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Chapter 1

Introduction

The study of Several Complex Variables began with Weierstrass but did not become signif-
icantly important until the work of Hartogs. The Hartogs theorem proved to be one of the
most important results in the study of Several Complex Variables. This introductory chapter
will provide a look at Cn for n ≥ 2 and talk about the major similarities and differences
between it and C. Whenever we refer to Cn we will always have n ≥ 2. Another important
definition which will occur several times is the notion of a polydisc. In Cn, a polydisc is the
Cartesian product of one-dimensional discs with possibly different radii.

For additional references, see [2] and [5].

1.1 Extension for One Variable to Several

When going from C to C several aspects change and definitions have to be altered when
working with n ≥ 2. This section will look at new definitions that occur in Several Complex
Variables.

When working over Cn, we will use the standard multi index notation. Therefore, we
will frequently write z when we mean z = (z1, z2, ..., zn). Additionally, we will have zα be
(zα1

1 , zα2
2 , ..., zαnn ). Additionally, α! = {α1!, ..., αn!}.

1.1.1 Similarities from One Variable to Several Variables

This section focuses on the things that are the same between C and Cn.
The Maximum Modulus Principle is the same for both C and Cn and can be taken by

taking one-dimensional slices of domains in Cn.

Theorem 1.1.1. If f is a holomorphic function on an open simply connected region U of Cn
n ≥ 1, and D(z0) ⊂ U is a closed polydisc centered at z0 then |f(w)|w∈D ≤ maxz∈bdD |f(z)|.
If equality holds, the f is constant.

Another property that is identical between Cn and C is the following:

Theorem 1.1.2. If {fk} is a sequence of holomorphic functions on an open set Ω that
converges uniformly on compact sets in Ω to f on Ω then f is holomorphic on Ω.

5



6 CHAPTER 1. INTRODUCTION

This is a result of Hartogs’ theorem which will be proved later.
Both Several Complex Variables and Single Complex Variable are interested in the study

of convergence of sequences and series. As with a single variable, we study convergence
through the use of absolute convergence.

Another similarity, in some regards, is the Cauchy integral formula for a holomorphic
function f on a simply closed curve. In C, we had the formula be:

f(z) =
1

2πi

∫
C

f(w)

w − z
dw (1.1)

for z ∈ C.
In Cn, the formula is as follows:

f(z1, ..., zn) =
1

(2πi)n

∫
C1

...

∫
Cn

f(w1, ..., wn)

(w1 − z1)...(wn − zn)
dw1...dwn (1.2)

Another important concept that is the same in Several Complex Variables is the idea of
the Cauchy-Riemann equations. If u is the real part of a holomorphic function of 2 complex
variables, then we have that u must satisfying the following system of 2nd order PDE’s:

∂2u

∂x21
+
∂2u

∂y21
= 0 (1.3)

∂2u

∂x22
+
∂2u

∂y22
= 0 (1.4)

The two equations above are the same as for one complex variable but we have other new
differential equations, such as the ones below:

∂2u

∂x1∂x2
+

∂2u

∂y1∂y2
= 0 (1.5)

∂2u

∂x1∂y2
− ∂2u

∂y1∂x2
= 0 (1.6)

Equation 1.5 come from the fact that

∂2u

∂x1∂x2
=

∂2v

∂x1∂y2
(1.7)

=
∂2v

∂y2∂x1
(1.8)

= − ∂2u

∂x1∂y2
(1.9)

Equation 1.6 can be justified using a similar method.
Also a similar idea between Cn and C is Cauchy’s estimates. In the case of Cn, we have

the theorem appear in the following manner.

Theorem 1.1.3. If f is holomorphic on a polydisc D = {z : |zj| < rj, j = 1, ..., n} and
|f | ≤M on D then it follows that |∂αf(0)| ≤ Mα!

rα

This is the result of the Cauchy Integral formula seen in 1.1.
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1.1.2 Differences from One Variable to Several Variables

One of the main differences between Cn n ≥ 2 and C is the treatment of power series. In a
single variable, convergence would occur inside a disc and divergence would occur outside the
disc. However, when working with several variables, the domains can have many different
shapes.

Example 1.1.4. If we have the power series
∑∞

n=0

∑∞
m=0 z

n
1 z

m
2 then the open set on which

it will converge absolutely is the unit bidisc {(z1, z2) : |z1| < 1 and |z2| < 1}.
However, the power series

∑∞
n=0(

z1z2
2

)n converges absolutely on the unbounded region
|z1z2| < 2, which is clearly not a bidisc.

Another conceptual difference in Cn has to do with the treatment of an annulus. In C
you could have functions that were holomorphic strictly on an annulus. However, in Cn, if f
is holomorphic on a spherical shell, then it is holomorphic inside the shell as well. This idea
will be proved as a result of Hartogs’ theorem (Theorem 2.5.3). Therefore, the holomorphic
functions can be extended to a larger domain.

We will provide a strict definition after the completion of Hartogs’ theorem, but for now,
we shall define a function to be holomorphic on an open set if the function admits a local
power series expansion.

Another result of Hartogs’ theorem, unlike in C, holomorphic functions in Cn do not have
isolated singularities or zeroes. A holomorphic function cannot have an isolated singularity
because an isolated singularity is the same thing as having a shell with inner radius 0 around
the isolated singularity, which we have already seen to be impossible. Similarly, a function
cannot have an isolated 0 because 1/f is still a holomorphic function which would then have
an isolated singularity and we have already shown why that is impossible.

Example 1.1.5. A slightly convoluted example to highlight the fact that the zeroes and
singularities are not isolated is as follows. If we are working in C3 and we have f = z3−4i

(2−z1z22)z3
.

In this case, the zeroes is the set {(z1, z2, z3) : z3 = 4i and z1z
2
2 6= 2}. The singularities in

this case are the set of points {(z1, z2, z3) : z1z
2
2 = 2 or z3 = 0}.

Another interesting difference is the following theorem:

Theorem 1.1.6. If p(z1, ..., zn) is a nonconstant polynomial in Cn, then the set of zeroes of
p is not a compact subset of Cn.

Proof. Let p(z1, ..., zn) be a nonconstant polynomial in Cn. Let us fix n − 1 of the zj’s.
Therefore, the resulting polynomial is a polynomial of 1 variable and will have a set of zeroes
corresponding to the fixed zj’s. Since we can do this for any combination of the zj’s for any
complex numbers, the set of zeroes is not compact.

The last important difference between C and Cn which we will discuss in the introduction
is the geometric differences. One major theorem in C is the Riemann Mapping Theorem
which is stated as follows:

Theorem 1.1.7. In C, every simply connected region Ω in the plane (other than C) is
conformally equivalent to the open unit disc U .
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In the case of Cn, such a conformal mapping may not exist. Although we will not prove
this, it can be shown that in C2 the unit ball is not biholomorphic to the unit bidisc ([1],
Section 3.2).

Remark One of the major reasons why there is no Riemann Mapping Theorem for Cn
is because of the fact that biholomorphic maps are not always angle preserving.

Example 1.1.8. Let f be a function from C2 to C2 defined as f(z1, z2) = (z1 + z2, z2).
In this example, f is clearly not angle preserving highlighting the fact that even simple
biholomorphic maps may not be angle preserving.

Due to the fact that not even linear maps are always distance preserving, it is impossible
to have a Riemann Mapping Theorem for Cn.

Having discussed the similarities and differences between C and Cn, we can now start
talking about domains of convergence and start building the information we need to prove
the major theorems.



Chapter 2

Domains of Convergence of Power
Series

As mentioned in the last section, if we have a power series, the domain of convergence need
not be a ball. This section looks to flesh out the theory related to these domains as well
as prove some incredible results about Cn. Particularly, Hartogs’ theorem about separate
holomorphicity implying joint holomorphicity was one of the biggest results of the study of
Several Complex Variables.

Firstly, let us define what it means to be a domain of convergence.

Definition 2.0.1. Given some power series P in Cn, we define the the domain of convergence
to be the interior of the set E such that P converges absolutely on E.

Example 2.0.1. The power series
∑∞

n=1 z
n
1 z

n!
2 converges on the union of three sets {(z1, z2) :

|z2| < 1}, {(0, z2)}, and {(z1, z2) : |z2| = 1 and |z1| < 1}. Therefore, the domain of
convergence is the interior of the union of the 3 sets. It is not hard to prove that the domain
of convergence is the interior of the first set.

The use of absolute convergence is important, and almost required, in Cn because it
allows terms to be reordered when calculating sums.

In C, domains of convergence were discs. In Cn,domains of convergence can vary. One
type of domain of convergence is a polydisc as can be seen from Example 2.0.1.

2.1 Power Series in Several Complex Variables

Since we are using the standard multi index notation, and we are working with power series,
we will adapt some standard notation. Therefore, when discussing Power series in Several
Complex Variables, we can write

∑
α cαz

α to be
∑∞

a1=0 ...
∑∞

an=0 ca1,...,anz
a1
1 ...z

an
n .

2.2 Characterization of Domains of Convergence

When working in Cn we will derives some properties about domains of convergence of power
series which we will provide below.

9



10 CHAPTER 2. DOMAINS OF CONVERGENCE OF POWER SERIES

Remark Without loss of generality, we will only be considering power series centered at
0.

Definition 2.2.1. Domains of Convergence are multicircular. This means that if (z1, z2, ...zn)
is in the domain of convergence so is (λ1z1, λ2z2, ...λnzn) such that |λ1| = |λ2| = ... = |λn| = 1.

We shall refer to multicircular domains as Reinhardt domains.

Moreover, due to the fact that convergence is based on absolute convergence, the above
definition works if |λj| ≤ 1 for all j. Therefore, we have that a domain of convergence is the
union of polydiscs centered at the origin.

After the introduction of two additional definitions, we can start to prove some of the
major theorems regarding Domains of Convergence.

