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Abstract. In this case study, I provide evidence for, and operationalize (fill the gaps and provide 

specific analytic methods to replicate) the “dynamic unity of material and ideal components” 

framework for mathematical cognition (Radford, 2014, p. 268). Mathematical thinking, 

according to this framework, is a “semiotic coordination” (Radford, 2014, p. 268) of ideal and 

material components, such as speech, gestures, tactility, rhythm, perception, sensuous 

imagination, and actions with cultural artifacts. The analytical methods in the present case study 

involve a frame-by-frame analysis of data collected during an interview with a seventh grade 

student exploring the shadow of a figurine. In this case study, I identified the following six ideal-

material components described by Radford: outer speech, gestures, tactility, rhythm, perception, 

and actions with cultural artifacts. To illustrate Radford’s framework, I identify ideal-material 

components that co-occur in space and time, discuss ways in which they might be semiotically 

coordinated in terms of carrying identical, supporting, complementary or additional meaning, 

and argue that these are the components of learner’s mathematical thinking. Lastly, I draw 

implications for mathematics education and research. 

Introduction	  

What are students thinking with when doing mathematics? According to the traditional 

cognitivist approach students are thinking with their brains through information processing of 

mental representations. Post-cognitivist approaches, on the other hand, paint a much broader 

picture. General post-cognitivist perspectives include views of cognition as situated within the 

bodily interactions with the physical, cultural and social environment rather than being confined 

to one’s head. Sociocultural perspectives view cognition as situated within the culture and social 

interactions (Cole, 1998; Lave & Wenger, 1991; Rogoff, 2003; for review see Tenenberg & 

Knobelsdorf, 2014). Cognition, as situated, is further characterized as embodied (e.g., Davis & 



3	  
	  

Markman, 2012; Lakoff & Núñez, 2000; Rosch, Thompson & Varela, 1992), or, for example, as 

embedded/distributed (e.g., Hutchins, 1995), or extended into the agent’s environment (e.g., 

Clark & Chalmers, 1998). Human capacities for cognition within the head are limited, but are 

increased significantly when embedded, extended, and distributed across resources available 

outside the limits of the physical brain. Namely, it has been argued that external representations 

(e.g., written text, tables, drawings) “serve as vehicles for thought” (Kirsh, 2010, p. 445), thus as 

tools mediating learning and thinking, and as “forms of knowing” (Pérez Echeverría & Scheuer, 

2009, p. 2). Gesture (e.g., finger counting), often considered a form of external representations, is 

seen as a “tool for thinking” (Goldin-Meadow, 1999, p. 428), situating thinking within our 

bodies. Arguably, perception and action serve a cognitive role that goes far beyond a mere 

sensory input and motoric output for computations carried out in the mind (Hurley, 1998). 

Literature on gestures (e.g., Arzarello, Paola, Robutti, & Sabena , 2009; Goldin-Meadow, 1999; 

Radford, 2009), perception (Hurley, 1998), actions with tools (Rasmussen, Nemirovsky, 

Olszewski, Dost, & Johnson , 2004) or, for example, interactions with external representations 

(Andersen, Scheuer, Pérez Echeverría & Teubal, 2009, Kirsh, 2010) help us understand how 

human cognition spans beyond the limits of the physical brain to include the body and the 

environment. Understanding mechanisms by which cognition is situated within the bodily 

interactions with the physical, social and cultural environment is the main problem this paper is 

trying to address. 

Recent studies in the domain of mathematics educational research have made a 

significant contribution to the post cognitivist approaches to mathematics cognition (e.g., 

Abrahamson, Lee, Negrete & Gutiérrez ., 2014; Nemirovsky, Rasmussen, Sweeney & Wawro,  

2012; Radford, 2014). Nemirovsky et al. (2012), for example, took multimodal approach and, 
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alongside speech, looked into students’ bodily activities such as gesture, gaze, posture and 

pointing and found that students’ ideas related to addition and multiplication of complex 

numbers “are expressed in and constituted by perceptuo-motor activity“  (p. 288). Authors, for 

example, provided evidence that students gestured rotation in the complex plane when discussing 

multiplication by the imaginary unit i. Similarly, Abrahamson et al. (2014) studied how students 

developed the mathematical idea of proportionality while interacting with a piece of motor-

sensor technology enabled to provide an instant feedback on learner’s bodily movement. In this 

study, learners had a task to keep the computer screen green, without knowing that in order to do 

so they needed to preserve the proportion between their arms. During this kinesthetic activity, 

learners expressed and ‘enacted’ the mathematical idea of proportionality. Studies reviewed 

above provide evidence that mathematical thinking is situated (e.g., offloaded, distributed, 

constituted) within the body and the environment, including gesture and interactions with 

cultural artifacts such as a computer screen. Situatedness implies acknowledgment that the 

meaning depends on the characteristics of the bodily interactions with the environment, and is 

the key to understanding the difference between the computational and the embodied view of the 

mind. Mathematical thinking the participant in this study engages with is a form of algebraic 

thinking, in which she seeks to generalize an algebraic rule that describes the numerical pattern 

in her function table. Her thinking, as this study will reveal, is situated within her bodily 

interactions with the function chart on paper as well as on the computer screen.  

The present study aims to provide evidence for, and operationalize (fill the gaps and 

provide specific analytic methods to replicate the studies), Radford’s (2014) theoretical 

framework for mathematical cognition as situated within culture, body, and material world. 

Radford (2014) refers to mathematical thinking as the “dynamic unity of material and ideal 
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components” (p. 268) and claims that mathematical cognition is a semiotic coordination of ideal 

and material components such as gestures, interactions with cultural artifacts, speech (inner and 

outer), tactility, perception, rhythm, sensuous imagination, and actions with cultural artifacts. 

The main distinctions from Radford’s framework are: 1) I collapsed terminology for ideal and 

material components into ideal-material to emphasize that their separation is artificial; 2) I 

provided definitions for each of the six Radford’s component of thinking; 3) I provided specific 

analytic methods to replicate; and 4) I demonstrated analysis of semiotic coordination through 

the analysis of identical, supporting, complementary, additional, mismatched (different or 

contradicting) information carried by different components. This study contributes to the 

literature on situated cognition in general, and embodied cognition in particular, by providing 

replicable analytical methods that help characterize mathematical thinking as a semiotic 

coordination of components in a variety of sensory modalities. 

Radford talks about a “dynamic unity” as a semiotic, thus meaning-making, coordination 

of ideal and material components. I contribute to Radford’s framework by including the 

following definitions: outer speech (utterances), gestures (eye and body movement), rhythm 

(regular movement or sound, such as rhythmic tapping), perception (interpreting sensory 

information, such as visual images, into a coherent understanding of something), actions with 

cultural artifacts (e.g., drawing, writing, including idiosyncratic and canonical representations, 

carrying out a standard subtraction algorithm on paper), and tactility (perception through 

employing the sense of touch). While keeping the original Radford’s classification, I also 

acknowledge that gestures can be rhythmic, actions are a form of gesture, and that tactility is a 

form of perception. Radford considers gestures, language, and perception as material (2009, 

2011) and imagery and inner speech as immaterial (2011) components of thinking It is my 
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interpretation that the distinction Radford makes between ideal and material components lies 

strictly within the observer, a researcher, in terms of whether a component is visible, thus 

material (e.g., gesture, outer speech, tactility, rhythm, perception, action) or invisible, thus ideal 

