxidative neuronal metabolism while the NADH increases co-localize with 

astrocyte-specific markers, possibly signifying glycolytic lactate production [72]. 

Others have argued that neurons also give off significant NADH signal 

surrounding activation, and that there is not yet conclusive evidence for the cell 

sources of NADH transients, even as they serve as useful signifiers of brain 

activity [73]. These studies highlight the difficulty of segmenting fluorescence 

signals in brain slices containing multiple cell types, and the potential utility of 

controlled cell culture studies for studying the autofluorescence of individual cell 

types. 

 NADH and FAD fluorescence have also been utilized in brain tissue 

spectroscopy and microscopy to characterize metabolic differences in brain 

regions as well as metabolic responses to stress or disease. In one study of gerbil 

brain slices, the ratio of FAD to NADH was shown to be higher in 
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cerebellar/cerebral white matter than gray matter, suggesting increased oxidative 

energy production in white matter regions [74]. Fluorimetry, in vivo two-photon 

microscopy, and in vitro two-photon imaging of brain slices have examined 

autofluorescence response to oxygen deprivation and seizures [75-78]. A mouse 

model of Rett syndrome, a neurodevelopmental disorder, showed an increased 

FAD/NADH redox ratio in brain slices associated with oxidative stress [79]. 

Optical redox spectroscopy has also been explored as a tool for diagnosing brain 

cancers [80].  

In spite of these diverse studies of NADH and FAD fluorescence in brain 

tissue, studies of PD or manganese toxicity using NADH and FAD 

autofluorescence have been limited. One recent study examined changes in 

NADH and FAD fluorescence lifetime in PC12 cells treated with 1-methyl-4-

phenylpyridinium (MPP+), a neurotoxin damaging complex I [70]. This study 

reported a decrease in both NADH and FAD fluorescence lifetime with increasing 

doses of MPP+, as well as an increase in the ratio of unbound/bound NADH and 

an increase in the ratio of bound/unbound FAD [70]. The authors argue that this 

alteration indicates a shift towards glycolytic metabolic activity as more free 

NADH is present (either as a result of glycolysis or decreased complex I activity), 

and more bound FAD is present, which they attribute to a failure of the TCA 

cycle to regenerate FADH2 [70]. While this article establishes the utility of 

NADH and FAD autofluorescence in probing metabolic changes in PD models, 
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further research is required to clearly establish relationships between 

autofluorescence, metabolism, and neurodegeneration across cell types and 

disease models. 

2.B.V. ANALYSIS OF MITOCHONDRIAL ORGANIZATION USING NADH 

AUTOFLUORESCENCE 

 In addition to being used as a metabolic marker, NADH fluorescence 

provides endogenous contrast for characterizing cellular mitochondrial 

organization. Multiple studies have quantified mitochondrial organization by 

using a fourier-transform-based approach to quantify intracellular fractal patterns 

[81, 82]. In this approach, the squared amplitude of the fourier transform of an 

image, also known as the power spectral density (PSD) function, is first calculated 

[81]. In images with fractal features, the PSD as a function of frequency typically 

exhibits a negative power law dependence (i.e. a-ß) [81]. The value of the power 

law exponent (ß) can be used to characterize the degree of clustering in an image, 

with higher ß corresponding to more clustering of fractal features [81]. Artifacts 

due to cell edge and nuclear border effects may be eliminated by masking the 

image to only include cytoplasmic features, and by then applying a digital object 

cloning method to fill the field with the fractal features [81]. This approach has 

successfully identified cancer-related changes in mitochondrial organization in 

engineered healthy and cancerous skin tissue [82]. We will use it in a novel 

application to detect mitochondrial changes in healthy and diseased brain cells. 
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2.C. CHARACTERIZING ASTROCYTE AND NEURON METABOLISM USING 

TPEF – MONOCULTURES, CO-CULTURES, AND MANGANESE TOXICITY 

2.C.I INTRODUCTION 

 Astrocytes and neurons are known to have distinct metabolic profiles, with 

astrocytes preferring glycolytic metabolism, and neurons favoring oxidative 

phosphorylation [8]. The two cell types are known to participate in metabolic 

coupling in vivo in order to meet the high energy demands of cell signaling [31]. 

Astrocytes and neurons are also known to experience oxidative stress and undergo 

apoptosis when exposed to excessive quantities of manganese [39]. Astrocytes are 

less impacted by manganese than neurons, however toxicity may alter cell-cell 

coupling [39]. 

 In this set of experiments, we sought to optimize two-photon excited 

fluorescence imaging methods and establish quantitative analysis metrics to 

characterize primary embryonic rat neuron and astrocyte metabolism in two-

dimensional, in vitro cultures. We hypothesized that TPEF could capture redox 

and mitochondrial organization differences between astrocytes and neurons 

consistent with their known metabolic distinctions. We also hypothesized that 

autofluorescence changes assessed via TPEF could reflect cell responses to 

manganese poisoning. Finally, we hypothesized that imaging autofluorescence of 

co-cultured cells could reveal evidence of metabolic coupling and possibly 

alterations in metabolic responses to manganese. 
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Initially, we compared optical redox ratios, mitochondrial clustering, and 

fluorescence lifetime between neurons and astrocytes in monocultures to 

understand baseline detectable metabolic differences between the cell types, as 

well as their responses to manganese treatment. Next, we studied three separate 

co-culture conditions to assess whether interactions between the two cell types 

result in redox ratio changes evident using our imaging methods. As the first co-

culture condition, we cultured astrocytes and neurons on separate glass panes of a 

“sandwich” co-culture to allow for reciprocal signaling and soluble factor 

exchange over a 150-200µm distance.  As the second condition, we assessed the 

effect of exchanging conditioned media between the two cell types. Finally, we 

cultured cell types together in well-plates with one cell type on the bottom glass 

surface, and the other on a transwell membrane. After characterizing the different 

metabolic profiles of the two cell types in a range of co-culture conditions, we 

used redox analysis to assess the metabolic effect of MnCl2 on cells in co-culture 

conditions. 

2 C.II. MATERIALS AND METHODS 

2.c.ii.1. Cell Culture of Primary Embryonic Rat Neurons and Astrocytes 

2.c.ii.1.a. Neuron and Astrocyte Monocultures 

Neurons were freshly isolated from embryonic day 18 (E18) rat cortices 

and plated on glass-bottomed petri dishes coated with 0.1 mg/ml poly-d-lysine. 

Astrocytes previously isolated and expanded from E18 rat cortices were thawed 
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from frozen and plated on glass-bottomed petri dishes. For emission spectra and 

TPEF imaging experiments, both cell types were cultured in neurobasal medium, 

supplemented with 2% B-27, 2% fetal bovine serum, 1% Glutamax, and 1% 

antibiotic/antimycotic. For excitation spectra experiments, neurons were cultured 

in this same media, with FBS excluded, and astrocytes were cultured in media 

consisting of DMEM-F12, 10% FBS, 1% glutamax, and 1% 

antibiotic/antimycotic; excitation spectra data analysis corrected for background 

differences between the media types (See Data Analysis Section). Neurons were 

allowed to grow for at least 5 days prior to imaging to allow for neurite growth 

and network formation. Astrocytes were allowed to grow at least 3 days, imaging 

cells at least 50% confluent. Media was changed every 2-3 days, with the final 

change 24 hours prior to imaging. 20 mM HEPES was added to the media prior to 

imaging to buffer against changes in CO2 levels.  

Figure 15: Schematic of the sandwich co-culture setup 
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2.c.ii.1.b. Sandwich Co-Cultures 

Neurons were seeded as described for monocultures, while E18 astrocytes 

were thawed from frozen and plated on sterile 12mm glass coverslips. Both cell 

types were allowed to grow for at least 5 days in neurobasal medium, 

supplemented with 2% B-27, 2% fetal bovine serum, 1% Glutamax, and 1% 

antibiotic/antimycotic. Media was changed every 2-3 days. 24 hours prior to 

imaging, media was aspirated from the neuron cultures, and a small amount of 

sterile 150-200 micron glass beads were added as spacers to the cultures. The 

astrocyte coverslips were added to the neuron monocultures, such that the 

astrocytes and neurons were facing one another, spaced by the beads (Figure 15). 

20 mM HEPES was added to the media prior to imaging to buffer against changes 

in CO2 levels. The sandwich co-culture experiments typically contained a 

monoculture group as well as a 

control for the co-culture group. 

To generate the “control for co-

culture” condition, neurons and 

astrocytes were each plated on 

both glass-bottomed petri dishes 

and glass coverslips, and 

sandwich cultures were 

assembled as previously described with either only astrocytes, or only neurons.  

Figure 16: Schematic of transwell co-culture 
used to image neurons; the opposite cell type 
arrangement was used to image astrocytes. 
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2.c.ii.1.c Transwell Co-cultures 

 Neurons and astrocytes were plated in glass-bottomed well plates as 

described for monocultures. Cells were either grown as monocultures with no 

transwell insert, or as co-cultures with a transwell insert containing the opposite 

cell type (Figure 16). Cells were cultured in transwells with the same coating and 

plating procedures described for monocultures. Only the cells plated on glass 

were imaged, due to strong fluorescence of the transwell inserts. 

2.c.ii.1.d Media conditioning 

Neuron and astrocyte monocultures were prepared as described above. 

Media was changed 2-3 days prior to imaging. At 24 hours prior to imaging, 

media conditioned on astrocytes or neuron monocultures for 1-2 days was 

extracted from the cultures and reserved. Astrocyte and neuron monocultures 

were then either treated with astrocyte-conditioned media, neuron-conditioned 

media, or fresh media for the 24 hours prior to imaging.  

2.c.ii.1.e. Manganese Treatment 

Aqueous stock solutions of MnCl2 were prepared fresh and sterile-filtered. 

MnCl2 solution was added to cell culture media for final concentrations of 100, 

250, 500, 750, or 1000 µM Mn 24 hours prior to imaging. Stock solutions were 

sufficiently concentrated that the MnCl2 solution comprised ≤5% of the total 

volume of the culture medium added to cells. The untreated cell culture media 
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was determined to have <0.1µM Mn based on inductively coupled plasma mass 

spectroscopy. 

2.c.ii.2. Caspase-3 Assay 

Caspase-3 content of Mn-treated cells was determined using a colorimetric 

assay (R&D Systems) as described in the manufacturer’s protocol. In brief, cells 

were cultured in well plates and 24 hours prior to performing the assay, cells were 

given either fresh media or fresh media supplemented with 500µM (neurons) or 

1000µM (astrocytes) MnCl2. The cells were lysed, centrifuged, and the 

supernatant was collected for analysis. The caspase-3 colorimetric substrate and 

reaction buffer were added to supernatant samples and blank samples. Samples 

were incubated for 2 hours, and the colorimetric change was quantified using a 

plate reader by measuring absorbance at 405nm. The blank sample values were 

subtracted from control and Mn-treated sample values to provide corrected 

absorbance values. N=3-4 cell lysate samples were evaluated per experimental 

condition. 

2.c.ii.3. Two-photon Imaging of Primary Cultures 

2.c.ii.3.a. Excitation and Emission spectra 

Emission and excitation spectra were taken using a Leica SP2 confocal 

microscope fitted with a Ti:Sapphire laser. For emission spectra, light was 

focused to the sample using a 63x water-immersion objective (NA 1.2), and 

neutral density filters were used to achieve a power of 20-30 mW at the stage. 
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Images were 512x512 pixels, representing a 238x238 micron field of view. Cells 

were excited at 755 and 860nm, and fluorescence images were acquired using a 

photomultiplier tube (PMT) centered at wavelengths 400-700nm with a bandwith 

of 20nm in 20 steps. Multiple spectra were taken for each cell type to verify 

spectral shape, and  n=3 spectra were averaged to give the final reported spectra 

for each group.  

For the excitation spectra, light was focused to the sample using a 40x 

water-immersion objective (NA 1.1), and neutral density filters were used to 

achieve a power of 20-30 mW at the stage. Images were 512x512 pixels, with the 

zoom feature of the software employed to achieve a 187x187 micron field of 

view.  For excitation spectra, cells were excited at wavelengths ranging from 720-

900nm (steps of 10 nm), and fluorescence images were formed using non-

descanned detectors filtered to collect light at 460 +/- 20nm and 525 +/- 25nm. 

Multiple spectra were taken for each cell type to verify spectral shape, and  n=2-3 

spectra were averaged to give the final reported spectra for each group 

2.c.ii.3.b. Imaging for Optical Redox Ratio Analysis 

Redox images were taken with a Leica SP2 confocal microscope fitted 

with a Ti:Sapphire laser. Laser light was focused to the sample using a 40x water-

immersion objective (NA 1.1), and neutral density filters were used to achieve a 

power of 20-25 mW at the stage. Samples were excited with light at 755nm and 

860nm and fluorescence images were formed using non-descanned detectors 
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filtered to collect light at 460 +/- 20nm and 525 +/- 25nm. Images were 512x512 

pixels, with the zoom feature of the built-in Leica Control software employed to 

achieve a 187x187 micron field of view. Images were formed based on an average 

of 12 scans. 3-6 non-overlapping images were taken per petri dish or well, and 

n=3 dishes or wells were imaged per cell type and treatment condition. The one 

exception to this sampling regime was the 500uM MnCl2 monoculture group in 

the sandwich co-culture experiment. In this case, n=2 dishes were imaged due to 

contamination of the 3rd dish, however additional images were taken in each of 

the unaffected dishes to yield a consistent number of images taken across 

conditions. Redox and mitochondrial organization results from monocultures 

reflect 9 independent experiments. Redox and mitochondrial organization results 

from Mn-treated monocultures reflect 2 independent experiments. Sandwich co-

culture and media conditioning redox results reflect 2 independent experiments. 

Transwell and Mn-treated sandwich co-culture results each reflect 1 experiment. 

2.c.ii.3.c. Fluorescence Lifetime Imaging 

 Fluorescence lifetime images were taken using a custom-built two-photon 

microscope fitted with a Ti:Sapphire laser. Light was focused to the sample using 

a 40x water immersion objective (NA 1.1), and a half-wave plate was adjusted to 

achieve a power of 20 mW at the stage. Samples were excited with light at 755nm 

and collected using a PMT centered at 460nm +/- 20nm. Time-correlated single 

photon counting (TCPSC) was employed obtain time-resolved fluorescence decay 
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information. Images were 512x512 pixels, representing a 184x184 micron field of 

view, and were acquired over a 70s integration time. A calibration image of 

umbelliferone (7-hydroxycoumarin) was taken for each experimental day and 

showed the characteristic mean lifetime of 5.1ns. For the cell samples, 4-6 non-

overlapping images were taken per petri dish and n=3 petri dishes were imaged 

per group. 

2.c.ii.4. Data Analysis 

2.c.ii.4.a. Spectral Analysis & Corrections 

Emission spectra for each cell type were obtained by determining the 

average fluorescence intensity of images acquired at each emission wavelength. 

Because we observed unexpected and large intensity increases in the upper 

collection wavelengths for spectra taken at 755nm excitation, these spectra were 

then corrected for scattered excitation light. We took spectra of a strongly 

scattering sample at 755nm excitation using the same parameters used for the 

cells. We observed that subtracting a scaled version of this scattering spectrum 

Figure 17: Scattering correction on reference dye emission spectra 
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from emission spectra of standard dyes such as fluorescein and umbelliferone 

produced their expected intensity peaks (Figure 17), and we therefore applied the 

same correction to the cell spectra. We assumed that all of the cell signal at 

700nm was a result of scattered excitation light and therefore scaled the scattering 

sample spectrum to range from the minimum value of the cell spectrum to the 

value at 700nm. This scaled scattering sample spectrum was subtracted from the 

cell spectrum to remove the intensity contribution of scattered light. The spectra 

were then scaled between 0 and 100% (Figure 18). To assess the relative 

contributions of NADH and FAD to the emission spectra taken at 755nm and 

860nm excitation, we used an NADH reference spectrum to un-mix our 

experimental spectra into two components using non-negative matrix 

factorization. The factorization was performed 100 times per image and the best-

fit result was recorded, giving the weights of the fixed components yielding the 
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best fit to the experimental data.  

Cell excitation spectra were also obtained by first determining average 

fluorescence intensity of images taken at each excitation wavelength. Because 

background intensity appeared to vary significantly with excitation wavelength, 

we took spectra of cell culture media and subtracted the average value at each 

excitation wavelength from the cell spectra. Because excitation power varied 

slightly by wavelength, we then also normalized the average intensity at each 

wavelength by the inverse square of the power delivered to the sample at that 

wavelength. Finally, to account for other instrumental wavelength variability, we 

took an excitation spectrum of fluorescein and determined a correction factor for 

each excitation wavelength to match reference values for the two-photon 

absorption spectrum of fluorescein (Figure 20) [10]. We applied these correction 

factors to our excitation spectra and normalized the spectra to a maximum of 

Figure 18: Cell excitation spectra before and after corrections 
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100% (Figure 19). 

