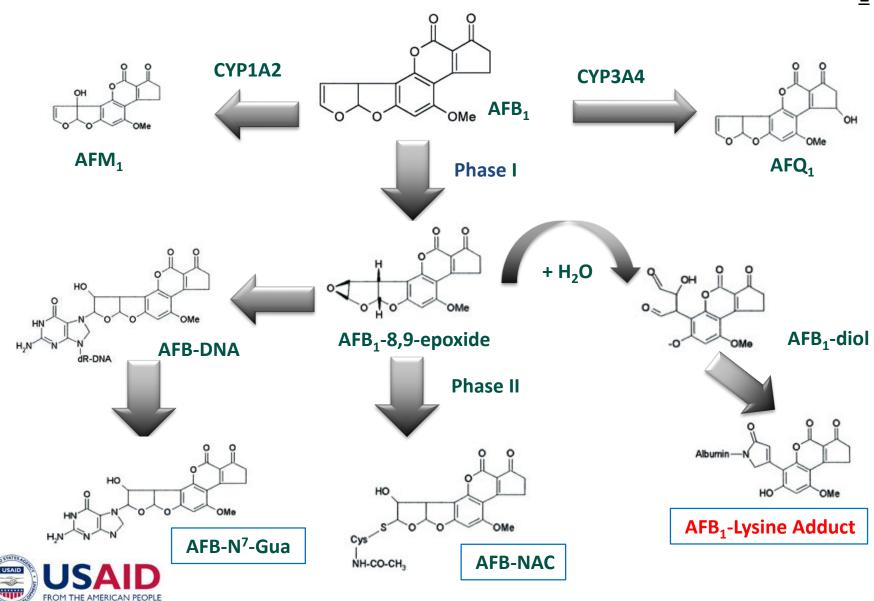


## Development and Validation of Methods for Detection of Aflatoxin-Lysine Adduct in Dried Blood Spot Samples

#### Jia-Sheng Wang Department of Environmental Health Science University of Georgia

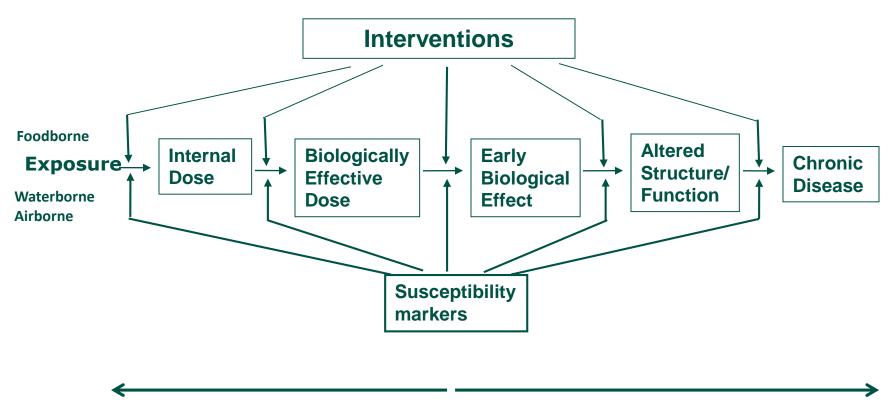





## Aflatoxins

- A group of potent mycotoxins produced mainly by *Aspergillus flavus* and *A. parasiticus;*
- Widespread food contaminants, especially for corn & corn products, peanuts & other groundnuts, and rice;
- Human aflatoxicosis and hepatocellular carcinoma;
- Immunosuppressors;
- Anti-nutritional agents;
- Inhibition of children growth and development.






#### **Metabolic Pathways of AFB<sub>1</sub>**





### **Biomarkers**



**Exposure biomarkers** 

**Effect biomarkers** 





# **Original Goals**

- To establish and validate methods for measuring major aflatoxin biomarkers in human dried blood spot (DBS) samples;
- To support needs of aflatoxin exposure assessment in USAID supported Peanut and Mycotoxin Innovation Laboratory (PMIL) and Nutrition Innovation Laboratory (NIL) research projects.