(e.g., inner speech, imagination). However, I argue, if a visible component, such as a gesture, is 

to participate in the construction of meaning, and not be an “empty” gesture, then such a gesture 

also belongs to the world of ideas and therefore is also ideal in nature, and we cannot consider it 

to be strictly material. Similarly, an invisible component such as imagination could potentially 

involve simulated actions and therefore be reminiscent of the material word, and thus we cannot 

call it strictly ideal. The boundaries between the world of ideas and the material world are 

blurred and, consequently, the differentiation between the material and ideal components of 

thinking becomes artificial. Many authors, on the other hand, while acknowledging the “phantom 

of dualism” (Pérez Echeverría & Scheuer, 2009) choose to maintain the distinction between the 

outer and inner worlds to allow greater precision in methods, or for simplicity in order to support 

the distinction made by an observer. In this paper I will refer to what Radford calls ideal and 

material components (2014)—or, at times, as material-ideational components (2011)—as ideal-

material components, to further reinforce that their separation is artificial, and thus to highlight 

the situated and embodied nature of a human mind and activity.  At times, Radford also refers to 

thinking as “an ideal-material form of reflection and action.” (Radford, 2014, p. 268)  

In what follows, I first pose a research question, then review Radford’s framework for 

mathematical cognition, discuss ways through which I operationalize his framework, and 

illustrate it through a case study. Finally, I discuss implications for mathematics education and 

research in mathematics education.   
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Research Question	  

The present case study is part of a larger project, which explores how students construct 

mathematical ideas while engaging in physical situations and how mathematics instruction and 

curricula might integrate physical situations to enhance learning. I refer to physical situations as 

instances of the material world in which students can see, touch, smell, hear, taste, and interact 

with material artifacts and tools. Specifically, in this study, I explore the following research 

question: 

How does a middle school student coordinate gestures, tactility, rhythm, perception, actions with 

cultural artifacts, and outer speech to reason algebraically while exploring numerical patterns in a 

function table?	  

Cognitive Framework for Mathematical Thinking	  

Radford’s framework for mathematical cognition builds on his earlier work on the 

development of algebraic thinking (e.g., Radford, 2011, 2012), on “the theory of knowledge 

objectification” according to which “thinking is considered to be a mediated reflection in 

accordance with the form or mode of the activity of individuals“ (Radford, 2008, p. 218), on his 

work on gestures (e.g., Radford, 2009), and on his study of signs and signification (e.g., Radford, 

2000, 2003). 

For Radford (2011, 2014), thinking is “an ideal-material form of reflection and action, 

which occurs not solely in the head but also in and through a sophisticated semiotic [in regards to 

mathematics] coordination of speech, body, gestures, symbols, and tools” (Radford, 2014, p. 

268). In his studies on the development of algebraic thinking, he provides examples of young 

students who coordinated components such as gestures, utterances, and perception, into a single 

“dynamic unity” in order to describe what a 50th term in a certain algebraic sequence looks like. 
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For example, he reported on a student who made a certain horizontal gesture to accompany his 

utterance “like this.” The gesture and the utterance, in that case, conveyed complementary, yet 

algebraic, aspects of meanings regarding student’s generalization what a distant term in an 

algebraic sequence looks like. The fact that the significance of each component in the unity 

depends on its role within the unity gives the unity a dynamic nature different from being just a 

collection of items whose significance is predetermined and constant. A component, such as 

utterance “this”, might mean one thing in one dynamic unity, and something completely different 

in another, which, for example, could be further determined by a student’s pointing gesture. The 

dynamic nature reflects the variability in what each individual component signifies depending on 

a dynamic unity it belongs to. Whether a dynamic unity is a stable or an unstable formation, or 

whether it emerges, from context or elsewhere, or is constructed does not relate to how Radford 

describes its dynamic nature. What each component signifies to the learner, thus what meaning it 

conveys, within a dynamic unity is central to understanding how such component becomes a 

component of thinking.  

While some authors (e.g., Abrahamson et al., 2014; Nemirovsky et al., 2012) make 

connections between bodily activity, such as gesture, and mathematical thinking, Radford’s 

framework has greater explanatory power in terms of highlighting semiotic bonds among a 

variety of ideal-material components—beyond just gestures and thought—students use to think 

mathematically. Radford’s framework not only helps us provide evidence that mathematical 

thinking is situated within the socio-cultural and physical interactions with the environment but 

also explains how students coordinate these interactions in multiple sensory modalities to form a 

unified meaning.  Comparable to Radford’s is the “semiotic bundle model” (Arzarello et al., 

2009) according to which gesture is a semiotic resource, thus a sign, whereas “[a] semiotic 
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bundle is a system of signs” (p. 100). Radford’s “dynamic unity” framework provides a more 

holistic approach to mathematical thinking than Arzarello’s “semiotic bundle”, which only 

concerns gestures, words (outer speech), and inscriptions (a form of interaction with cultural 

artifacts) as semiotic mediation tools, while omitting other components Radford identified such 

as inner speech, tactility, rhythm, perception, sensuous imagination, and actions with cultural 

artifacts beyond inscriptions. 	  

Development of the Algebraic Thinking 

The “dynamic unity” framework for mathematical thinking originated in Radford’s 

earlier work on the development of students’ algebraic thinking. Literature on the development 

of early algebraic reasoning helps us frame Laura’s exploration of numerical patterns in function 

tables. Existing research on young students’ capacities to think algebraically have examined their 

ability to generalize, justify, represent, and reason with mathematical structures and relationships 

(e.g., Blanton, Levi, Crites, & Dougherty, 2011; Kaput, 2008). Such studies have focused on 

such topics as students’ meaning of the equal sign (e.g., Carpenter, Franke & Levi, 2003), and 

understanding of proof (e.g., Knuth, Choppin & Bieda., 2009). A few important studies have 

focused on a functional approach to algebra in the early grades (e.g., Blanton & Kaput, 2011; 

Carraher, Schliemann, Brizuela, & Earnest, 2006; Carraher, Schliemann, & Schwartz, 2008). 

When looking for a pattern in a function table young learners might look into how values vary 

sequentially within a single column (see “recursive patterning” in Blanton & Kaput, 2011; also, 

“scalar approach” or “scalar relationship” in Vergnaud, 1983, 1988, and in Martínez & Brizuela, 

2006), or they might attend to a relationship between the two variables (see “covariational 

thinking” and “correspondence relationship” in Blanton & Kaput, 2011; also, “functional 

approach” or “functional relationship” in Vergnaud, 1983, 1988, and in Schliemann, Carraher, & 
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Brizuela, 2001). In the present study Laura’s “scalar approach” is a form of early algebraic 

thinking. 	  

Method 

Participant	  

The participant in this study was a seventh grade student, Laura (pseudonym). Laura 

learned about my study from another participant who was recruited through emails sent to 

parents I knew. Participants were told that the purpose of the interview was for the researcher to 

look into what mathematics questions they might have about a real-world situation and how they 

might look for answers to those questions. I interviewed Laura outside of her regular school 

hours in a private home setting.  

Data Collection	  

The primary data collection instrument used in the study was a clinical interview 

(Ginsburg, 1997),which aims to understand students’ thinking but also progress they make 

during the interview. At the beginning of an hour-long interview Laura was presented with a 

physical situation involving a desk, flashlight, a figurine, a pretend wall, and measuring sticks 

(see Figure 1). Laura’s task in this interview was to make predictions about shadow height as the 

figurine moved between the pretend wall and the flashlight. To do so, she chose to record the 

results of measurements in a function table. She decided on the variables and placed them in two 

columns: height of the shadow and proximity of the object to the wall (see Figure 1, top right). 