2.c.ii.4.b. Redox Ratio Analysis 

For redox analysis, images were 

processed in several steps. For a given 

field, the multiple corresponding images 

(e.g., different excitation and emission 

wavelengths) were spatially co-

registered by determining the shift 

producing the maximum correlation between channels. We corrected for the 

intensity contribution of background fluorescence by identifying and subtracting 

the mode of the low-intensity pixels, defined as having intensity less than an 8-bit 

integer value of 30. A cell mask was determined through several steps. First, we 

separately applied a Gaussian low-pass filter (3x3 pixels, 1.5 pixel standard 

deviation) to the NADH (ex. 755, em. 460) and FAD (ex. 860, em. 525) images to 

Figure 20: Fluorescein excitation spectrum 
pre-and post-corrections 

Figure 19: Cell excitation spectra before and after corrections 
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slightly smooth the images and remove isolated, high-intensity background pixels. 

Next, we transformed the intensity of each image by raising it to a power of 1.75, 

in order to further separate high and low-intensity pixels for adaptive 

thresholding. We then used the Matlab multithresh function to generate two 

adaptive, intensity-based thresholds for each image based on the Otsu method. 

The multithresh function allows the user to input the number of thresholds that 

should be used to segment an image; threshold levels are chosen which minimize 

the variation within the groups that they delineate. Because the NADH channel 

included separate moderate and high-intensity pixel populations within cells, we 

used the lower of the two multithresh thresholds to mask the NADH image so that 

background pixels were excluded. We generated an FAD mask by applying the 

higher of its two intensity thresholds because cell pixels in this channel were more 

uniformly high-intensity and utilizing the lower of the two thresholds resulted in 

inclusion of significant background regions. The masks for the two separate 

channels were then combined through addition to generate an overall cell mask 

including all of the pixels included in either the NADH or FAD masks, and the 

Matlab bwareaopen function was applied to remove small objects with fewer than 

50 connected pixels. Individual image channels were normalized to account for 

differences in gain and power between channels. We then removed saturated 

pixels and pixels not attributable to FAD or NADH fluorescence (e.g., with 

significant fluorescence in the ex. 860, em. 460 channel) from the mask. Pixel-
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wise redox ratios were calculated by taking a ratio of the normalized but spatially 

unfiltered FAD intensity to FAD + NADH intensity.  

Redox ratio histograms were generated by applying a spatial Gaussian 

low-pass filter (3x3 pixels with 0.5 pixel standard deviation) to the initial 

unfiltered redox maps in order to reduce the effects of minor co-registration issues 

and noisy data. The cell mask was then applied to the spatially filtered redox map 

and redox ratio values within the mask were used to generate histograms with 50 

bins between redox ratio values of 0 and 1. Overall redox ratio histograms for 

treatment groups in a given experiment were generated by summing the bin 

counts for individual images and normalizing the resulting histogram so that the 

sum across all bins added up to 100%. In summary histograms displaying data 

from multiple experiments, the individual experiments were given equal weight 

and the resulting histogram was normalized to sum to 100%.  

To determine the basis redox ratio components for the redox histograms, 

we first compiled all of masked, spatially filtered redox ratio pixels from astrocyte 

and neuron monoculture images. This data represented >250 images across 9 

experiments, each containing n=3 separate cultures of each astrocytes and 

neurons. To determine the contributing Gaussian components to the redox 

histograms, we used the gmdistribution.fit function within Matlab to fit a 3-

component Gaussian mixed model to the aggregate. The fitting was performed 10 

times, and the mean and standard deviations of the three components from each fit 
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were averaged across the 10 iterations. Resulting components were similar to 

results obtained when un-mixing the aggregate neuron or astrocyte data 

separately. 

We then determined the image-by-image relative weights of the redox 

basis components. We simulated the distributions of the basis components to 

obtain histograms with 50 bins and values between 0 and 1. We normalized these 

components to range from 0 to 100% and then used them as fixed components to 

fit to individual image histograms, yielding best-fit component weights for the 

experimental data. For each image, we normalized the weights of the three basis 

components to add up to 100%. Ratios of the component weights (i.e., 

W1/(W2+W3), W2/(W1+W3), and W3/(W1+W2)) were used to quantify and 

statistically test changes in the redox histograms. 

Redox ratio maps in the results were generated by spatially filtering the 

raw redox ratio maps using a Gaussian low-pass filter (5x5 pixels with 0.55 

standard deviation), assigning colors to each pixel based on redox ratio, and 

modulating intensity based upon average intensity of the normalized NADH and 

FAD channels. Redox ratio tri-colored component maps were assembled by first 

spatially filtering the raw redox ratio maps using the same Gaussian low-pass 

filter used for the redox histograms (3x3 pixels with 0.5 standard deviation). Next, 

pixels were assigned one of three colors based on where they fell relative to the 
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midpoints between the centers of the three unmixed redox components. Finally, 

the cell mask was used to exclude pixels not within the cell bodies.  

2.c.ii.4.c. Mitochondrial Organization Analysis 

 Mitochondrial organization analysis was performed on a masked version 

of the normalized NADH channel. We used the same mask and normalization 

process described in the previous section, and applied an additional intensity 

threshold to the NADH channel to filter out very intense objects that were likely 

to produce artifacts in the PSD analysis. The rest of the analysis methods follow 

the approach previously published [81, 82]. In brief, the masked image was clone-

stamped to eliminate the edge effects of cells. We then performed a Fourier 

transform, calculated the power spectral density (PSD) function, and determined 

average values at each frequency through radial sampling. 5 iterations of this 

process were performed to obtain an average PSD curve. We set a low frequency 

cutoff value to delineate the part of the curve describing intracellular features; the 

cutoff value chosen was 0.2 microns^-1, corresponding to a conservative 

maximum expected distance of 5 microns within cells based on neurons, which 

have smaller cell bodies than astrocytes. The upper frequency cutoff was set 

where the base-10 logarithm of the PSD value fell to 2% of its maximum. The 

log/log curve was then fit to an inverse power function to obtain the exponent 

value β. Neuron and astrocyte intensity and cloned images were slightly contrast-
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enhanced using ImageJ (0.4% saturated pixels) for improved visualization in 

PSD-related figures in the results. 

2.c.ii.4.d. Fluorescence Lifetime Analysis 

FLIM phasor analysis was performed using custom Matlab software. To 

account for the instrument response function (IRF), a reference image (i.e., 7-

hydroxycoumarin) was first transformed into phasor space, and correction 

matrices were calculated to determine the necessary phasor rotation and 

modulation to position the reference phasor on the unit circle according to its 

known lifetime (i.e. 5.1ns). For a given group of images to be analyzed (e.g., 

neurons with and without manganese), we formed an aggregated phasor plot to 

determine a standard curve for calculating bound fraction. To form this aggregate 

plot, we determined first a cell mask for each individual image by applying a low-

pass Gaussian spatial filter (3x3 pixels, 1.5 pixel standard deviation) to the data, 

using Matlab’s multithresh function to generate two intensity-based thresholds for 

the filtered image, and using the lower of the two intensity thresholds to binarize 

the image. We then calculated the IRF-corrected phasor coordinates (g,s) for each 

pixel within the mask. These pixels were aggregated across images and plotted on 

an overall phasor plot. When the distribution was confirmed to fall on a single 

trajectory, a line was fit to the data in order to determine the “standard curve.” To 

determine individual images’ bound fraction values, their average phasor (g,s) 

values were calculated and projected onto the standard curve. Bound fraction was 
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defined as the distance between the projected point and the standard curve’s short-

lifetime intersection with the circle, divided by the length of the standard curve 

within the circle. To obtain bound fraction standard deviation values for 

individual images, we projected each masked pixel’s phasor coordinates (g,s) to 

the standard curve and calculated pixelwise bound fractions and determined the 

bound fraction standard deviation for pixels with non-zero bound fraction values. 

To obtain false-colored bound fraction images, each pixel’s g and s values were 

projected to the standard curve to calculate pixel-wise bound fraction values. 

Pixel color was assigned based on bound fraction and intensity was modulated to 

reflect the pixel’s intensity value. 

2.c.ii.5. Statistics 

Statistical software (JMP) was used to evaluate differences in means of 

various image metrics (e.g., redox ratio component weight ratios, β) between 

groups with certain fixed effects (e.g., cell type, Mn treatment). First, image-wise 

values were split by group and experiment to identify and exclude outliers 

(typically <5-10% of data). Outliers were identified as values falling greater than 

1.5 times the interquartile range above the 75th quantile of the data, or 1.5 times 

the interquartile range below the 25th quantile of the data. When the final data set 

was established, a mixed model was specified, including fixed effects and their 

interaction effects (where applicable), as well as random effects (e.g., petri dish, 

experimental day).  The model was estimated using a restricted maximum 
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likelihood (REML) method, and an F-test was used to assess the significance of 

the fixed effects and their interactions (where applicable). If an effect was 

significant, a post-hoc Tukey HSD test was applied to determine the significance 

of differences between individual groups. In cases where the model did not 

converge due to little variation in a random effect (e.g., experimental day), we 

determined that the effect could reasonably be excluded from the model and we 

estimated the revised model as described above. In graphs, error bars indicate 

standard error, and significance is indicated using asterisks * = p<0.05, ** = 

p<0.01, ***=p<0.001, NS = not significant at p<0.05 level. 

 

 

 

 

Figure 21 Astrocyte (a) and neuron (b) emission spectra when excited at 755 or 
860nm 
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2.C.III. RESULTS 

2.c.iii.1. Excitation and Emission Spectra 

We first obtained excitation and 

emission spectra of astrocytes and 

neurons in 2D monocultures, to verify 

that the autofluorescence could be 

primarily attributed to NADH and 

FAD. Both the emission and excitation 

spectra yield the expected fluorescence 

peaks for NADH and FAD (Figure 21). 

At 755nm excitation, we expect both NADH and FAD to fluoresce, reflected by 

the modulation near 460nm (NADH), and the peak near 550nm (FAD) [7]. At 

860nm, we expect FAD 

to fluoresce primarily, 

reflected by the single 

peak near 550nm [7]. The 

composition of these 

spectra are further 

confirmed by un-mixing 

with a fixed NADH 

spectrum to yield the FAD 

Figure 23 : Basis emission spectra for 
spectral fitting 

Figure 22:  Relative contribution of NADH/FAD at each 
excitation wavelength based on spectral fitting 
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spectrum shown in Figure 23. After fitting the experimental spectra with these 

basis components, we compared the fitted relative contributions of NADH and 

FAD between excitation wavelengths, and demonstrated that the relative 

contribution of NADH is significantly higher at 755nm than at 860nm, as 

expected (Figure 22).  

In the excitation spectra, we expect fluorescence at 525nm to be primarily 

attributed to FAD; consistent with published values of FAD’s two-photon cross 

section, the greatest fluorescence intensity is in the mid-700’s, with a secondary 

peak in the 800’s [7]. We expect fluorescence near 460nm to be primarily a result 

of NADH; the excitation spectrum collected at 460nm is consistent with NADH’s 

two-photon absorption in the mid-700’s, as evidenced by steep drop-off in signal 

after the mid 700’s (Figure 24) [7].  

 

 

Figure 24: Excitation spectra 
of astrocytes and neurons 
relative to the 460nm 
channel. 
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2.c.iii.2. Astrocyte and Neuron Monocultures Redox Results 

Astrocytes and neurons have distinct morphologies, autofluorescence patterns, 

and redox ratio distributions (Figure 25 a-b). Astrocytes are characterized by 

large, spread-out cell bodies, while neurons are characterized by smaller cell 

bodies and highly networked extensions (Figure 25 a-d). The distribution of 

neuron redox ratios tends to be shifted to the right relative to astrocyte redox 

ratios, as suggested both by the redox ratio maps (Figure 25 c-d) and the redox 

histograms ( Figure 25g-h) of individual sample images, as well as the collective 

redox histograms accumulated over several experiments (Figure 27). The 

Figure 25 (a-b) Transmission images of astrocyte and neuron morphology (c-d) Redox ratio 
maps (e-f) False-coloring based on gaussian components (g-h) Redox histograms and fits 
 

Transmittance 
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astrocyte and neuron redox distributions may be modeled as a sum of three 

Gaussian components (Figure 26). When cells are false-colored to spatially 

localize these three components 

(Figure 25e-f), we note that 

healthy cells typically contain a 

combination of the three 

components, possibly 

representing contributions of 

multiple metabolic processes. 

 When the relative 

weights of the three redox ratio 

components are compared 

between the groups, we note 

that astrocytes tend to place 

the most relative weight on 

component 1, while neurons 

place the most relative weight 

on component 2 (Figure 28), 

features reflected in the false-

colored redox component 

images (Figure 25 e-f). When relationships between relative weights are 

Figure 27: Aggregate redox histograms of 
neurons and astrocyte monocultures 

Figure 26: Gaussian components unmixed 
from aggregate monoculture redox ratio 
distributions 
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quantified through ratios, we see that astrocytes have a statistically greater relative 

weight on component 1 (W1/(W1+W2)), while neurons have a statistically greater 

weight on components 2 (W2/(W1+W3)) and 3 (W3/(W1+W2)) (Figure 30a-c). If 

we consider component 1 to represent glycolysis, and components 2 and 3 to 

represent oxidative processes, these results suggest that neurons and astrocytes 

have distinct autofluorescence profiles which are consistent with known 

metabolic differences between the cell types including more oxidative metabolism 

in neurons vs. astrocytes. However, we also note that component 3 may be 

associated with some stress to cells; in cases where component 3 dominates an 

entire neuron, it tends to exhibit 

nuclear blebbing consistent with 

apoptosis (Figure 29). However, 

few neurons exhibit these 

features in healthy monocultures. 

Figure 28 Astrocyte and Neuron relative component 
weights 
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Figure 30: Relative weights of redox Gaussian components for astrocyte and neuron monocultures 

Figure 29: Neurons with normal 
morphology (green box) exhibit 
combinations of all three redox 
ratio components, while neurons 
with nuclear blebbing and 
abnormal morphology (red box) 
have higher redox ratio and are 
dominated by component 3. 
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2.c.iii.3. Mitochondrial Organization in Monocultures 

When comparing 

mitochondrial organization of 

the two cell types, neurons have 

a statistically greater ß value 

than astrocytes (Figure 32). This 

difference is driven by the more 

tightly packed mitochondria 
Figure 32: Astrocyte and neuron clustering β 
values  

Figure 31: (a-b) NADH intensity (c-d) Masks for PSD analysis (e-f) Cloned 
images (g-h) PSD curves characterizing mitochondrial organization 
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within neurons’ small cell bodies (Figure 31a-b) relative to astrocytes’ more 

spread out mitochondrial networks. This morphological difference yields larger 

features in the cloned images (Figure 31e-f), and therefore a steeper PSD curve 

(Figure 31g-h), yielding a greater average clustering value (ß) in neurons vs. 

astrocytes. 

2.c.iii.4. Monoculture FLIM 

 Neuron and 

astrocyte FLIM distributions 

each fall along single 

trajectories suggesting the 

presence of a short and 

long-lifetime NADH 

component (Figure 33). 

Statistical testing 

reveals that neurons have a 

slightly shorter bound 

fraction of NADH than 

astrocytes, but that neurons 

also have a greater image-

wise standard deviation in 

Figure 34: False-colored FLIM images of astrocytes and 
neurons 

Figure 33: Aggregate phasor plots of astrocytes and 
neurons 
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bound fraction than astrocytes (Figure 35). 

 

These results, together with the aggregate phasor plots, suggest that astrocytes 

may have a higher NADH bound fraction, on average, than neurons, but that 

neurons have a greater spread in bound fraction values, particularly in the longer-

lifetime direction, as suggested by the skewed phasor distribution in Figure 33b. 