Definition 2.2.2. Given some domain U ∈ Cn, we say D is complete if whenever z is in D,
the whole polydisc, {w : |w1| ≤ |z1|, ..., |wn| ≤ |zn|} is in U .

It is clear that the domain of convergence is complete.
This definition along with the previous one implies that every domain of convergence is

a complete Reinhardt domain.

Example 2.2.1. Let E be a polydisc centered at the origin with polyradius r = {r1, ..., rn}.
Then the domain of convergence of the power series∑

α

zα

rα
(2.1)

is cleary E. Moreover, it is clear that E is a complete Reinhardt domain.

Let
∑

α cαz
α be a power series with domain of convergence D. Suppose that z, w ∈ D,

then we have that
∑

α |cαzα| and
∑

α |cαwα| both converge in D. We claim that∑
α

|cα||zα|t|wα|1−t (2.2)

will also converge if 0 < t < 1. This is because we can apply Hölder’s Inequality with p = 1/t
and q = 1/(1− t). This is because∑

α

|cα||zα|t|wα|1−t =
∑
α

(|cα||zα|)t(|cα||wα|)1−t (2.3)

By Hölder’s inequality, this is less than

(((
∑
α

|cα||zα|)t)(((
∑
α

|cα||wα|)1−t) (2.4)

which we know to be finite which proves the convergence of∑
α

|cα||zα|t|wα|1−t (2.5)

Also, it is trivial to see that Equation 2.2 will hold when t = 0 or t = 1.
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Definition 2.2.3. A domain D is said to be logarithmically convex if whenever z and w are
in D then so is any point z′ where |z′j| ≤ |zj|t|wj|1−t for all 0 ≤ t ≤ 1.

Another way of stating this definition is if z and w are in a domain of convergence, we
say the domain is logarithmically convex if the points obtained by forming the geometric
average of each component of the moduli also lies in the domain.

Let D be the domain of convergence of a power series. We have seen from above that
D is a complete logarithimically convex Reinhardt Domain. Hence, D is determined by the
points in it by nonnegative real coordinates and logD is the subset of Rn that is replacing
the coordinates of each point in D by their logarithm. Moreover, logD is convex in Rn.

Now we can prove our first major theorem of this section.

Theorem 2.2.2. A complete Reinhardt domain in Cn is the domain of convergence of some
power series

∑
α cαz

α iff it is logarithmically convex.

Proof. The ’Only if’ has already been established. The last major component we need to
show is that for every logarithmically convex, complete, Reinhardt domain D there exists
some power series which has a domain of convergence of exactly D. We wish to show a
method to construct such a power series. We will first prove it when D is bounded and then
when D is unbounded.

Assume D is bounded. For each multi index α let Nα(D) = sup{|zα| : z ∈ D}. Because
D is bounded, Nα(D) <∞. We will prove that the series∑

α

zα

Nα(D)
(2.6)

is a series which converges on D and diverges outside of D. We prove this is the desired
series by showing the series converges for all w ∈ D and diverges for w /∈ D.

Since D is open, given w ∈ D ∃ ε > 0 such that (1 + ε)w ∈ D. Therefore, (1 + ε)|α||wα| ≤
Nα(D) by construction. Therefore, we have that∑

α

wα

Nα(D)
(2.7)

must converge absolutely on D because it is dominated by the convergent series∑
α

(1 + ε)−|α| (2.8)

.
Now, let us assume w is in the exterior of D and the real coordinates of w are positive.

If one of the coordinates of w is 0, we can perturb that coordinate slightly to still lie in
the exterior of D. We will show that the series

∑
α

wα

Nα(D)
diverges. Due to the fact that

D is multicircular, having w have positive real coordinates is sufficient. Since w /∈ D,
we know that logw /∈ logD and because logD is convex there is a hyperplane that can
separate the two in Rn. The hyperplane l is defined by a real linear functional in Rn defined
by f(x) =

∑n
j=1 βjxj = M . Therefore f(logw1, ..., logwn) > maxz∈G f(log z1, ..., log zn).

Because D is a complete Reinhardt domain, we know that the βj’s must be non negative
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otherwise l could assume arbitrarily large values on D. Because D is bounded, we know that
for all z ∈ D, log |z1|, ... log |zn| is bounded by some constant M . When each βj, is increased
by some small amount, ε, then the supremum of logD increases by at most nMε. This fact
means we can slightly alter the βj’s and still have f separate logw from logD. Therefore,
we can assume that the βj’s are all rational. We can also multiply the βj’s by a common
denominator to have all the βj’s to be positive integers. Let us call this set of βj’s β.

Therefore, wβ > Nβ(D). Additionally, if k is a positive integer, multiplying β by k does
not change the fact that the equality holds. Therefore

∑
α

wα

Nα(D)
diverges since infinitely

many terms are greater than 1.
Now assume that D is unbounded and not all of Cn. Let {zj} be the countable set of

points outside of D with positive rational coordinates. Now construct the list {w(j)}∞j=1

such that each zj appears in the list infinitely many times.
Let us define Dr to be the set D intersected with a ball of radius r centered at the origin.

Now, we know that each Dj is bounded. Using the boundedness of each Dj we can apply
the first part of the proof to have a positive multi-index β(j) such that w(j)β(j) > Nβ(j)(Dj).
Since we can multiply the multi-index by any positive number and still have the inequality
hold, we can assume that |β(j + 1)| > |β(j)|. We now claim that

∞∑
j=1

zβ(j)

Nβ(j)(D)j)
(2.9)

is the desired power series with domain of convergence D.
First, let us show that ∀ z ∈ D that the series converges. So let z ∈ D. Therefore, we

know there is some k such that z ∈ Dk which means that Nα(Dj) > Nα(Dk) whenever j > k.
Therefore, we have that the absolute value of the sum is dominated by

∑
α |zα|/Nα(Dk) which

converges for any z ∈ Dk meaning that the domain of convergence is at least D.
Now let us assume that the series were to absolutely converge in some neighborhood

outside of D. Therefore, there would be some ζ outside of D such that the series converges
for ζ and ζ has rational coordinates. Therefore, we have infinitely many values in our list
such that w(j) = ζ. Therefore, we have that

∞∑
j=1

ζβ(j)

Nβ(j)(Dj)
(2.10)

would have infinitely many terms greater than 1. Therefore, the domain of convergence
cannot be greater than D.

Therefore, any logarithmically convex, complete Reinhardt domain is the domain of con-
vergence for some power series.

2.3 Holomorphic Functions in Several Complex Vari-

ables

Having discussed power series, and their domains of convergence, the study of holomorphic
functions is the next logical step because convergent power series on a domain D are just
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local representations of holomorphic functions.
There are several different definitions for a holomorphic function in several complex

variables and we shall use the following definition:

Definition 2.3.1. Given an open set G and a function f , we say that f is holomorphic on
G if it is holomorphic in each variable separately and continuous in all variables jointly.

2.4 Boundaries of Domains of Convergence

Before moving to Hartogs’ theorem, we first wish to discuss the natural boundaries for
holomorphic functions. We open with a famous theorem uses the Baire-Category Theorem
and the Open Mapping theorem.

Theorem 2.4.1. Cartan-Thullen
The domain of convergence of a multivariable power series is a domain of holomorphy.

Therefore, for every domain of convergence, there is some power series that converges in the
domain and is singular at every boundary point.

Remark When we talk about a function f being singular at a boundary point p, we mean
that f does not admit a direct analytic continuation on a neighborhood of p.We provide a
stricter definition of singularity in Definition 4.1.1.

Now, let us begin the actual proof.

Proof. Let
∑

α cαz
α be a power series with domain of convergence D. We wish to show that

D is also a domain of holomorphy. We know that
∑

α cαz
α and

∑
α |cα|zα have the same

domain of convergence, so we can assume that all coefficients of cα are nonnegative real
numbers.

To continue with the proof, we need to introduce the following lemma:

Lemma 2.4.2. If a power series in Cn has nonnegative real coefficients, then the series is
singular at every boundary point of the domain of convergence at which all the coordinates
are nonnegative real numbers.

Suppose that f(z) =
∑

α cαz
α is a power series in Cn with nonnegative real coefficients

and D be its domain of convergence. Then f is singular at every boundary point p of D.

Proof. We will prove this lemma by contradiction. Assume that f extends holomorphically
to a neighborhood of p. Since we are working in a neighborhood of p, we can assume that
the coordinates of p are positive. Moreover, dilating the coordinates modifies the coefficients
of the power series by positive factors so we can assume that ||p|| = 1 where || • || denotes
the standard Euclidean norm in Cn.

Since we are working in a neighborhood of p, we know there exists ε < 1 such that the
closed ball b centered at p with radius 3ε lies inside the neighborhood of p on which f extends
holomorphically.

We know that the closed ball centered at (1 − ε)p with radius 2ε is inside the same
neighborhood of p because if we have

||z − (1− ε)p|| ≤ 2ε (2.11)
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Figure 2.1: Let the noncircular domain be D and p be the red point on the boundary of D
with the larger circle being the neighborhood of p. If the blue point is (1 − ε)p, we can see
that the smaller neighborhood with radius 2ε centered at (1−ε)p lies inside the neighborhood
of p.

then we have

||z − p|| = ||z − (1− ε)p− εp|| ≤ ||z − (1− ε)p+ + + ε||p|| ≤ 2ε+ ε = 3ε (2.12)

by the triangle inequality. An example of this can be seen in Fig. 2.1.
Since f is holomorphic on the ball B, we can express f as a Taylor series about (1− ε)p

and we know the series converges absolutely on the closed ball B((1 − ε)p, 2ε). Therefore,
we have that the Taylor series will also converge absolutely at the point (1 + ε)p. Therefore,
we have the Taylor series evaluated at (1 + ε)p equals∑

α

1

α!
f (α)((1− ε)p)(2εp)α (2.13)

Because of the fact that (1 − ε)p lies in the domain of the original power series, we can
compute the derivative of f at (1− ε)p by differentiating the series

∑
α cαz

α to get

f (α)((1− ε)p) =
∑
β≥α

β!