She moved the figurine one measuring stick at a time away from the wall, measured the shadow, 

and recorded the data as pairs of “Height of shadow” (her left column) and “Proximity of doll to 

board” (the right column in her function table). She assumed  that the wall is at a constant 90-

degree angle to the desk and that the flashlight is set on the desk.  
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[14:38] Laura: From five Popsicle sticks away [from the wall], on zero inches height [of 
flashlight], [shadow] will be one… and 90--ish degrees off the wall [against the desk], it 
[shadow] will be one and a half Popsicle sticks. […] So, the doll is two Popsicle sticks away 
from the wall-board, and three Popsicle sticks from the light.  

Figure 1. Laura collecting and recording measurement data. 
 

Following the physical exploration, the interview incorporated a computer-based 

simulation using Geogebra software (see Figure 2, top left). Laura copied the measurements 

from the computer screen into a new function table (see Figure 2, top right) and proceeded to 

look for a numerical pattern that would explain the shadow growth numerically.	  

 

 

 
[00:27:10.11] Interviewer: See if we can find out a way to predict, for example [step] four. 

(ACTIVITY) Laura copying the function table from the spreadsheet portion of the Geogebra 
simulation onto her paper. 

Figure 2. Shadow heights based on computer-generated measurements 
 

My intention was to incorporate software-generated measurements of changes in shadow 

height in an idealized condition in which the height of the light is restricted to zero. Such 
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computerized measurements comply with the indirect proportion model in Figure 3. If the light 

source is, for example, 6 units away from the wall, and the doll is, for example, 2 units away 

from the light, the shadow according to the formula in Figure 3 will be 6 divided by 2, thus 3 

units in height.	  

shadow(when doll is x units away from the light) = distance-wall-to-light / x. 

Figure 3. Object’s shadow is indirectly proportional to its distance from the light source 
	  

Data Sources 

Data collected during the interview included a video recording made with a stand-alone 

video camera, two video recordings generated by Camtasia Studio (one capturing Laura’s face 

and another capturing the screen), an audio stream made with a stand-alone voice recorder, and 

scanned versions of her written work. Raw video data was transcribed, and the transcript was 

synchronized with the video and audio recording into a single movie file. For the analysis, I 

coordinated video data with Laura’s written work. 

Data Selection 

To answer my research question, I selected for analysis two short episodes (< 5 minutes) 

in which I observed a number of different ideal-material components from the hour-long 

interview, in which Laura explores numerical patterns in a function table. In the first episode, 

Laura looked for an additive difference in shadow height and did not find a numerical pattern in 

the data, whereas in the second, she found the pattern through a multiplicative comparison of 

differences between shadow heights. During these two episodes, Laura looked for a numerical 

pattern of shadow change based on the function table from the computer-generated 

measurements. In both episodes she employed the “scalar approach” (Vergnaud, 1983, 1988) and 

sequentially compared pairs of values in the column for shadow height, top to bottom, at first in 
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search for additive (Episode 1), and later for multiplicative (Episode 2) differences. This 

approach is different than the “functional approach” (Vergnaud, 1983, 1988) modeled by the 

formula in Figure 3.	  

Episode 1 is a short, one-minute-long episode in which Laura analyzed the table in search 

of a numerical pattern of change in shadow height (right column of her table). The real-life 

situation that Laura was exploring in this episode had the distance between the wall and the light 

source set to five Popsicle sticks (in Figure 3, distance-wall-to-light = 5). Such parameters 

resulted in two decimal places, and some rounding, for the height of the shadow (according to 

the formula provided in Figure 3), both of which might have prevented Laura from looking 

beyond the additive differences between the pairs of values in the shadow height column and 

discovering a multiplicative pattern.	  

In Episode 2, which was about three-minutes long, Laura also looked for a numerical 

pattern, but this time she used a function table that reflected the distance of six Popsicle sticks 

between the wall and the light source. This distance resulted in shadow height expressed as a 

whole number or a number with only one decimal space, which made the multiplicative pattern 

easier for Laura to identify (in Figure 3, distance-wall-to-light = 6). 	  

For the purpose of analysis of distinct clusters of mathematical thinking, each of the two 

episodes has been divided into five individual frames. Frames are chosen so that each frame 

contains one or more ideal-material components co-occurring in space and time. Arzarello et al., 

2009 refer to an analysis of co-timed semiotic resources as Synchronic Analysis as opposed to 

the Diachronic analysis, which takes into consideration semiotic resources that could be related 

to student’s previous activities. In my analysis I only observed co-timed semiotic resources and 

therefore the analysis I performed would be classified as synchronic in Arzarello’s terminology.  	  
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Analytical Methods 	  

Analysis of the video data from the two episodes involved a frame-by-frame dissection of 

Laura’s behavior. I searched for six types of ideal-material components as listed in Radford’s 

framework (which I defined earlier): outer speech, gestures, rhythm, perception, actions with 

cultural artifacts (e.g., drawing, writing, carrying out a standard subtraction algorithm on paper), 

and tactility (perception through employing the sense of touch). I organized and presented data in 

a table. I then analyzed these ideal-material components and interpreted what they signified to 

Laura; the ways in which she coordinated them in space, time, and semiotics; what kind of 

information they were conveying to her; and what role they served within the dynamic unity of 

each frame. In my analysis, I will point out ways in which outer speech, gestures, rhythm, 

perception, actions with cultural artifacts, and/or tactility were semiotically coordinated into a 

dynamic unity in regards to mathematics. In order to determine if two or more components co-

occurring in time and space are also semiotically coordinated I will demonstrate that co-

occurrence was not incidental (which is also possible) and that it did involve cognition. To do so, 

I will argue that co-occurring components I observed carried identical, supporting, 

complementary or additional mathematical information (I found no evidence of other types, such 

as when components are carrying mismatched, different or contradicting information). At the 

same time, to contribute to the main argument of this study, I will interpret mathematical 

thinking that is taking place and argue that it happened through a semiotic coordination of ideal-

material components. I will consider evidence of different ideal-material components carrying 

identical, supporting, complementary, or additional meaning as evidence of their semiotic 

coordination. Analysis of semiotic coordination in terms of whether co-occurring components 

confirm, support, complement, extend or contradict one another in meaning appears to be 
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lacking, or at best is implicit, in Arzarello’s at al. (2009) synchronic or diachronic analysis and is 

my unique contribution to Radford’s framework. In summary, my analytic method 

operationalizes the “dynamic unity” framework through an analysis of six types of ideal-material 

components described above by providing the following specific analytical methods to replicate: 

1) data is analyzed frame-by-frame; 2) frames are selected based on components co-occurring in 

space and time; 3) for each frame interpretations are made to determine the significance 

(conveyed meaning) of each component based on the information they contribute (identical, 

supporting, complementary, or additional); and 4) mathematical thinking is discussed as a 

semiotic coordination of components in the frame.	  

Results	  

In this section, I first present data from the two episodes in a tabular format, frame by 

frame (Episode 1 is about the additive scalar relations, and episode 2 is about multiplicative 

scalar relations). The table helps reveal the links between the 1) video and written data, 2) 

transcripts and descriptions, 3) evidence of ideal-material components found in the data, and 4) 

my interpretations about the student’s mathematical thinking. This, in turn, addresses parts of the 

research question by 1) listing the specific gestures, tactility, rhythm, perception, actions with 

cultural artifacts, and outer speech Laura is using, and 2) listing aspects of Laura’s mathematical 

thinking. 	  