# **Working Hypothesis**

 Levels of AFB<sub>1</sub>-lysine adduct in human blood or DBS samples are correlated to dietary aflatoxin exposure and will be a reliable effective biological response indicator for aflatoxin-linked adverse health effects in high-risk human populations.





### **Background Information**

- DBS sampling technique was first developed to screen newborn babies for the genetic metabolic disorder, phenylketonuria.
- DBS has been applied to nutritional supplement studies and pharmacokinetics' studies during new drug development.
- DBS has been used for various "omics" studies.
- DBS has been proposed to use for HIV and HCV research and various environmental exposure studies.





# **Advantages of DBS Technique**

- Less invasive;
- Uses smaller blood volumes;
- Utilizes simple storage methods;
- Minimizes shipping expenses;
- Offers convenient sampling;
- Reduces risk of blood-borne pathogens such as HIV, etc.





## **Regular methods Dried Blood Spots** ~ 3ml Blood 5 x 50 µl Blood 150µl serum aliquot





# Challenges

- Hold enough mycotoxin or test target?
- Sensitivity?
- Specificity?
- Accuracy?
- Platform analysis for large quantity of samples?
- Acceptation?





## Phase 1 Objectives

- To compare capacity of DBS cards from different commercial sources for holding the whole blood, serum/plasma, and to optimize the elution procedure for recovery of all materials in DBS cards.
- To establish methods to measure concentrations of total proteins and albumin in diluted micro-volume eluting solutions and to optimize conditions of enzyme digestion to release aflatoxin-bound lysine adduct from the albumin.





### **Phase 1 Objectives (continued)**

- To develop method for concentration and purification of aflatoxin-lysine adduct in digests for instrument analysis;
- To determine analytical chemistry parameters, such as accuracy, precision, sensitivity (limit of detection), reproducibility, and recovery for the method.

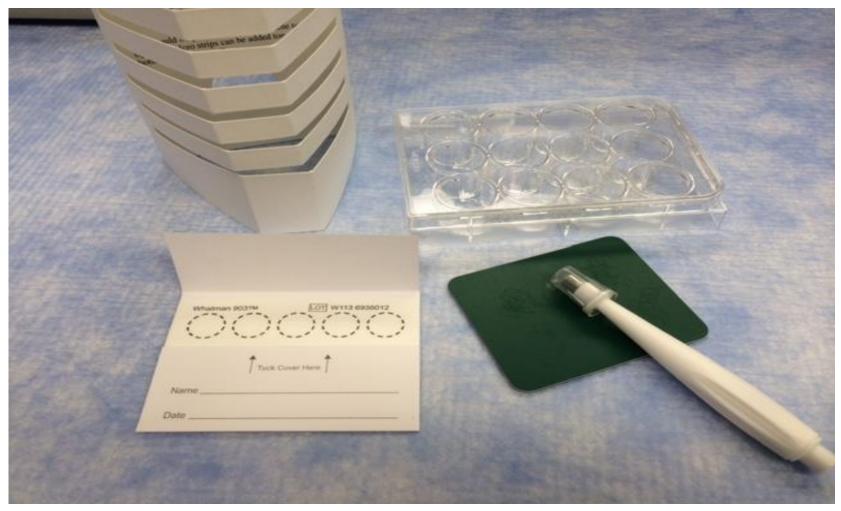




### **Commercial DBS Card Comparison**

#### **Untreated Cards**

- Ahlstrom 226
- Munktell TFN
- GE Whatman DMPK C 31ETF base paper
- GE Whatman 903


### **Treated Cards**

- GE Whatman DMPK A (FTA) 31ETF base paper 4 additives, for 'protection' of genetic material
- GE Whatman DMPK B (FTA Elute) 903 base paper 1 additive, will denature proteins





## Main Supplies







| 903 <sup>TM</sup> Protein Saver                         |                     | Whatman 903TM           | LOT W113 6938012 |
|---------------------------------------------------------|---------------------|-------------------------|------------------|
| For Research Use Only<br>Not for use in diagnostic proc | edures              | A MAN                   | A A A            |
| Tuck Cover Here                                         |                     | Tuck Co                 | ver Hore         |
| Name                                                    |                     | Name                    |                  |
| Date                                                    |                     | Date                    |                  |
| CALIFORNIA AND A STREET, SALES                          | A PERSONAL PROPERTY | Service and the service |                  |