(β − α)!
cβ((1− ε)p)β−α (2.14)

We can combine the previous two expressions to get the following convergent series on
our original domain. ∑

α

(∑
β≥α

(
β

α

)
cβ((1− ε)p)β−α

)
(2εp)α (2.15)

We can rearrange the terms in the above series without any problems since all of the terms
are nonnegative real numbers. Therefore, after these steps and using the binomial expansion,
we have the convergent series ∑

β

cβ((1 + ε)p)β (2.16)

Note that this new series is the original series of f evaluated at the point (1 + ε)p. Using
the Comparison test, we have that f converges absolutely in the polydisc centered at 0 with
boundary point (1 + ε)p. Therefore, we have that p is also in this polydisc. Therefore, we
have that p is not a boundary point of the domain of convergence which is a contradiction.
Therefore, f must be singular at p.
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Using this lemma, we know that the power series with nonnegative coefficients
∑

α cαz
α

must be singular at the boundary points of D. Let us have q be an arbitrary point. We can
therefore write q = (r1e

iθ1 , ...rne
iθn). Therefore, we can rewrite the series as∑

α

cαe
−i(α1θ1+...+αnθn)zα (2.17)

and the series will be undefined here. Therefore, for every q ∈ bd(D) we know there is some
power series that converges in D but is singular at q.

Given some domain D, let {pj} be a countable dense subset of bd(D). Given arbitrary
natural numbers j, k, we have that D ∪ B(pj, 1/k) is an F-space (See Appendix) and that
the set of holomorphic functions on D ∪ B(pj, 1/k) embeds continuously into the space of
holomorphic functions on D because of the restriction map. Since the preceding discussion
produces a power series that does not extend to the ball B(pj, 1/k), we know that the
embedding is not the whole space. Therefore, we can apply the corollary of the Baire
Category Theorem (theorem A.0.2) to have that the image of the embedding must be of first
category since it is not the whole space. Since the set of power series on D which extend
across any of the the sets D ∪ B(pj, 1/k) is a countable union of sets of first category, and
therefore first category itself, we must have that most power series that converge in D must
have bd(D) as a boundary.

2.5 Hartogs’ Theorem

This section is dedicated to proving Hartogs’ theorem that separate holomorphicity implies
joint holomorphicity. All proofs done in this section will be done in C2 however, the extension
to Cn is straightforward and will be omitted.

An important point of note, this concept does not work in the case of R2n. For example,
in the case of R2 and the function f(x, y) = xy/(x2 + y2) for x, y 6= 0 and f(0, 0) = 0. Even
though the function is real analytic in each variable separately, the function itself is not even
jointly continuous.

Before proving Hartogs’ theorem, we must first use the following theorems by Osgood.

Theorem 2.5.1. (Osgood, 1899). If f(z1, z2) is holomorphic in each variable separately
and locally bounded in both variables jointly, then f(z1, z2) is holomorphic in both variables
jointly.

Proof. Because the theorem is both local and invariant under both translations and dilations
of the coordinates, we may assume the domain of f to be an open set contained in the unit
bidisc and the modulus of f to be bounded above by 1.

Fix some z1 and let g be a function g : z2 → f(z1, z2) for our fixed z1. Therefore, g is
holomorphic and can be expressed as a power series

∑∞
k=0 ck(z1)z

k
2 which is convergent in

the unit disc of z2. Because of the fact that f is bounded, we know that |ck(z1)| ≤ 1 for all k
by the Cauchy’s estimate for derivatives. Moreover, by the Weierstrass M test, we have that
the series

∑∞
k=0 ck(z1)z

k
2 converges uniformly in both variables jointly for arbitrary compact

subsets of the open unit bidisc. To show this fact, let K ⊂ D × D. Therefore, we have
|z2| ≤ 1 for all z1, z2 ∈ K. This means that we have |ck(z1)z2k| ≤ |z2|k ≤ ck where c ≤ 1.
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Therefore, since the series is less than 1 for all points in K, the series converges uniformly
by the Weierstrass M test.

All we must now show is that the coefficient function ck(z1) is a holomorphic function
of z1 in the unit disc for all k. We do this by having c0(z1) = f(z1, 0). We know this from
k = 0 where c0(z1) is a holomorphic function of z1 in the unit disc due to the hypothesis of
separate holomorphicity. By induction, let us assume that for k ∈ N, we have that cj(z1) is
also holomorphic for j < k. We also have that

f(z1, z2)−
∑k−1

j=0 cj(z1)z
j
2

zk2
= ck(z1) +

∞∑
m=1

ck+m(z1)z
m
2 (2.18)

whenever z2 6= 0. However, as z2 approaches 0, we have that the right hand side converges
uniformly with respect to z1 to ck(z1) by the fact that |cj(z1)| ≤ 1 for all j which means that
the left side converges as well. Now if z2 6= 0 the left side must be a holomorphic function
of z1 using both the induction hypothesis and the assumption of separate holomorphicity.
Therefore, by Morera’s theorem and the uniform convergence of ck(z1) we see that ck(z1)
converges for z1 and we see that we have that the function ck(z1) is the limit of holomorphic
functions, and holomorphic which completes the induction argument and the proof.

The next major result was also achieved by Osgood with the following theorem.

Theorem 2.5.2. (Osgood, 1900). If f(z1, z2) is holomorphic in each variable separately,
then there is a dense open subset of the domain of f on which f is holomorphic in both
variables jointly.

Proof. We need to show that given D1 × D2 is an arbitrary closed bidisc contained in the
domain of f that there is an open subset of D1 ×D2 on which f is jointly holomorphic. We
do this by constructing sets Ek = {z1 : |f(z1, z2) ≤ k ∀z2}. Since we know that |f(z1, z2)| is
continuous in z1 if we fix z2 we know that Ek must be a closed subset of D1 because the set
for a fixed z2 is closed and Ek = ∩z2∈D2{z1 : |f(z1, z2)| ≤ k}. Moreover, given w ∈ D1, there
is some Ek such that w ∈ Ek. Now, we can apply the Baire Category theorem to have that
there is some k such that Ek has a nonvoid interior. Therefore, there is some open subset of
D1 × D2 on which f is bounded. Since the function is bounded on a dense subset, we can
apply Theorem 2.5.1 to complete the proof.

Now, we can solve Hartogs’ theorem:

Theorem 2.5.3. If f(z1, z2) is holomorphic in z1 for each fixed z2 and holomorphic in z2 for
each fixed z1, then f(z1, z2) is holomorphic jointly and f(z1, z2) can be represented locally
by a convergent power series in two variables.

Proof. Using the previous theorem, and the local nature of the conclusion, we wish to prove
that if f(z1, z2) is separately holomorphic on a neighborhood of the closed unit bidisc and
we have 0 < δ < 1 such that f is jointly holomorphic in a neighborhood of the smaller bidisc
with |z2| ≤ δ and |z1| ≤ 1 then f is jointly holomorphic on the unit bidisc.
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Let us write f(z1, z2) =
∑∞

k=0 ck(z1)z
k
2 . Using the residue theorem, we can write each

coefficient can be written as the integral

ck(z1) =
1

2πi

∫
|z2|=δ

f(z1, z2)

zk+1
2

dz2 (2.19)

where the numerator is jointly holormorphic on the smaller bidisc. We know that the joint
holomorphicity of f on the smaller bidisc implies that ck(z1) is a holomorphic function of
z1 on the unit disc. Let us assume M is an upper bound of |f(z1, z2)| on the strip |z2| ≤ δ
and |z1| ≤ 1. Then, from Eq. 2.19, for all k, we have that |ck(z1)| ≤ M/δk. This shows
that there is a large constant B depending on δ such that for all k, |ck(z1)|1/k < B. For a
fixed z1, by separate holomorphicity, we have that the series

∑∞
k=0 ck(z1)z

k
2 converges for z2

when |z2| ≤ 1. Therefore lim supk→∞ |ck(z1)|1/k ≤ 1 for each z1 using the formula for radius
of convergence.

Now, given ε > 0 and a radius r slightly less than 1, we wish to show that there exists
N ∈ N such that, for a fixed z1 such that |z1| ≤ r, |ck(z1)|1/k < 1 + ε whenever k ≥ N .
This property means that

∑∞
k=0 ck(z1)z

k
2 converges uniformly on the set with |z1| ≤ r and

|z2| ≤ 1/(1 + 2ε) by the M test. Therefore, we have that f(z1, z2) is jointly holomorphic
on the interior of this set. Because both r and ε were arbitrary, the function is jointly
holomorphic on the open unit bidisc. Therefore, we can let uk(z1) denote the subharmonic
function |ck(z1)|1/k and we will get the completion of the proof using the following lemma:

Lemma 2.5.4. Suppose {uk}∞k=1 is a sequence of subharmonic functions on the open unit disc
that are uniformly bounded above by a constant B and suppose that lim supk→∞ uk(z) ≤ 1
for every z in the unit disc. Then for every ε > 0 and 0 < r < 1, there exists a natural
number N such that uk(z) ≤ 1 + ε when |z| ≤ r and k ≥ N .

The lemme requires some hard analysis which we will skip ([1], Lemma 3).
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Chapter 3

Convexity Notions

One of the most important notions in Several Complex Variables is the notion of convexity.
In this section we will first define the basic idea of convexity as it applies to Rn and work
our way to explore how it relates to Cn. From there, we will discuss several different notions
of convexity and build our way up to the idea of holomorphic convexity which will play an
important part in solving the main proofs in the next chapter.

The biggest motivation for discussing notions of convexity lies in the fact that it has to
do with the notion of separation.

Let us begin by restating the definition for basic convexity:

Definition 3.0.1. Given some arbitrary set U ⊂ Rn, we say U is convex iff ∀x, y ∈ U , the
line segment joining x and y lies entirely in U .