Figure 4 is a frame-by-frame summary of Episode 1 in which I present video data and 

written work (column 1); transcripts and descriptions (column 2); description of Laura’s 

gestures, outer speech, perception, and actions with cultural artifacts I observed in the data 

(column 3); and my interpretations about Laura’s mathematical thinking (column 4). Following 

the structure of Figure 4, I present, in Figure 5, a frame-by-frame summary of Episode 2, which 
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contains evidence of rhythm and tactility, in addition to the four ideal-material components I 

observed in Episode 1. 	  

Images from video / 
Scanned written work	  

Transcript / 
Description	  

Ideal-Material 
Components	  

Mathematical 
Thinking 

Frame 1 (~6 
seconds) 

	  

	  

[28:14] Laura: [lifts 
the pencil, pauses, 
looks at the function 
table for five 
seconds]	  	  

[28:19] Laura: 
[writes 0.32, 
continues to look at 
the table] 

	  

Gestures (lifted and 
lowered the pencil, 
wrote .32). 

 
Actions with cultural 
artifacts (wrote 
alongside her table 
the additive 
difference of .32). 

 
Perception (looked 
for five seconds at the 
table before writing 
.32). 

L(aura) carried out a 
calculation (she wrote 
.32). 

Frame 2 (~10 
seconds) 

 

	  

[28:20] Interviewer: 
What are you doing?  

[28:21] Laura: I am 
just trying to find the 
difference in how 
that [shadow 
heights] changed. 
[still looking at the 
function table she 
pauses for 2 seconds, 
then lifts the pencil 
and gestures with it 
vertically. During 
this gesture, she 
raises her eyebrows 
briefly] 

Outer speech. 

 
Gestures (made a 
repeated vertical 
motion with the 
pencil, and raised 
eyebrows). 
 
Perception (looked 
for two seconds at the 
table). 
 
 

L looked for a 
difference in change 
in vertical values 
(utterance “to find the 
difference in how that 
changed” followed by 
a vertical hand 
gesture). 

 
L was possibly 
surprised (eyebrow 
lift). A possible, 
although there is no 
further evidence for 
this interpretation, is 
that she realized that 
the additive 
difference might not 
be constant. 

difference in 
how that 
changed	  
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Frame 3 (~3 
seconds) 

	  

	  

	  

[28:30] Interviewer: 
And why do you 
think that matters to 
find the difference?  

[28:32] Laura: 
Because, [makes 
vertical gesture with 
her fingers, then 
looks up at the 
interviewer] there 
might be a pattern. 

Outer speech. 

 
Gestures (made a 
repeated vertical 
motion with her 
fingers, and looked 
up at the interviewer. 
Direct eye contact 
with the interviewer. 
Maintained vertical 
body posture with a 
slight turn towards 
the interviewer). 

L signified a vertical 
pattern (vertical 
finger gesture 
simultaneous with the 
utterance “Because 
there might be a 
pattern”). L might be 
thinking that a pattern 
might reveal itself as 
a numerical 
relationship between 
values in a column of 
her table.  

Frame 4 (~13 
seconds) 

 

 

 

 

 

 

[28:41] Laura: 
[gestures vertically 
with pencil] If the 
numbers are … 

 
 
 
 
 
 
 
[24:48] Laura: 
[pauses and gazes up 
in the air, lifts 
eyebrows, then looks 
at the interviewer] … 
mmm-multiples of 
each other, maybe … 

 
 
 
[28:51] … [makes a 
horizontal hand 
gesture] or related in 
some way. 

 

 

Outer speech. 

 
Gestures (made a 
repeated up-down 
(vertical) motion with 
the pencil along the 
right column of the 
table, gazed in the air, 
lifted eyebrows, 
made a repeated left-
right (horizontal) 
gesture above the 
table). 

Rhythm (repeated up-
down gesture) 

L signified a vertical 
pattern (utterance “if 
the numbers are” … 
preceded by a vertical 
hand gesture). 

 
L signified a 
multiplicative pattern 
(utterance “mmm-
multiples of each 
other” preceded by a 
gaze in the air and 
eyebrow lift).  

 
L signified a 
horizontal pattern 
(utterance “or related 
in some way” 
accompanied by a 
horizontal hand 
gesture). 

If the 
numbers are	  

or related	  

There might 
be a pattern	  

Multiples 
… maybe	  
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Frame 5 (~13 
seconds) 

	  

	  

	  

	  

[29:04] Laura: 
[manually computed 
.83] OK. I didn't find 
an obvious pattern.	   	  

Actions with cultural 
artifacts (calculated 
using standard 
algorithm for 
subtraction, and 
wrote the additive 
difference of .83 in 
the table, a cultural 
artifact). 

 
Outer speech. 

 
Perception (looked at 
the table during 
interaction with it). 

L computed the next 
additive difference 
(manually performed 
a subtraction 
algorithm and wrote 
.83 in the table).  

 
L signified that she 
did not find the 
pattern (utterance). 

Figure 4. Episode 1: Semiotic coordination of gesture, outer speech, perception, and actions with 
cultural artifacts 

 

In frame 1, Laura’s perception of and interaction with the function table co-occur in 

space and time. To demonstrate that this co-occurrence is not incidental I will now argue that it 

involves semiotic coordination. Laura is focusing on the differences between the numbers in the 

right column, thus is taking a “scalar approach” (Vergnaud, 1983, 1988), as she performs a 

calculation and denotes the additive difference of 0.32 alongside and in-between the two 

numbers 1.25 and 1.67 in the table (should be 0.42). She looks at the table for five seconds 

before writing 0.32. Looking is not incidental but is accompanied with perceiving the additive 

difference between the two numbers. What makes this coordination of action and perception 

semiotic, rather than just a co-occurrence in space and time, is that her perceived meaning of the 

relationship between the three numbers is identical to the meaning signified through her writing: 

the number 0.32 stands for the difference between the two numbers 1.25 and 1.67, which she 

later confirms with her utterance in Frame 2. In other words, she perceives number 0.32 as a 

didn’t find 
an obvious 

pattern	  
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difference between 1.25 and 1.67, and she writes 0.32 to denote the difference between the two 

numbers. Her perception and her writing thus both share the same identical information, which is 

that 0.32 is the difference between 1.25 and 1.67. Frame 1 is an example of how Laura 

semiotically coordinated perception and action with a cultural artifact to think mathematically. 

To show that these components are semiotically coordinated I argued that they conveyed 

identical meaning to one another. The meaning is mathematical as it relates to the difference 

between two numbers.  

In Frame 2, Laura continued to look at the table “to find the difference in how that 

[shadow heights] changed” while making a vertical gesture above the table. This gesture for her 

provided complementary (feature-enhancing) meaning to her utterance in terms of vertical 

spatial orientation for the values in the right column of the table, which she additively compared 

to find the difference. Laura’s utterance and gesture, by virtue of carrying complementary 

mathematical meaning for her, are thus semiotically coordinated. Arguably, Laura’s perception 

of the table as the organization of numbers with a possible pattern in the difference in values in 

the right column is identical to the information signified simultaneously by her gesture and 

utterance. Vertical spatial orientation of Laura’s gesture, and her utterance, together signify her 

“scalar approach”, thus finding the additive difference between the two subsequent values in the 

shadow heights denoted in the right column. In Frame 2, Laura thinks mathematically through a 

semiotic coordination of outer speech, perception, and vertical hand gesture. To show that these 

components are semiotically coordinated I argued that they conveyed complementary, and in 

certain instances identical, meaning to one another. The meaning is mathematical as it reflects a 

“scalar approach” to finding a pattern in a function table. 
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In Frame 3, Laura simultaneously gestured vertically above the table while saying, 