 

 

 

 

 

 

Figure 35: Phasor FLIM metrics of neuron and astrocyte monocultures. 
(a) Bound fraction (b) Image-wise standard deviation of bound fraction 
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2.c.iii.5. Effect of Manganese on Monoculture Redox ratios 

 In the next set of experiments, neurons and astrocytes were exposed to 

increasing doses of MnCl2 in 

order to assess effects on redox 

ratio distributions . Neurons 

exposed to increasing doses of 

MnCl2 exhibited morphological 

changes including loss of axons 

and soma condensation, as 

Figure 36 Effects of increasing doses of MnCl2 on neuron morphology and redox ratio. (a-d) 
Transmittance images (e-h) Redox ratio maps (i-l) Redox component maps 

Figure 37 Neuron redox ratio histograms with 
increasing MnCl2 dose 
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visualized in transmittance images (Figure 36a-d). Redox ratios generally 

increased (Figure 36e-h), while cells also transitioned from having a mixture of 

redox ratio components to exhibiting primarily component 3 (Figure 36i-l). Cells 

with altered morphology tend to also exhibit this redox ratio shift. A dose-

dependent shift in redox ratio distributions is reflected in aggregate redox 

histograms (Figure 37). 

When examining the relative component weights, we see a dose-

dependent decrease in the relative weight of component 2, and a dose-dependent 

increase in the relative weight of component 3 (Figure 38).  

This shift is 

represented quantitatively 

by the statistically 

significant decrease in 

W2/(W1+W3) between 0 

and 500 μM  and 

statistically significant 

increase in 

W3/(W1+W2) between 0 

and 500 μM (Figure 40a-

c). W1/(W2+W3) does 

not change significantly. 

Figure 38:  When treated with increasing doses of MnCl2, 
neurons display a drop in weight of component 2, and 
increases in weight of component 3. 
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These results, in concert with the altered cell morphology, suggest that decreases 

in component 2 may be evidence of impaired healthy oxidative metabolism in 

neurons treated with manganese, and that increases in component 3 may be 

associated with oxidative stress and apoptosis. Increased apoptosis is further 

supported by increased caspase-3 activity caspase-3 activity upon MnCl2 

treatment (Figure 39). 

 

 

 

Figure 40: Relative weights redox ratio components in Mn-treated neuron monocultures (a) 
W1/(W2+W3) (b) W2/(W1+W3) (c) W3/(W1+W2) 

Figure 39:  Caspase-3 assay in 
control vs. Mn-treated neurons 
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 We also assessed the impact of increasing doses on MnCl2 on astrocytes. 

Initially, we tested the effects of 100, 250, and 500 μM MnCl2 on the astrocytes 

and saw minimal effects (data not shown), for this reason, the dose range was 

increased to 500-1000 μM. In the transmittance images, we see that astrocyte 

morphology changes with increasing MnCl2 dose (Figure 41a-d), becoming 

rougher in appearance. In concert with these morphological changes, we also see 

increases in redox ratio (Figure 41e-f). Finally, as with neurons, we increasingly 

Figure 41: Effects of increasing doses of MnCl2 on astrocyte morphology and redox ratio. (a-d) 
Transmittance images (e-h) Redox ratio maps (i-l) Redox component maps  
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see component 3 dominate individual astrocytes (Figure 41i-l). The shifts in redox 

ratio histograms 

also reflect the 

increasing 

dominance of 

component 3 

with dose 

(Figure 42). 

. 

 
Figure 43 Astrocytes see a MnCl2. dose-
dependent increase in weight of component 3 
and decrease in weights 1 and 2. 
 

Figure 42: Redox histograms of MnCl2-treated astrocytes reveal a shift to 
the right with increasing doses, similar to neurons, but at higher 
concentrations 
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 Similar to neurons, astrocytes experience relative increases in component 

3 with dose, however they see decreases in both components 1 and 2 with dose, 

rather than primarily component 2 (Figure 43). These shifts are reflected in 

statistically significant decreases in W1/(W2+W3) and W2/(W1+W3) and 

increases in W3/(W1+W2) between the 0uM and 1000uM MnCl2 groups (Figure 

44). It appears that while astrocytes are more resilient than neurons to low doses 

of Mn, both glycolytic and oxidative forms of energy production see a relative 

decline with Mn treatment, making way for a dramatic increase in the 

contribution of component 3. This component may indicate oxidative stress or 

apoptosis in the astrocytes. Mn-treated astrocytes exhibit an increase in caspase-3, 

however it is not statistically significant (Figure 45). 

Figure 44: When astrocytes are treated with sufficiently high doses of Mn, they show a decrease in 
relative weights of components 1 and 2, and an increase in component 3. 
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 In summary, 

both astrocytes and 

neurons exhibit 

morphological changes 

and increasing relative 

weight of redox ratio 

component 3 with 

MnCl2 treatment. 

Astrocytes exhibit 

changes at higher doses 

than neurons, which is consistent with their greater resilience to mitochondrial 

assaults. The MnCl2-induced increase in redox ratio may be attributed to 

apoptosis or oxidative stress.  

 

 

 

Figure 45: Caspase-3 assay in control and Mn-treated 
astrocytes 
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2.c.iii.6. Effect of Manganese on Monoculture Mitochondrial 

Figure 46: NADH intensity images (a-b), masks (c-d), cloned images (e-f), and PSD 
curves (g-h) for neurons with and without Mn treatment 

Figure 47 NADH intensity images (a-b), masks (c-d), cloned images (e-f), and PSD curves 
(g-h) for astrocytes with and without Mn treatment 
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Organization 

 Manganese treatment 

does not appear to significantly 

alter neuron mitochondrial 

organization as analyzed using 

our methods – there is no 

significant difference in β 

value between groups (Figure 

48). This is likely due to the 

fact that neuron mitochondria 

are very densely packed relative 

to astrocyte mitochondria, and it 

is therefore difficult for our 

analysis methods to distinguish 

subtle changes in mitochondrial 

patterns at the given resolution. 

 Astrocytes, on the other 

hand, do show significant 

alterations in clustering with Mn treatment. β shows an increasing trend between 

0, 500, and 750 μM which is statistically significant between 0 and 750 μM. The 

trend then levels off. This trend is consistent with previous research suggesting 

Figure 48: Neuron β value is not significantly 
different between treatment groups. 

Figure 49: Astrocyte β value increases between 0 
and 750 uM treatment 
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that Mn treatment may cause increased mitochondrial fragmentation. The leveling 

from 750 to 1000 μM may indicate that the astrocyte mitochondria have hit a limit 

to their remodeling as metabolism begins to fail and cells undergo apoptosis. 

2.c.iii.7 Effect of Manganese on Monoculture NADH Fluorescence 

Lifetime 

NADH fluorescence lifetime images were 

taken of neurons with and without 500 

μM MnCl2 (Figure 50a-b). Phasor plots 

illustrate a shift to longer NADH 

lifetimes in the Mn-treated neurons 

(Figure 51). This shift is quantified in a 

statistically significant increase in bound 

fraction with Mn treatment (Figure 54a). 

Imagewise standard deviation of bound 

fraction shows a statistically significant 

decrease with Mn treatment (Figure 54b). 

Increasing bound fraction could be 

associated with increased oxidative stress, 

as bound fraction has been shown to 

Figure 51: Phasor plots of NADH lifetime 
data from untreated (a) and Mn-treated (b) 
neurons 

Figure 50: NADH fluorescence lifetime 
images of neurons with and without 500μM 
Mn (a-b) and astrocytes with and without 
1000μM Mn (c-d) 
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increase with hydrogen peroxide application in 

neural stem cells [83].  

 FLIM data was also collected on 

astrocytes with and without treatment with 1000 

μM MnCl2 (Figure 50c-d). Astrocytes show a 

shift to shorter lifetimes with Mn treatment 

(Figure 53). This shift is quantified in the 

statistically 

significant decrease 

in bound fraction 

between control and 

Mn-treated 

astrocytes (Figure 

52a). This result 

may indicate a shift 

towards glycolytic 

Figure 54: (a) Control vs. Mn-
treated neuron bound fraction (b) 
Control vs. Mn-treated neuron 
imagewise bound fraction 
standard deviation 

Figure 53: Phasor plots of NADH lifetime data from 
untreated (a) and Mn-treated (b) astrocytes 

Figure 52: (a) Control vs. Mn-treated astrocyte bound fraction 
(b) Control vs. Mn-treated astrocyte imagewise bound fraction 
standard deviation 
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metabolism as Mn impairs oxidative metabolism. Standard deviation of bound 

fraction is consistent between groups (Figure 52b)  

2.c.iii.8. Astrocyte and Neuron Co-Culture Systems 

 Astrocyte and neuron redox 

ratio distributions were next compared 

across multiple co-culture conditions in 

order to evaluate whether culturing 

cells together could modulate 

metabolism. In the first “sandwich” co-

culture setup, redox ratio histograms do 

not appear markedly different between 

culture conditions (Figure 56). This 

homogeneity is further confirmed by 

the consistency in W1/(W2+W3), 

W2/(W1+W3), and W3/(W1+W2) 

values between conditions (Figure 55). 

The lack of other statistically 

significant differences suggests that the 

sandwich co-culture condition does not 

meaningfully modify cell metabolism 

as measured by optical redox ratios. 

Figure 55: Relative redox component values in 
sandwich co-cultures 
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 The second co-culture condition involved transferring conditioned media 

between the cell types. When examining the redox histograms, differences 

between conditions appear relatively minor (Figure 58). The quantitative data 

shows no significant changes in (W1/(W2+W3)) (Figure 60a).  However there is a 

significant decreases in (W2/(W1+W3)) between the astrocyte-conditioned media 

group and both the fresh media and neuron-conditioned media groups for 

astrocytes (Figure 60b), perhaps because astrocyte-conditioning depletes the 

media of certain nutrients, resulting in altered metabolic activity for that group.  

The increase in (W2/(W1+W3)) between the astrocyte-conditioned media and 

fresh media for neurons and in (W3/(W1+W2)) between astrocyte-conditioned 

and fresh media in astrocytes (Figure 60b-c) are likely due to the age of the 

media, rather than an effect of the astrocyte-conditioning, since the neuron-

conditioned groups show similarly increased trends and are not significantly 

different than the astrocyte-conditioned media. 

Figure 56: Redox histograms for sandwich co-cultures 
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The final co-culture setup allowed cells to interact via transwell membranes. The 

redox distributions show little change between groups for astrocytes, and a slight 

rightward shift for neurons (Figure 57a-b). There is a significant decrease in 

(W2/(W1+W3)) for neurons cultured with astrocytes in transwells relative to the 

neuron monoculture control, as well as a trending increase in (W3/(W1+W2)) 

(Figure 59). This modulation could suggest that the presence of the astrocytes 

Figure 58: Redox ratio distributions for astrocytes (a) and neurons (b) in 
conditioned-media experiments 

Figure 57: Redox ratio distributions for astrocytes (a) and neurons (b) in 
transwell experiments 
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may have actually reduced neuron 

oxidative metabolism or caused them to 

exhibit shifts otherwise associated with 

stress. Additional experimentation 

would be needed to establish the 

reproducibility of this effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 59: Redox ratio components in 
media transfer experiments 

Figure 60:  Redox ratio components for media 
conditioning experiments. 
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2.c.iii.9. Effect of Manganese on Co-Culture Systems 

 We next assessed the effects of MnCl2 on sandwich co-culture conditions 

in order to determine whether astrocytes could protect neurons from MnCl2 

toxicity. We selected 500μM as the MnCl2 dose because it was a dose 

demonstrated to have low effect on astrocytes, but significant effect on neurons.  

 In redox histograms of control and Mn-treated sandwich co-cultures, we 

see that astrocytes show minimal modulation by either culture condition or MnCl2 

concentration (Figure 62). This result is consistent with our expectation that 

astrocytes are minimally affected by 500uM MnCl2. Manganese-treated neurons, 

on the other hand, seem to show a reduced rightward shift in both the co-culture 

control and sandwich co-culture condition, suggesting that the sandwich setup 

may reduce the effect of MnCl2 on the cells. However, the quantitative metrics are 

largely insignificant between culture types (Figure 64), except for between the 

Mn-treated neurons in sandwich co-cultures vs. in monocultures for 

(W2/(W1+W3)). However, there is no significant difference between the result in 

sandwich co-cultures and the co-culture control, so the difference obtained may 

be more attributable to the sandwich setup than to interactions between the two 

cell types. 
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 We also examined whether co-culturing neurons and astrocytes in 

transwells could reduce the impact of MnCl2 treatment on either cell type. As with 

the sandwich co-cultures, there appear to be minimal effects of the culture 

conditions on the redox histograms (Figure 61). Statistical comparisons of 

between culture types for a given cell type and dose level do not show any 

statistically significant differences between culture types within the Mn-treated 

groups  (Figure 63). This result suggests that transwell co-cultures also do not 

mitigate the impacts of MnCl2 poisoning on neurons.  

Figure 62:  Redox distributions for sandwich co-cultures treated with Mn 

Figure 61: Redox distributions for transwells treated with Mn 
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Figure 64: Redox components for sandwich co-
cultures treated with Mn Figure 63: Redox components for transwell co-

cultures treated with Mn. 
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2.C.IV. DISCUSSION  

These initial results establish the utility of TPEF imaging of endogenous 

fluorophores NADH and FAD for detecting metabolic differences in healthy 

neurons and astrocytes, as well as their differing responses to manganese toxicity. 

We demonstrated that pixelwise optical redox ratios (defined as FAD/(FAD + 

NADH)) in the two cell types fall into three Gaussian distributions, representing 

multiple metabolic states and potentially different populations of mitochondria.  

In healthy neurons and astrocytes, neurons had a significantly greater 

W2/(W1+W3) and W3/(W1+W2) than astrocytes. Astrocytes had a significantly 

higher relative weight W1/(W2+W3) than neurons. These quantitative metrics 

reflect that a greater proportion of neuronal pixels fall into higher-redox-ratio 

distributions than astrocytes, a difference typically associated with increased 

oxidative vs. glycolytic metabolism, as suggested by increased FAD vs. NADH 

fluorescence [7]. These results are consistent with numerous studies suggesting 

that neurons tend to utilize oxidative metabolism more exclusively than 

astrocytes, which also show robust glycolytic activity [8].  

Neurons also exhibit significantly higher mitochondrial clustering than 

astrocytes. Previous research has linked higher clustering to increased glycolysis 

through oxygen-deprivation studies, which would seem to contradict our redox 

results [82]. However, examination of the NADH intensity images, cloned 

images, and PSD curves for the two cell types suggests that the results may reflect 
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differences in mitochondrial density within the two cell types, which have 

dramatically different morphology, as opposed to mitochondrial networking 

alterations. Neuron mitochondria tend to be densely packed within a tiny soma, 

while astrocyte mitochondria may spread out within a widespread cytoplasm. 

Therefore, resolution limitations may prevent us from accurately discerning 

neuron mitochondrial networks within the packed soma, thus driving high 

clustering values relative to astrocytes, whose networks may be more clearly 

delineated in images. 

Preliminary NADH FLIM data from astrocytes and neurons show that 

astrocytes have a greater average NADH bound fraction than neurons, but that 

neurons have a greater average standard deviation of bound fraction values, with 

an apparent tail along the NADH trajectory corresponding to long fluorescence 

lifetimes. Bound NADH is typically viewed as evidence of oxidative activity, 

while free NADH is typically viewed as evidence of glycolytic activity [69]. 

While astrocytes’ higher average bound fraction could thus be interpreted as an 

indicator of more oxidative activity, neurons’ broader spread in bound fraction 

values and population of high bound-fraction pixels suggest robust oxidative 

activity in neurons as well. Additionally, differences in binding status could 

reflect different baseline mitochondrial states between the two cell types – for 

example, neurons may allow for more TCA-derived NADH buildup within the 
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mitochondria prior to oxidation than astrocytes, yielding a lower bound fraction in 

spite of mitochondrial activity.  

Both cell types exhibited morphological and redox changes in response to 

MnCl2 treatment. Neurons exhibited neurite loss and a significant decline in 

W2/(W1+W3) and increase in W3/(W1+W2) between the control and 500μM 

conditions. Neurons which began to show nuclear blebbing and axonal loss also 

lost their heterogenous mixture of all the three redox ratio components and were 

increasingly dominated by component 3. The increase in W3/(W1+W2) may be 

attributed to an increase in apoptosis or oxidative stress – both have been tied to 

high redox ratios in previous studies [60, 62, 64]. The presence of apoptosis in 

particular is suggested by axonal loss and morphological changes, as well as by 

the increase in caspase-3 levels detected in manganese-treated neuron cultures. 

The decrease in W2 could be interpreted as a decline in neurons’ predominant 

oxidative activity, as manganese poisoning is known to impair respiratory activity 

[39]. 