One other important concept to consider when working with convexity is the concept of
separation. The notion of separation is the same for both the real case and the complex case
and is defined as the following:

Definition 3.0.2. Given a convex set A ⊂ Cn and a point b /∈ A. We say that A can be
separated from b if there exists a linear functional, Λ, such that Re Λ (z) < Re Λ (b) ∀z ∈ A.
If we are working over Rn, then we have that Re Λ = Λ.

When considering any arbitrary sets, there is the natural question of how to make that
set convex. Therefore, let us also define the idea of a convex hull of an arbitrary set U , and
then show the relationship between the convex hull and the idea of separation.

Definition 3.0.3. Given any set U ⊂ Cn, we define the convex hull of U to be the intersection
of all convex sets which contain U . Therefore, the convex hull of U is the smallest convex
set containing U . We denote the convex hull of a set U as Û .

This definition translates to the fact that Ŝ = Rn \ {x : x can be separated from S}.
Using this idea, we can introduce the following theorem:

Theorem 3.0.1. If U is any set, then Û is also the set of all convex cords of all pairs of
points of U .

Another point worth mentioning is the following definition.

19
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Definition 3.0.4. If U ⊂ Rn is open and S ⊂ U , then we have the convex hull of S in U to
be Ŝ ∩ U .

A quick remark is that U \ Ŝ is the set of all points in U that can be separated from S.

For example, if we have a set to be the points {z1, z2}, then the convex hull of these
two points would be the line segment connecting the two of them together. If we have
U = {z ∈ Cn : |z| = 1} we have that Û = {z ∈ Cn : |z| ≤ 1}.

Since we can treat Cn as R2n we can use some properties regarding convexity for Rn when
talking about convexity for Cn. The first property of interest is the fact that the convex hull
of a compact set is compact (The proof can be found in Functional Analysis by Rudin and
is proof 3.20). The second important fact, which is similar to the first, is that the convex
hull of an open set is also open. The third important property is the following theorem.

Theorem 3.0.2. Given U is open in Cn, U is convex iff whenever K ⊂ U is compact, we
have that K̂ ⊂ U .

Proof. ⇒
Assume that U is convex. Therefore U = Û . Given any compact set K ⊂ U . Since we

trivially have that K̂ ⊂ Û and U = Û we have K̂ ⊂ U .
⇐
Given an open set U such that for all compact sets K ⊂ U we have K̂ ⊂ U . Given

any two points {x, y} ∈ U . We have that the set is compact, therefore, {̂x, y} ∈ U by
assumption. Therefore, U is convex and since U is the smallest convex set containing U , we
have Û = U .

Now, we can shift our focus to convexity in Cn.

3.1 Classes of Functions

While we just discussed the standard form of convexity, there are other notions of convexity
based on classes of functions. Given some class of upper semicontinuous real valued functions,
F , on an open set G, let us start by defining a convex hull of a set U , and using this definition
to discuss F -convexity. But first, we must begin with a definition of separation in regards
to classes of functions.

Definition 3.1.1. Given some set U ⊂ Cn, a point p /∈ U and some class of functions
F , we say that p can be separated from U , if there exists some f ∈ F such that |f(p)| >
maxw∈U |f(w)|.

At this point, we can define the F -convex hull of some set U as follows.

Definition 3.1.2. Given any set U , let us define ÛF to be the set of all points that cannot
be separated from U by some f ∈ F .

We call ÛF the F - convex hull of U .
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The requirement that the functions be semicontinuous is important because it ensures
that the functions will obtain a maximum value on all compact sets. We can now discuss
convexity in relation to classes of functions as follows:

Definition 3.1.3. Given an open set G ⊂ Cn, we say that G is F convex iff the F -convex
hull of every compact set, K ⊂ G is also compact.

We must take note of the fact that this notion of F -convexity is different from the notion
of logarithmic convexity we saw earlier. In the case of logarithmic convexity, a set D is
logarithmically convex if logD is convex in Rn while a set D is F -convex if the F -convex
hull of every compact set K is also compact. Therefore, logarithmic convexity is based on
the properties of D in Rn while F -convexity is based on the properties of D in Cn.

The remainder of this section will focus on examples and properties of generic classes of
functions.

Example 3.1.1. If F1 and F2 are two classes of functions and F1 ⊂ F2, then any F1-convex
set is automatically F2-convex. Moreover, if we have K and U are the same in both cases,
we have K̂F2 ⊂ K̂F1 .

Example 3.1.2. If F = {za : a ∈ N} and U = C and K = {z : |z| = 1}, we have that K̂F =
{z : |z| ≤ 1} because there is no function of the form za such that |wa||w|<1 > maxz∈K |za|.
If we took the same U and K and replaced F with F = {za : a ∈ Z} then K̂F = K

⋃
0

highlighting the fact that the F -convex hull depends on the class of functions rather than
the set. Likewise, if F = {za : a ∈ Z} and U = C \ 0 then we have K̂F = K, which also
shows that the F -convex hull also depends on the domain U .

While F can be any group of upper semicontinuous real valued functions, we will focus
strictly on the class of polynomials, linear functions, and holomorphic functions. These
classes of functions are of importance because of their relationship to one another, as well
as the properties of their corresponding convex hulls.

3.1.1 Polynomial Convexity

In this section, we focus on polynomial convexity. As such, we will always have F be the set
of holomorphic polynomials in complex coordinates z1, ..., zn.

Before discussing results specifically related to polynomial convexity, we begin with an
example over C:

Example 3.1.3. Suppose we are in Cn and we have U = Cn and the compact set K to be
countably many points {z1, ...zn}. Therefore K̂F = K because we can construct a polynomail
f =

∏n
j=1(z − zj). Therefore, we have |f(w)| > 0 ∀w /∈ K and |f(w)| = 0 ∀w ∈ K. This

example also highlights the fact that a set can be polynomially convex while not being
regularly convex. However, regular convexity implies polynomially convex.

One thing we get when working with polynomial convexity is the following theorem:

Theorem 3.1.4. For any set U and compact subset K, K̂F ⊂ K̂.
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Proof. Given Û and a compact set K̂ ⊂ Û . We will show the relation by showing that
K̂C ⊂ K̂C

F . Given some point p that can be separated from K̂, we have that it is separated

from K̂ by some real-linear function Re l(z). Because of this, we also have that p can be

separated from K̂ by el(z) and, consequently, by |el(z)|. Since we are working on compact sets,
and el(z) is entire, it can be approximated uniformly by polynomial functions. Therefore,
p ∈ K̂C

F .

This proof also establishes the fact that if there is an entire function that separates a
point p from a compact set K, then that point can also be separated from K by a polynomial.

When working with polynomial convexity over Cn, there are many questions to consider.
One fact we get is if K is a compact subspace of the real part of Cn, then we have that

K is polynomially convex.
Another interesting fact is the following theorem:

Theorem 3.1.5. If K1 and K2 are disjoint, compact, convex sets in Cn, then their union is
polynomially convex.

The proof can be found in (Boas, 2013).
We will end this section with a few examples and theorems:

Example 3.1.6. If we are working in C2, we have the set A = {(cos θ, sin θ) : 0 ≤ θ ≤ 2π}
is polynomially convex. This is because A ⊂ R2 ⊂ C2 meaning that both the complex
coordinates happen to be real numbers. Since the polynomially convex hull is a subset of
the regular convex hull, we just need to find a polynomial that separates the interior of A
from A. We can construct the polynomial f = 1− z21 − z22 . therefore, we have |f(w)| = 0 if
w ∈ A and |f(z)| 6= 0 if z lies on the interior of A.

Example 3.1.7. A slightly more interesting example is as follows. Let K be a polynomially
convex compact subset of Cn and let p be some polynomial. We therefore have the graph
A = {(z, p(z)) ∈ Cn+1 : z ∈ K} is polynomially convex.

Suppose α ∈ Cn and β ∈ C, and that (α, β) is not in A. Let us first assume that
α /∈ K. Therefore, by our assumption, we have a polynomial in Cn that separates K from
α. Therefore, if we treat g as a polynomial in Cn+1 and have it be independent of zn+1,
then we have it separates (α, β) from p. Assume α ∈ K and p(α) 6= β. Therefore, let us
define g = zn+1 − p(z) such that g is identically 0 on K and nonzero at (α, β). Therefore, g
separates (α, β) from A.

Definition 3.1.4. One way to construct a polynomially convex set in Cn by constructing a
polynomial polyhedra: {z ∈ Cn : |p1(z)| ≤ 1, ..., |pk(z)| ≤ 1} where each pj is a polynomial.
The sets are still polynomially convex if ≤ is replaced by <. The set is polynomially convex
because every point in the complement must be separated by some pj that defines the
polyhedron.

Polynomial polyhedra may not always be bounded, so one way to avoid this complication,
and still have the result be polynomially convex, is to have the polynomial polyhedra intersect
a polydisc.
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Although we will not discuss polynomial polyhedra, we do get the following interesting
theorem.

Theorem 3.1.8. If G is a polynomially convex set in Cn, then it can be approximated by
polynomial polyhedra:

(1). If K is a compact polynomially convex set, and U is an open neighborhood of K,
then there is an open polynomial polyhedron P such that K ⊂ P ⊂ U .

(2). if G if polynomially convex open set, then G can be expressed as the union of an
increasing sequence of open polynomial polyhedra.

Proof. For case (1).
Since we know K is bounded, we know that it is contained in some closed polydisc D.

If D ⊂ U then D is our required polyhedron. If we have that D \ U 6= ∅, we know that for
each w ∈ D \ U there exists a polynomial f that separates w from K. Therefore, we can
find some constant, λ such that maxz∈K |λf(z)| < 1 < |λf(w)|.