“Because there might be a pattern.” The utterance and the gesture occurred simultaneously, and 

therefore they were coordinated in space and time. Each component carried complementary 

semiotic information: the utterance signified a possibility of a numerical pattern within the data 

recorded in the table, whereas her gesture signified that the numerical pattern could possibly be 

present in the vertical spatial orientation within the table. The significance of a component, 

according to Radford, is determined by its role within the dynamic unity. The role of the vertical 

gesture within the unity that included the utterance was to provide a spatial orientation for the 

possible numerical pattern in the table. The vertical gesture alone might mean something entirely 

different to Laura in a different situation (the dynamic notion of the unity). Accompanied by the 

utterance that there might be a pattern, the significance of the vertical gesture is a possibility for 

a vertical pattern in the table. Similarly, in a different situation, the utterance alone might mean 

something else to Laura and not the vertical spatial orientation of a possible pattern. Together, 

these two components complement one another in meaning, and therefore create a semiotic unity 

in regards to mathematics as Laura talks about a numerical pattern in her table. This single unit 

of meaning, which was a result of a semiotic, temporal, and spatial coordination of the two ideal-

material components, represents a dynamic unity. In Frame 3, Laura’s mathematical thinking 

occurred through a semiotic coordination of gesture and utterance in which components 

complemented one another in meaning.  The meaning is mathematical as it relates to finding a 

pattern in a function table while comparing numerical entities vertically within a column.  

In Frame 3 Laura was thinking that there might be a vertical pattern (within a column), 

but in Frame 4, she made a shift in her thinking and considered the possibility of a pattern as a 

horizontal relationship in the data, that is, as a relationship between the two columns (functional 
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approach). Her horizontal gesture and utterance “or related in some way” carry complementary 

information and together create a dynamic unity of meaning that there might be a horizontal 

pattern in numbers in the table. The significance of the gesture is determined by its role in the 

dynamic unity. The gesture provides the horizontal spatial orientation for such a pattern. The 

significance of the utterance is also determined by its role in the unity. The utterance signifies 

that the numbers could be related in some way to create such a pattern. Just like in Frame 3, both 

the utterance and the hand gesture are ideal-material components of Laura’s mathematical 

thinking.	  

In Frame 5, Laura coordinated the action of physically carrying out the subtraction 

algorithm to find the difference between 1.67 and 2.5; writing the differences .83 alongside the 

table; her perception of the inscriptions; and outer speech (“I didn’t find an obvious pattern”). All 

four components co-occur in space and time but they also relate to one another semiotically. 

Physical execution of the subtraction algorithm to find the difference, and writing that difference 

alongside the table, both carry identical meaning for Laura, in terms of the difference between 

1.67 and 2.5 being .83. Perception provides spatial information to Laura on where her 

inscriptions should go on the paper when she copies the difference .83 from where she carried 

out the algorithm to the place alongside the table and between the two numbers being subtracted. 

For Laura, I interpret, her utterance signifies additional meaning as it suggests that finding the 

difference between 1.67 and 2.5 did not help her find a pattern to continue the previously found 

difference of .32. Frame 5 is an example of Laura’s mathematical thinking though a coordination 

of actions with cultural artifacts (carrying an algorithm and writing), perception and outer 

speech, in which the semiotics is reflected in components in the dynamic unity carrying identical 

or additional meaning. 	  
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In summary, the analysis of Episode 1 reveals that Laura’s mathematical thinking 

consisted of spatial, temporal, and semiotic coordination of gesture, perception, actions with 

cultural artifacts, and/or outer speech. I now move to the summary and analysis of Episode 2.  

Images from video / 
Scanned written work	  

Transcript / 
Description	  

Ideal-Material 
Components	  

Mathematical 
Thinking 

Frame 6 (~17 
seconds) 

	  

	  

	  

	  

[37:09] Interviewer: 
Ok, so. Do that one 
[move red doll (see 
Figure 5) four units 
away from gray 
board, (step 4)] and 
pause at five [when 
the red line is five 
units away from gray 
(step 5)]. And then, 
do not move it [to 
step 5]. Just try to 
predict. 

	  

Gestures (briefly 
raised her eyebrows, 
sighed, lifted her 
knees up and 
wrapped her arms 
around them, bit her 
lip, stared at the 
computer screen for a 
total of seventeen 
seconds, with an 
increasingly intense 
laser focus, and 
almost complete 
physical stillness for 
about 6 last seconds, 
stillness accompanied 
with frequent 
blinking and 
movement of her 
eyes)*. 

 
Perception (looked at 
the screen for 17 
seconds, eye 
movement, blinking). 

Prompted by the 
interviewer to predict 
step 5 Laura focused, 
with great intensity, 
on the computer 
screen for an 
extended period of 17 
seconds.  

 
I interpret the 
intensity and duration 
of perception as an 
intense thinking 
episode. What comes 
next, in frame 7, 
when Laura 
verbalizes a pattern 
she finds, supports 
this interpretation. 

 
 

Frame 7 (~11 
seconds) 

 

 

[37:37] Laura: [still 
looks at the function 
table on the computer 
screen but lets go of 
her knees and leans 
over the table] [Step] 
two [corresponds to 
shadow of 1.5] to 

Gestures (changed 
her body position, 
gazed up in the air, 
raised both 
eyebrows). 

 
Outer speech (ended 
the sentence with a 

L calculated the 
difference (looked at 
the screen, said 
“increases by,” gazed 
in the air, and said “a 
third”). 

 
L questioned whether Two to 

three 
increases	  
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[step] three 
[corresponds to 
shadow of 2] 
increases [gazes up 
in the air for a brief 
moment] by a third, 
and it does the same 
[some nodding] as it 
did [raises eyebrows] 
before [in the 
previous "jump" from 
step 1 at 1.2 to step 2 
at 1.5]? 

question). 

 
Perception (looked at 
the screen for about 
10 seconds in total). 

the same fraction 
would apply to the 
preceding difference 
(said “does the same 
as it did,” raised both 
eyebrows, and said 
”before?”). 

 

Frame 8 (~45 
seconds) 

 

 

 

 

 
 

 

[37:50] Laura: [tilts 
head to the left] 
Actually 

[37:52] Laura: 
[takes a measuring 
stick, then points 
repeatedly up and 
down the screen] 
point five [the 
difference between 
1.5 and 2], which is a 
third of one point 
five.  

[…] 

[38:07] Laura: 
[repeatedly taps the 
screen with the 
Popsicle stick] 
Increases by point 
five, and point five is 
a third of one point 
five, so increases by 
a third [taps the 
screen].  

[38: 33] Laura: And 
then increases by 
[gazes in the air] a 

Gestures (tilted her 
head, gazed in the 
air). 

 
Tactility (held and 
touched the screen 
with a measuring 
stick). 

 
Actions with cultural 
artifacts (pointing and 
vertical motion with a 
Popsicle stick, 
tapping the table on 
the screen). 

 
Outer speech. 

 
Rhythm (co-timed 
tapping the screen 
and saying “third” 
and “half”). 

 
Perception (looked at 
the screen on and 
off). 

L changed her mind 
(said “Actually” and 
tilted her head). 

 
L confirmed that the 
additive difference 
between 1.5 and 2 is 
a third of 1.5  

(- said “point five, 
which is a third of 
one point five” and 
made a vertical 
gesture with the 
Popsicle stick;  

- said “Increases by 
point five, and point 
five is a third of one 
point five, so 
increases by a third” 
and proceeded to tap 
on the screen with a 
Popsicle stick 
simultaneously with 
saying “a third”). 

 
L computed the next 
additive difference 

by a 
third 	  

Actually	  

Increases 
by a third	  

And then 
increases by a 

half	  

as it did 
before? 	  
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half [taps at the 
screen with the 
Popsicle stick]. 