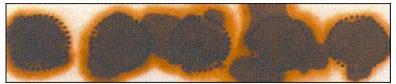










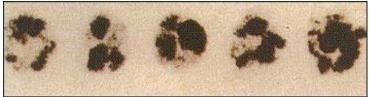

### **Unsatisfactory Specimens**



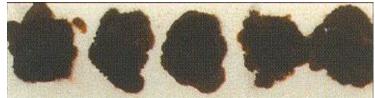
Supersaturated



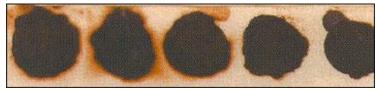
Specimen Not Dried Before Mailing



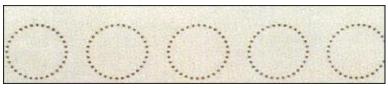

Serum Rings




#### Clotted or Layered

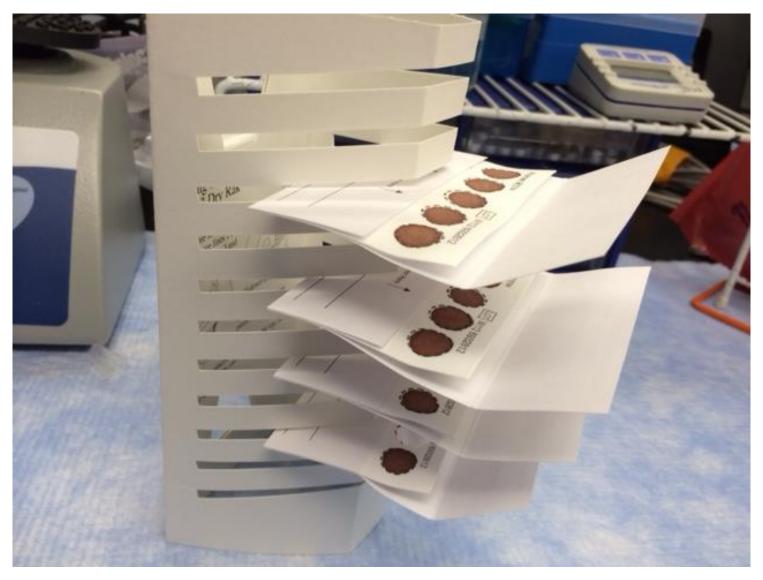






Quantity Insufficient for Testing



Scratched or Abraded



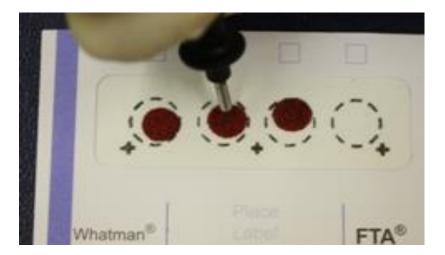

Diluted, Discolored, or Contaminated

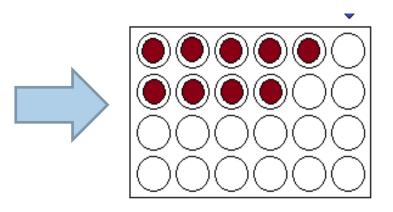


No Blood

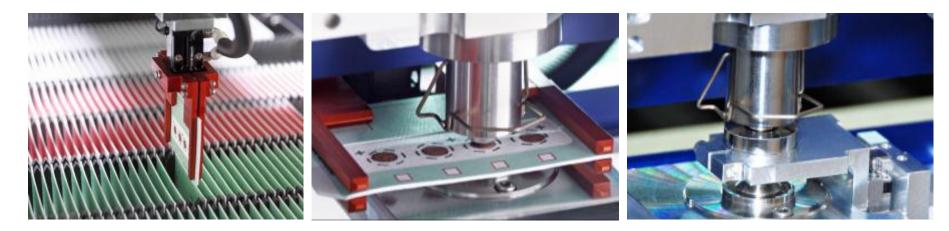








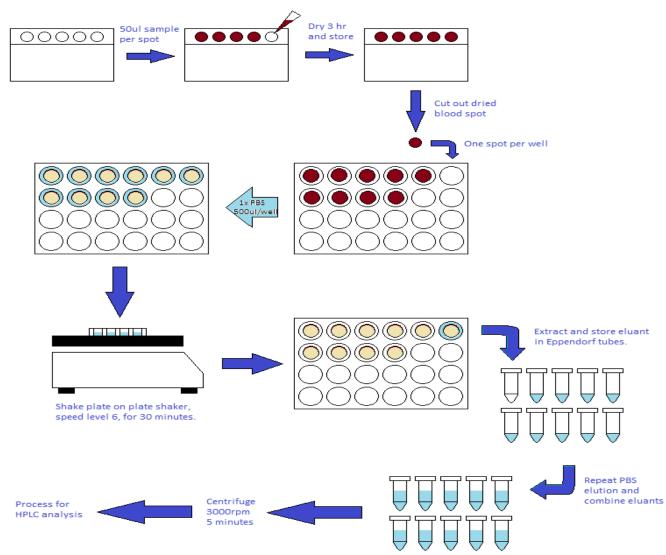










#### Manual




**Selection of DBS Extraction System** 





### Lab Procedure







### Method Developed

- Sample collection :  $\leq$  50 µl blood in DBS card
- Washing Solution: Triton-100-PBS and rebuild the sample solution;