Because of the fact that D \ U is compact, we now there are finitely many polynomials,
f1, ..., fk such that ∩kj=1{z : |fj(z)| < 1} contains K and does not intersect D \U . If we take
this set and intersect it with D we have a polyhedron containing K that is contained in U .

For case (2).
Since G is open, we know that G can be expressed as an increasing union of compact

sets. Moreover, the polynomial convex hulls of these sets form another increasing sequence
of compact sets that equal G. Let us now remove certain sets and renumber them such that
G is exhausted by a sequence {Kj}∞j=1 of polynomially convex compact sets such that Kj

is contained in the interior of Kj+1. By the first part of the proof, we know that there is a
sequence of open polynomial polyhedra, {Pj}∞j=1 such that Kj ⊂ Pj ⊂ Kj+1 for all j.

Theorem 3.1.9. (Oka-Weil) If K is a compact, polynomially convex set in Cn, then every
function holomorphic in a neighborhood of K can be approximated uniformly on K by
polynomials.

3.1.2 Linear and Rational Convexity

In this section, our focus is on linear function and rational functions. As such, we will always
have F = {f : f = a0+a1z1+...anzm

b0+b1z1+...bnzn
}. If we want to focus on specifically linear functions, we

will take the denominator to strictly be 1. When working with rational functions, instead of
polynomial functions, one of the main differences is that the domain, G now matters because
we need to have that every f ∈ F does not have a 0 in the denominator for all z ∈ G.

As was the case with polynomial convexity, we can have a set that is F−convex that is
not regularly convex.

Example 3.1.10. The open set A = C2 \ {(z1, z2) ∈ C2 : z2 = 0} is F -convex but not
regularly convex. This is because if K ⊂ A is a compact set, then the function 1

z2
is bounded

on K making it so that K̂F stays away from the boundary of A.

Example 3.1.11. If we have K to be an arbitrary compact set, then K̂F = K̂, where Ŝ
refers to the standard convex hull. The proof of this example will be done later.
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When working with F instead of polynomials, we gain the following theorem:

Theorem 3.1.12. Given an open set G, we say G is F -convex iff for every boundary point
of G there is a complex hyperplane that intersects the boundary point but does not intersect
G.

We can now provide the following definition:

Definition 3.1.5. A domain is called linearly convex if its complement can be written as
the union of complex hyperplanes.

When we choose to work with the class of rational functions, instead of linear functions,
we can define rational convexity as follows:

Definition 3.1.6. Given a compact set K ⊂ Cn, we say K is rationally convex if for every
point w /∈ K, we can separate w from K by some rational function that is holomorphic on
K ∪ w. This definition translates to the standard definition, where we have some rational
function f such that |f(w)| > maxz∈K |f(z)|.

A remark about the definition is the fact that if f(w) is undefined we can slightly alter
the coefficients of f such that |f(w)| would become an arbitrarily large number and f on K
would not change too much.

Example 3.1.13. If K is any compact subset of C we have that K is rationally convex
because, for all w /∈ K, we can have the rational function 1

z−w which blows up at w. We can

also take a small enough ε such that 1
z−w−ε will be large at w and mostly unchanged for all

values in K.

We can also introduce the following two theorems related to rational convexity.

Theorem 3.1.14. If K is a compact subset of Cn and w /∈ K and there is a polynomial p
such that the image of w under p is not contained in the image of K under p, then this is
equivalent to rational convexity.

Proof. ⇒
Assume p(w) /∈ p(K). Therefore, we can find an ε such that 1

1−p(z)−p(w)−ε is a rational
function of z that is holomorphic in a neighborhood of K and we have that the modulus at
w is larger than the modulus anywhere on K.

⇐
If f is holomorphic on K∪w then we have that 1

f(z)−f(w) is a rational function of z that is
holomorphic on K and singular at w. Therefore, we can rewrite this function as a quotient
of polynomials with the denominator being a polynomial equal to 0 at w and nonzero on
K.

Theorem 3.1.15. The rationally convex hull of a compact subset of Cn is a compact subset
of Cn.
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3.1.3 Holomorphic Convexity

The final category of convexity we wish to consider is Holomorphic convexity. Therefore,
given a domain G, we have F = {f : f is holomorphic on G}. We have the idea of F -
convexity be the same as before.

If our domain is all of Cn, then we always have that holomorphic convexity is the same
as polynomial convexity, as we saw earlier in the section on polynomial convexity.

Given the fact that F consists of holomorphic functions on some domain G, if we have
G1 ⊂ G2, and a compact K ⊂ G1, we have K̂F1 ⊂ K̂F2 because of the fact that F2 ⊂ F1

since there are more holomorphic functions on G1 than there are on G2. Moreover, we have
the following theorem:

Theorem 3.1.16. Given a compact set K and a domain G such that K̂ ⊂ G, we have that
K̂F ⊂ K̂.

Proof. We solve this proof by showing K̂C ⊂ K̂C
F . Let w ∈ K̂C . Let f be the function that

separates K from w and let us take the real part of f . Therefore, we have | Re f(z)| < | Re
f(w)|. Therefore, we have that |eRef(z)| < |eRef(w)| therefore, eRef is our desired holomorphic

function and w ∈ K̂C
F .

We will end this section with some examples and a theorem which we shall prove later.

Example 3.1.17. If we are working in C and have K to be the unit circle, if G = C and
F = {f : f is entire }, then K̂F = {z : |z| ≤ 1}.

Example 3.1.18. Let K be the unit circle in C. If G = C and F is the class of entire
functions we have that K̂F is the unit circle by the Maximum Modulus Principle.

If G = C\0 and F is the set of functions holomorphic on G then K̂F = K because f = 1
z

is holomorphic on G and separates K from its interior.

Theorem 3.1.19. Given K is a holomorphically convex compact subset of G and p ∈ G
such that p /∈ K, then K

⋃
p is a holomorphically convex compact subset of G.

These major classes of functions are all related and play a role in solving the official
theorems of this paper.

Holomorphically convex sets are particularly important because any open holomorphi-
cally convex set is also a domain of holomorphy.
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Chapter 4

Official Theorems

4.1 Statement of the First Theorem

Before stating the official theorem, we first wish to introduce some additional definitions.
Let us assume G is a domain in Cn.

Definition 4.1.1. We shall say a point p on the domain of G is completely singular for
a holomorphic function f , if for all open connected neighborhoods, U , of p, there is no
holomorphic function g with f = g on some nonempty open connected subset of U ∩G.

For example, if we work over C and take G to be the unit disc, we have that p = 0 is
completely singular for f(z) = 1

z
. If we have a domain G and have a holomorphic function

h = f
g

where f(z) 6= 0 ∀z ∈ G, then we have the set of completely singular points is the set
of zeroes of g in G. A picture example of completely singular can be seen in Figure 4.1.

If G is completely singular at each boundary point p, we say that G is a weak domain of
holomorphy. We have that any convex domain is a weak domain of holomorphy. Given some
point p on the boundary of some convex domain, there is a holomorphic function f such that
f(p) = 0 and f(z) 6= 0 ∀z ∈ G. Therefore, h = 1

f
is our desired holomorphic function.

If there exists a holomorphic function f that is completely singular at every boundary
point p of G, we say that G is a domain of holomorphy. In Cn, we have the unit ball is a

Figure 4.1: Given our domain G, we say p is completely singular for a holomorphic function
f , if for any open connected neighborhood of p, we have no function g such that g = f on
any open connected subset of U ∩ G. In the case of this example, there is no holomorphic
function g, such that f = g on the shaded region of the photo.
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domain of holomorphy. Let us have f = f1f2...fn where fj is a function of a single complex
variable that is 0 on the boundary of the unit disc in Cj. If we have h = 1

f
, we have that h

is a function that completely singular at every point on the boundary of the unit ball.
Given z ∈ G, let δ(z) = infw∈Cn\G ||z−w||, or the distance from z to the boundary of G.

We can expand this definition to a set S ⊂ G and have δ(S) = inf{δ(z) : z ∈ S} where δ(S)
is equivalent to the minimum distance from a point in S to the boundary of G.

We can also expand these definitions to include a unit vector v. Let us have δv(z) =
sup{r > 0 : z + λv ∈ G, λ ∈ Cn, |λ| < r}. We therefore have δv(z) is a disc of the
largest radius, centered at z, such that it is contained in G. In the case of δv(S), we have
δv(S) = inf{δv(z) : z ∈ S}.

The first theorem we wish to prove is the following theorem:

Theorem 4.1.1. Given a domain G of Cn, the following are equivalent:

1. G is holomorphically convex.

2. Given any sequence of unique points {pj} ∈ G with no accumulation point in G, there
exists a holomorphic function f on G such that limj→∞ |f(pj)| =∞.

3. Given any sequence {pj} ∈ G with no accumulation point in G, there exists a holo-
morphic function f on G such that supj |f(pj)| =∞.

4. For all compact sets K in G, and for all unit vectors v in Cn, the distance from K to
the boundary of G in direction v is equal to the distance from K̂ to the boundary of
G in direction v. Alternatively, δv(K) = δv(K̂).

5. For all compact sets K in G, the distance from K to the boundary of G is equal to the
distance from K̂ to the boundary of G. Alternatively, δ(K) = δ(K̂).

6. G is a weak domain of holomorphy.

7. G is a domain of holomorphy.

4.2 Proof of the First Theorem

We already have (2)⇒ (3) and (7)⇒ (6) trivially. We will begin with the proof of (4)⇒ (5):

Proof. Let us first define f(z) = inf{δv(z) : ||v|| = 1}. Now, for any r < δ(z), we must
have B(z, r) ⊂ G by our definition of δ(z). Therefore, ∀u such that ||u|| = 1, we must have
that z + λu ⊂ G if we have that |λ| < r. Therefore, we have r ≤ δu(z) and this gives us,
δ(z) ≤ δu(z).