(said “And then 
increases by,” gazed 
in the air, said “a 
half,” and proceeded 
to tap on the screen). 

Frame 9 (~29 
seconds) 

 

 

 

 

[38:56] Laura: So, it 
[shadow of 2 in step 
3 to shadow of 3 in 
step 4] increases by 
one [looks down], 
and one [points at 
the screen] is half of 
two [taps the screen, 
then looks away]. So, 
half of two is one, so 
one plus two is three. 
But then [tilts her 
head], it has 
increased by point 
five [gestures 
vertically with the 
Popsicle stick], 
which is a third 
[looks away] of one 
point five. So, I just, 
I assumed that one 
point two to one 
point five is, it is zero 
point three, which is 
a fourth of [1.2]... 

Tactility (held a 
measuring stick, 
perceived the 
dragging of the stick 
vertically along the 
screen, perceived 
tapping the screen). 

 
Gestures (pointing at 
the screen, tapping on 
the screen, vertical 
gesture with the 
Popsicle stick, 
looking at the screen, 
looking away from 
the screen, head tilt). 

 
Outer speech. 

 
Perception. 

L restated her pattern 
(utterance “So it 
increases by one, and 
one is half of two 
[…]” while pointing, 
tapping, and 
gesturing vertically 
with the Popsicle 
stick. She alternated 
looking at the screen 
and into space).  

Frame 10 (~13 
seconds) 

 

 

[39:59] Laura: 
[copies down the 
function table onto 
the paper. Then, 
writes the additive 
differences. Then 
writes down and 
circles the fraction.] 
So, I would assume 
this [fraction between 
steps four and five] 
would be one [writes 

Actions with cultural 
artifacts (wrote  table, 
denoted additive 
differences and 
fractions) 

 
Outer speech. 

(coordinated witting 
numbers five and six 
with saying it). 
 

L made a prediction 
for the value in the 
fifth step (utterance 
“…so this would 
probably be five five, 
no six six…” 
writing). 

 

increases 
by one	  

[Looks 
down]	  
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and circles one] so 
this [value in the 
right column in step 
five] would probably 
be five five [writes 
five at the same 
time], no six six 
[simultaneously 
writes six over five 
multiple times]. 

Perception. 

 

Figure 5. Episode 2: Semiotic coordination of tactility, rhythm, gesture, outer speech, perception, 
and actions with cultural artifacts. 

* Some of the gestures are discussed as components of framing or epistemic affect (see future 
research).	  

 

The summary of Episode 2 in Figure 5 reveals dynamic unities that are of similar nature, 

but also the ones that are of an entirely different nature than the dynamic unities discussed in 

Episode 1. Frame 6 in particular is qualitatively very different from any other frame in either of 

the two episodes. The lack of outer speech and writing in this frame leaves us with seemingly 

little or no evidence to base our interpretations of Laura’s mathematical thinking. However, her 

perception of and interaction with the function table during 17 seconds of staring at it, eye 

movement and blinking, are components of an intense thinking episode. Laura’s culminating 

utterance “two to three increases by a third […]” in which she describes the pattern she 

discovered, supports this interpretation. Perception of and interaction with the table, which is a 

form of action with a cultural artifact, co-occur and form a dynamic unity through shared 

meaning of the relationships in the table.  

Frame 7 presents another thinking session that lasted about 10 seconds, with Laura 

looking on and off at the function table on the computer screen while verbally describing the 

pattern she found: “[Step] two [corresponds to shadow of 1.5] to [step] three [corresponds to 
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shadow of 2] increases [gazes up in the air for a brief moment] by a third, and it does the same 

[some nodding] as it did [raises eyebrows] before [in the previous "jump" from step 1 at 1.2 to 

step 2 at 1.5]?” She perceived and described in words the multiplicative difference between 

shadow heights of 1.5 and 2 from the right column on the screen as an increase by a third. There 

is no reason to doubt that for her the perceived relationship between the two values in the right 

column 1.5 and 2 was identical to what she described in words as “increases by a third”. She then 

experimented in words and through perception if the same relationship also described the 

multiplicative difference between 1.2 and 1.5 in the previous step. Through this shared 

(identical) meaning of the multiplicative difference Laura coordinated the perception of the table 

with the utterance to think mathematically about the multiplicative pattern she is discovering.  

Frame 8 brings yet another aspect of dynamic unities, in which a head tilting gesture is 

synchronized with the utterance “Actually.” Building on Radford’s idea that the significance of a 

component rests within the context of the dynamic unity it belongs to, I argue that the head tilt 

for Laura was not a mere change of the physical position of her head but also a signifier of a shift 

in her thinking. Previously, she questioned whether the increase was always by a third, “by a 

third as it did before?” which after saying “Actually” she then changed to the statement “increase 

by a third and then increase by a half.” The head tilt and the utterance “Actually” were 

simultaneous, yet sandwiched between those two different thoughts. With this, I argue that tilting 

of her head and her utterance “Actually” both carried identical information to signify a shift in 

thinking. Therefore, the particular shift in thinking was a semiotic coordination of gesture and 

utterance.  

Another novelty that Episode 2 brings is tactility and rhythm. In particular, Frame 8 

exemplifies a variety of ideal-material components: outer speech, gesture, and perception were 
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coordinated with tactility (holding a Popsicle stick and tapping the screen with it) as well as 

rhythm (saying “third” or “half” while tapping the screen). I claim that all ideal-material 

components of this unity supported one another in what they signified, which is best described 

by her long utterance: “Actually, point five, which is a third of one point five. […] [repeatedly 

taps the screen with the Popsicle stick] increases by point five, and point five is a third of one 

point five, so increases by a third [taps the screen]. And then increases by [gazes in the air] a half 

[taps the screen with a Popsicle stick].” The role of tactility in this dynamic unity was not just 

having something in her hand for no particular reason at all, but rather, to use the Popsicle stick 

as an extension of her hand to point and tap loudly, and perhaps increase her sensation of touch, 

which might be a form of interaction with a function table on a computer screen. The role of 

rhythm (tapping synchronized with utterance), on the other hand, was to support the utterance by 

putting emphasis on the relevant parts of the pattern (“half” and “third”). I claim that both the 

tactility and the rhythm supported the utterance and therefore were part of the same semiotic 

unity. 

In Frame 9 Laura semiotically coordinated gestures, tactility, perception, and outer 

speech. Her long utterance not only co-occurs in space and time with tapping on the screen, head 

tilt, and dragging the popsicle stick up and down the screen but these gestures also support her 

utterance. Namely, taping supports the utterance by adding emphasis to the numbers she is 

verbalizing “half of two [taps the screen, then looks away];” her head tilt is part of shifting her 

thinking to the next pair of numbers “But then [tilts her head]” whereas dragging the Popsicle 

stick vertically along the screen supports that she is looking for a vertical pattern between values 

in the table.  
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In Frame 10 Laura semiotically coordinated outer speech, perception, and actions with a 

cultural artifact in order to make a prediction for shadow of the figurine five steps away from the 

light. Just like in Episode 1, Laura’s mathematical thinking follows the “scalar approach” 

(Vergnaud, 1983, 1988) as she first additively compares subsequent numbers in the right column 

by denoting their differences alongside the table (0.3, 0.5, 1), then determines that each 

difference is a fraction of the top number, and finally that fractions follow an increasing pattern 

!
!
, !
!
, !
!
, 1. She then adds 3 to itself and writes 6 as her prediction for shadow in step 5 while 

saying “six” twice. Her utterance and writings for Laura convey complementary and at times 

identical information. Frame 10 is an example of a dynamic unity in which Laura semiotically 

coordinated actions with cultural artifact, perception and outer speech.  