While astrocytes were not dramatically impacted by 500μM of 

manganese, 1000μM doses produced greater effects to morphology, redox ratio, 

and mitochondrial organization. These results are consistent with previous 

research suggesting that neurons are more vulnerable than astrocytes to 

manganese poisoning [39]. At 1000μM, astrocytes changed in texture and also 

saw a decline in both W1/(W2+W3) and W2/(W1+W3) as well as an increase in 
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W3/(W1+W2) relative to the untreated conditions. As with neurons, increases in 

W3 may be tied to either apoptosis or oxidative stress. However, caspase-3 levels 

were not shown to be significantly increased in astrocytes, possibly reflecting a 

slower apoptosis process (caspase-3 is a late apoptosis marker) or fewer cells 

undergoing apoptosis in resilient astrocyte cultures. That W1 and W2 remained 

relatively constant at doses toxic to neurons and then declined together at high 

doses alongside increasing W3 suggests that neither glycolytic or oxidative 

processes are selectively impaired by the toxicity, consistent with astrocytes’ 

ability to maintain and modulate metabolic activity even while experiencing some 

toxicity. 

Astrocytes also exhibited increases in mitochondrial clustering between 0 

and 750uM doses, consistent with previously observed mitochondrial fission in 

manganese-poisoned brain cancer cultures [55, 56]. Neurons showed similar 

clustering levels across Mn doses, which, given that they were experiencing 

significant redox changes, may reflect the limits of our image resolution to reflect 

networking changes between tightly packed mitochondria within the soma. 

Preliminary FLIM data also revealed that neurons and astrocytes have 

differing responses to Mn treatment. Neurons saw an increase in bound fraction 

when treated with manganese, which corresponded to toxic alterations in 

morphology. This increase may have been due to oxidative stress, as previous 

research has shown an increase in NADH fluorescence lifetime when cells are 
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treated with hydrogen peroxide [83]. Astrocytes saw a decrease in bound fraction 

when treated with manganese, typically interpreted as a shift towards more 

glycolytic metabolism [70], providing  evidence that astrocytes modulate 

metabolism in response to Mn toxicity. 

The various co-culture conditions we employed were unsuccessful in 

modulating baseline cell metabolism, as quantified via changes in relative weights 

of redox ratio components. Nearly all of the cases with significant differences in 

W1/(W2+W3), W2/(W1+W3), or W3/(W1+W2) reflected changes between co-

cultures and monoculture conditions, rather than differences between co-cultures 

and their appropriate co-culture controls. These shifts may therefore be attributed 

to alterations caused by the various co-culture setups, for example, a lack of 

nutrient circulation in the sandwich co-culture setup, or the degradation of media 

in the conditioned-media experiments, rather than changes caused by cell 

interactions. While there was a significant decrease in W2/(W1+W3) between 

astrocytes treated with astrocyte-conditioned and neuron-conditioned media, it is 

not clear whether this change had more to do with a depletion of nutrients in the 

astrocyte-conditioned media relative to neuron-conditioned media (astrocytes 

require media changes more often than neurons), than to do with factors secreted 

by neurons. Unfortunately it would be difficult to develop a controlled experiment 

to test this due to the confounding factors of media age, media 

consumption/processing by cells, and factor secretion by cells. While the 
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transwell condition showed some potential modulation in neuron metabolism 

relative to the control, the result trended in the direction of the apoptotic / stressed 

cells in the Mn-treated studies (e.g., decreasing W2/(W1+W3) and increasing 

W3/(W1+W2)). We would need to determine whether this result was 

reproducible, and if so, whether the condition was actually harming, rather than 

enhancing, cell health. 

A lack of metabolic modulations in co-cultures vs. monocultures may 

have been a result of the amount of time the cells were cultured together, the lack 

of physical contact or proximity between cell types, or a low level of neuronal 

firing activity in the cultures. In both the sandwich co-cultures and media transfer 

conditions, cells were exposed to one another’s soluble factors released over 2 

days or less, which may have been insufficient to allow enough soluble factor 

release to cause metabolic alterations. Unfortunately, increasing the timeframe for 

soluble factor release in these two culture conditions is limited by the need for 

fresh media in both conditions every 2-3 days. In the transwell condition, cells 

were cultured together for >5 days, however the timeframe only included 1-2 days 

in which neurons had formed mature neurite networks. It is possible that culturing 

neurons and astrocytes together for additional time after neurons had formed 

mature networks may alter metabolic exchange. Physical contact or close 

proximity between the cell types may also be crucial to metabolic coupling; 

excess glutamate in neural synapses is thought to trigger astrocytic glycolysis and 
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glutamate recycling [8], so the physical separation between cell types in our 

experiments may have prevented physiologic interactions. Culturing astrocytes 

and neurons in physical contact with one other would pose a challenge for 

separating cell types’ respective autofluorescence signals, however co-staining 

with a cell-specific marker could enable some segmentation [72]. Finally, many 

studies of the metabolic coupling between astrocytes and neurons suggest that 

neuronal firing activity is needed to create metabolic demand that triggers 

glycolytic astrocyte metabolism[84]. Though previous research has shown 

spontaneous firing of neurons in primary cultures of similar age and preparation 

to ours [85, 86], we did not study the signaling activity in our own cultures. The 

level of firing activity may not have been high enough to induce metabolic 

changes representing coupling. 

The sandwich and transwell co-culture conditions also did not show 

astrocyte protection of neurons during manganese poisoning, as evidenced by 

insignificant differences between W1/(W2+W3), W2/(W1+W3), and 

W3/(W1+W2) between the different culture conditions for a given cell type and 

dose level. From a technical standpoint, this may have been a result of MnCl2 

doses used, time of co-culture, or time of imaging. It is conceivable that astrocytes 

could have provided protection to neurons against lower doses of manganese or 

may have provided early protection to neurons that was not effective at the 24-

hour timepoint. However, these insignificant results may also be reasonably 
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representative of the relative roles astrocytes and neurons play in scenarios of 

manganese toxicity. While astrocytes do provide antioxidants to neurons under 

healthy conditions, these are known to be reduced in toxic conditions [53]. 

Though we selected a manganese dose level (500uM) that appeared to strongly 

impact neurons and minimally impact astrocytes based on dosing studies in 

monocultures, astrocytes may still have been limited in their ability to offer 

sufficient energy substrates, antioxidants, and glutamate recycling to fully protect 

neurons [50, 53, 54, 87]. Future studies to elucidate mechanisms of toxicity 

protection could alternatively examine astrocyte and neuron responses to 

manganese given with or without known antioxidants [87]. 

In summary, TPEF optical redox imaging of NADH and FAD in astrocyte 

and neuron monocultures effectively showed metabolic differences between the 

two cell types’ healthy redox status that were consistent with prior research 

suggesting that neurons rely more heavily on oxidative metabolism than 

astrocytes, which also produce energy via glycolysis. Astrocyte and neuron redox 

responses to manganese poisoning were consistent with research suggesting that 

neurons are more vulnerable to toxicity, as well as established optical redox ratio 

changes reflecting oxidative stress and apoptosis. Mitochondrial organization 

analysis showed distinct clustering patterns between the cell types, as well as 

differing responses to manganese poisoning. FLIM results also revealed cells’ 

differing responses to toxicity. These results established TPEF of NADH and 
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FAD fluorescence as useful tool for studying mitochondrial activity and 

organization in brain cells. While results from co-cultures were largely 

insignificant, these primarily require further optimization of the cell culture 

conditions, as opposed to imaging methods. In the future TPEF could be used to 

study metabolic changes during neuronal activation and for a range of toxicity / 

protection studies. 
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2.D. CHARACTERIZING NORMAL VS. DISEASED CELL METABOLISM IN 
ADULT HUMAN NEURAL PROGENITOR CELLS (AHNPS) DERIVED FROM 
HEALTHY AND PARKINSON’S PATIENTS 

2.D.I. INTRODUCTION 

 Having characterized primary astrocyte and neuron redox and 

mitochondrial organization responses to manganese poisoning via TPEF of 

NADH and FAD, we wished to compare the results to a PD model with the 

hypothesis that NADH and FAD autofluorescence changes due to manganese 

toxicity would resemble metabolic changes resulting in neurodegeneration. We 

therefore imaged adult human neural progenitor (AHNPs) cells derived from 

brains of patients with and without PD. AHNPs are astrocytic stem cells that have 

been derived from human brain tissue samples and expanded ex vivo [88]. 

Control AHNPs, derived from patients undergoing surgery to treat forms of 

epilepsy, typically can be differentiated into multiple brain cell types and are 

being explored for applications in neural regeneration [88]. AHNPs derived post-

mortem from patients with PD have more limited differentiation potential but are 

also expandable and useful for studies of PD [89]. In this study, we compared 

mitochondrial redox ratio and organization between control and PD-derived 

AHNPs and identified similar trends to those found in Mn-treated primary cells. 

2.D.II. MATERIALS AND METHODS  

2.d.ii.1. Cell Culture 
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 Control and PD-derived hippocampal AHNPs were provided by 

collaborators in the Steindler Laboratory. These cells had been expanded in N5 

medium (DMEM, N2, 5% fetal bovine serum, bovine pituitary extract) 

supplemented with endothelial growth factor and basic fibroblast growth factor, 

and were plated on glass-bottomed petri dishes for imaging. 

2.d.ii.2. Imaging 

Similar to studies with primary cells, images were taken with a Leica SP2 

confocal microscope fitted with a Ti:Sapphire laser. Laser light was focused to the 

sample using a 40x water-immersion objective (NA 1.1), and neutral density 

filters were used to achieve a power of 20-25 mW at the stage. Samples were 

excited with light at 755 and 860nm and fluorescence images were formed using 

non-descanned detectors filtered to collect light at 460 +/- 20nm and 525 +/- 

25nm. Images were 512x512 pixels, with the zoom feature of the built-in Leica 

Control software employed to achieve a 187x187 micron field of view. Images 

were formed based on an average of 8 scans. 5-8 non-overlapping images were 

taken per petri dish or well, and 2-3 dishes or wells were imaged per cell type, for 

a total of ~15 images per cell type. 

2.d.ii.3. Data Analysis 

For redox analysis, images were first processed using the same approach 

described for primary cultures. Redox histograms and continuous redox maps 

were also formed using the same approach. To determine the basis redox ratio 
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components for the redox histograms, we used the gmdistribution.fit function 

within Matlab to fit a 3-component Gaussian mixed model to the aggregated 

pixels from the images of the control AHNPs. The fitting was performed 10 

times, and the mean and standard deviations of the three components were 

averaged across the 10 iterations. We then determined the image-by-image 

relative weights of the redox basis components as described for primary cultures, 

using the basis components from the control AHNPs. Redox ratio tri-colored 

component maps were constructed using cutoffs based on the midpoint between 

the Gaussian component means derived from the aggregate control AHNP redox 

ratio distribution. Mitochondrial organization analysis followed the approach 

previously described for primary cells [81, 82].  

2.d.ii.4.Statistics 

Statistical software (JMP) was used to evaluate differences in means of 

various image metrics (e.g., redox ratio component weight ratios, β) between 

groups (i.e., control vs. PD-derived AHNPs). First, image-wise values were split 

by group and experiment to identify and exclude outliers. Outliers were identified 

as values falling greater than 1.5 times the interquartile range above the 75th 

quantile of the data, or 1.5 times the interquartile range below the 25th quantile of 

the data. When the final data set was established, a mixed model was specified, 

including cell type as a fixed effect and petri dish as a random effect. The model 

was estimated using a restricted maximum likelihood (REML) method, and an F-
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test was used to assess the significance of the fixed effect. If the effect was 

significant, a post-hoc student’s t-test was applied to determine the significance of 

difference between groups. In cases where the model did not converge due to little 

variation in a random effect (e.g., petri dish), we determined that the effect could 

reasonably be excluded from the model and we estimated the revised model as 

described above. Error bars indicate standard error. * indicates p <0.05, ** 

indicates p<0.01, and *** indicates p<0.001. 

2.D.III. RESULTS 

Images of control and PD-derived ANHPs show distinct morphology and redox 

Figure 65: Images of control and PD-derived AHNPs (a-b) Transmittance images (c-d) Redox maps 
(e-f) False-colored redox components (g-h) Redox histograms with fits 
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patterns. Control AHNPs resemble healthy primary astrocytes and generally grew 

densely (Figure 65a). PD-derived AHNPs grew sparsely and often had a stressed 

appearance, with more limited spread and cytoplasmic irregularities (Figure 65b). 

Redox ratio maps show high redox ratio regions in PD-derived AHNPs, which is 

confirmed by the dominance of component 3 in regions of the PD-derived 

AHNPs, relative to the more heterogeneous control cells (Figure 65c-f). Redox 

histograms further indicate a rightward shift in redox ratios of PD-derived cells 

relative to the control, in both individual images as well as in the aggregate 

(Figure 65g-h,Figure 66). The control AHNP redox distribution is unmixed into 

three Gaussian sub-distributions, which can be interpreted as pixels in separate 
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redox states (Figure 67). The 

control AHNPs have the greatest 

weight of component 1, similar 

to results observed in primary 

cultured astrocytes (Figure 69). 

Parkinson’s-derived AHNPs 

have the greatest weight of 

component 3, consistent with 

results from manganese-

poisoned neurons and astrocytes 

(Figure 69). These differences 

between groups are reflected in 

the significantly higher value of W1/(W2+W3) in the control group relative to the 

PD-derived group, as well as the 

significantly higher value of W3/(W1+W2) 

in the PD-derived group relative to the 

control group (Figure 68). Mitochondrial 

clustering trended higher in PD-derived 

cells than in control cells, however the 

difference was not statistically significant 

(Figure 70-Figure 71). 

Figure 67: Gaussian redox components un-mixed 
from the control AHNP redox distribution.  
 

 

Figure 66:  Redox ratio distributions for 
control and PD-derived AHNPs 
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2.D.IV. DISCUSSION 
 The results obtained from imaging control and PD-derived AHNPs were 

consistent with those obtained from images of control and manganese-treated 

primary neurons and astrocytes. When compared with control groups, both PD-

derived and Mn-treated cells had an increase in high redox-ratio component 3 

relative to the other redox components, as quantified by a significant increase  in 

W3/(W1+W2). Increased weight on this high redox-ratio component may be tied 

to increased apoptosis or oxidative stress in the PD-derived cells. Mitochondrial 

clustering also trended higher in the PD-

derived group than in the control group – 

the difference was not statistically 

significant, but could indicate imbalanced 

fission/fusion dynamics in these cells. In 

sum, the results obtained in AHNPs were 

Figure 69: Component weights for AHNPs 

Figure 68: Redox components for AHNPs 
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similar to the results obtained 

in the control and Mn-treated 

primary rat brain cells, and 

were also consistent with 

previous research tying 

increased optical redox ratios to 

oxidative stress and apoptosis. 

This experiment establishes a 

connection between metabolic 

changes in manganese toxicity and neurodegeneration. It also demonstrates that 

our imaging and analysis methods are not only relevant for dose-optimized 

toxicity studies, but also in detecting metabolic differences between healthy and 

diseased human-derived cells. 

 

 

 
 
 
 

Figure 70: Clustering results for AHNPs 
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Figure 71 Control vs. PD-derived AHNP NADH intensity images (a-b) image masks (c-d) cloned 
images (e-f) and PSD curves (g-h) 
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3. AUTOMATED IMAGE ANALYSIS FOR NEURITE 
DENSITY QUANTIFICATION IN A 3D BIO-ENGINEERED 
BRAIN MODEL 
3.A. BACKGROUND AND INTRODUCTION 

In tissue, the extracellular matrix (ECM) encompasses all acellular 

components and provides structural support in addition to facilitating cell 

development, proliferation, differentiation, and communication [90]. The ECM 

typically contains fibrous structural proteins such as collagen and fibronectin, in 

addition to proteoglycans and glycosaminoglycans (GAGs) involved in cell 

signaling and adhesion [91]. Brain ECM tissue is unique in that it comprises a 

relatively low percentage of the tissue volume (20%), and has a very high ratio of 

GAGs relative to collagen [92, 93]. The brain ECM boasts a specialized set of 

proteins and biochemical factors contained within microdomains to supply the 

correct factors in the correct locations to support the various activities of brain 

cells [94]. One example is the enrichment of heparin and chondroitin sulfate 

proteoglycans in the neurogenic niche, which are thought to be important to stem 

cell proliferation and differentiation [94]. Another example is secretion of 

matricellular proteins by astrocytes, which supports neuronal networking by 

promoting synapse formation [95].  

Three-dimensional bioengineered brain models are increasingly becoming 

an important tool for studying neuronal networking and physiology [96]. 

Employing a realistic ECM in these models is essential to promoting cell growth 
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and realistic cell-ECM relationships [96]. A recent study from the Kaplan 

Laboratory evaluated the effects of three types of ECM (adult, fetal, and 

collagen), as well as the effects of matricellular proteins on neuronal network 

formation in 3D engineered cortical tissue [97]. Multiple parameters were used to 

evaluate the effects of each ECM condition, including morphology, cell viability, 

and functional activity [97]. 

