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Abstract

Lattice Boltzmann models that asymptotically reproduce solutions of nonlinear systems are derived by
the Chapman-Enskog method and the analytic method based on recursive substitution and Taylor-series
expansion. While both approaches yield identical hydrodynamic equations and can be generalized to
analyze a variety of nonlinear systems, they have complementary advantages and disadvantages. In
particular, the error analysis is substantially easier using the Taylor-series expansion method. In this
work, the Burgers’, Korteweg-de Vries, and Kuramoto-Sivashinsky equations are analyzed using both
approaches, and the results are discussed and compared with analytic solutions and previous studies.
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1. Introduction

The lattice Boltzmann (LB) equation is a discrete hydrodynamic model, based on an underlying
discrete-velocity kinetic equation [1]. It implements fundamental processes, particle propagation and col-
lisional relaxation, which can be tuned to reproduce various macroscopic physical phenomena. Specifically
the formalism is motivated by an asymptotic analysis of the Boltzmann equation.

To relate the microscopic LB transport equation to the macroscopic hydrodynamic equations, a com-
monly used analytic method is the Chapman-Enskog method. Using the Knudsen number, which is the
assumedly small ratio of the mean free path to the macroscopic length scale, as an expansion parameter,
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the LB equation is expanded order by order. For mass- and momentum-conserving LB models, it is well
known that the expansion up to the second order yields the continuity equation and the Navier-Stokes
equation. Indeed, this is one of basic motivations for extensive applications of the LB method in the
computational fluid dynamics field.

In this paper, for simulating more general nonlinear equations we proceed to the Burnett level – up
to the fourth derivative order. In previous studies [2–7], reasonably accurate LB models are derived
by the Chapman-Enskog method for a variety of nonlinear systems. In most of their studies, however,
they have found it necessary to introduce a correction term to the BGK collision operator, called the
amending function, whose physical meaning is not entirely clear. In this paper, we demonstrate that, by
introducing scaling parameters in the functional form of the local equilibrium, LB models with similar or
greater accuracy can be constructed with no amending function.

An alternative analysis expands the LB equation in a Taylor series, supposing that ∆x ∂x is of order
ǫ, and ∆t ∂t is of order ǫm where m ≥ 1 and ǫ is a tiny parameter [8–10]. Because the macroscopic
equation is derived by straightforward algebra from the LB equation, this method is well suited for error
analysis [8] and the analysis of complex fluids, such as multiphase flow [9, 11].

In this work, both of the above-described analytic methods are applied to derive LB models corre-
sponding to various nonlinear equations in 1 + 1 dimensions. Moreover, features of each method are
discussed and, using the models thus derived, several nonlinear systems are simulated, including the
Burgers’, Korteweg-de Vries (KdV), and Kuramoto-Sivashinsky (KS) equations.

For space x and time t, the Burgers’ equation is

∂tρ + ρ∂xρ = ∂2
xρ, (1)

the KdV equation is
∂tρ − 6ρ∂xρ = −∂3

xρ, (2)

and the KS equation is
∂tρ + ρ∂xρ = −∂2

xρ − ∂4
xρ. (3)

In all three cases, the second term on the left-hand side is regarded as the advection term and the terms
on the right hand side are diffusion, anti-diffusion or hyperdiffusion terms.

The KS equation has been applied to a variety of chaotic phenomena such as the flame front in
laminar flow of burning gas [12, 13], and the thickness of a thin-water film on a vertical wall [14]. Indeed,
Holmes [15] has observed that similar terms can be found in the equations for turbulent fluctuation
velocity derived from the Navier-Stokes equation. Hence, study of the KS equation helps to deepen our
knowledge of turbulence.

The outline of this paper is as follows: In Sec. 2, the LB method for nonlinear equations is formulated
using both the Chapman-Enskog method and the Taylor expansion method. In Sec. 3, the LB models
thus obtained are tested by comparison with analytical solutions and previous study. In Sec. 4, the results
obtained by this study are summarized and discussed.

2. Lattice Boltzmann models for the nonlinear system

The LB equation for the discrete distribution function fi is given by:

fi (x + ci∆t, t + ∆t) − fi (x, t) = −
fi (x, t) − feq

i (x, t)

τ
, (4)

where ci is the discrete lattice velocity and τ is the relaxation time. Here, feq
i denotes the local equilibrium

state. For convenience in the Taylor expansion method, by redefining x and t properly, this equation can
be recast as,

fi (x, t) − fi (x − ci∆t, t − ∆t) = −
fi (x − ci∆t, t − ∆t) − feq

i (x − ci∆t, t − ∆t)

τ
. (5)

The characteristic lattice speed |c|, which is dimensioned in lattice units, is assumed to be one and not
explicitly written in what follows.