- Determination of albumin and total protein concentrations;
- Pronase digestion, solid-phase concentration and purification;
- HPLC-fluorescent detection, and MS confirmation;
- Limit of detection: 20 fg/mg albumin;
- Recovery: averaged 75% for various spiked concentrations.





### **Elution & Washing Efficiency**

| Total Protein | (µg) |
|---------------|------|
|---------------|------|

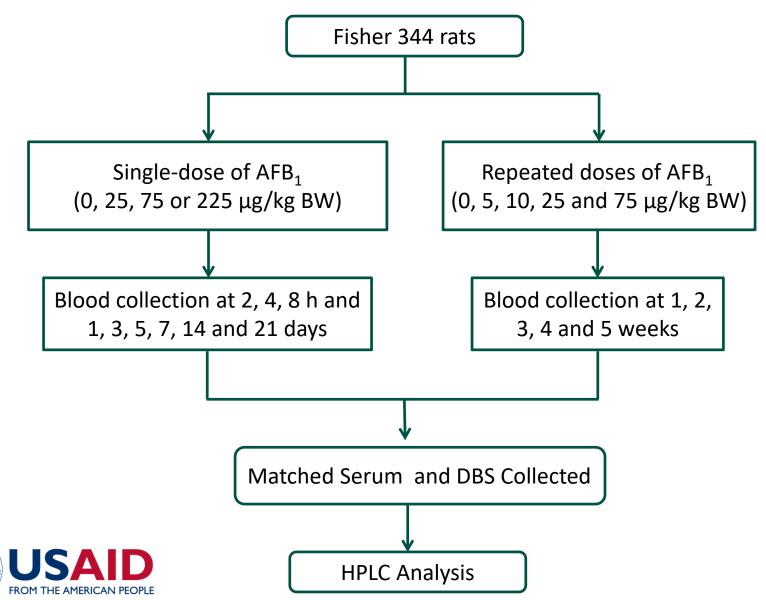
|      | Serum   | Dilute to 1.5ml | Serum Spot Eluent |        |        |         |
|------|---------|-----------------|-------------------|--------|--------|---------|
|      |         |                 | Wash 1            | Wash 2 | Wash 3 | Sum     |
| 20µl | 1365.61 | 1409.63         | 1416.97           | 117.10 | -56.75 | 1534.07 |
| 40µl | 2731.23 | 2644.29         | 2206.00           | 322.65 | -8.86  | 2528.66 |
| 60µl | 4096.84 | 4131.43         | 2964.46           | 490.41 | 4.55   | 3459.42 |