In this study, one metric of neuronal network health was morphological 

neurite density as measured using TPEF imaging [97]. TPEF proved to be a useful 

approach for quantifying structure of neuronal networks in 3D tissue specimens 

due to its high resolution, signal-to-noise ratio, and optical sectioning capabilities 

[15]. We developed an automated image analysis approach to quantify neuronal 

network density in order to statistically test differences between the ECM 

conditions. The approach successfully showed improvements in network density 

in adult and fetal ECM conditions, as well as conditions with added matricellular 

proteins, relative to the collagen control. 

3.B. MATERIALS AND METHODS 

3.B.I. DATA COLLECTION 

 Images of 3D bio-engineered brain models using multiple ECM conditions 

(collagen, adult ECM, fetal ECM, +/- matricellular proteins) were provided by 

collaborator Disha Sood from the Kaplan Laboratory. Details of cell culture can 
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be found in the published study [97]. Samples were formalin-fixed and stained 

with a primary mouse monoclonal antibody for beta-III-tubulin, a neuronal 

marker, and a corresponding anti-mouse Alexa 488 fluorescent secondary 

antibody. Sood acquired images of the samples using an SP2 Leica confocal 

microscope fitted with a Ti:Sapphire laser. Light was focused to the sample using 

a 20x objective (0.7 NA air). Samples were excited at 760nm and fluorescence 

emission was collected via a non-descanned detector centered at 525nm +/- 25nm. 

1024x1024 pixel images (corresponding to a 750x750micron field of view) were 

acquired in z-stacks of 150-200 1micron steps to capture the neurite networks. 

One z-stack was obtained for each of n=4-5 cultures per ECM condition. 

3.B.II. IMAGE ANALYSIS APPROACH 

 Images were processed in several steps to smooth neurites, remove cell 

bodies, identify the neurite area and appropriate background area, and obtain a 

final neurite density value. First, image contrast was enhanced. Next, Gaussian 

bandpass filtering was applied to smooth the features of the images. An intensity-

based adaptive thresholding approach (Otsu method) was used to generate an 

initial cell mask, which was then multiplied by the original image to remove 

background. The contrast of the resulting image was enhanced again, followed by 

sequential bandpass filtering. Tophat filtering was employed to further separate 

sharp peaks in the image, and the image was binarized based on a global intensity 

threshold. Small objects less than 50 pixels in size were removed from the image, 
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and morphological operations were performed to bridge disconnected pixels and 

to smooth the edges of the mask by including pixels with a majority of on pixels 

in their 9x9 nearest neighborhood. This binarized image served as the neurite 

mask for calculating total neurite area. In order to determine neurite density, we 

identified an appropriate background region by excluding areas where few / no 

neurite extensions were observed. To identify this region, we dilated the final 

neurite mask by successively increasing radii (25, 50, 100, 150, or 200 pixels) 

until there were 5 or fewer connected components in the image. This dilated mask 

represented the background area mask.  Neurite density was obtained by dividing 

the number of positive pixels in the neurite area mask by the number of pixels in 

the total background area mask. Percent neurite density for a given z-stack was 

calculated as the average of the percent neurite density across the images 

comprising the z-stack.  

3.B.III. STATISTICS 

Statistical analysis was performed using JMP. Group mean neurite density 

values were compared using a one-way analysis of variance followed by a post-

hoc Dunnett Test using “collagen without matricellular proteins” as the control. 

Error bars indicate standard error. * indicates p <0.05, ** indicates p<0.01, and 

*** indicates p<0.001. 
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3.C. RESULTS 

 Z-stacks of neurite networks in stained 3D bioengineered cortical models 

were obtained using two-photon fluorescence microscopy. We used an automated 

image analysis approach on each image within each z-stack to quantify the stack’s 

average percent neurite density. The approach was able to incorporate results 

from individual images in order to provide detail not available from maximum 

Figure 72: Representative images and masks from various ECM conditions (a-c) 
Maximum projection images of z-stacks (d-f) Representative raw images (g-i) 
Neurite masks (j-l) Background area masks  
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projections of the stacks (Figure 72a-f). In determining average neurite density, 

the analysis both identified the neurite regions (Figure 72g-i) as well as relevant 

background regions, excluding background areas where neurite growth was 

minimal (Figure 72j-l).  

Statistical comparisons of percent neurite density between different ECM 

conditions (collagen, fetal ECM, adult ECM, with or without matricellular 

proteins) showed that mean neurite density in both of the fetal ECM conditions 

Figure 73: Comparison of neurite network density between ECM and 
matricellular protein conditions.  
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were statistically greater than the collagen control, as were the adult ECM and 

collagen conditions when supplemented with matricellular proteins (Figure 73).  

3.D. DISCUSSION 

The automated image analysis of two-photon z-stacks from 3D 

bioengineered cortical tissue successfully quantified visually apparent differences 

in the network density between ECM conditions (Figure 72a-f). Fetal ECM had a 

higher network density relative to the collagen control, consistent with additional 

supporting data that fetal ECM promotes dense neurite network formation [97]. 

Cultures with matricellular proteins included in the ECM also showed increased 

network formation relative to the collagen control, which is consistent with their 

known role in synaptogenesis [95]. Automated image analysis is shown to be a 

useful tool for quantifying neurite networks in 3D cultures in order to study the 

effects of culture conditions, such as ECM, on network growth.  
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4. OPTICAL TWEEZERS FOR THE STUDY OF LOCAL 
BIOMECHANICS 
4.A. INTRODUCTION AND BACKGROUND 

 Extracellular matrix (ECM) mechanical properties are known to influence 

brain cell development and plasticity [98]. Research on healthy brain tissue 

mechanical properties has yielded a variety of results across length-scales, due to 

local tissue heterogeneity [99]. Use of microrheometry to assess local mechanical 

properties, particularly in the context of specific diseases or injuries (such as 

traumatic brain injury), has been more limited [99]. With the advent of functional, 

three-dimensional tissue-engineered brain models [96] measurements of local 

tissue mechanical properties could provide a valuable understanding of 

mechanical cues involved in both normal and pathological processes. 

To this end, an optical tweezing instrument has been developed for the 

study of local ECM biomechanics [3]. Optical tweezers (OT) consist of a laser 

beam tuned to trap microscale particles through a balance of gradient and 

scattering forces. Optical tweezers apply force to particles, and the associated 

displacement can be used to calculate substance viscoelastic moduli [100]. Our 

optical tweezers system simultaneously displaces and images a fluorescent 

polystyrene bead by raster-scanning the tweezer beam over the bead and 

collecting the bead’s fluorescence response. The apparent bead enlargement in the 

resulting scanning traction image reflects bead displacement [3]. Because the 
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traction imaging is fluorescence-based, the system is well-suited for integration 

with two-photon excited fluorescence imaging and second harmonic generation 

imaging, which would allow for future determination of relationships between 

cell metabolism, collagen organization, and ECM mechanical properties. 

Tissue stiffness is quantified in terms of elastic modulus, a ratio between 

stress and strain during elastic deformation [101]. In our system, bead 

displacement is calculated based on the enlargement of a polystyrene bead in a 

scanning traction image and is related to elastic modulus as follows: 

   

(1)  

G’ is elastic modulus, ktrap is the stiffness constant of the tweezer, σ is the 

Gaussian profile width of the laser beam, a is the bead radius, and xgel is the 

maximum displacement of the bead by the tweezing beam [3, 102]. Once ktrap has 

been calibrated, local G’ measurements can be taken in tissue samples by simply 

measuring xgel from scanning traction images of beads in a given tissue region. 

 Previous work on this system provided some technical validation of the 

approach, as well as results of initial microrheometry measurements in breast 

tissue models [3]. The technical validation successfully showed directional 

increase of bead displacement in collagen gels with increasing tweezer power, as 

well as a steeper increase in displacement with laser power for collagen gels with 

lower bulk elasticity than gels with higher bulk elasticity [3]. The tweezer 
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stiffness constant was calculated using equation (1) by measuring the bulk 

stiffness (G’) of one of the collagen gels with parallel plate rheometry, and 

displacement (xgel) from scanning traction images. This calibrated trap stiffness 

was then used to calculate G’ from direct measurements of bead displacement in 

engineered tissue [3]. 

 Proper calibration of OT is essential for taking accurate direct 

measurements of substance stiffness. The calibration approach in the initial 

studies has certain weaknesses. First of all, calculating stiffness constant from 

equation (1) assumes that bulk (G’) value of a given gel represents local 

microrheology. Microrheology of collagen gels is known to be very heterogenous 

[103-105]. Therefore, bulk moduli of collagen gels are not necessarily 

representative of local gel stiffness, and the calibrated trap constant may not be 

accurate. Second of all, the trap stiffness constant was previously calibrated based 

upon a single gel and measurement of G’. It remains to be demonstrated that the 

relationship in equation (1) holds true between multiple gels (i.e., whether the trap 

stiffness constant is consistent for a given laser power across gels). There is no 

study of the predictive power of the instrument, and based on this initial work, we 

cannot yet be confident of its precision or accuracy. 

To address these concerns, we set out to calibrate the system using 

polyacrylamide gels, which are known to have consistent rheology across length 

scales [106]. We assessed the power-dependence of bead displacement in 
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polyacrylamide. We also compared the average displacement of beads in gels of 

differing bulk stiffnesses (e.g., 6 vs. 23 pascals). We ultimately demonstrate the 

limited sensitivity and predictive power of the tweezing system in 

polyacrylamide.  

Calibration concerns aside, previous research in collagen gels also raised 

the question of whether or not the OT system samples primarily the elasticity of 

the collagen fiber network, or additionally reflects how easily the beads move 

through the gel pores and interstitial space [3]. This issue has been similarly 

raised by other researchers studying the complex and heterogenous local 

composition and rheology of collagen gels [103]. In order to shed light on this 

question, we conducted additional experiments in collagen gels. We first 

reproduced the power-dependence trends previously observed in collagen gels. 

We then added a high concentration of chemical cross-linker to bind beads to the 

collagen network, and no longer observed the same power-dependence trends. 

This result suggests that microrheometry measurements cannot be directly 

mapped to collagen network stiffness.   

4.B. MATERIALS AND METHODS 

4.B.I. INSTRUMENTATION 

The instrument used for these experiments consisted of a custom-built 

inverted microscope allowing for the capture of confocal reflectance, two-photon 
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excited fluorescence, and optical tweezer scanning traction images (Figure 74). 

This system used 800nm laser light from a Ti:sapphire laser; the beam was split 

and directed towards either a fast polygon scanner or a slow 2D galvanometric 

scanner. The beams were 

then combined with a 

70:30 beam-splitter and 

focused onto the sample 

with a 60x oil immersion 

objective (1.4 numerical 

aperture). 

Fast confocal 

reflectance and TPEF images were generated by the beamline directed to the fast-

scanning polygon mirror. Confocal reflectance signal was collected by an 

avalanche photodiode, and TPEF signal was collected by photomultiplier tubes 

set to collect emission at 460 and 525 nm. Frames were captured by a high-speed 

framegrabber and displayed to users in a Labview interface. The mirror scanned 

quickly enough to capture 1024x1024 pixel frames (~246x264 microns) at 10 

frames/s.  

The beamline incident on the slow-scanning galvanometric mirrors 

generated the signal for the optical tweezer scanning traction images. Laser power 

at the stage was adjusted between 1-7mW. The mirrors scanned the tweezing 

Figure 74:  Schematic of imaging and optical 
tweezing setup. Reproduced from [3, 4]. 
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beam over a small area of the sample (~7x7 microns) centered on a fluorescent, 2-

micron polystyrene bead. As the tweezing beam was scanned over the bead, we 

assumed that the bead came to an equilibrium position with respect to the beam. 

The fluorescence generated by the interaction between the bead and the beam at 

each position was collected by the PMT, directed into an amplifier, collected by a 

DAQ board, and used to construct an image in another custom Labview program. 

The scanning traction images were captured in approximately 50s/frame, with a 

~20ms dwelltime per pixel. 1000 samples were averaged at each pixel to give the 

final pixel value. We imaged ~10 beads per condition (i.e. gel preparation or laser 

power). 

4.B.II. PREPARATION OF CALIBRATION GELS 

We prepared 3 mg/ml collagen gels according to standard methods of 

raising the pH of a collagen solution with NaOH. Carboxyl-functionalized 2 

micron fluorescent beads were included in the solution at a concentration of 

0.01% w/v. Prior to the addition of NaOH, either a high (10 mg/ml) or low (0.3 

mg/ml) concentration of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride) (EDC) was added. The EDC high concentration is thought to be 

sufficient to cross-link carboxyl beads to substrates, in this case the collagen gel 

[107]. The low concentration served as a control. A parallel plate rheometer 

measured the bulk rheometry of the two gels to be approximately 15 pascals.  
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Polyacrylamide hydrogels were prepared with 3% acrylamide, 0.04-0.05% 

bis-acrylamide according to standard methods [108]. Polystyrene 2-micron 

fluorescent beads were included in the gels at a concentration of 0.01% w/v. 

Parallel plate rheometry measured the bulk rheometry of these gels to be between 

5 and 50 pascals, depending on the concentration of bis-acrylamide. The presence 

of polystyrene beads did not impact the bulk rheometry of the gels. 

4.B.III. IMAGE ANALYSIS 

We used an automated Matlab script to determine the equivalent diameter 

of the optically trapped beads (Figure 75). The script first normalized the intensity 

values in the image to account for differences in gain between different images. 

The script then determined the average and standard deviation of the image 

background intensity based upon a band of dark pixels around the perimeter of the 

image. The image was binarized, with the intensity threshold set to be two 

standard deviations above the average background intensity. Built-in Matlab 

functions were used to approximate the mask as an ellipsoid and return values of 

the bead major and minor axes. These axes were converted to micron-scale 

Figure 75: (a) Raw bead image (b) Normalized bead image (c) Bead mask (d) Mask with 
ellipsoid fit 
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lengths, and an equivalent diameter was calculated (diameter of a circle with the 

same area as the ellipse measured).  

4.B.IV. STATISTICS 

Statistical software (JMP) was used to evaluate differences in mean bead 

equivalent diameter between groups (i.e., gel preparations, fixed laser power). 

First, image-wise values were split by group to identify and exclude outliers (<2% 

of the data). Outliers were identified as values falling greater than 1.5 times the 

interquartile range above the 75th quantile of the data, or 1.5 times the 

interquartile range below the 25th quantile of the data. When the final data set was 

established, a linear regression model was specified and an F-test was used to 

assess the significance of the fixed effect (e.g., laser power). If the effect was 

significant, a post-hoc Tukey HSD test was applied to determine the significance 

of difference between groups. Error bars indicate standard deviation. * indicates p 

<0.05, ** indicates p<0.01, and *** indicates p<0.001. 

4.B.V. NOTES ON ALTERNATIVE METHODS: 

Previous research in collagen gels employed a 40x water immersion 

objective (1.1 NA) for trapping and imaging. However, when we used this 

objective in ~20 pascal polyacrylamide gels, we did not see any significant 

increase in apparent bead diameter for powers between approximately 1 and 7 

mW at the stage. We concluded that the trapping was not strong enough to 

displace beads in polyacrylamide and therefore explored two higher-NA options –
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a 60x oil immersion objective (1.4 NA) and a 63x water immersion objective (1.2 

NA). Relative to the 40x objective, the 60x and 63x objectives had much lower 

power throughput (62% of power through 40x vs. 28% through the 60x and 18% 

through the 63x), meaning that more power must be directed to the tweezing 

beam (vs. the fast-frame imaging beam) to achieve a given power at the stage. For 

example, to achieve 7mW power at the stage, ~120mW was directed through the 

tweezing beamline for the 40x, ~350mW for the 60x, and ~560mW for the 63x. 

Most (>80%) of this power was lost through the 70:30 beam-splitter and mirrors, 

however the objective used still impacted throughput significantly (error in power 

measurements were due to the use of different power meters at different scales). It 

is also worth noting that for the 63x objective, the poor throughput eventually 

limited data collection for high powers at the stage; when most of the laser power 

was directed to the tweezing beam (rather than the imaging beam), the user had 

no fast-imaging guidance for positioning the tweezing beam relative to the 

sample. 

We qualitatively compared the differences in optical trapping between the 

three objectives by using them to trap 2-micron beads suspended in water at 

power values of 1, 3, 5, and 7 mW at the microscope stage. In this comparison, 

the 60x objective showed, qualitatively, the most consistent trapping throughout 

the 1-7 mW power range. Because the 60x objective had the highest numerical 
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aperture, reasonable power throughput, and appeared to trap beads most readily in 

water, we employed it for the experiments described. 