After rearrangement, Eq. (5) can be written in the form,

fi (x, t) = feq
i (x − ci∆t, t − ∆t) +

(

1 −
1

τ

)

{fi (x − ci∆t, t − ∆t) − feq
i (x − ci∆t, t − ∆t)} . (6)
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The first term on the right-hand side is the equilibrium distribution, and the second term includes the
various non-equilibrium contributions to the distribution.

A macroscopic quantity ρ is defined to be the sum of fi for states i, ρ =
∑

i fi, and we suppose that
it is the only conserved density in the problem. In what follows, we discuss the correspondence between
the LB equation, Eq. (6), and the nonlinear equation governing ρ on the basis of two methods. The main
goal is to find the form of feq

i so as to obtain the desired nonlinear equation.

2.1. Derivation with the Chapman-Enskog method

In the Chapman-Enskog method, the Boltzmann equation is expanded by a non-dimensional small
parameter ǫ, which is usually regarded as a ratio between microscopic and macroscopic scales, and hence
related to the Knudsen number. We choose a local equilibrium distribution of the form,

feq
i (ρ) = Wi,0r(ρ) + Wi,1cip(ρ) + Wi,2

(

c2
i − c2

S,2

)

g(ρ) + Wi,3c
3
i h(ρ) + Wi,4

(

c4
i − c4

T,4

)

q(ρ). (7)

For maximum generality, we have employed families of weights, Wj,a, chosen to satisfy

∑

i Wi,a = 1,
∑

i Wi,aci = 0,
∑

i Wi,ac2
i = c2

S,a,
∑

i Wi,ac3
i = 0,

∑

i Wi,ac4
i = c4

T,a,

∑

i Wi,ac5
i = 0,

∑

i Wi,ac6
i = c6

U,a,
∑

i Wi,ac7
i = 0,

∑

i Wi,ac8
i = c8

V,a,
∑

i Wi,ac9
i = 0,

(8)

where cS,a/cT,a are a sound/thermal speed and cU,a and cV,a are two other speeds for each family of
weights Wi,a. Moreover, the functions r, p, g, h, and q in Eq. (7) are expanded by ǫ,

r =

∞
∑

l=0

ǫlrl(ρ), p =

∞
∑

l=0

ǫlpl(ρ), g =

∞
∑

l=0

ǫlgl(ρ), h =

∞
∑

l=0

ǫlhl(ρ), q =

∞
∑

l=0

ǫlql(ρ). (9)

Accordingly the equilibrium state feq
i is written in the expanded form,

feq
i (ρ) =

∞
∑

l=0

ǫlf
(eq,l)
i (ρ). (10)

That is, as noted in the Introduction, the equilibrium state itself varys as the scaling limit is approached.
Although from Eq. (7) it is straightforward to compute the first four moments, for simplicity instead

of writing those explicit forms we briefly define following functions of ρ,

Ql =
∑

i

f
(eq,l)
i , Jl =

∑

i

f
(eq,l)
i ci, Kl =

∑

i

f
(eq,l)
i c2

i , Ll =
∑

i

f
(eq,l)
i c3

i , Ml =
∑

i

f
(eq,l)
i c4

i . (11)

Because Ql(ρ) = rl(ρ) and r0(ρ) = ρ, the rj for j > 0 would break the conservation of ρ via the collision
process. For the modeling of hydrodynamic equations with source or sink terms, those terms are useful.
In this paper we consider only hydrodynamics with conserved ρ, and therefore we take rj = 0 for j > 0.
Moreover we assume the differentiability of ρ throughout this analysis.

From Eq. (6), one obtains

fi(x, t) =
[

1 + τ
(

eDi − 1
)]−1

feq
i (x, t), (12)

where Di is the differential operator
Di = ∂t + ci∂x. (13)

In terms of ǫ, time and space are scaled so that ∂t =
∑

∞

k=1 ǫk∂tk
and ∂x = ǫ∂x1

, where xk and tk denote
the kth space and time scale [16]. Then Di is expanded,

Di =

∞
∑

k=1

ǫkDi,k, (14)

where Di,k := ∂tk
+ δk,1ci∂x1

and δ is the Kronecker delta. Consequently the solution of Eq. (12) is

fi(x, t) =

∞
∑

k=0

ǫkf
(k)
i (x, t), (15)