Triplicate experiments





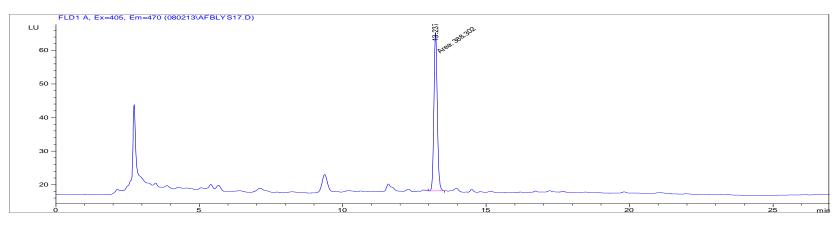
## **Elution & Washing Efficiency**


| Total Albumin (μg) |                                         |         |         |        |        |         |
|--------------------|-----------------------------------------|---------|---------|--------|--------|---------|
|                    | Serum Dilute to 1.5ml Serum Spot Eluant |         |         |        |        |         |
|                    |                                         |         | Wash 1  | Wash 2 | Wash 3 | Sum     |
| 20ul               | 884.13                                  | 410.00  | 649.17  | -11.67 | -77.50 | 649.17  |
| 40ul               | 1768.27                                 | 1211.25 | 1606.67 | 77.50  | -64.58 | 1684.17 |
| 60ul               | 2652.40                                 | 2205.00 | 2575.83 | 163.75 | -49.17 | 2739.58 |

