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Abstract

We present a software model and language for describing and programming the fine-grained

aspects of interaction in a non-WIMP user interface, such as a virtual environment. Our approach

is based on our view that the essence of a non-WIMP dialogue is a set of continuous

relationships—most of which are temporary. The model combines a data-flow or constraint-like

component for the continuous relationships with an event-based component for discrete

interactions, which can enable or disable individual continuous relationships. To demonstrate our

approach, we present the PMIW user interface management system for non-WIMP interactions,

a set of examples running under it, a visual editor for our user interface description language, and

a discussion of our implementation and our restricted use of constraints for a performance-driven

interactive situation. Our goal is to provide a model and language that captures the formal

structure of non-WIMP interactions in the way that various previous techniques have captured

command-based, textual, and event-based styles and to suggest that using it need not

compromise real-time performance.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and

Techniques—user interfaces; H.1.2 [Models and Principles]: User/Machine Systems—human
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factors; H.5.2 [Information Interfaces and Presentation]: User Interfaces; I.3.7 [Computer

Graphics]: Three-Dimensional Graphics and Realism—virtual reality; F.3.1 [Logics and

Meanings of Programs]: Specifying and Verifying and Reasoning about Programs—

specification techniques

General Terms: Human Factors, Languages, Design

Additional Key Words and Phrases: User interface management system (UIMS), interaction

techniques, specification language, state transition diagram, virtual reality, non-WIMP interface,

PMIW

1. INTRODUCTION

“Non-WIMP” user interfaces, such as virtual environments, are characterized by parallel,

continuous interactions with the user. However, most current user interface description

languages (UIDLs) and software systems are based on serial, discrete, token-based models. This

paper proposes and tests a two-component model for describing and programming the fine-

grained aspects of non-WIMP interaction. The model combines a data-flow or constraint-like

component for the continuous relationships with an event-based component for discrete

interactions, which can enable or disable individual continuous relationships. Its key ingredients

are the separation of non-WIMP interaction into two components and the framework it provides

for communication between the two.

As will be seen in the paper, our model abstracts away many of the details of specific

input devices and treats them only in terms of the discrete events they produce and the

continuous values they provide. It thus provides a high-level framework that can reduce the

current difficulties of integrating novel devices into virtual reality applications, provided the
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devices can be fit into our model of discrete events and/or continuous variables. Thus far we

have not found one that does not fit. It will also be seen, particularly in our first example, that the

model is applicable for describing elements of WIMP-style user interfaces that have continuous

inputs and outputs, such as a scrollbar or slider.

This paper discusses our model and our implementation of it as follows:

• Our software model for capturing non-WIMP style interactions (Section 2), as first

introduced in[35]

• A user interface description language that embodies it (Section 3)

• A programming environment we have developed for this language (Section 4)

• Some examples to illustrate the expressiveness or usefulness of the language for

describing non-WIMP interactions (Section 5)

• Implementation issues and our use of constraints in virtual environments and similar

high-performance interactive situations (Section 6).

1.1. Background

“Non-WIMP” user interfaces provide “non-command,” parallel, continuous, multi-mode

interaction—in contrast to current GUI or WIMP (Window, Icon, Menu, Pointer) style

interfaces[19]. This interaction style can be seen most clearly in virtual reality interfaces, but its

fundamental characteristics are common to a more general class of emerging user-computer

environments, including new types of games, musical accompaniment systems, intelligent agent

interfaces, interactive entertainment media, pen-based interfaces, eye movement-based
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interfaces, and ubiquitous computing[33, 47]. They share a higher degree of interactivity than

previous interfaces: continuous input/output exchanges occurring in parallel, rather than one

single-thread, discrete-event dialogue.

Our goal is to develop and implement a model and abstraction that captures the formal

structure of non-WIMP interaction in the way that existing techniques have captured command-

based, textual, and event-based interaction. Most current (WIMP) user interfaces are inherently

serial, turn-taking (“ping-pong style”) dialogues with a single input/output stream. Even where

there are several devices, the input is treated conceptually as a single multiplexed stream, and

interaction proceeds in half-duplex, alternating between user and computer. Users do not, for

example, meaningfully move a mouse while typing characters; they do one at a time. Non-WIMP

interfaces are instead characterized by continuous interaction between user and computer via

several parallel, asynchronous channels or devices.