Polyethylene oxide solutions were also initially prepared as potential 

calibration samples, given their consistent rheology across length-scales [109]. 

Solutions measured an elastic modulus of ~20 Pa for 6% w/v PEO. We 

deprioritized PEO-based approaches because PEO has a more significant viscous 

character (higher G’’) than PA for the same elastic modulus (G’) value, which 

would have complicated interpretation of results and cross-validation with other 

microrheometry approaches, such as atomic force microscopy. 

We attempted to prepare a 3 mg/ml collagen gel with 0.01% w/v non-

functionalized fluorescent polysytene beads and a high concentration of EDC as 

an additional control. However, multiple samples of this preparation failed to gel 

properly, dissolving upon addition of phosphate buffered saline – perhaps due to 

an interaction between the EDC and the bead solvent.   

The above described image analysis approach was consistent with 

previous experiments (Peng, 2013). However, a range of alternative approaches 

were explored and compared via a study of carboxyl-functionalized beads fixed to 

a collagen-coated plate with EDC. 10 scanning traction images were taken of the 

same EDC-linked bead. The images were analyzed using five different 

approaches and the standard deviations of the calculated diameters were evaluated 

for consistency. The beads were first sized manually in ImageJ, which gave an 
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average bead diameter of 2.3 microns and a standard deviation of 0.14 microns. 

Next, they were analyzed with a standard-deviation-based thresholding approach 

(as described above, though without intensity normalization), which gave an 

average bead diameter of 3.9 microns and a standard deviation of 0.9 microns. 

They were also evaluated using the Otsu method, yielding an average bead 

diameter of 1.9 microns and a standard deviation of 0.057 microns. In another 

approach, a Gaussian curve was fit to the row in the image that contained the 

maximum intensity. The full-width at half maximum of the Gaussian curve was 

used to characterize the diameter of the image. This approach gave 1.5 micron 

FWHM in both the x- and y-directions, with standard deviations of 0.015 and 

0.020 in the x- and y-directions, respectively. Finally, bead size was characterized 

by calculating the intensity-weighted standard deviation of bead position in the 

row and column containing the brightest pixel. This approach yielded a 1.4 

micron average diameter and 1.2 micron standard deviation. 

While the Otsu method gave a low standard deviation between samples, it 

generally gave a bead diameter value slightly lower than the known size of the 

bead. This result suggested that signal around the edges of the bead was truncated 

by the binarization, which is disadvantageous, given that we expected to detect 

small changes in bead position in the changes in signal towards these edges. The 

Gaussian-curve fitting approach was considered unsuitable because the 

fluorescent response function of the bead to the tweezing beam was not actually 
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Gaussian. Finally, calculating the standard deviation of intensity-weighted 

position would make sense in the case where the bead fluorescence was greatest 

at the center of the bead, and consistently decreasing with position on either side 

of the bead. However, the bead images frequently displayed dark spots possibly 

due to photobleaching, sectioning, and other artifacts. These artifacts impacted the 

intensity-weighted position analysis, giving high variation and unrepresentative 

results. For all of these reasons, we chose to retain the original thresholding 

approach because it captured the intensity above the background near the edges of 

the bead without being impacted by the presence of dark spots. Ideally, future 

work would computationally model the expected fluorescence response of the 

bead to the incident laser beam at each pixel, and characterize bead size based on 

fitting images to this 

model. However, such an 

analysis would still need 

to account for bead 

photobleaching. 

4.C. RESULTS 

4.C.I. MEASUREMENTS 
IN POLYACRYLAMIDE 
GELS 

Collagen gels are 

known to have a high 

Figure 76 The apparent size of polystyrene beads in a 23- 
and 6-pascal polyacrylamide gel 
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degree of heterogeneity in local rheology [103-105]. Because their local values 

are not reliably consistent with bulk rheometry values, collagen gels are not 

suitable for system calibration. In effort to clarify previous results in collagen and 

obtain values with which to calibrate the optical tweezers measurements, we 

performed power-dependence studies in polyacrylamide gels, which are known to 

have consistent rheometry across length-scales [106]. Beads embedded in a 23 

pascal polyacrylamide gel showed a significant increase in apparent bead 

diameter between 1 and 7 mW power and between 5 and 7 mW (Figure 76). 

Beads embedded in a softer, 6 pascal polyacrylamide gel showed a qualitatively 

similar increase in apparent bead diameter with power, however, differences 

between levels were not statistically significant (Figure 76). It appears that some 

increases in power do increase bead displacement in polyacrylamide gels, as with 

prior results of unbound beads in collagen gels. However, the lack of consistently 

statistically significant differences between laser powers in soft polyacrylamide 

gels suggests that a greater increase in power is required to see a significant 

displacement than in polyacrylamide than in collagen gels with similar bulk 

moduli. 

To determine whether or not bead displacements in polyacrylamide could 

reflect differences between two gel stiffnesses within the 1-7 mW power range, 

we directly compared the results from the 6 and 23 pascal gels. There was no 

significant difference between the measured bead diameters for the two gels, 
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except at 5 mW (Figure 77). This result suggests that bead displacements in this 

OT system may not be sufficiently sensitive to predict differences in gel stiffness 

on this scale.  

 

4.C.II. 

MEASUREMENTS IN 

COLLAGEN GELS 

 In addition to 

collecting calibration 

data in polyacrylamide 

gels, we also sought to 

confirm previous data 

in collagen gels, and 

assess whether or not measurements were probing the elasticity of the collagen 

network, or simply the space between fibers. In order to test this, we first 

examined the power-dependence of apparent bead diameter in collagen gels with 

a low concentration (0.3 mg/ml) of EDC chemical crosslinker. Next, we added a 

high concentration of EDC (10 mg/ml) to examine how cross-linking beads to the 

collagen network would impact the apparent diameter relative to the low-EDC 

condition. When a 15 pascal collagen gel was prepared with carboxyl-

Figure 77: Comparison of apparent bead diameters in 
polyacrylamide gel  
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functionalized beads and a low concentration of EDC, we observed significant 

differences in apparent bead diameter between optical tweezer power levels of 1 

mW and 5 mW,  and 1 and 7 mW (: ). This result was consistent with previous 

results suggesting beads are displaced more significantly within collagen gels as 

optical tweezer power is increased [3]. However, the question remained of 

whether the restoring force of the gel on the optical tweezers was truly due to the 

elasticity of the collagen network, or a combined result of the elastic collagen 

network, and beads sliding through interstitial fluid. When a high concentration of 

EDC was added to crosslink the beads to the collagen gel [107], the clear power 

trend disappeared. There was no statistically significant difference between the 

average diameter measured at 1 mW and those measured at 3, 5, or 7 mW (Figure 

79). Assuming that low 

concentrations of EDC 

are insufficient to bind 

beads to collagen, and 

high concentrations of 

EDC are sufficient to 

bind collagen, these 

results suggest that this 

optical tweezing 

Figure 78: The apparent size of carboxyl-functionalized 
beads in a 15 pa collagen gel prepared with a low 
concentration (0.3mg/ml) of EDC 
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system can displace beads that are unbound to the surrounding collagen network, 

but cannot displace beads bound to the surrounding collagen network within this 

power range. The consistent bulk elastic modulus (15 pascals) between the two 

gels suggests that increasing EDC concentration does not alter bulk collagen gel 

stiffness.  

 

4.D. 

DISCUSSION 

 The results of these experiments present several questions regarding the 

project’s technical feasibility using current approaches. Reliable 

determination/calibration of the OT trap stiffness constant is essential to obtain 

accurate microrheometry measurements with the system. The existing calibration 

approach, which relies on relationships between bead displacement and bulk G’ 

Figure 79: The apparent size of carboxyl-functionalized 
beads in a 15 pa collagen gel prepared with a high 
concentration (10mg/ml) of EDC  
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values, has faced challenges. First of all, beads embedded in polyacrylamide do 

not consistently show significant displacement increases (as indicated by apparent 

bead diameter) at the same power levels required to displace beads embedded in 

collagen gels of comparable bulk stiffness. Without sensitive data from a gel that 

has consistent rheology across length scales, this calibration approach will not be 

feasible. Perhaps more importantly, bead displacement does not appear 

consistently different/distinguishable between gels of different elastic moduli (6 

pascals vs. 23 pascals). Calibrating with each of these gels would therefore yield 

different trap stiffnesses for a given power level; even if a single value were 

determined, it is doubtful whether resulting measurements of G’ would be 

particularly sensitive on the order of pascals (or even tens of pascals). In all, this 

calibration (and measurement) approach may not be sensitive enough for the 

types of measurements we hope to take with the system. 

 There are various possibilities for addressing these technical challenges. 

To increase trap strength and therefore bead displacement in polyacrylamide, we 

could slightly increase the size of the microsphere probes. We could also increase 

the laser power, though power will ultimately be limited by photobleaching (an 

effect we already witness at 7mW) and cell viability in engineered tissue systems. 

We could also use a calibration approach that does not rely on comparisons with 

bulk measurements, for example, determining tweezer stiffness with an oscillating 

trap in water [104, 105]. However, even if the system is properly calibrated, there 



 

 

  119 

 

still remains the question of the reliability and sensitivity of measurements, if 

there is no significant difference in bead diameter at 6 vs. 23 pascals. Improving 

this sensitivity may require upgrading to a more sensitive position detection 

system, similar to those used by other researchers (e.g., quadrant photodiode or 

videocamera) [103-105]. Finally, data analysis approaches could be improved by 

modeling the bead’s expected fluorescence response when interacting with the 

tweezing beam and characterizing bead displacement based upon image fits to 

this model. However, such a model would have to account for photobleaching 

artifacts in order to be useful. 

 Even if calibration were possible, there also remain questions regarding 

the broader purpose and significance of the project. First of all, it is unclear that 

the dynamic range of the instrument could measure physiologically relevant 

stiffness values. Some literature values have suggested that brain ECM may be as 

stiff as ~1000 pascals [110], and the 3D-engineered brain cultures in the Kaplan 

Laboratory utilize a 100-1000 pascal collagen gel. If our system has low 

sensitivity in the <25 pascal range, it may not give meaningful measurements in 

the range of hundreds (or thousands) of pascals. 

 Even more broadly, collagen gels are a very heterogenous medium, and 

optical tweezer microrheometry may be difficult to interpret. While it would be 

desirable to sample primarily the elasticity of the collagen fibril network 

surrounding the gel, individual fibrils are known to have elastic moduli on the 
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order of megapascals [111, 112]. Our results are consistent with a very stiff 

collagen network – beads bound to collagen fibers with a high concentration of 

EDC cannot be displaced by our optical tweezing system in the power range 

tested. Therefore, it is unlikely that microrheology measurements (which are 

typically on the order of tens of pascals) of unbound beads are sampling collagen 

network stiffness [103-105]. Additionally, Shayegan and Forde note that collagen 

gel pore sizes are much larger than the probe beads used [113]. They therefore 

conclude that microrheometry measurements of collagen reflect a combination of 

collagen fibril stiffness, ease of bead migration through gel pores, and solvent 

viscosity [103]. Whether or not these measurements are valid or valuable remains 

an object of debate. 

 All in all, the current experimental approaches have been unsuccessful in 

providing data for sensitive calibration of the OT system. The experiments have 

also revealed that OT bead displacement (according to scanning traction images) 

is not sensitive to increases in gel stiffness on the order of 10-20 pascals. 

Additionally, current literature questions the usefulness of microrheometry in 

collagen gels. Careful consideration of these challenges is needed to determine the 

best path forward with development of this microrheometry instrument. 
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5. THESIS CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

 The studies described in this thesis show the broad potential for the 

application of TPEF to a range of questions in neuroscience and tissue 

engineering. Each project yielded key conclusions, and also laid the groundwork 

for future experiments. 

 The metabolic imaging studies offered several major conclusions. By 

analyzing distributions of astrocyte and neuron optical redox ratios, we showed 

that neuronal distributions tended to have greater weight on high redox ratios than 

astrocyte distributions, indicating more exclusive reliance on oxidative 

phosphorylation for energy production. This result was consistent with previous 

research characterizing astrocyte and neuron metabolic profiles as more glycolytic 

and more oxidative, respectively [8]. We also showed that astrocyte and neuron 

redox ratio distributions have increasing weight on very high redox-ratio 

components when treated with manganese, a neurotoxin yielding similar clinical 

effects to PD. These results were consistent with higher weight on high redox 

ratio components in PD-derived AHNPs, drawing a link between 

autofluorescence changes in PD and manganese poisoning. While previous study 

of optical redox ratios in neurodegeneration has been limited, increased redox 

ratios have been shown to be related to apoptosis and oxidative stress, both 
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features of neurodegeneration, in other cell types and disease models [60-62, 64]. 

Though we imaged cells in a number of co-culture conditions, we did not collect 

any conclusive evidence that co-culturing cells altered optical redox ratio or 

changed the impacts of manganese on cells. However, these experiments in sum 

demonstrate the utility of TPEF in capturing metabolic information about brain 

cells via NADH and FAD autofluorescence that is consistent with previous 

neuroscience research. 

 These initial metabolic imaging studies lay the groundwork for addressing 

a number of future neuroscience-related research questions using TPEF. One 

potential future research direction would involve joining the broader research 

conversation regarding autofluorescence in neuronal firing [73]. Previous studies 

have highlighted the difficulty of isolating sources of autofluorescence signals in 

brain slices [73]. Our high-resolution imaging approach in 2D cultures may be 

uniquely suited to characterize this signal, either cellularly or subcellularly, in 

conjunction with chemical stimulation and / or patch-clamping. In addition to 

localizing the signal or attributing it to a particular organelle or cell type, redox 

ratio distributions could offer insight into metabolic changes reflected by the 

autofluorescence. Additionally, incorporating electrical stimulation into the 

metabolic imaging could allow for clearer detection and characterization of cell-

cell metabolic coupling in mixed cultures. 
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 The neurite analysis approach described in the thesis highlights TPEF’s 

ability to provide quantitative structural information in stained 3D bioengineered 

cortical tissue. We successfully quantified neurite network density through an 

automated image processing algorithm which showed significant increases in 

neuronal network density when fetal ECM, adult ECM, or matricellular proteins 

were incorporated in the 3D brain model, relative to the simple collagen-only 

control. Future research may employ a similar analysis approach to screen 

between various other growth conditions for optimizing tissue models.  

 The optical tweezers project highlighted several challenges in the 

development and calibration of a sensitive microrheometry tool incorporating 

TPEF. While previous results had shown expected increases in microsphere 

displacement (as measured using TPEF contrast) with increasing laser power in 

collagen gels, we were not able to consistently achieve the same results in 

polyacrylamide gels, which are more reliable for calibration given their consistent 

rheometry across length-scales. The results questioned the sensitivity and 

reproducibility of the OT measurements, as well as the strength of the OT and its 

potential for trapping in stiffer substances. Additional experiments in collagen 

gels further suggested that OT measurements sample the collagen interstitial fluid, 

as opposed to the elasticity of the collagen network, unless chemically crosslinked 

to the collagen, at which point the network is too stiff to be probed by the 

tweezers. While these outcomes question the validity and utility of these types of 
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measurements, there still remain options for improving the trap strength stiffness 

and measurement sensitivity, as highlighted in Section 4. However, further efforts 

must clearly consider the requirements of future applications in order to ensure 

the relevance of the instrumentation improvements. 