3



where

f
(0)
i (x, t) = f

(eq,0)
i , (16a)

f
(1)
i (x, t) = −τDi,1f

(eq,0)
i + f

(eq,1)
i , (16b)

f
(2)
i (x, t) = −τ

[

Di,2 −
(

τ − 1
2

)

D2
i,1

]

f
(eq,0)
i − τDi,1f

(eq,1)
i + f

(eq,2)
i , (16c)

f
(3)
i (x, t) = −τ

[

Di,3 − 2
(

τ − 1
2

)

Di,1Di,2 +
(

τ2 − τ + 1
6

)

D3
i,1

]

f
(eq,0)
i

−τ
[

Di,2 −
(

τ − 1
2

)

D2
i,1

]

f
(eq,1)
i − τDi,1f

(eq,2)
i + f

(eq,3)
i , (16d)

f
(4)
i (x, t) = −τ

[

Di,4 − 2
(

τ − 1
2

)

Di,1Di,3 −
(

τ − 1
2

)

D2
i,2

+ 3
(

τ2 − τ + 1
6

)

D2
i,1Di,2 −

(

τ − 1
2

) (

τ2 − τ + 1
12

)

D4
i,1

]

f
(eq,0)
i

−τ
[

Di,3 − 2
(

τ − 1
2

)

Di,1Di,2 +
(

τ2 − τ + 1
6

)

D3
i,1

]

f
(eq,1)
i

−τ
[

Di,2 −
(

τ − 1
2

)

D2
i,1

]

f
(eq,2)
i − τDi,1f

(eq,3)
i + f

(eq,4)
i . (16e)

If one takes the sum over i in those equations, demanding that the zeroth moments of f
(l)
i vanish for l > 0,

a set of macroscopic equations is obtained for each order in ǫ. The results are summarized in Table 1.
In derivation processes of the kth order, we assume suppression of lower-order motions by demanding
∂tj

ρ = 0 for j < k. Finally, the moments in Eq. (11) are chosen so that the nonlinear equations of interest
– the Burgers’, KdV, and KS equations – are obtained at the order in ǫ corresponding to the order of the
differential equation.

Table 1: Equations of motion and suppression conditions for each order in ǫ

ǫ order Equations of motion Conditions for ∂ti
ρ = 0

1 ∂t1ρ + J ′

0∂x1
ρ = 0 (17) J ′

0 = 0 (18)

2 ∂t2ρ = ∂x1

{(

τ − 1
2

)

K ′

0∂x1
ρ
}

− J ′

1∂x1
ρ. (19) K ′

0 = 0, J ′

1 = 0, (20)

3 ∂t3ρ = −∂2
x1

{(

τ2 − τ + 1
6

)

L′

0∂x1
ρ
}

+

(

τ −
1

2

)

(

K ′′

1 (∂x1
ρ)

2
+ K ′

1∂
2
x1

ρ
)

− J ′

2∂x1
ρ. (21) L′

0 = 0, K ′

1 = 0, J ′

2 = 0,
(22)

4 ∂t4ρ =
(

τ − 1
2

) (

τ2 − τ + 1
12

)

∂4
x1

M0 -

−
(

τ2 − τ + 1
6

)

∂3
x1

L1 +
(

τ − 1
2

)

∂2
x1

K2 − ∂x1
J3 (23)

Burgers’ equation has second-order spatial derivatives, and therefore requires use of this formalism
up to order ǫ2, i.e., Eq. (19). To make the result equivalent to Burgers’ equation, Eq. (1), we see that
we should choose,

J1 = ρ2/2, K0 = ρ/ (τ − 1/2) , (24)

keeping in mind the requirement for the suppression of first-order motion, Eq. (18) in Table 1.
The KdV equation, Eq. (2), has third-order spatial derivatives, and therefore requires use of this

formalism up to order ǫ3; i.e., Eq. (21). To make the result equivalent to the KdV equation, we see that
we should choose,

J2 = −3ρ2, K1 = 0, L0 = ρ/
(

τ2 − τ + 1
6

)

, (25)

keeping in mind the requirements for the suppression of first and second order motion, Eqs. (18) and (20)
in Table 1.

The KS equation, Eq. (3), has fourth-order spatial derivatives, and therefore requires use of this
formalism up to order ǫ4, i.e., Eq. (23). To make the result equivalent to the KS equation, we see that
we should choose,

J3 = ρ2/2, K2 = −ρ/ (τ − 1/2) , L1 = 0, M0 = −ρ/
{

(τ − 1/2)
(

τ2 − τ + 1/12
)}

, (26)
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keeping in mind the requirements for the suppression of first, second, and third order motion, given in
Eqns. (18), (20) and (22), respectively, in Table 1.