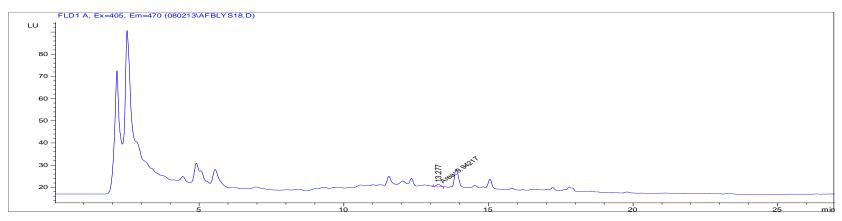
Triplicate experiments






### **Phase 2A: Animal Validation Studies**





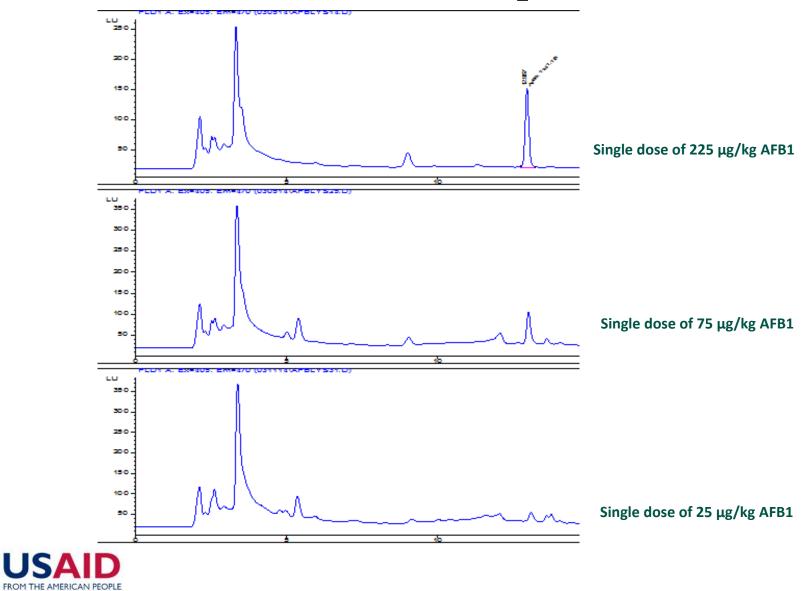

### DBS samples from AFB<sub>1</sub>-dosed animal blood

#### Whole blood DBS sample from high dose treated animals



#### Whole blood DBS sample from low dose treated animals








4111

NAL DE

### **HPLC chromatograph of AFB<sub>1</sub>-treated rat DBS**





### Single dose

|          | 2h           | 24hr        | 3d         | 5d          | 7d         |
|----------|--------------|-------------|------------|-------------|------------|
| Control  | 0.02±0.00    | 0.02±0.00   | 0.02±0.00  | 0.02±0.00   | 0.02±0.01  |
| 25µg/kg  | 16.48±2.58   | 5.62±0.42   | 5.90±1.02  | 2.83±0.16   | 1.34±0.16  |
| 75µg/kg  | 54.8±0.53    | 12.77±1.68  | 15.11±2.49 | 8.71±2.03   | 5.19±0.79  |
| 225µg/kg | 143.98±20.45 | 96.19±10.67 | 80.72±5.80 | 66.63±16.91 | 36.18±7.57 |

N=6

#### **Repeated Dose**

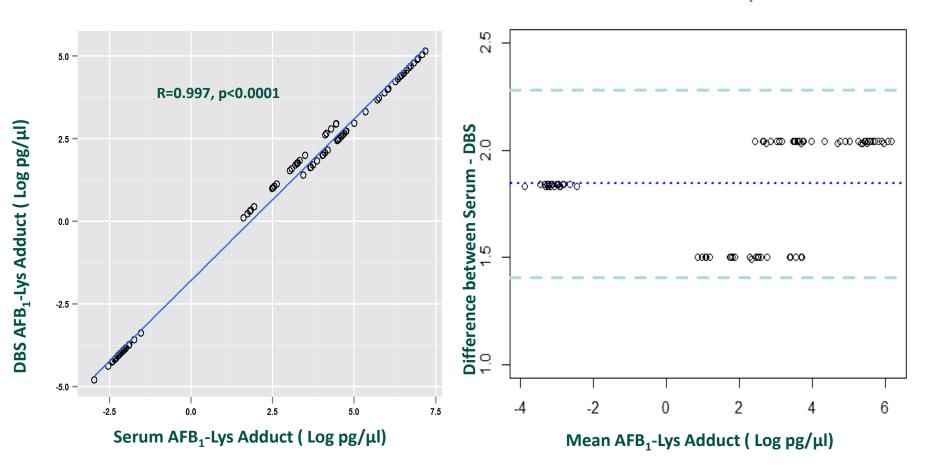
| Dose (µg/kg) | AFB-Lys (ng/mg alb.) |           |           |           |           |  |  |
|--------------|----------------------|-----------|-----------|-----------|-----------|--|--|
| Dose (µg/kg) | week 1               | week 2    | week 3    | week 4    | week 5    |  |  |
| 0            | 0.02±0.00            | 0.02±0.00 | 0.03±0.01 | 0.02±0.01 | 0.02±0.00 |  |  |
| 5            | 0.17±0.01            | 0.27±0.01 | 0.30±0.03 | 0.38±0.02 | 0.41±0.03 |  |  |
| 10           | 0.51±0.02            | 0.76±0.06 | 0.90±0.06 | 0.98±0.03 | 1.04±0.07 |  |  |
| 25           | 1.44±0.11            | 2.01±0.13 | 2.09±0.08 | 2.56±0.16 | 2.79±0.16 |  |  |
| 75           | 2.02±0.13            | 2.76±0.16 | 2.76±0.28 | 2.64±0.11 | 2.50±0.13 |  |  |