Now, let us assume that δ(z) ≤ inf{δv(z) : ||v|| = 1}. Let us assume δ(z) is strictly less
than inf{δv(z) : ||v|| = 1}. Therefore, let us choose an s such that δ(z) < s < inf{δv(z) :
||v|| = 1}.

By our definition of δ(z), we must have that B(z, s) ∩ Gc 6= ∅. Let w ∈ B(z, s) ∩ Gc.
Therefore, ||w−z|| < s, moreover, we have that ||w−z|| = λ. We can now define u = w−z

||w−z|| .
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This gives us the fact that w = z + λu ∈ Gc. But, this means that δv(z) < s which is
impossible from our assumption. Therefore, δ(z) = δv(z).

Using this fact, and our initial assumption, given any compact set K ⊂ G, we have that
δ(K̂) = inf{δv(K̂) : ||v|| = 1} because of the fact that δ(K̂) = inf{δ(z) : z ∈ K̂} and

δ(z) = δv(z). Moreover, we have that δ(K̂) = inf{δv(K̂) : ||v|| = 1} = inf{δv(K) : ||v|| =
1} = δ(K).

The next implication we wish to prove is that (5)⇒ (1).

Proof. Given a compact set K in G, we have that (5) implies K is a closed subset of G with

positive distance from the boundary. Thus, given a point p /∈ K̂, we must have a holomorphic
function f , on G, such that |f(p)| > supw∈K |f(w)|. Similarly, we can multiply f by some λ
with |λ| = 1 such that |f(p)| = λf(p) and we shall call λf simply f for convenience sake. Now
let us have δ = f(p)− supw∈K |f(w)| and construct the set A = {z ∈ G : |f(z)| > f(p)− δ

2
}.

Given the fact that A is open, and is the set of points that can be separated from K by f ,
we have that K̂ is relatively closed since its compliment is open.

By (5), we have that δ(K̂) > 0. Therefore, if we can show that Cn \ K̂ is open, we must

have that K̂ is closed. For p ∈ G, we have already found an open set, A, such that p ∈ A
and A is open. Given p /∈ G, let us have r = δ(K̂). Therefore, d(p, r) is a disc centered at p

with radius r that is open and d(p, r) ∩ R̂ = ∅. This gives us the fact that K̂ is closed.

Now that we have the fact that K̂ is closed, we can complete the proof by showing that
the holomorphically convex hull K̂ is a subset of the ordinary hull of K, since we know that
the ordinary hull of K is bounded. We will prove this with the following lemma:

Lemma 4.2.1. Let F be the set of all affine functions of the form {|a0 + a1z1 + ...+ anzn|},
we have that K̂F = K̂.

Proof. In order to show K̂F ⊂ K̂ we will show that K̂C ⊂ K̂C
F . Therefore, given some p ∈ K̂C

we need to show that p ∈ K̂C
F . We know that ∃f such that f is of the form b1z1+b2z2+...bnzn,

and |f(p)| > supw∈K |f(w)|. Let us now choose a b0 such that b0 + b1p1 + b2p2 + ...bnpn > 0.
If supw∈K(b0 + b1w1 + b2w2 + ...bnwn) > 0 then we are done since this function is our

desired affine function. Let us suppose that supw∈K(b0 + b1w1 + b2w2 + ...bnwn) ≯ 0. Since
K is compact, we know that the function is bounded. Therefore, there is some c0 such that
supw∈K(c0 + b0 + b1w1 + b2w2 + ...bnwn) > 0.

Calling this affine function h, we have that |h(p)| > supw∈K |h(w)|. Therefore p /∈ K̂F
and p ∈ K̂C

F giving us K̂F ⊂ K̂.

To show that K̂ ⊂ K̂F we will show that K̂c
F ⊂ K̂c. Given p ∈ K̂c

F , we know there
exists an affine function f such that |f(p)| > supw∈K |f(w)|. However, any affine function is

a hyperplane that separates K from p, therefore p ∈ K̂c which completes the proof.

This lemma functions for our purposes using the fact that ∀p ∈ G such that p /∈ K,
p
⋃
K is a compact set, so thus the lemma holds in this case which gives us the fact that the

holomorphically convex hull of K is a subset of K̂ which gives us the fact that it is closed
and bounded and thus compact.
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Next, we show that (1)⇒ (2).

Proof. Given some holomorphically convex domain G and some sequence {pi} of unique
points with no accumulation point in G, we wish to show that there exists a function f such
that limi→∞ |f(pi)| =∞. We will begin by first constructing a sequence of increasingly large
holomorphically convex compact sets {Ki} such that their interiors exhaust G and we will
construct a sequence {qi} by rearranging terms in {pi} such that qi ∈ Ki+1 \Ki.

We construct the sets as follows. Firstly, we have K1 = ∅. For all m ∈ N, we form
the set {z ∈ G : ||z|| ≤ m and δ(z) ≥ 1

m
}. We shall also have Lm be the corresponding

holomorphically convex hull of this set. Let Lm1 be the first set that intersects G and contains
points of {p1}. Note that it must contain fintely many points of {pi} otherwise the sequence
would have a limit point in G, which would be a contradiction. We can take this subsequence
of {pi} and arrange it to form the sequence {q1, ...., qk}. Let us define Kj+1 = {q1, ..., qj} for
1 ≤ j ≤ k.

Next, find Lm2 such that Lm2 \Lm1 contains some finite subsequence of {pi}. If we label
these points {qk+1, ..., qk+k1}, for k ≤ j ≤ k+k1 we can define Kj+1 = Lm1

⋃
{qk1 , ..., qj}. We

will prove that the Kj+1’s are holomorphically convex compact subsets with the following
lemma:

Lemma 4.2.2. Given K is a holomorphically convex compact subset of G, and p ∈ G, we
have that K

⋃
{p} is a holomorphically convex compact subset of G.

Proof. Given a holomorphically convex compact subset K of G, and a point {p} ∈ G, we wish
to show that K

⋃
{p} is holomorphically convex compact. We have compact by construction,

so we just need to show that the new set is holomorphically convex. Therefore, given some
{q} ∈ G such that {q} /∈ K and q 6= p, we wish to find some holomorphic function h such
that |h(q)| > maxw∈K⋃

{p} |h(w)|.
First, let f ′ be a holomorphic function on G such that |f ′(q)| > |f ′(p)|. Let us now define

f = f ′ − f ′(p). Therefore we have |f(q)| > |f(p) and f(p)| = 0.
Since K is holomorphically convex, there is some g′ such that |g′(q)| > maxw∈K |g′(w)|.

Let us define M = maxw∈K |f(w)|. If |g′(q)
maxw∈K |g′(w)|

≤ M let us redefine g′ as g′ = eg
′
. We

will continue to exponentiate until we have some g = eg
′

such that |g(q)|
maxw∈K |g(w)|

> M .
Therefore, our desired holomorphic function is h = fg.

We continue this process until we exhaust G. Therefore, we have a series of increasingly
large holomorphically convex compact subsets and a sequence {qi}, such that the interiors
of these sets exhaust G as well because ∀K ⊂ G where K is compact, we know that it is
contained in the union of open subsets. Therefore, there must be some K◦j such that K◦j
contains the desired open subsets, and since K◦j ⊂ Kj, we have that K◦j and Kj exhaust G.

Now that we have constructed our desired holomorphically convex compact sets and
our rearranged sequence, we can proceed with the proof. For each j, we wish to find a
holomorphic function on G such that |fj(z)| < 2−j for z ∈ Kj and |fj(qj)| > j+

∑j−1
k=1 |fk(qj)|.

Since we know that Ki are holomorphically convex, and qi /∈ Ki, there exists a function
fi such that |fi(qi)| > maxw∈Ki |fi(Ki)|. If fi does not satisfy the properties above, we can
make it do so in the following manner. The first step is to make sure the difference between
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|fi(qi)| and maxw∈Ki |fi(w)| is large enough. If the gap is not sufficiently large, we can replace
fi with fi = efi . We can continue this process until the gap is large enough. From there,
we can divide the resulting fi by a large enough constant such that |fj(z)| < 2−j for z ∈ Kj

and |fj(qj)| > j +
∑j−1

k=1 |fk(qj)|.
Therefore, the infinite sum

∑∞
j=1 fi will converge uniformly on all compact subsets of G

to a function f . Moreover, we have that |f(qj)| > j − 1. That is because

|f(qj)| = |
∞∑
l=1

fl(qj)| = |
j−1∑
l=1

fl(qj) + fj(qj) +
∞∑

l=j+1

fl(qj) (4.1)

≥ |fj(qj)| − |
j−1∑
l=1

fl(qj)| − |
∞∑

l=j+1

fl(qj)| (4.2)

≥ |fj(qj)| −
j−1∑
l=1

|fl(qj)| −
∞∑

l=j+1

|fl(qj)| (4.3)

.
Since |fj(qj)| −

∑j−1
k=1 |fk(qj)| > j by our assumption, we therefore have:

|fj(qj)| −
j−1∑
l=1

|fl(qj)| −
∞∑

l=j+1

|fl(qj)| (4.4)

≥ j −
j−1∑
l=1

|fl(qj)|+
j−1∑
l=1

|fl(qj)| −
∞∑

l=j+1

|fl(qj)| (4.5)

= j −
∞∑

l=j+1

|fl(qj)| (4.6)

Since qj ∈ Kl, we have that
∑∞

l=j+1 |fl(qj)| ≤
∑∞

l=1 2−l < 1.
Therefore, |f(qj)| > j − 1 and limj→∞ |f(qj)| =∞.
We also must have limi→∞ |f(pi)| = ∞. This is because of the fact that ∀M ∃m such

that |f(pn)| > |f(qM)| ∀n > m because of the fact that the set {q1, ..., qM} must be mapped
to some set {pm1 , .., pmM}. Therefore, we can have m = max{m1, ...,mM}.

The next implication we wish to show is that (3)⇒ (1).