2.2. Derivation with the Taylor-expansion method

In this method, after applying a Taylor expansion to the LB equation, higher-order derivative terms
of ρ are assumed to be negligible, in the sense that ∆x ∂x is of order ǫ, and ∆t ∂t is of order ǫm where
m ≥ 1 and ǫ is a tiny parameter. Here, we suppose that ∆x/L = ǫ and ∆t/T = ǫm while L∂x and T∂t

are unity order where L and T are macroscpic length and time.
After the form of fi in Eq (6) is recursively substituted 1 for fi on the right-hand side of Eq. (6), the

equation is closed with the equilibrium state,

fi (x, t) = feq
i (x − ci∆t, t − ∆t)

+
∞
∑

n=1

(

1 −
1

τ

)n

{feq
i (x − (n + 1) ci∆t, t − (n + 1) ∆t) − feq

i (x − nci∆t, t − n∆t)} . (27)

Here we assume feq
i has a form,

feq
i = ρw

(1)
i + ρw

(2)
i + ρw

(3)
i + ρ2w

(4)
i , (28)

with weights wi whose moments are shown in Table 2. The equilibrium distribution, feq
i should be an

analytic function.

Table 2: Moments of wi in Eq. (28)

Order of moment w
(1)
i w

(2)
i w

(3)
i w

(4)
i

0 1 0 0 0
1 0 0 0 J
2 0 0 K 0
3 0 L 0 0
4 M 0 0 0

In Eq.(27) one takes the sum for i. It is readily seen that the left hand side is ρ (x, t). The equilibrium
part in the right hand side becomes,
∑

i

feq
i (x − ci∆t, t − ∆t)

=
∑

i

∞
∑

m=0

(−∆t)
m

m!

(

∂

∂t
+

(

ci ·
∂

∂x

))m

feq
i (x, t)

= ρ − ∆t

(

∂ρ

∂t
+ J

∂ρ2

∂x

)

+
K

2!
(∆t)

2 ∂2ρ

∂x2
−

L

3!
(∆t)

3 ∂3ρ

∂x3
+

M

4!
(∆t)

4 ∂4ρ

∂x4
+ O

(

∂5ρ

∂x5
,
∂2ρ2

∂x∂t
,
∂2ρ

∂t2

)

.

(29)

Similarly, for the non-equilibrium part of Eq. (27), we get

∑

i

∞
∑

n=1

(

1 −
1

τ

)n

{feq
i (x − (n + 1) ci∆t, t − (n + 1) ∆t) − feq

i (x − nci∆t, t − n∆t)}

= −∆tT1

(

∂ρ

∂t
+ J

∂ρ2

∂x

)

+
K

2!
(∆t)

2 ∂2ρ

∂x2
T2 −

L

3!
(∆t)

3 ∂3ρ

∂x3
T3 +

M

4!
(∆t)

4 ∂4ρ

∂x4
T4 + O

(

∂5ρ

∂x5
,
∂2ρ2

∂x∂t
,
∂2ρ

∂t2

)

,

(30)

where Ti =
∑

∞

n=1

(

1 − 1
τ

)n
[

(n + 1)
i
− ni

]

whose explicit forms for τ > 1/2 are,

T1 = τ − 1, T2 = 2τ2 − τ − 1, T3 = 6τ3 − 6τ2 + τ − 1, T4 = H (τ) − 1, (31)

1In this recursive substitution, we assume that the domain is infinite, so we do not need to worry about the effect of
boundaries.
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where H (τ) = (τ − 1)
(

24τ3 − 12τ2 + 2τ + 1
)

+ 1. As a result, from Eq. (27) we obtain,

∂ρ

∂t
= −J

∂ρ2

∂x
+

∆t

2!
K

∂2ρ

∂x2

T2 + 1

T1 + 1
−

(∆t)
2

3!
L

∂3ρ

∂x3

T3 + 1

T1 + 1
+

(∆t)
3

4!
M

∂4ρ

∂x4

T4 + 1

T1 + 1
+ O

(

∂5ρ

∂x5
,
∂2ρ2

∂x∂t
,
∂2ρ

∂t2

)

. (32)

Next, we consider the correspondence between Eq. (32) and the desired nonlinear equations for τ >
1/2. For the Burgers’ equation, the moments should be set as

J = 1/2, K = 1/ (τ − 1/2) , L = 0, M = 0. (33)

For the KdV equation, the required moments are

J = −3, K = 0, L = 1/
(

τ2 − τ + 1/6
)

, M = 0. (34)

For the KS equation, the moments should be set as

J = 1/2, K = −1/ (τ − 1/2) , L = 0, M = −1/
[

(τ − 1/2)
(

τ2 − τ + 1/12
)]

. (35)

2.3. Summary of formalism

If x and t denote the space and time coordinates in lattice units, as used in the simulation, then the
physical space X and time T are defined as

X = αx

T = βt, (36)

where α and β are scaling parameters. From a physical viewpoint, such scaling is sometimes necessary
to enhance the accuracy and stability of the simulation. From a mathematical viewpoint, it can be used
to reduce the effects of truncation error of the higher-order space and time derivatives.