This in-depth analysis of multiple frames within two short episodes in which I looked for 

six different types of components of mathematical thinking—gestures, perception, outer speech, 

tactility, rhythm, and actions with cultural artifacts—reveals that Laura’s mathematical thinking 

is a semiotic coordination of two or more of these components. It is important to state that 

unobservable components such as inner speech or sensuous imagination, which Radford also 

includes among the components of mathematical thinking, were not accounted for in my 

analysis, but that should not exclude the possibility that Laura also coordinated them into the 

dynamic unities that I observed and discussed. 

Summary and Discussion	  

In this study, I pointed out moments in which Laura’s gesture, perception, outer speech, 

tactility, rhythm, and actions with cultural artifacts were coordinated in time and space and with 

respect to what they signify in finding a numerical pattern. Her thinking was mathematical in the 

sense that she was exploring shadow heights within the right column of a function table to find a 
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general pattern. Laura found a recursive pattern by using the “scalar approach” which is a form 

of an early algebraic thinking.  

Radford’s framework views mathematical thinking as a “semiotic coordination” 

(Radford, 2014, p. 268) of ideal and material components. The main question one might ask is on 

what grounds components such as gestures, interactions with cultural artifacts, or, for example, 

rhythm, could count as components of mathematical thinking. To answer this question I 

demonstrated in a frame-by-frame analysis of ideal-material components that certain components 

not incidentally co-occurred in space and time but participated in the construction of 

mathematical meaning for the student by providing identical (e.g., Frame 1), supporting (Frames 

8 and 9) complementary (e.g., Frame 3) or additional information (Frame 5) to one another. 

Arguably, if ideal-material components such as spoken words or gestures convey meaning, and 

meaning is an aspect of cognition, then such components are also components of Laura’s 

cognition. Similarly, the meaning conveyed by semiotic coordination of ideal-material 

components are components of Laura’s cognition, in this case, her mathematical thinking. Ideal-

material components that carry mathematical meaning for the student must also be considered 

components of that student’s mathematical thinking.  

As Radford’s (2014) study finds, students semiotically coordinate a variety of 

components to think mathematically. On a smaller scale, the present study contributes to 

Radford’s framework by filling in gaps by providing a definition of each component and 

collapsing the ideal vs. material terminology into ideal-material. More significantly, the present 

study offers a specific methodology to replicate Radford’s study by describing the analytic 

methods for determining how each of the components participates in the overall meaning if a 

dynamic unity. This determination is based on whether a component is carrying identical, 
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supporting, complementary, additional, or mismatched (different or contradicting) information to 

other components participating in the same dynamic unity.  

In particular, my analysis reveals moments in which Laura’s gesture signified certain 

mathematical meaning for her as part of a dynamic unity. For example, analysis of Frame 3 

reveals that the student’s vertical gesture conveyed complementary information to her utterance 

“because there might be a pattern”. The significance of that gesture was defined by its 

complementary role within the unity with the utterance. The vertical gesture signified that the 

pattern might reveal itself as a relationship between subsequent numbers within a column of the 

function table (known as the “scalar approach” or “scalar relationship,” see Vergnaud, 1983, 

1988; also Martínez & Brizuela, 2006). Similarly her horizontal gesture in Frame 4 

complemented her utterance “or related in some way” and signified that a pattern might reveal 

itself as a relationship between numbers within a row of a function table (known as the 

“functional approach” or “functional relationship,” see Vergnaud, 1983, 1988; also Schliemann 

et al., 2001). Literature on gestures helps highlight their ties to cognition. For example, Goldin-

Meadow (1999) refers to gestures as a “tool for thinking” (p. 428) with a purpose in expressing 

and shaping our thoughts, whereas McNeil (2008) views “gesture as active participant in 

speaking and thinking” (p. 7). Goldin-Meadow (1999) further argues that gestures do not always 

convey identical information to the one conveyed by the speech they accompany; gestures can 

also convey additional/complementary or different/mismatched information, as well as occur in 

the absence of speech altogether. Inspired by Goldin-Meadow (1999) in my analysis I looked for 

the moments when each of the ideal-material components signified identical, supporting, 

complementary, or additional meaning (I found no evidence of mismatched information).  
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My analysis also reveals instances in which student’s interaction with a function table 

played a role in a dynamic unity of student’s mathematical thinking. Laura coordinated such 

interaction with perception (Frames 1 and 6), perception, utterance and writing (Frames 5 and 

10), perception and gesture (Frames 2, 3, and 4), as well as perception, tactility and rhythm 

(Frame 8). To better understand the ties between cognition and, as Radford put it, a student’s 

actions with cultural artifacts, such as Laura’s interactions with function tables, I now briefly 

review Kirsh (2010), who provided detailed accounts regarding how external representations 

(e.g., written text, tables, drawings) “serve as vehicles for thought” (p. 445), “changing the 

domain and range of cognition” (p. 442). It is the interaction with external representations that, 

according to Kirsh, allows us to go beyond what we could accomplish just by thinking in our 

head alone, in terms of complexity, speed, and accuracy. In other words, human capacities for 

cognition within the head are limited, but are far more superior when they involve interactions 

with external representations. Gains in efficiency (speed, accuracy) and efficacy (performing at a 

high level of difficulty) when we interact with external representations, as compared to engaging 

in strictly internal cognitive processes, could be, as identified by Kirsh, because we can 

“rearrange” and “reformulate” external representations without altering their physical 

persistence. Rearranging and reformulating representations without altering physical persistence, 

according to the author, presents a challenge when simulated in the mind due to our limited 

cognitive abilities, such as limited working memory. Kirsh helps us begin to understand how our 

cognition expands beyond the head, and embeds and distributes onto the environment to include 

interactions with external representations, which highlight the embodied/embedded/extended 

aspects of cognition. On the other hand, Laura’s interactions with a function table involves 

culturally established ways of organizing independent and dependent variables in two columns, 
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and taking a scalar (vertical) or a functional (horizontal) approach when looking for a numerical 

pattern or relationship between variables, which are the cultural aspects of Laura’s mathematical 

cognition. The scope of this paper is to look at mathematical thinking as a semiotic coordination 

of various ideal-material components, rather than to provide detailed accounts of socio-cultural 

or embodied aspects of cognition. Laura’s interaction with the function table contributed 

identical (Frames 1, 5, 6, 8), additional (Frame 5), or complementary (Frame 2,3,10) information 

to the ones conveyed by other components.  

Radford’s framework prompts us to make claims about thinking as being “made up of” 

ideal-material components (Radford, 2014, p. 268). The way a student interacts with cultural 

artifacts is, for example, a component of his or her thinking. This is not to say that all thinking is 

visible and that we as researchers have no place in making hypothesis about children’s concepts, 

methods, and strategies beyond what is directly observable during clinical interviews. However, 

accounting for cognition as a semiotic coordination of gestures, outer speech, and interactions 

with cultural artifacts, has a potential to broaden our understanding of a child’s ways of thinking 

to include the thinking that occurs in multiple sensory-motor modalities. Traditional cognitivist 

approach would consider, for example, a gesture solely as an input or an output to cognitive 

processing, whereas from a post-cognitivist perspective, a gesture itself could contribute 

meaning and therefore itself be a component of cognition. The key distinction from earlier 

cognitivist accounts is that actions, gestures, outer speech, perception, and even tactility and 

rhythm are modalities of thinking itself, rather than inputs to or outputs from computations done 

in the mind.  	  
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Thinking vs. communication 

Reflecting on the examples of Laura’s components of thinking, which are not limited to 

the head alone, one might ask what makes each of these a form of mathematical thinking and not 

just an act of communication. For example, in Frame 2, prompted by my question: “What are 

you doing?” Laura said, “I am just trying to find the difference in how that [shadow heights] 

changed”. Her utterance might appear strictly communicational rather than a component of 

thinking. In Radford’s view, making a distinction between thinking and communication would 

mean that one is taking a cognitivist (i.e., computational) view of the mind: 

Although it might be argued that the teacher and the student are merely communicating 

ideas, I would retort that this division between thinking and communicating makes sense 

only within the context of a conception of the mind as a private space within us, where 

ideas are created, computed and only then communicated. This computational view of the 

mind has a long history in our Western idealist and rationalist philosophical traditions. (p. 