Proof. We first assume K to be a compact subset of some domain G. Due to the fact that
K is compact, we have any holomorphic functions on K will be bounded, and hence they
must also be bounded on K̂ because it is also compact. Therefore, if {pi} is a sequence in K̂,
it must have an accumulation point in G. Because of (3), if we had the opposite case, then

there is a holomorphic function on K̂ that is bounded on K̂ but approaches infinity at the
boundary. This property also gives us the fact that any accumulation point of {pi} must be

in K̂ because it is relatively closed by definition. Therefore, we have that K̂ is sequentially
compact, completing the proof.
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Figure 4.2: The following is an example of some set Ak. The shaded region is the intersection
of the ball of radius 2k, and the set {z ∈ G : 2−(k+1) ≤ δ(z) ≤ 2−1} and is our desired Ak.

The proof of (2)⇒ (7) is as follows:

Proof. We begin by constructing a series of compact sets as follows: for each k, we have
Ak = {z ∈ G : 2−(k+1) ≤ δ(z) ≤ 2−k and ||z|| ≤ 2k}. Due to the fact that G could potentially
be unbounded, the second condition is required for Ak to be compact. An example of Ak
can be seen in Figure 4.2.

Because of the fact that Ak is compact, it can be covered with finitely many balls of
radius 2−(k+2). These balls with have their centers in G and will not reach the boundary of
G. For all the Ak’s, we can form a sequence {pj} where each pi is the center of some ball
covering an Ak.

If we take some arbitrary compact set K, we know that that δ(K) > 0. Therefore, we
must have that K ∩{pj} will have finitely many points of the sequence meaning {pj} has no
accumulation point in G. Moreover, we have that every point on the boundary of G must
be an accumulation point of {pj}. This is because of the fact that any ball centered at a
boundary point of G must intersect infinitely many Ak.

Now, let us take some open connected set U , and have it intersect G at the boundary.
Moreover, let V be some connected component of U ∩G as seen in Figure 4.3. We must have
that any of the pj’s in V must accumulate to every boundary point of V that is contained
in U . This means that bd V ∩ U 6= ∅ because if bd V ∩ U = ∅ then U = (U∩ int V )

⋃
(U∩

ext V ) but this would mean U is the union of 2 open sets, contradicting the fact that U is
connected. We must also have that any boundary point of V contained in U is a boundary
point of G. Assume that z ∈ G is a boundary point of V that is not a boundary point of G.
Then we have that either z ∈ G or z /∈ G. The first case is impossible because we could form
a closed ball around z contained in G which would contradict our earlier fact that {pj} has
no accumulation point in G. The latter case is also impossible based on our construction of
V . Also, since z ∈ G ∩ G, we have that z must be contained in a connected component of
the intersection. Therefore, z ∈ U .

Now let us have some q ∈ bd V ∩ U . We can now find some large integer n such that
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Figure 4.3: The following is an example of taking some open connected set U and having
it intersect G. The shaded regions are the connected components of U ∩ G. V is the set
containing the point p.

B(q, 2−n) ⊂ U and ||q|| < 2−n. Given some m > n, we can have q′ be in a V ∩ B(q, 2−m).
For some k that is at least as large as m, we have that 2−(k+1) ≤ δ(q′) ≤ 2−(k). This also
gives us that B(q′, 2−(k+2)) ⊂ B(q′, 2−(m+2)) ⊂ B(q, 2−n) ⊂ U .

Since q′ is in some Ak, we know that some {pl} has distance less than 2−(k+2) from q′.
Because we know that B(q′, 2−(k+2)) ⊂ V , because of the fact that the ball is connected
and must lie in some connected component of U ∩G so therefore it lies in V , we have that
{pl} ∈ V . Therefore, we have we have some subsequence of {pj} ⊂ V that converges to q.

Since q was arbitrary, and by (2), we have some holomorphic function f , such that f will
be singular at every point on along the boundary of G.

The remaining two proofs of (6)⇒ (5) and (3)⇒ (4) follow a similar pattern. The proof
of the former is as follows:

Proof. Given some compact set K, due to the fact that K ⊂ K̂, we have δ(K̂) ≤ δ(K). We

will assume that that δ(K̂) < δ(K) and arrive at a contradiction.

By the construction of δ, we have some w ∈ K̂ \K and q ∈ bd G, such that ||w − q|| <
δ(K). Let us construct the n-tuple (r1, ..., rn) such that rj = min{r : qj ∈ D(wj, r} ∀j, or
that rj is the smallest radius such that an open disc centered at wj with radius rj will contain
qj. This is equivalent to stating rj = |wj − qj|. Therefore, if r = (r1, ..., rn), we have that
q ∈ D(w, r), where D(z0, s) is a polydisc centered at z0 with polyradius s. We also have
∀z ∈ K, D(z, r) ⊂ G and B =

⋃
z∈K D(z, r) is a compact subset of G.

By (6), we have some holomorphic function f that is completely singular at q. Moreover,
we know that f is bounded by some constant M on B. If we take α to be any multi-index,
we must have that |f (α)(z)| ≤ Mα!

rα
for z ∈ K by Cauchy’s estimate for derivatives.

Given any holomorphic function φ and compact set K, if we have |φ(z)| ≤M ∀z ∈ K, we

must have |φ(w)| ≤M ∀w ∈ K̂ otherwise φ would separate w from K which would contradict

w being in K̂. We have proved that |f (α)(w)| ≤ Mα!
rα

must hold ∀w ∈ K̂. Therefore, the

Taylor series of f centered at w is of the form f(w) =
∑

α
fα(w)
α!

(ζ − w)α. Moreover, by the
M test, we have that this Taylor series must converge in B(w, r) which means that f cannot

be singular at q. Therefore, δ(K̂) = δ(K).
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The final proof of (3)⇒ (4) follows a similar format:

Proof. Assume for the purpose of contradiction that (4) does not hold. Then there is a unit

vector v ∈ Cn, some compact set K ⊂ G, and some w ∈ K̂ \K such that δv(w) < δv(K).

Given some λ0 ∈ C with |λ0| = δv(w) such that the complex polydisc w+λ0v is in G, we
can have (3) allow us to produce a holomorphic function f such that limj→∞ |f(w+ j

j+1
λ0v)| =

∞.

By restricting ourselves to a function of one complex variable, we can have a function
g : λ → f(w + λv). Since f is holomorphic on G, we know that g has a Maclaurin series
that has a radius of convergence equal to δv(w).

Given r such that δv(w) < r < δv(K), we can form a compact set: R = {z + λv : z ∈ K
and |λ| ≤ r}. We have that R is compact by a proof similar to the proof in the last
section. By construction we have that R ⊂ G and that |f | restricted to R is bounded by M .
Given z ∈ K, we have that the kth coefficient of g is bounded by M

rk
because of Cauchy’s

estimate for derivatives. Also, because of the chain rule, the Maclaurin coefficient at z is

g(k)(λ) =
∑

m1+...+mn=k
∂kf(w+λv)

∂z
m1
1 ...∂zmnn

vm1
1 ...vmnn , or a linear combination of the partial derivatives

of of f . Since g is analytic, we also have that g(λ) =
∑∞

k=0
g(k)(0)
k!

λk. Therefore, we have
the resulting coefficient is a holomorphic function on λ with a radius of convergence greater
than or equal to r.

Using what we just have, and following a similar approach as the last proof, we can
therefore construct a one variable holomorphic function ψ : λ → f(w + λv). We also have
that the Maclaurin coefficients of ψ are also bounded by M

rk
. Because we can do this for

any k, we have that the radius of convergence of ψ must be at least r. However, from our
assumption, we had that the radius of convergence should be δv(w) < r. Thus we arrive at
our desired contradiction.

Thus, we have (1)⇒ (2)⇒ (7)→ (6)⇒ (5)⇒ (1), (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1),
and (1)⇒ (2)⇒ (3)⇒ (1) which completes the proof.

4.3 Statement of the Second Theorem

The following Theorem is based off of the previous theorem and utilizes the Baire Category
theorem in the fact that the existence of one singular function implies that most functions
are singular.

Before we begin the actual statement and proof of the theorem, we must first introduce
some terminology and discuss some important points.

If have a dmain G and the space of holomorphic functions on G we can induce a metrizable
topology by the uniform convergence on compact subsets. Therefore, if we have that {Kj}
s a sequence of compact subsets which exhaust G, we can define

dj(f, g) = max
z∈Kj
|f(z)− g(z)| (4.7)
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and the metric to be defined as

d(f, g) =
∑
j

2−jdj(f, g)/(1 + dj(f, g)) (4.8)

. Since the limit of holomorphic functions on a compact set is a holomorphic functon, we
have that the set of holomorphic functions on G is a complete metric space with the metric
d.

We will also refer to the ”generic” holomorphic function which we mean to be ”belonging
to the residual set” or in the complement of a set of first category.

The theorem is as follows:

Theorem 4.3.1. Given G is a domain in Cn, the following properties are equivalent:

1 For every boundary point p, there is a holomorphic funcion, f , on G that is completely
singular at p. Therefore, G is a weak domain of holomorphy.

2 For every boundary point p, the generic, in the sense of the Baire Category Theorem,
holomorphic function on G is completely singular at p.

3 G is a domain of holomorphy.

4 The generic, with respect to the Baire Category Theorem, holomorphic function on G
is completely singular at every boundary point.

4.4 Proof of the Second Theorem

We already have (4) ⇒ (3) ⇒ (1) and (4) ⇒ (2) ⇒ (1). We are only interested in proving
that (1) ⇒ (4) because we have that (1) and (3) are equivalent, which was proved in the
previous theorem.

Proof. Assume that (1) holds. Let U be an open connected set which intersects bd(G) and
let V ⊂ U ∩ G be a connected component of the intersection. Now let f be a holomorphic
function such that f cannot be extended holomorphically from V to U .