As is evident from comparing Eqs. (24) and (33), Eqs. (25) and (34), and Eqs. (26) and (35), respec-
tively, for each nonlinear equation, both analytic methods yield the same results. That is, for solving
nonlinear equations, Eq.(6) is solved using feq

i described in Eq. (28), Table 2, and Table 3. These analytic
methods are very different and it is not at all clear that they should give the same numerical algorithm,
but one of the principal results of this paper is that they do so for all three of hydrodynamic equations.

Table 3: Moments for each nonlinear equation

Burgers’ KdV KS
J β/2α −3β/α β/2α
K β/

{

α2 (τ − 1/2)
}

0 −β/
{

α2 (τ − 1/2)
}

L 0 β/
{

α3
(

τ2 − τ + 1/6
)}

0
M 0 0 −β/

{

α4 (τ − 1/2)
(

τ2 − τ + 1/12
)}

Henceforth, we adopt notation that has become standard in the lattice Boltzmann literature, in which
DnQm refers to a model in n spatial dimensions with m kinetic velocities. In the case of D1Q5, for which
ci = {0,±1,±2}, if we demand that the moments are as listed Table 2, then the wi must be

w
(1)
i = M{1/4 + 1/M,−1/6, 1/24} , w

(2)
i = L{0,∓1/6,±1/12} ,

w
(3)
i = K{−5/4, 2/3,−1/24} , w

(4)
i = J {0,±2/3,∓1/12} . (37)

For D1Q7, for which ci = {0,±1,±2 ± 3}, if we demand that the first four moments are as listed Table 2
and the fifth and sixth moments vanish, then the wi must be

w
(1)
i = M{7/18 + 1/M,−13/48, 1/12,−1/144} , w

(2)
i = L{0,∓13/48,±1/6 ∓ 1/48} ,

w
(3)
i = K{−49/36, 3/4,−3/40, 1/180} , w

(4)
i = J {0,±3/4,∓3/20,±1/60} . (38)

The above lattice vectors and weights are utilized in the next section.
It is worth noting that all of the conserved quantities in the original nonlinear equations are not always

exactly conserved in the LB models due to the higher-order corrections. For instance, for Burgers’ and
KdV equation, ρ2 is a conserved density of the exact equations, but not exactly conserved by the lattice
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Boltzmann model. In a previous study [6],
∫

dx
(

−3ρ2 + ∂2
xρ

)

is attempted to be conserved in ǫ0 order
with a proper choice of initial conditions. Although we don’t pursue that approach in this work, we find
ρ2 is conserved well in the latter tests.

Let us summarize and compare features of the Chapman-Enskog (CE) method and the Taylor expan-
sion (TE) methods. The two methods are similar in that

(S1) Neighboring quantities in discrete time and space are treated by the Taylor expansion.

(S2) Higher derivative terms are less important. In the CE method this is because higher derivative
terms are accompanied by higher powers of ǫ.

The two methods are different in that

(D1) Order matching is necessary for the CE method, but not for the TE method.

(D2) Time ordering is used for the CE method, but not for the TE method.

(D3) In the TE method, we must assume at the outset that τ > 1/2. This assumption is never explicitly
required in the CE method.

(D4) The form of the equilibrium distribution is more general in the CE method.

(D5) The relation between different orders is not explicitly defined in the CE method, and this complicates
the error analysis.

(D6) There exists freedom to choose the non-dimensional scalar ǫ in the CE method, but not in the TE
method.

3. Numerical tests of the model

The lattice Boltzmann models proposed in the previous section were tested numerically for all three
of the Burgers’, KdV, and KS equations. The results were analyzed and compared with analytic solutions
and solutions from previous studies, and these results are presented in the subsections below.