 Perhaps the most interesting potential future directions involving TPEF in 

brain tissue are those that would utilize combinations of the techniques and 

approaches described in this thesis. A logical next step would be to study 

endogenous cell fluorescence in 3D brain models in conjunction with quantitative 

studies of neurite network density. The combination of metabolic and structural 

information could provide new insights into metabolic processes involved in 

formation of neural networks. It could also provide verification of the 

physiological relevance of various improvements upon existing 3D bioengineered 

brain tissue, or development of disease models. However, these types of studies 

would rely on having sufficient autofluorescence signal within thick, scattering 

scaffolds to obtain useful metabolic information. Careful optimization of relevant 

imaging methods and data analysis approaches would be required. Nevertheless, 

these types of potential future experiments highlight TPEF’s unique ability to 

offer non-invasive tissue assessment along with high resolution and optical 

sectioning, all with low enough photodamage to permit live cell imaging. TPEF is 

truly a unique and powerful tool with the potential to greatly enhance our 
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understanding of brain cell metabolism as well as structure and function within 

bioengineered tissue. 
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6. APPENDIX 

CELL CULTURE PROTOCOLS: 
Astrocyte Isolation and Cell Culture Protocol 

Astrocyte Media Preparation (use for expanding cells): 
FBS 
Penicillin/streptomycin or antibiotic/antimycotic 
DMEM/F12 
 

• Supplement desired quantity of DMEM/F12 with 10% FBS and 1% 
Pen/Strep (or Anti/Anti) 

• Filter media using a filter bottle or syringe and small filter 
 
Co-Culture Media Preparation (use for imaging cells if comparing with 
neurons or co-culturing cells) 
B27 
FBS 
Antibiotic/antimycotic 
Glutamax 
Neurobasal medium 
 

• Supplement desired quantity of neurobasal medium with 2% B27, 2% 
FBS, 1% glutamax, and  1% anti/anti 

• Filter media using a filter bottle or syringe and small filter 
 
Astrocyte Isolation: 
Embryonic day 18 rat cortices 
Astrocyte media 
 

• 1 cortex (half of brain) will give enough astrocytes for approximately 28.5 
cm^2 of growth area 

• To isolate astrocytes, add one cortex per 1 ml astrocyte media using a 
25ml pipette 

• Using a 10ml pipette, pipette the cortex up and down in the media 10x to 
break down tissue 

• If there are still visible chunks, pipette additional times 
• Add additional media (if needed) for seeding 
• Add cells/media to culture plates, allow to attach 
• Keep in incubator 
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Maintenance: 
Change media every 2-3 days, swap to 2% FBS after 5-7 days to slow cell 
proliferation 
 
Neuronal Cell Culture Protocol 
 
Neuron Media Preparation (use when not comparing with astrocytes): 
B27 
Antibiotic/Antimycotic 
Glutamax 
Neurobasal medium 
 

• Supplement desired quantity of neurobasal medium with 2% B27, 1% 
glutamax, and  1% anti/anti 

• Filter media using a filter bottle or syringe and small filter 
 
Co-Culture Media Preparation (use for imaging cells if comparing with 
astrocytes or co-culturing cells) 
B27 
FBS 
Antibiotic/antimycotic 
Glutamax 
Neurobasal medium 
 

• Supplement desired quantity of neurobasal medium with 2% B27, 2% 
FBS, 1% glutamax, and  1% anti/anti 

• Filter media using a filter bottle or syringe and small filter 
 
 
Plate Coating: 
Poly-d-lysine 
 

• Prepare a 0.1mg/ml solution of PDL in sterile distilled water (enough 
volume to cover plates you are coating) 

• Add PDL solution to plates, allow to coat for 1 hour 
• Wash 3x with sterile PBS 
• Leave last PBS in plates until plating cells (aspirate first) 

 
Maintenance: 

• Change media 1x weekly 
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REDOX RATIO AND PSD CODE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%REDOX and PSD Analysis Code 
% adapted from code by Kyle Quinn (kyle@quinnlab.org) 
% adapted by Emily Stuntz to incorporate new thresholding 
approaches, 
% calculate values for redox histograms, redox component maps 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% Step 0:  User inputs 
function redox_psd_0603(wk,group,numb)  
  
well=[wk,group,numb]; %subfolder for specific group 
typeim='Image';%specify 'Image' or 'Series' 
  
[~,~,ImageIndex] = xlsread('Image_List_0603.xls'); 
ImageIndex = ImageIndex(2:end, 1:end); 
ListLength = size(ImageIndex,1); 
  
map_stack = zeros(512,512,ListLength); 
data_readout = zeros(ListLength,62); 
  
for z=1:ListLength 
%specify the image series numbers corresponding the 755, 860 nm 
images 
imageID = ImageIndex{z,1}; 
ser755=double(ImageIndex{z,2}); 
ser860=double(ImageIndex{z,3}); 
  
lipot=10/255;%set threshold for significant lipofuscin signal 
  
%% STEP 1: Load the data 
%create string to look up 755 images 
basestr='_Image000_ch0'; 
  
if ser755>=100 
    basestr(7:9)=num2str(ser755); 
elseif ser755>=10 
    basestr(8:9)=num2str(ser755); 
else 
    basestr(9)=num2str(ser755); 
end 
Imagename=basestr(2:9);%e.g. 'Image020' 
  
%load the images 
NDD1_755=imread([well,basestr,'0.tif']); 
NDD2_755=imread([well,basestr,'1.tif']); 
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%find correct ND filter, objective, and 
%date of the experiment 
ND_755 = NDsearch_v2(well,Imagename); 
ob = Objsearch_v2(well,Imagename); 
  
%for the 755 images, find the correct gains and offsets 
Gain_NDD1_755 = Gainsearch_v2(well,Imagename,'NDD1'); 
Gain_NDD2_755 = Gainsearch_v2(well,Imagename,'NDD2'); 
Off_NDD1_755 = Offsetsearch_v2(well,Imagename,'NDD1'); 
Off_NDD2_755 = Offsetsearch_v2(well,Imagename,'NDD2'); 
  
disp(['image data collected at 755nm loaded']) 
  
%label the correct string for the 860 images 
basestr='_Image000_ch0'; 
  
if ser860>=100 
    basestr(7:9)=num2str(ser860); 
elseif ser860>=10 
    basestr(8:9)=num2str(ser860); 
else 
    basestr(9)=num2str(ser860); 
end 
  
%load the 860 data 
clear NDD1_860 NDD2_860 NDD3_860 
  
NDD1_860=imread([well,basestr,'0.tif']); 
NDD2_860=imread([well,basestr,'1.tif']); 
Imagename=basestr(2:9);%e.g. 'Image020' 
  
  
%find correct ND filter, objective 
ND_860 = NDsearch_v2(well,Imagename); 
%for the 860 images, find the correct gains and offsets 
Gain_NDD1_860 = Gainsearch_v2(well,Imagename,'NDD1'); 
Gain_NDD2_860 = Gainsearch_v2(well,Imagename,'NDD2'); 
Off_NDD1_860 = Offsetsearch_v2(well,Imagename,'NDD1'); 
Off_NDD2_860 = Offsetsearch_v2(well,Imagename,'NDD2'); 
disp(['image data collected at 860nm loaded']) 
  
% convert data to 8bit range 
if strcmp(class(NDD1_755),'uint16') 
    NDD1_755=double(NDD1_755)/4095*255; 
    NDD2_755=double(NDD2_755)/4095*255; 
    NDD1_860=double(NDD1_860)/4095*255; 
    NDD2_860=double(NDD2_860)/4095*255; 
  
    disp('12bit image detected') 
elseif strcmp(class(NDD1_755),'uint8') 
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    NDD1_755=double(NDD1_755); 
    NDD2_755=double(NDD2_755); 
    NDD1_860=double(NDD1_860); 
    NDD2_860=double(NDD2_860); 
  
    disp('8bit image detected') 
else 
    disp('error'); 
end 
%% STEP 2: Register images 
%register images by computing the correlation coeffiecient 
between 755 and 860 data for 
%different shifts in the 860 position 
  
%save initial copies of the images 
NDD1_755p=NDD1_755; 
NDD2_755p=NDD2_755; 
NDD1_860p=NDD1_860; 
NDD2_860p=NDD2_860; 
  
%first add a buffer around the images 
sp=20; 
NDD1_755=zeros(2*sp+1+512,2*sp+1+512,size(NDD1_755p,3)); 
NDD2_755=zeros(2*sp+1+512,2*sp+1+512,size(NDD1_755p,3)); 
NDD1_860=zeros(2*sp+1+512,2*sp+1+512,size(NDD1_755p,3)); 
NDD2_860=zeros(2*sp+1+512,2*sp+1+512,size(NDD1_755p,3)); 
  
NDD1_755(sp+1:sp+512,sp+1:sp+512,:)=NDD1_755p; 
NDD2_755(sp+1:sp+512,sp+1:sp+512,:)=NDD2_755p; 
  
%register images 
  
disp(['image registration']); 
%combine the two channels 
i7=NDD1_755p+NDD2_755p; 
i8=NDD1_860p+NDD2_860p; 
[xq,yq] = meshgrid(-sp:1:sp,-sp:1:sp); 
clear Rv 
  
%compute the correlation coefficient for different shifts 
i=1; 
for xd=-sp:1:sp 
    for yd=-sp:1:sp 
        Rv(xd+sp+1,yd+sp+1,i)=corr2(i7(sp+1:512-sp,sp+1:4:512-
sp,i),i8(sp+1+xd:512-sp+xd,sp+1+yd:4:512-sp+yd,i)); 
    end 
end 
  
%find shift with max correlation 
xqq=reshape(xq,1,[]); 
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yqq=reshape(yq,1,[]); 
Rvq=reshape(Rv(:,:,i),1,[]); 
[m ind]=max(Rvq); 
  
disp(['860 displacement: 
',num2str((xqq(ind).^2+yqq(ind).^2).^.5)]); 
disp(['860 correlation: ',num2str(m)]); 
  
%shift 860 images 
NDD1_860(sp+1-yqq(ind):sp+512-yqq(ind),sp+1-xqq(ind):sp+512-
xqq(ind),i)=NDD1_860p(:,:,i); 
NDD2_860(sp+1-yqq(ind):sp+512-yqq(ind),sp+1-xqq(ind):sp+512-
xqq(ind),i)=NDD2_860p(:,:,i); 
  
%now cut out that buffer region that was added to all images 
NDD1_755(513+sp:2*sp+513,:)=[]; 
NDD1_755(:,513+sp:2*sp+513)=[]; 
NDD1_755(1:sp,:)=[]; 
NDD1_755(:,1:sp)=[]; 
  
NDD2_755(513+sp:2*sp+513,:)=[]; 
NDD2_755(:,513+sp:2*sp+513)=[]; 
NDD2_755(1:sp,:)=[]; 
NDD2_755(:,1:sp)=[]; 
  
NDD2_860(513+sp:2*sp+513,:)=[]; 
NDD2_860(:,513+sp:2*sp+513)=[]; 
NDD2_860(1:sp,:)=[]; 
NDD2_860(:,1:sp)=[]; 
  
NDD1_860(513+sp:2*sp+513,:)=[]; 
NDD1_860(:,513+sp:2*sp+513)=[]; 
NDD1_860(1:sp,:)=[]; 
NDD1_860(:,1:sp)=[]; 
  
clear NDD1_860p NDD1_755p NDD2_860p NDD2_755p 
  
  
%%  STEP 3: normalize intensities by gain and power 
  
% if there is a positive background intensity value for some 
reason 
% remove that by detecting the mode of the images.  This value 
must be 
% below an 8 bit value of 30. 
 ac(1)=mode(nonzeros((NDD1_755.*(NDD1_755<=30)))); 
 ac(2)=mode(nonzeros((NDD2_755.*(NDD2_755<=30)))); 
 ac(3)=mode(nonzeros((NDD1_860.*(NDD1_860<=30)))); 
 ac(4)=mode(nonzeros((NDD2_860.*(NDD2_860<=30)))); 
  



 

 

  132 

 

 NDD1_755_test = NDD1_755; 
 NDD1_755_test_vec = 
sort(reshape(nonzeros(NDD1_755_test),1,[]),'descend'); 
 NDD1_755_max = NDD1_755_test_vec(round((1-
0.99)*length(NDD1_755_test_vec))); 
 NDD1_755_test_2 = NDD1_755_test/NDD1_755_max; 
 NDD1_755_test_2 = NDD1_755_test_2.*(NDD1_755_test_2<1) + 
(NDD1_755_test_2>=1); 
  
 NDD2_755_test = NDD2_755; 
 NDD2_755_test_vec = 
sort(reshape(nonzeros(NDD2_755_test),1,[]),'descend'); 
 NDD2_755_max = NDD2_755_test_vec(round((1-
0.99)*length(NDD2_755_test_vec))); 
 NDD2_755_test_2 = NDD2_755_test/NDD2_755_max; 
 NDD2_755_test_2 = NDD2_755_test_2.*(NDD2_755_test_2<1) + 
(NDD2_755_test_2>=1); 
  
 NDD1_860_test = NDD1_860; 
 NDD1_860_test_vec = 
sort(reshape(nonzeros(NDD1_860_test),1,[]),'descend'); 
 NDD1_860_max = NDD1_860_test_vec(round((1-
0.99)*length(NDD1_860_test_vec))); 
 NDD1_860_test_2 = NDD1_860_test/NDD1_860_max; 
 NDD1_860_test_2 = NDD1_860_test_2.*(NDD1_860_test_2<1) + 
(NDD1_860_test_2>=1); 
  
 NDD2_860_test = NDD2_860; 
 NDD2_860_test_vec = 
sort(reshape(nonzeros(NDD2_860_test),1,[]),'descend'); 
 NDD2_860_max = NDD2_860_test_vec(round((1-
0.99)*length(NDD2_860_test_vec))); 
 NDD2_860_test_2 = NDD2_860_test/NDD2_860_max; 
 NDD2_860_test_2 = NDD2_860_test_2.*(NDD2_860_test_2<1) + 
(NDD2_860_test_2>=1); 
  
 NDD1_755=NDD1_755-ac(1); 
 NDD2_755=NDD2_755-ac(2); 
 NDD1_860=NDD1_860-ac(3); 
 NDD2_860=NDD2_860-ac(4); 
  
 NDD1_755_test_2 = NDD1_755/NDD1_755_max; 
 NDD1_755_test_2 = NDD1_755_test_2.*(NDD1_755_test_2<1) + 
(NDD1_755_test_2>=1); 
  
 NDD2_755_test_2 = NDD2_755/NDD2_755_max; 
 NDD2_755_test_2 = NDD2_755_test_2.*(NDD2_755_test_2<1) + 
(NDD2_755_test_2>=1); 
  
 NDD1_860_test_2 = NDD1_860/NDD1_860_max; 
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 NDD1_860_test_2 = NDD1_860_test_2.*(NDD1_860_test_2<1) + 
(NDD1_860_test_2>=1); 
  
 NDD2_860_test_2 = NDD2_860/NDD2_860_max; 
 NDD2_860_test_2 = NDD2_860_test_2.*(NDD2_860_test_2<1) + 
(NDD2_860_test_2>=1); 
  
  
% look up power measurements for that day by loading excel table 
that I use 
% to record every power measurement that I ever take.  These 
lines search 
% for the excel row that matches the date, wavelength, ND filter, 
and 
% objective used 
[ndata, headertext] = xlsread('power_bydate.xls'); 
datev=Datesearch(well); 
dcor=(str2num(datev)==ndata(:,1)); 
ocor=(ob==ndata(:,2)); 
wcor755=(755==ndata(:,3)); 
wcor860=(860==ndata(:,3)); 
ndcor755=(ND_755==ndata(:,4)); 
ndcor860=(ND_860==ndata(:,4)); 
power_755=ndata(find((dcor+ocor+wcor755+ndcor755)==4),5); 
power_860=ndata(find((dcor+ocor+wcor860+ndcor860)==4),5); 
  
%normalize intensity data by gain, offset, power, and objective 
used 
NDD1_755n=transferfn2_40x(double(NDD1_755),Gain_NDD1_755,Off_NDD1
_755,power_755,ob); 
NDD2_755n=transferfn2_40x(double(NDD2_755),Gain_NDD2_755,Off_NDD2
_755,power_755,ob); 
NDD1_860n=transferfn2_40x(double(NDD1_860),Gain_NDD1_860,Off_NDD1
_860,power_860,ob); 
NDD2_860n=transferfn2_40x(double(NDD2_860),Gain_NDD2_860,Off_NDD2
_860,power_860,ob); 
  
%create variables for the non-normalized images, which will be 
filtered 
NDD1_755o=NDD1_755; 
NDD2_755o=NDD2_755; 
NDD1_860o=NDD1_860; 
NDD2_860o=NDD2_860; 
  
%create extra variables for the non-normalized images, which 
won't be 
%filtered 
NDD1_755ou=NDD1_755; 
NDD2_755ou=NDD2_755; 
NDD1_860ou=NDD1_860; 
NDD2_860ou=NDD2_860; 
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%determine pixels that have intensities of 255 or 0 
NDD1_755sat=(NDD1_755ou==255); 
NDD2_755sat=(NDD2_755ou==255); 
NDD1_860sat=(NDD1_860ou==255); 
NDD2_860sat=(NDD2_860ou==255); 
  
%create a mask for the images that defines any pixel that had a 0 
or 255 
%value for any channel 
  
satpix=(NDD2_755sat+NDD1_860sat+NDD2_860sat+NDD1_755sat)>0; 
  
  
NDD1_755=NDD1_755n; 
NDD2_755=NDD2_755n; 
NDD1_860=NDD1_860n; 
NDD2_860=NDD2_860n; 
  
%apply a gaussian filter to smooth out the data spatially 
h = fspecial('gaussian',[5 5],1); 
  