We wish to show that most functions satisfy the above requirement. Let us define H(G)
to be the set of holomorphic functions on G. We know that the vector space of holomorphic
functions on G is an F -space (Def. A.0.3). If we define HU(G) ⊂ H(G) to be the set of
holomorphic functions on G which can be extended from V to U , we also have that HU(G)
is an F -space such that the metric of it is the sum of the metrics of H(G) and H(U). We
also have that this subspace is continuously embedded into H(G). From our assumption, we
also have that the image of the embedding is not the whole of H(G) which means that the
image is of first category (see Remark in Appendix). Therefore, we have that the functions
in the residual set of H(G) cannot be extended holomorphically from V to U .

Now, let {pj} be a dense countable subset of points on the boundary of G. For each pj,
let Bj

k be a countable neighborhood basis of open balls whose radii are reciprocals of positive
integers. Therefore, we have that Bj

k ∩ G is countably many connected components for all
j and k. Let us arrange all of these components to form the countable list {Vj}. Using the
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previous part of the proof, we have that the set of holomorphic functions that extend from Vj
to its corresponding Bj

k’s is the countable union of sets of first category, and of first category
itself. This definition is equivalent to saying that the complementary set of holomorphic
functions on G that extend from no Vj to the corresponding Bj

k is a residual set.
Now, all we have to show is that every member of the previously mentioned residual set

is completely singular at every boundary point. Let U be an arbitrary connected open set
such that U ∩ bd(G) 6= ∅. Let V be a component of U ∩G. Then, we have some ball in our
constructed sequence is contained in U and is centered at a boundary point of V . Therefore,
there is a Vj corresponding to this ball that must also be a subset of V so all the functions
in the residual set fail to extend holomorphically from V to U . Therefore, every function in
the residual set is completely singular at every boundary point of G.



Appendix A

Baire Category and Open Mapping
Theorem

This section is focused on using the Baire Category Theorem and proving the Open Mapping
Theorem. The Open Mapping Theorem has played a large part in multiple proofs and is
worth exploring. Due to the fact that the work behind proving the Open Mapping Theorem
is irrelevant to the rest of the work, it is proved here in an appendix.

Let us first begin by stating the Baire Category Theorem ([3], Theorem 5.6).

Theorem A.0.1. If X is a complete metric space, the intersection of every countable col-
lection of dense open subsets of X is dense in X.

Since Cn and the vector space of all holomorphic functions on a region in Cn (topologized
by uniform convergence on compact sets) are a complete metric space (see equation 4.8),
the Baire Category Theorem, and subsequently the Open Mapping Theorem, will apply to
them.

Proof. Given X is a complete metric space. Let V1, V2, ... be dense open subsets in X and
let V = ∩Vn. Given some nonempty open set W , we wish to show W ∩ V 6= ∅.

Since V1 is dense in X, we have that W ∩ V1 6= ∅. Therefore, we have some point
x1 ∈ W ∩ V1 and some radius r1 such that B(x1, r1) ⊂ W ∩ V1 where B(x1, r1) is the closed
ball centered at x1 with radius r1. Moreover, we can have it so that 0 < r1 < 1.

For the case of n ≥ 2, we can assume we have a chosen xn−1 and rn−1 such that Vn ∩
B(xn−1, rn−1) 6= 0. We can now find some xn and some rn < 1

n
such that B(xn, rn) ⊂

Vn ∩B(xn−1, rn−1).
Through this process, we have produced a sequence of {xn} such that, if j, k > m, we

have that xj, xk ∈ B(xm, rm) and ρ(xj, xk) < rn < 2rn = 2
n
. Therefore, {xn} is a Cauchy

sequence and we have some x such that x = limn→∞ xn.
Once again, for j > m, we have xj ∈ B(xm, rm) which means that x ∈ B(xm, rm) which

also means that we have x ∈ Vn by construction. We also have that x ∈ B(x1, r1) and since
B(x1, r1) ⊂ W ∩ V1, we have x ∈ W which completes the proof.

Before discussing an alternate version of the Baire Category Theorem, we need to intro-
duce the following definitions.

37
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Definition A.0.1. Given any set E ⊂ X, we say that E is nowhere dense if the closure E
contains no nonempty open subsets of X.

We can use this definition to introduce the following two definitions:

Definition A.0.2. We say a set is of first category if it is the countable union of nowhere
dense sets. All other sets are sets of second category.

Another statement of the Baire Category Theorem, and where the name comes from, is
the following corollary:

Theorem A.0.2. No complete metric space is of first category.

This corollary is a result of taking the complement of A.0.1.
This version of the Baire Category Theorem will be the primary version of the theorem

in which we are interested.
Another important notion we have to introduce before proceeding to the Open Mapping

theorem is the idea of an F -space.

Definition A.0.3. If X is a topological vector space, we say X is an F-space if its topology,
τ , is induced by a complete translation invariant metric, δ.

Finally, we must talk about what it means to be an open map before talking about the
Open Mapping Theorem.

Definition A.0.4. Let S and T be topological spaces and let f : S → T be a map. We say
that f is an open map if f(U) is open whenever U is open.

With all the preliminaries, we can now state the Open Mapping Theorem (This is one of
the most important theorems in functional analysis).

Theorem A.0.3. (Open Mapping Theorem) ([4] Theorem 2.11)
Suppose:

(A) X is an F -space

(B) Y is a topological vector space

(C) Λ : X → Y is continuous and linear

(D) Λ(X) is of second category in Y

then

(1) Λ(X) = Y

(2) Λ is an open mapping

(3) Y is an F -space
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Proof. Due to the fact that Y is the only open subspace of Y , we immediately have that
(2)→ (1).

To prove (2), we assume that V is a neighborhood of 0 in X and show that Λ(V ) contains
a neighborhood of 0 in Y .

Let d be an invariant metric that is compatible with the topology induced on X. We can
now construct Vn{x : d(x, 0) < 2−nr} such that r > 0 and V0 ⊂ V .

Using this construction, we will show there is some W ⊂ Y such that 0 ∈ W and

W ⊂ Λ(V1) ⊂ Λ(V ) (A.1)

Before we continue, we need the following lemma:

Lemma A.0.4. If X is a topological space and if A ⊂ B and B ⊂ X, then A+B ⊂ A+B

Proof. Given a ∈ Â and b ∈ B̂, let a + b ∈ W . Therefore, we have a neighborhood, W1 of
a and a neighborhood W2 of b such that W1 + W2 ⊂ W . Moreover, we have at least one
x ∈ A∩W1 and y ∈ B∩W2. Therefore, x+y ∈ (A+B)∩W meaning that a+b ∈ A+B.

By construction, we have that V1 ⊃ V2 − V2, we can use the previous lemma to have

Λ(V1) ⊃ Λ(V2)− Λ(V2) ⊃ Λ(V2)− Λ(V2) (A.2)

Therefore, we can prove the first relation of Eq A.1 if we show that Λ(V2) has a nonempty
interior. Since V2 is a neighborhood of 0, we know that

Λ(X) = ∪∞k=1kΛ(V2) (A.3)

Since X is of second category, at least one kΛ(V2) must be of second category. However,
since f : y → ky is a homeomorphism on Y , Λ(V2) is of second category and therefore has
nonempty interior.

To prove the second relation of Eq A.1, let us fix y1 ∈ Λ(V1). We will find yn ∈ Λ(Vn) for
n ≥ 1 as follows. We know that each Λ(Vn) is a neighborhood of 0, so we have that

(yn − Λ(Vn+1)) ∩ Λ(Vn) 6= ∅ (A.4)

If we set yn+1 = yn − Λ(Vn+1), then we have that yn+1 ∈ Λ(Vn+1)
Due to construction, we have that d(xn, 0) < 2−nr, we have that the sum x1 + ...+xn+ ...

forms a convergent Cauchy sequence that converges to a point x ∈ X such that d(x, 0) < r.
Therefore, since

m∑
n=1

Λxn =
m∑
n=1

(yn − yn−1) = y1 − ym+1 (A.5)

we have that x ∈ V . Due to the continuity of Λ, we have that ym+1 → 0. Therefore,
y1 = Λ(x) ∈ Λ(V ). Therefore, we just proved the second inclusion of Eq A.1 and proved (2).

To prove (3), we need the following lemma which we will not prove

Lemma A.0.5. Let N be a closed subspace of a topological vector space X. If X is an
F -space, then so is X/N .
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Proof. Given X is an F -space and N is a closed subspace of X. We wish to show that X/N
is also an F -space. To do this, let us assume Let d be an invariant metric on d.

Let us define π(x) = x+N to be the coset of N that contains x.
Now, given our invariant metric d, let us define

ρ(π(x), π(y)) = inf{d(x− y, z) : z ∈ N} (A.6)

To complete the proof, we have to show that ρ is complete whenever d is complete.
Let {un} be a Cauchy sequence in X/N relative to the metric ρ. We can therefore

construct the subsequence {unj} such that ρ(unj , unj+1
) < 2−j. We can therefore choose a

correspondng xj ∈ X such that π(xj) = unj . By the completeness of d, we know that xj will
converge to some x. Therefore, since π is continuous, we have that {unj} → π(x) meaning
that ρ is complete.

Using this lemma, we can have N be the null space of Λ. Therefore, to prove (3), all we
need to do is to find an isomorphism f from X/N to Y such that f is also a homeomorphism.
We can do this by defining f(x + N) = Λx. If we have π to be the standard quotient map,
we have that f is an isomorphism and that Λ(x) = f(π(x)). Therefore, given some open
subset V of Y , we have that f−1(V ) = π(Λ−1(V )) and f−1(V ) is open due to the continuity
of Λ and the openness of π.

Therefore, f is continuous and if E is an open subset of X/N we have that f(E) =
Λ(π−1(E)) is open, meaning f is our desired homeomorphism.

Remark One important point worth noting is that if we did not have property D in the
Open Mapping Theorem, then the image of Λ(X) is of first category.
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