3.1. Model tests on the Burgers’ equation

With the following boundary conditions and initial condition,

ρ (XM , t) = 0, (39)

ρ (Xm, t) = 2, (40)

ρ (X, 0) = 1 − tanh

(

X

2

)

, (41)

where XM and Xm are the maximum and minimum X coordinates of the domain, respectively, there
exists an analytic solution for Burgers’ equation, Eq. (1), namely

ρ (X,T ) = 1 − tanh

(

X − T

2

)

. (42)

We employ the D1Q5 lattice. The spatial domain used is X ∈ [−10, 20]. In the first case, the scaling
defined in Eq. (36) is taken to be α = ∆X = 0.1 and β = ∆T = 1.0e − 3. This means that 300 grid
points are used to discretize the spatial domain.

In Fig. 1, results with τ = 1.25 and τ = 1.50 are presented. For any T and τ , there is no discernable
deviation from the analytic solution. Using the scheme described in the last section, stable solutions are
obtained for 0.64 ≤ τ .

Next, we tested various values for ∆X and ∆T . In Fig. 2, for each value of τ used, the ∆X- and
∆T -dependence of the global relative error,

G =

∑

x

∣

∣ρN (x) − ρA (x)
∣

∣

∑

x ρA (x)
, (43)

are shown, where ρN is the numerical density and ρA is the corresponding analytical result. Taking into
account the scaling, we found that the leading terms of the truncation error in Eq. (32) are proportional
to the following terms

K′
α6

β

∂6ρ

∂X6
∝ α4 ∂6ρ

∂X6
, J ′α

∂2ρ

∂T∂X
∝ β

∂2ρ

∂T∂X
, β

∂2ρ

∂T 2
, (44)
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where K′/J ′ has the same form as K/J , except for its coefficient. As a result the convergence is valid
to fourth order in the spatial discretization, and to first order in the time discretization.

In Fig. 2, for each value of τ considered, G at T = 1 is plotted against ∆X and ∆T , and fitted by
a quartic and linear function, respectively. The quartic functions approach G = 0 as ∆X → 0. The
numerical results fall on those curves and lines, respectively, demonstrating agreement with the expected
order of convergence in space and time.
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Figure 1: Burgers’ equation: Comparison between numeric (points) and analytic (solid line) solutions when τ = 1.25
(left) and τ = 1.50 (right). Here we took ∆T = 1.0e − 3, ∆X = 0.1.
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Figure 2: Burgers’ equation: Global relative error G for T = 1 as a function of ∆X (left) and of ∆T (right) for various
values of τ . Here we took ∆T = 2.5e − 4 in the left figure, and ∆X = 0.1 in the right figure. The dotted quartic curves
(left) and lines (right) are fits to the numeric results.

3.2. Model tests on the Korteweg-de Vries equation

In an infinite domain, with the initial condition,

ρ (X, 0) = −6 sech2X, (45)

there exists an analytic two-soliton solution of the KdV equation, Eq. (2), namely

ρ (X,T ) = −12
3 + 4 cosh (2X − 8T ) + cosh (4X − 64T )

[3 cosh (X − 28T ) + cosh (3X − 36T )]
2 . (46)

We employ the D1Q7 lattice. The spatial domain used is X ∈ [−10, 20] with periodic boundary conditions.
In the first case, the scaling defined in Eq. (36) is α = ∆X = 0.05 and β = ∆T = 2.5e − 6. This means
that 600 grid points are used to discretize the spatial domain.
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Since the KdV equation doesn’t have an explicit diffusion term, truncation error easily induces in-
stability. Specifically, the following term, which is derived from the error terms regarding ∂2ρ/∂t2 and
∂4ρ/∂t∂x3 in Eq. (32) using the KdV equation, Eq. (2), is prone to instability and growth as an unstable
mode,

{

β (T2 + 1)

2 (T1 + 1)
−

α3L (T3 + 1)

6 (T1 + 1)

}

∂6ρ

∂x6
:= G

∂6ρ

∂x6
. (47)

To mitigate this growth mode, the equilibrium distribution, Eq. (28), is modified by adding a term ρw
(5)
i ,

where

w
(5)
i = H

{

−
5

18
,+

1

48
,−

1

120
,+

1

720

}

,

H = −
G

[α6 (T6 + 1) / (6!β (T1 + 1))]
, (48)

is added, where the convention of listing lattice vectors was described in Subsection 2.3.
In Fig. 3 results with τ = 1.00 and τ = 1.25 are presented. It shows remarkable agreement with the

analytic solution for both values of τ . The KdV equation is well known to possess an infinity of conserved
quantities, but it would be unrealistic to expect any numerical scheme to respect all of them. The first
two nontrivial conserved quantities of the KdV equation, ρ2 and −2ρ3 − ρ2

x, were observed to vary by
0.47% and 6.0% respectively during 0.1 ≤ T ≤ 1, for τ = 1. The algorithm was observed to be stable for
0.99 ≤ τ ≤ 20.