N=6





#### **Single Dose**

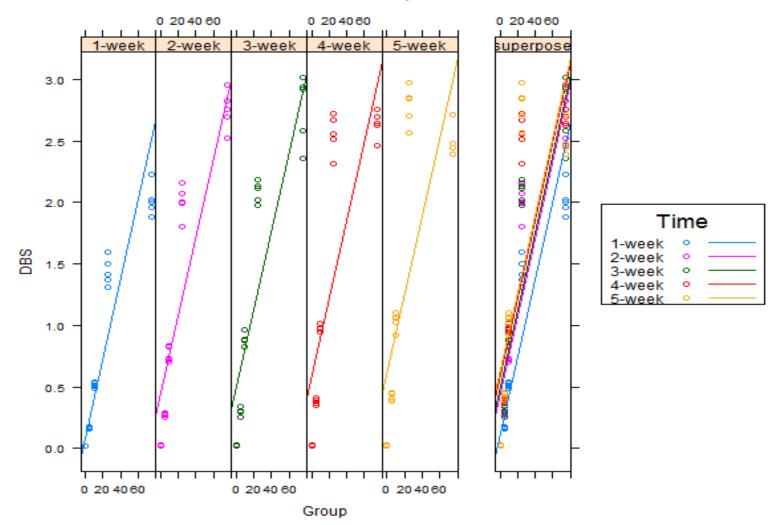

0 400 800 0 400 800 0 400 800 . . . . . . . 1 1 1 1 1 1 1 1 1 2 h 7d 24h 3d 5d superpose 150 o time 100 2 h o DBS 24h o 3d o 5d 7d o ο. 50 0 Ϋ́Τ Т П Т 11 11 0 400 800 0 400 800 0 400 800 group

DBS ~ group + time





**Single Dose** 

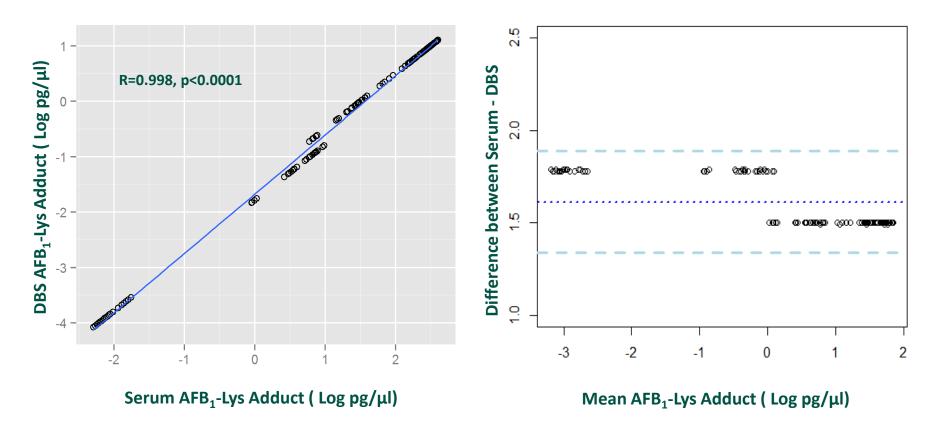



Scatter plots (left) and Bland–Altman plots (right) for paired serum and DBS specimens measured by HPLC. In scatter plots, solid line = linear regression. In Bland–Altman plots, center line indicates mean difference between serum and DBS measures; upper and lower lines indicate the 95% confidence interval.





#### **Repeated Doses**




#### DBS ~ Group + Time



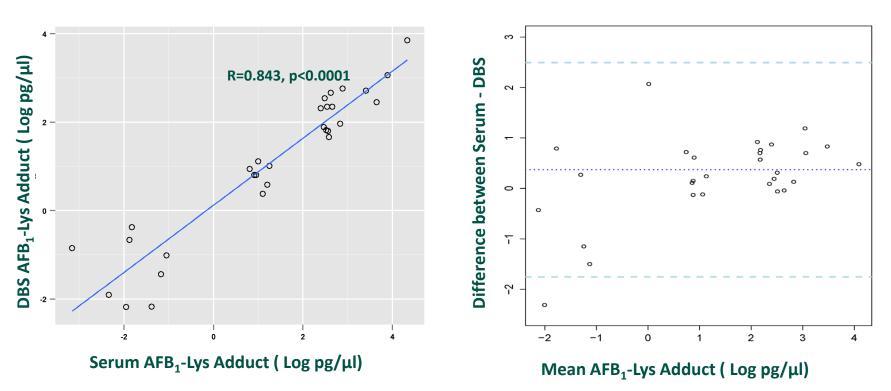


#### **Repeated Dose**



Scatter plots (left) and Bland–Altman plots (right) for paired serum and DBS specimens measured by HPLC. In scatter plots, solid line = linear regression. In Bland–Altman plots, center line indicates mean difference between serum and DBS measures; upper and lower lines indicate the 95% confidence interval.