267-268) 

Radford’s above argument is clear; if we consider gesture or outer speech as forms of 

communication and not as forms of thinking, then we are taking a cognitivist perspective, which 

confines thinking solely to the head and communication to the outside of the head. However, 

arguing that a gesture is a component of thinking just because differentiating between 

communication and thinking would make us cognitivists is far from convincing. Instead, the key 

to the argument about what makes a component a part of thinking is what that component means 

or signifies to the learner within its dynamic unity. When we communicate we convey meaning, 

meaning in turn is an aspect of cognition, thus the thinking itself. Communication is, I so far 

argued, a form of thinking. Thinking, on the other hand, is viewed as a form of communication 
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with oneself (Sfard, 2012). Making a distinction between communication and thinking is 

therefore artificial.	  

Conclusion	  

In the present case study, I carried out a frame-by-frame analysis of an interview with a 

seventh grader exploring shadow. I analyzed video and written data in order to identify her 

gestures, perception, outer speech, tactility, rhythm, and actions with cultural artifacts. I then 

interpreted how she coordinated those components in space, time, and semiotically in order to 

think mathematically when looking for a pattern in a function table. 	  

The main problem this paper aims to address is understanding of the mechanisms by 

which cognition is situated within the bodily interactions with the physical, social and cultural 

environment. Semiotic coordination of ideal-material components described in this paper is one 

such mechanism. I further characterized semiotic coordination by the kinds of information 

(identical, supporting, complementary or additional) an ideal-material component contributes to 

the dynamic unity. Although this paper provides evidence that such mechanism exists it does not 

address why students coordinated components in a particular way. For example, in this paper I do 

not focus on why Laura’s vertical gesture and her utterance in Frame 2 conveyed complementary 

information and not identical, supplementary or additional. This might be a direction for future 

research. 

This study contributes to the literature on situated mathematical cognition in general, and 

embodied mathematical cognition in particular, by providing replicable analytical methods that 

help characterize mathematical thinking as a semiotic coordination of components in a variety of 

sensory modalities: 1) frame-by-frame organization of data 2) frame selection based on 

components co-occurring in space and time; 3) interpretation of the significance (conveyed 
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meaning) of each component in a frame based on the information they contribute (additional, 

complementary, etc.); and 4) discussion of the mathematical thinking as a semiotic coordination 

of components in the frame.  

The main distinctions from Radford’s framework are: 1) terminology for ideal and 

material components was collapsed into ideal-material to emphasize that their separation is 

artificial; 2) definitions were provided for each of the six Radford’s component of thinking; 3) 

specific analytic methods to replicate were provided (described above); and 4) coordination was 

characterized as semiotic by ways in which different components carried identical, supporting, 

complementary, additional, or mismatched information (embedded in the analytic methods).  

My analysis has the following limitations: 1) it fails to account for “inaccessible” 

components of student thinking such as inner speech and visualizations, 2) it might fail to 

determine semantics of an observable component (e.g., isolated gesture) unless there is another 

observable component available in the analysis (e.g., outer speech), 3) it does not take into 

account whether a component is intentional or involuntary, and 4) it is limited to components 

that co-occur in time and space and does not take into a consideration components that were 

established during previous activity (see diachronic analysis in Arzarello, 2009). 

The explanatory power of Radford’s framework when it comes to looking at student 

mathematical thinking comes from accounting for a variety of forms that thinking can 

simultaneously take. If we were to ignore them, some aspects of student thinking would remain 

hidden to us. Also, if we were to look at those components in isolation from one another, we 

might miss what a component signifies within a dynamic unity. For example, the significance of 

Laura’s vertical gesture in Frame 3 is unclear to the observer in isolation from the utterance that 

accompanies it. On the other hand, if we were to look at the utterance in isolation from the 
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gesture, then the vertical spatial orientation of the possible pattern in the function table would 

remain hidden to us.  

As a way of concluding the study, I will now discuss the relevance of Radford’s 

framework to understanding mathematical cognition. First, this framework aligns with the post-

cognitivist approach by showing ways in which the body plays an important role in cognition, 

namely, through perception, gesture, tactility, rhythm, outer speech, and interaction with cultural 

artifacts. Next, the framework shows that mathematical thinking could simultaneously take 

multiple forms, from a vertical hand gesture, through tapping and rhythm, to a complex utterance 

or an interaction with a cultural artifact such as a function table. This, in turn, sheds light on just 

how complex and powerful our cognitive apparatus is in terms of distributing and extending 

cognition to resources outside the boundaries of our own physical brains.  

Finally, when it comes to mathematics education and research, Radford’s framework has 

a few important implications: 1) looking into students’ mathematical thinking should account for 

outer or embodied forms of thinking; 2) those components are not to be considered mere 

evidence of, but rather components of, thinking; and 3) components of thinking should not be 

looked at in isolation from other components because their role in a semiotic unity determines 

their significance. 

Directions for future research 

My analysis also revealed ideal-material components that co-occurred in time and space 

with other components of Laura’s mathematical thinking, although they did not convey identical,  

supporting, complementary, additional, or mismatched information. Namely, in Frame 1, Laura 

lifted the pencil before she wrote 0.32. I interpret this gesture as framing of her mathematical 

activity as “I am now in a thinking mode.” During Frame 3, Laura also maintained a vertical 
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body position, remained slightly turned towards the interviewer, and maintained direct eye 

contact with the interviewer. I interpret these gestures as part of how she is framing her 

mathematical activity as, for example, “I am confident in my understanding of what I am 

supposed to be doing, and that is to find a pattern.” In Frame 6, Laura lifts both eyebrows and 

sighs, which could signify something similar to taking a deep breath before we start working on 

something that takes a lot of concentration or effort; physical stillness and arms wrapped around 

the knees could signify something like “I am in my cocoon isolating myself from external 

stimulus;” whereas biting the lip could signify “I am in my intense thinking mode.” These are 

only some interpretations of how these gestures could frame Laura’s cognitive processes. These 

examples, arguably, are pointing in the direction of Laura’s epistemological framing (Hutchison 

& Hammer, 2010; Russ et al., 2012) rather than her mathematical thinking. Epistemological 

framing co-occurs in time and space with mathematical thinking and therefore has the potential 

to become another layer in Radford’s framework.  

On the other hand, in Frame 2 Laura also lifts an eyebrow, a gesture that can be 

interpreted as an element of surprise (or possibly being confused, or annoyed) that the additive 

difference between the numbers in the right column might not be constant. The eyebrow lift is 

not just an incidental gesture, but also one that is synced up in time with the emotion of surprise, 

confusion or being annoyed with her mathematical activity. Epistemic affect (see Jaber, 2015), 

just like the epistemological framing, might possibly be another layer to be added to Radford’s 

framework.  
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