Tests with different ∆X and ∆T were carried out. In Fig. 4, the global relative error G at T = 1 is
plotted versus ∆X and ∆T . For this model, we expect the main truncation error terms to be

L′
α5

β

∂5ρ

∂X5
∝ α2 ∂5ρ

∂X5
, J ′′α

∂2ρ

∂T∂X
∝ β

∂2ρ

∂T∂X
, β

∂2ρ

∂T 2
. (49)

Again, L′/J ′′ has the same form as L/J except for its coefficient. The convergence order is therefore
expected to be second-order for the spatial discretization and first-order for the time discretization. In
Fig. 4, the error is fitted to quadratic (left) and linear (right) functions, indicating results that are
consistent with this expectation. Again, the quadratic curves approach G = 0 as ∆X → 0.
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Figure 3: Korteweg-de Vries equation: Comparison with the analytic solution (solid line) in the case of τ = 1.00 (left)
and τ = 1.25 (right). Here we took ∆T = 2.5e − 6, and ∆X = 0.05.

3.3. Model tests on the Kuramoto-Sivashinsky equation

With following boundary conditions and initial condition,

ρ (Xm, t) = b −
30

19

√

11

19
, (50)

ρ (XM , t) = 2b − ρ (Xm, t) , (51)

ρ (X, 0) = b +
15

19

√

11

19

{

−9 tanh [k (X − X0)] + 11 tanh3 [k (X − X0)]
}

, (52)
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Figure 4: Korteweg-de Vries equation: Global relative error for T = 1 as a function of ∆X (left) and of ∆T (right)
for various values of τ . Here we took ∆T = 5.0e − 7 in the left figure, and ∆X = 0.05 in the right figure. In both figures,
the left-hand ticks on the ordinate are for τ = 1, and the right-hand ones are for the other two values of τ . The dotted
quadratic curves (left) and lines (right) are fits to the numeric results.

where XM and Xm are the maximum and minimum X coordinates of the domain, respectively, and where

k = 1
2

√

11
19 , there exists an analytic solution for the KS equation, Eq. (3), namely

ρ (X, t) = b +
15

19

√

11

19

{

−9 tanh [k (X − bt − X0)] + 11 tanh3 [k (X − bt − X0)]
}

. (53)

We employ the D1Q5 lattice. Here b = 3 and X0 = (XM − Xm) /3. The spatial domain size is X ∈
[−30, 30]. In the first case, the scaling defined in Eq. (36) is α = ∆X = 0.1 and β = ∆T = 1.0e− 5. This
means that 600 grid points are used to discretize the spatial domain.

In Fig. 5, results with τ = 1.25 and τ = 1.50 are presented. Once again, they indicate remarkable
agreement between the numerical results and the analytic solution, and there is no obvious τ dependence.
The algorithm was observed to be stable for 1.0 ≤ τ ≤ 5.0.
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Figure 5: Kuramoto-Sivashinsky equation: Comparison with the analytic solution (solid line) in the case of τ = 1.25
(left) and τ = 1.50 (right). Here we took ∆T = 1.e − 5,∆X = 0.1.

Taking into account the scaling, we found that the leading terms of the trunction error in Eq (32) are
proportional to the following terms

M′
α6

β

∂6ρ

∂X6
∝ α2 ∂6ρ

∂X6
, J ′α

∂2ρ

∂T∂X
∝ β

∂2ρ

∂T∂X
, β

∂ρ

∂T 2
, (54)

where M′ has the same form as M, except for its coefficient. The convergence order is therefore expected
to be second-order for the spatial discretization and first-order for the time discretization.

10



In Fig. 6, G at T = 1 is plotted versus ∆X and ∆T for various values of τ . The dependence on
∆X was fit to a quadratic (left) and that on ∆T was fit to a line (right). Once again, the quadratic
function goes to zero as ∆X → 0, and once again the numerical results fall on those curves and lines,
demonstrating agreement with the expected order of convergence in space and time, given by Eq. (54).