#### Phase 2B. Human Validation Study

| Dietary aflatoxin<br>exposure                           | Low       | Middle      | High         |
|---------------------------------------------------------|-----------|-------------|--------------|
| Participant<br>numbers                                  | 12        | 12          | 12           |
| Detection rate (%)                                      | 50 (6/12) | 58.3 (7/12) | 100 (12/12)  |
| Median level of<br>AFB-lysine adduct<br>(pg/mg albumin) | 3.92      | 12.18       | 136.26       |
| Range of AFB-lysine<br>adduct (pg/mg<br>albumin)        | 0-4.78    | 0-24.64     | 61.49-992.42 |







#### **Human Validation Study**

Scatter plots (left) and Bland–Altman plots (right) for paired human serum and DBS specimens. In scatter plots, solid line = linear regression. In Bland–Altman plots, center line indicates mean difference between serum and DBS measures; upper and lower lines indicate the 95% confidence interval.



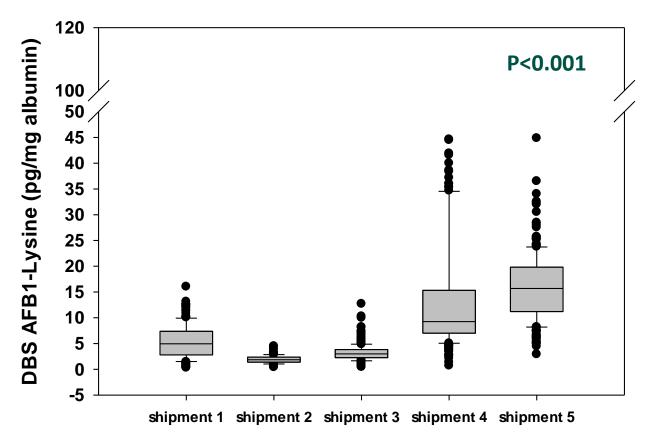


## **Phase 3. Application Study**

Use of DBS samples collected from USAID NIL conducted Aflatoxin Birth Cohort Study in Nepal to assess mother/children aflatoxin exposure and its correlation with adverse growth/development effects.






### AFB-Lys Adduct Levels in Five Batches of DBS Samples from Nepal Birth Cohort Study

| Parameter                         | Batch 1 | Batch 2 | Batch 3 | Batch 4 | Batch 5 |
|-----------------------------------|---------|---------|---------|---------|---------|
| AFB-Lys Adduct (pg/mg<br>albumin) |         |         |         |         |         |
| Number                            | 171     | 128     | 320     | 222     | 222     |
| Detection rate (%)                | 98.83   | 96.88   | 100     | 100     | 100     |
| Median                            | 1.65    | 1.21    | 2.99    | 8.64    | 15.68   |
| Geometric Mean                    | 4.24    | 1.77    | 2.92    | 8.94    | 14.71   |
| 95% CI                            | 3.92 –  | 1.51 –  | 2.76 -  | 8.49 -  | 13.88-  |
|                                   | 4.57    | 2.04    | 3.07    | 9.42    | 15.88   |
| Minimal                           | 0.40    | 0.20    | 0.43    | 3.51    | 2.92    |
| Maximal                           | 147.32  | 14.10   | 75.31   | 40.25   | 44.85   |





### Distribution of AFB-Lys adduct Levels in DBS Samples of Nepal Birth Cohort







### **Outcomes and Impacts**

- Highly innovative and significant;
- Meet urgent needs;
- Fill the research gaps;
- Generate data for understanding the relationship between biological response and aflatoxin exposure.
- Significantly beneficial for the health-effect assessment of children as a result of long-term exposure to aflatoxins in developing world.





## Acknowledgement

- USAID Feed the Future Program Nutrition and Peanut/Mycotoxin Innovation Laboratories
- University of Georgia
  - Lili Tang, Co-PI; Kathy S. Xue; Wenjie Cai
- Tufts University
  - Drs. Patrick Webb, Shibani Ghosh, Johanna Y. Andrews Trevino from Nutrition Innovation Laboratory
- Collaborators from NIL and PMIL Focused Countries
  - Nepal site
  - Uganda site