%normalized data 
NDD1_755=imfilter(NDD1_755n,h); 
NDD2_755=imfilter(NDD2_755n,h); 
NDD1_860=imfilter(NDD1_860n,h); 
NDD2_860=imfilter(NDD2_860n,h); 
  
%raw data 
NDD1_755o=imfilter(NDD1_755o,h); 
NDD2_755o=imfilter(NDD2_755o,h); 
NDD1_860o=imfilter(NDD1_860o,h); 
NDD2_860o=imfilter(NDD2_860o,h); 
  
disp(['images normalized and filtered']) 
  
  
%% STEP 4: Create cell mask 
  
%average the non-normalized NADH and FAD channels to use for ROI 
%determination 
  
%042816 - make negative pixels equal to zero before creating mask  
NDD2_755ou2 = NDD2_755ou.*(NDD2_755ou>0);  
NDD1_860ou2 = NDD1_860ou.*(NDD1_860ou>0);  
  
%combine NADH and FAD image for calculating cell ROI mask 
Im2=(double(NDD2_755ou2)+double(NDD1_860ou2))/2; 
  



 

 

  135 

 

% %create cell ROI mask 
t = fspecial('gaussian',[3 3],1.5); 
Im3 = imfilter(NDD2_755ou2,t); 
Im4 = Im3.^1.75; 
thr1 = multithresh(Im4,2); 
mask1 = Im4>thr1(1); 
  
Im5 = imfilter(NDD1_860ou2,t); 
Im6 = Im5.^1.75; 
thr2 = multithresh(Im6,2); 
mask2 = Im6>(thr2(2)); 
  
mask12 = (mask1 + mask2)>0;  
  
% %mask of regions containing no lipofuscin according to 
threshold 
nolipo=(NDD2_860n<lipot); 
  
mask=mask12.*(1-satpix).*nolipo; 
  
mask = bwareaopen(mask,50); 
  
imwrite(mask,[imageID,'_mask_060316.png']); 
  
%% STEP 5: Compute redox ratio at each pixel 
  
%create version of NADH (NDD2_755) and FAD (NDD1_860) channels 
with 
%non-zero values for computing redox ratio (to prevent divide by 
0 
%errors) 
  
%make any negative values zero 
NDD1_860n2 = NDD1_860n.*(NDD1_860n>=0); 
NDD2_755n2 = NDD2_755n.*(NDD2_755n>=0); 
  
NDD1_860nc=NDD1_860n2.*(NDD1_860n2>0)+((NDD1_860n2==0).*(NDD1_860
n2+.000000000001)); 
NDD2_755nc=NDD2_755n2.*(NDD2_755n2>0)+((NDD2_755n2==0).*(NDD2_755
n2+.000000000001)); 
  
%compute redox ratio and make sure the values are between 0 and 
1. 
redox2=(NDD1_860nc./((NDD1_860nc)+(NDD2_755nc))); 
  
%all pixels should be between 0 and 1; 
redox3=(redox2>0).*redox2; 
redox3=(redox3<=1).*redox3+(redox3>1); 
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%filter redox ratio 
h = fspecial('gaussian',[3 3],1); 
redox3f=imfilter(redox3,h); 
redox4=(redox3f>0).*redox3f; 
disp(['redox rate calculated']) 
  
%compute secondary redox ratio with spatially filtered NADH and 
FAD 
 h = fspecial('gaussian',[5 5],.55); 
 NDD2_755f=imfilter(NDD2_755nc,h); 
 NDD1_860f=imfilter(NDD1_860nc,h); 
%  redox_new = (NDD1_860f./(NDD1_860f+NDD2_755f)); 
  
%% STEP 6: Display redox ratio map 
%create figure displaying redox map of cells on top of Im2 image 
%figure; 
cm=jet;%load jet color map 
  
 %create filtered version of the redox ratio with less filtering 
 h = fspecial('gaussian',[5 5],.55); 
 redox2=(NDD1_860nc)./((NDD1_860nc)+(NDD2_755nc)); 
 redoxf=imfilter(redox2,h); 
 % NDD3_800f=imfilter(log10(NDD3_800n*1000),h); 
 NDD2_755f=imfilter(NDD2_755n,h); 
 NDD1_860f=imfilter(NDD1_860n,h); 
  
 %another redox ratio - calculated based on filtered versions of  
  
 clear Im 
  
%create a nice grayscale image (avgi2) by combining the FAD and 
NADH 
%channels and optimizing the dynamic range so that 5% of pixels 
are 
%saturated and 5% of pixels are 0. 
  
mf=max(max(max(NDD1_860f))); 
mn=max(max(max(NDD2_755f))); 
avgi=(NDD1_860f/mf+NDD2_755f/mn)/2; 
ImR=sort(reshape(nonzeros(avgi),1,[]),'descend'); 
uplim=ImR(round(.05*length(ImR))); 
botlim=ImR(round(.95*length(ImR))); 
avgi2=(avgi-botlim)/(uplim-botlim); 
avgi2=avgi2.*(avgi2<1)+(avgi2>=1); 
avgi2=avgi2.*(avgi2>=0); 
  
%reassign redox ratio jet colors to a range of your choosing 
based on uplim 
%and botlim, then discretize the redox values from 1-64. 
cmj=jet;%cm_myo2; 
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uplim=1;%%ImR(round(.05*length(ImR))); 
botlim=0;%ImR(round(.95*length(ImR))); 
redoxfn=(redoxf-botlim)/(uplim-botlim); 
redoxfn=redoxfn.*(redoxfn<1)+(redoxfn>=1); 
redoxfn=round(63*(redoxfn.*(redoxfn>=0)))+1; 
  
%assemble the redox ratio map image in increments of different 
redox ratio values         
     Im=zeros(size(redoxfn,1),size(redoxfn,2),3);  
for i=1:64 
    imm=(redoxfn==i); 
    Im(:,:,1)=Im(:,:,1)+cmj(i,1).*imm.*avgi2;%.*(1-
avgi3);%+avgi3.*imm;%NDD3_800f(:,:,istack);%red;nadh 
    Im(:,:,2)=Im(:,:,2)+cmj(i,2).*imm.*avgi2;%.*(1-
avgi3);%green;fad 
    Im(:,:,3)=Im(:,:,3)+cmj(i,3).*imm.*avgi2;%.*(1-
avgi3);%+avgi3.*imm;%blue;lipo 
end 
  
% figure; 
% image(real(Im));axis image;axis off; 
imwrite(real(Im),[imageID,'_redox_060316.png']); 
  
%filter intensities 
h = fspecial('gaussian',[5 5],.55); 
NDD2_755f=imfilter(NDD2_755n,h); 
NDD1_860f=imfilter(NDD1_860n,h); 
NDD2_860f=imfilter(NDD2_860n,h); 
redoxf=imfilter(redox3,h); 
t = fspecial('gaussian',[3 3],0.5); 
redoxt = imfilter(redox3,t); 
  
% Create base matrices for component falsecoloring 
bluematrix = ones(512,512); 
bluematrix = bluematrix.*0.2; % assign appropriate jet color 
value for blue 
yellowmatrix = ones(512,512); 
yellowmatrix = yellowmatrix.*0.55; % assign appropriate jet color 
value for yellow 
redmatrix = ones(512,512); 
redmatrix = redmatrix.*0.9; % assign appropriate jet color value 
for red 
  
%thresholds based on averaging between mu values 
redredox = redoxt>0.44; % add values separate between components 
yellowredox = (redoxt>0.23)-redredox; 
redredox = redredox.*redmatrix; % add values separate between 
components 
yellowredox = yellowredox.*yellowmatrix; 
blueredox = redoxt<=0.23; % add values separate between 
components 
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blueredox = blueredox.*bluematrix; 
falsecolor_redox = redredox+blueredox+yellowredox; 
falsecolor_redox = 
falsecolor_redox.*(falsecolor_redox<1)+(falsecolor_redox>=1); 
falsecolor_redox = 
round(63*(falsecolor_redox.*(falsecolor_redox>=0)))+1; 
  
%assemble the continuous tri-component map image in increments of 
different redox ratio values         
Im=zeros(512,512,3);  
for i=1:64 
    imm=(falsecolor_redox==i); 
    Im(:,:,1)=Im(:,:,1)+cmj(i,1).*imm.*avgi2; 
    Im(:,:,2)=Im(:,:,2)+cmj(i,2).*imm.*avgi2; 
    Im(:,:,3)=Im(:,:,3)+cmj(i,3).*imm.*avgi2; 
end 
  
imwrite(Im,[imageID,'_06032016_falsecolor_midpoint.png']); 
falsecolor_redox_2 = falsecolor_redox.*mask; 
clear Im 
  
Im=zeros(512,512,3);  
for i=1:64 
    imm=(falsecolor_redox_2==i); 
    Im(:,:,1)=Im(:,:,1)+cmj(i,1).*imm;%red;nadh 
    Im(:,:,2)=Im(:,:,2)+cmj(i,2).*imm;%green;fad 
    Im(:,:,3)=Im(:,:,3)+cmj(i,3).*imm;%blue;lipo 
end 
imwrite(Im,[imageID,'_06032016_falsecolor_midpoint_mask.png']); 
clear Im 
  
  
clear Im 
  
%% % STEP 7: Display intensity map 
  
%figure; 
  
%set upper and lower limits for the intensities of each channel 
uplim=.25; 
botlim=0; 
%facc=ImR(round(.01*length(ImR))); 
NDD2_860f=(NDD2_860f-botlim)/(uplim-botlim); 
NDD2_860f=NDD2_860f.*(NDD2_860f<1)+(NDD2_860f>=1); 
NDD2_860f=NDD2_860f.*(avgi2>=0); 
uplim=.5; 
botlim=0; 
%facc=ImR(round(.01*length(ImR))); 
NDD1_860f=(NDD1_860f-botlim)/(uplim-botlim); 
NDD1_860f=NDD1_860f.*(NDD1_860f<1)+(NDD1_860f>=1); 
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NDD1_860f=NDD1_860f.*(avgi2>=0); 
uplim=.15; 
botlim=0; 
%facc=ImR(round(.01*length(ImR))); 
NDD2_755f=(NDD2_755f-botlim)/(uplim-botlim); 
NDD2_755f=NDD2_755f.*(NDD2_755f<1)+(NDD2_755f>=1); 
NDD2_755f=NDD2_755f.*(avgi2>=0); 
  
%assemble and print image 
istack=1; 
Im(:,:,1)=NDD2_860f(:,:,istack)/max(max(NDD2_860f(:,:,istack).*ma
sk));%red;nadh 
Im(:,:,2)=NDD2_755f(:,:,istack)/max(max(NDD2_755f(:,:,istack).*ma
sk));%green;fad 
Im(:,:,3)=NDD1_860f(:,:,istack)/max(max(NDD1_860f(:,:,istack).*ma
sk));%blue;lipo 
ImZ=Im/max(max(max(Im))); 
ImZ=ImZ.*(ImZ>0); 
  
%% Step 8: Calculate average redox ratio values 
  
%First set of values are computed from the masked region of the 
image only 
avgRedox=mean(nonzeros(redox3.*mask));%redox ratio computed as 
average of pixel-wise ratios 
avgN=mean(nonzeros(NDD2_755(:,:,istack).*mask));%NADH channel 
avgF=mean(nonzeros(NDD1_860(:,:,istack).*mask));%FAD channel 
avgL=mean(nonzeros(NDD2_860(:,:,istack).*mask));%Lipofuscin 
channel 
avgRedox2=avgF/(avgN+avgF); %redox ratio computed as ratio of 
average FAD and NADH intensities 
  
avgRedox_t = mean(nonzeros(redoxt.*mask)); 
%This set of values are computed from the masked region of the 
curve only 
avgRedoxW=sum(sum((redox3.*avgi)))./sum(sum((avgi))); 
avgNW=mean(nonzeros(NDD2_755(:,:,istack))); 
avgFW=mean(nonzeros(NDD1_860(:,:,istack))); 
avgLW=mean(nonzeros(NDD2_860(:,:,istack))); 
avgRedox2W=avgFW/(avgNW+avgFW); 
  
%Find histogram pixel counts 
filtered_data_masked_t3 = redoxt.*mask; 
filtered_histogram_vector_t3 = nonzeros(filtered_data_masked_t3); 
xbins = linspace(0,1,50); 
counts_filtered_t3 = hist(filtered_histogram_vector_t3,xbins); 
  
%PSD analysis 
mask_psd = double(NDD2_755ou2)<=125; 
imwrite(uint8(NDD2_755ou2), [imageID, '_755ou2_0603.png']); 
mask_psd = mask_psd.*mask; 
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Im_3o = double(NDD2_755ou2).*mask_psd; 
imwrite(mask_psd,[imageID,'_mask_psd_06032016.png']); 
  
[beta_3 cloned_stack_3] = 
PSDanalysis_Mask_name_KPQ_DP(Im_3o,5,5,imageID,'755','755',1); 
close 
  
imwrite((uint8(cloned_stack_3(:,:,1))),[imageID,'_cloned_06032016
.png']); 
  
datF=[avgRedoxW avgRedox2W avgNW avgFW avgLW avgRedox avgRedox2 
avgN avgF avgL avgRedox_t beta_3 counts_filtered_t3]; 
  
%save summary data 
save(['datF4_',num2str(ser755),'_',num2str(ser860)],'datF'); 
  
%save all variables 
save(['output4_',num2str(ser755),'_',num2str(ser860)]); 
  
data_readout(z,:) = datF; 
  
fclose all 
end 
  
xlswrite('Unmixing_Histogram_outputs_060416.xlsx', data_readout); 
  
clear all 
close all 
fclose all 
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GAUSSIAN UNMIXING CODE 
% Code to perform Gaussian unmixing on redox ratios 
% Should start with a matrix containing all of the masked redox 
ratio  
% values from all relevant data sets 
% Written by E. Stuntz 
  
hist_vals = nonzeros(redoxvals_matrix); 
  
iters = 10; 
fitting_outputs = zeros(iters,9); 
  
for m = 1:iters 
OPTIONS = statset('MaxIter',1000,'Display','final','TolFun',1e-
6); 
  
% Gaussian Unmixing 
k = 3; 
x = gmdistribution.fit(hist_vals,k,'Options',OPTIONS); 
  
% Extract parameters 
conv = x.Converged; 
muA = x.mu(1); 
muB = x.mu(2); 
sigmaA = x.Sigma(1,1,1); 
sigmaB = x.Sigma(1,1,2); 
weightA = x.PComponents(1); 
weightB = x.PComponents(2); 
muC = x.mu(3); 
sigmaC = x.Sigma(1,1,3); 
weightC = x.PComponents(3); 
  
% Order outputs by mean 
if muA == max([muA, muB, muC]) 
    mu1 = muA; 
    sigma1 = sigmaA; 
    weight1 = weightA; 
    if muB ==max([muB, muC]) 
        mu2 = muB; 
        sigma2 = sigmaB; 
        weight2 = weightB; 
        mu3 = muC; 
        sigma3 = sigmaC; 
        weight3 = weightC; 
    elseif muC == max([muB,muC]) 
        mu2 = muC; 
        sigma2 = sigmaC; 
        weight2 = weightC; 
        mu3 = muB; 
        sigma3 = sigmaB; 
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        weight3 = weightB; 
    end 
elseif muB == max([muA, muB, muC]) 
    mu1 = muB; 
    sigma1 = sigmaB; 
    weight1 = weightB;  
    if muA ==max([muA, muC]) 
        mu2 = muA; 
        sigma2 = sigmaA; 
        weight2 = weightA; 
        mu3 = muC; 
        sigma3 = sigmaC; 
        weight3 = weightC; 
    elseif muC == max([muA,muC]) 
        mu2 = muC; 
        sigma2 = sigmaC; 
        weight2 = weightC; 
        mu3 = muA; 
        sigma3 = sigmaA; 
        weight3 = weightA; 
    end 
elseif muC == max([muA, muB, muC]) 
    mu1 = muC; 
    sigma1 = sigmaC; 
    weight1 = weightC; 
    if muA ==max([muA, muB]) 
        mu2 = muA; 
        sigma2 = sigmaA; 
        weight2 = weightA; 
        mu3 = muB; 
        sigma3 = sigmaB; 
        weight3 = weightB; 
    elseif muB == max([muA,muB]) 
        mu2 = muB; 
        sigma2 = sigmaB; 
        weight2 = weightB; 
        mu3 = muA; 
        sigma3 = sigmaA; 
        weight3 = weightA; 
    end 
         
end 
  
fitting_outputs(m,:) = [mu1, mu2, mu3, sigma1, sigma2, sigma3, 
weight1, weight2, weight3]; 
  
end 
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