Furthermore in Fig. 6 results based on a previous study [3] are presented. When τ is close to one, it
is clear that the present algorithm results in increased accuracy. We believe this is due to our retention
of the exact BGK form of the collision operator, albeit with an equilibrium distribution defined to high
order, as contrasted with the modification of the BGK form by an “amending function,” defined in the
earlier literature [3]. It seems to us that the amending function causes additional truncation error in the
production and advection terms of the KS equation. When τ is not close to one, however, the truncation
error of the diffusion term becomes dominant, as we discuss below, and therefore both models exhibit
similar accuracy.
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Figure 6: Kuramoto-Sivashinsky equation: Global relative error G at T = 1 as a function of ∆X (left) and of ∆T

(right), for various values of τ . Here we took ∆T = 5.0e − 7 in the left figure and ∆X = 0.1 in the right figure. In the
right-hand graph, the left-hand ticks on the ordinate are for τ = 1.25, and the right-hand one is for τ = 2.0. The dotted
quadratic curves (left) and lines (right) are fits to the numeric results.

In Fig. 7, G at T = 1 is plotted as a function of τ . The explicit form of the truncation error regarding

the sixth-derivative terms in Eq. (32) is Y (∆t, α, β) · J (τ) · ∂6ρ
∂X6 where Y (∆t, α, β) = − (∆t)

6
α2/6 and

J (τ) = (6P6 + 15P5 + 20P4 + 15P3 + 6P2 + P1 + 1) /H (τ) , (55)

P1 = τ − 1,

P2 = τ (τ − 1) , (56)

P3 = τ (τ − 1) (2τ − 1) ,

P4 = τ (τ − 1)
(

6τ2 − 6τ + 1
)

,

P5 = τ (τ − 1)
(

24τ3 − 36τ2 + 14τ − 1
)

,

P6 = τ (τ − 1)
(

120τ4 − 240τ3 + 150τ2 − 30τ + 1
)

,

using H (τ) as defined below Eq. (31). In Fig. 7, the numerical data for G is fitted by the function J (τ).
The numerical results can be made to lie on each curve using only a parameter, thus demonstrating that
most of the τ -dependence of G probably comes from such a sixth-derivative term.

The above error analyses indicate that the sixth-derivative term is important for enhancing the ac-
curacy associated with τ and ∆X dependence. Indeed it is not straightforward with a five-speed model
(Q = 5) to remove this term because there are too few degrees of freedom in a five-speed model to
control a sixth derivative. Even if this problem is addressed by using a larger stencil (more speeds), the
coefficients of the higher-order terms must be carefully checked to ensure that a strongly unstable growth
mode is not included.

4. Discussion and conclusions

We have compared the Chapman-Enskog method and the Taylor expansion method for the derivation
of non-linear hydrodynamic equations from the LB equation. The reader will recall that features of
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Figure 7: Kuramoto-Sivashinsky equation: Global relative error G at T = 1 as a function of τ with various lattice
resolutions. Here we took ∆T = 5.0e − 7. In the left-hand figure, the ordinate ticks on the left are for ∆X = 0.1 and those
on the right are for ∆X = 0.2. Each plot is fitted by J(τ), defined in Eq. (55).

the two methods were compared and contrasted in Subsection 2.3. From those observations, we would
propose that, when LB models for nonlinear hydrodynamic equations are derived, it is best to start with
the Chapman-Enskog method using the general equilibrium state. After results to leading order are
obtained, the Taylor expansion method can be applied for error analysis and enhancement of stability
and accuracy.

In this work, we derived LB models for the Burgers’, KdV, and KS equations using a single consistent
theoretical framework, and we compared numerical results from each of those models to corresponding
analytic results, demonstrating remarkable accuracy. Error scaling in ∆X, ∆T and τ was shown to be
in agreement with theory. Numerical stability over a wide range of τ was also demonstrated. For our
LB models for the KS equation, our quantitative results were compared with a previous study [3], and
shown to have enhanced accuracy, especially in the vicinity of τ = 1.

In future work, in order to enhance accuracy and stability for the time discretization, higher-order
time-marching methods such as Adams-Moulton and Adams-Bashforth could be applied. In addition,
although the LB models presented in this work were formulated so that any τ reproduces the same
hydrodynamic equation to leading order, the application of the method to more general equations that
have different coefficients could be formulated so that varying τ yields hydrodynamic equations with the
desired coefficients. Alternatively one could employ the multiple-relaxation-time (MRT) LB methodology
to increase the number of degrees of freedom in the model.

In closing, from the experience we gained in deriving and simulating these models, we would argue
that the LB method has certain particular virtues for the simulation of nonlinear systems of this sort.
For example, the LB methodology is capable of modeling non-linear hydrodynamic equations conserving
ρ from a LB equation using one consistent theoretical framework. By adjusting the manner of particle
propagation and the collision process, it can be applied to a wide variety of such systems. Moreover, at
least for the systems considered in this paper, the nonlinearity of the associated LB models is isolated
in the collision operator which is purely local. This feature allows for highly efficient parallel computer
implementation.
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