Because interaction with the new systems can draw on the user's existing skills for

interacting with the real world, they offer the promise of interfaces that are easier to learn and to

use. However, they are currently making interfaces more difficult to build. Advances in user

interface design and technology have outpaced advances in models, languages, and user interface

software tools. The result is that, today: previous generation command language interfaces can

now be specified and implemented very effectively; current generation direct manipulation or

WIMP interfaces are now moderately well served by user interface software tools; and the

emerging concurrent, continuous, multi-mode non-WIMP interfaces are hardly handled at all.

Most of today's examples of non-WIMP interfaces, such as virtual reality systems, have of

necessity been designed and implemented with event-based models more suited to previous

interface styles. Because those models fail to capture continuous, parallel interaction explicitly,
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the interfaces have required considerable ad-hoc, low-level programming approaches. While

some of these are very inventive, they have made such systems difficult to develop, share, and

reuse. We seek techniques and abstractions for describing and implementing these interfaces at a

higher level, closer to the point of view of the user and the dialogue, rather than to the exigencies

of the implementation.

1.2. Specifying the New Interfaces

It is not difficult to see why current specification languages and user interface

management systems (UIMSs) have not been applicable to non-WIMP interaction. Consider the

characteristics of current vs. non-WIMP interfaces:

• Single-thread input/output vs. parallel, asynchronous, but interrelated dialogues

• Discrete tokens vs. continuous and discrete inputs and responses

• Precise tokens vs. probabilistic input, which may be difficult to tokenize

• Sequence, not time, is meaningful vs. real-time requirements, deadline-based

computations

• Explicit user commands vs. passive (“non command-based”) monitoring of the user.

On each of these counts, the characteristic of the traditional interaction styles corresponds to a

characteristic of non-interactive programming languages processed by compilers. Indeed, much

of current UIMS technology is built around compiler technology—processing of a single stream

of discrete tokens via a single BNF (Backus-Naur Form) or ATN (Augmented Transition

Network) syntax specification. Non-WIMP interfaces violate each of these assumptions and thus

are not well served by compiler-based approaches.
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For example, current UIMS technology typically handles multiple input devices by

serializing all their inputs into one common stream. This is well suited to conventional dialogue

styles but is less appropriate for styles where the inputs are logically parallel (that is, where the

user thinks of what he or she is doing as two simultaneous actions). Parallel dialogues could still

be programmed within the old model, but it would be preferable to be able to describe and

program them in terms of logically concurrent (but sometimes interrelated) inputs, rather than a

single serialized token stream. In a similar vein, it could be said that parallel processes can be

programmed by explicitly time slicing each process. But it is unusual today to write parallel

processes with explicit time slicing.  Instead we write our parallel programs on top of the process

abstraction, assuming parallelism.  A separate layer then handles the transformation onto a single

physical processor.

We seek similar kinds of abstractions for user interface software. Our model combines

the applicable aspects of constraint-based and event-based user interface description languages

into a framework intended to match the fine-grained properties of non-WIMP dialogues. Existing

techniques could have been extended in various ad-hoc ways to describe the unusual aspects of

non-WIMP dialogues. However, the real problem is not just to find some way to describe the

user interface (since, after all, nearly any programming language could do that), but to find a

language that captures the user's view of non-WIMP interaction as perspicuously as possible.

1.3. Underlying Properties of Non-WIMP Interactions

To proceed, we need to identify the basic structure of non-WIMP interaction as the user

sees it. What is the essence of the sequence of interactions in a non-WIMP interface? We posit

that it is a set of continuous relationships, most of which are temporary.
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For example, in a virtual environment, a user may be able to grasp, move, and release an

object. The hand position and object position are thus related by a continuous function (say, an

identity mapping between the two 3-D positions)—but only while the user is grasping the object.

A scrollbar in a conventional graphical user interface can also be viewed this way. The y

coordinate of the mouse and the region of the file being displayed are related by a continuous

function (a linear scaling function, from 1-D to 1-D), but only while the mouse button is held

down (after having first been pressed within the scrollbar handle). The continuous relationship

ceases when the user releases the mouse button.

Some continuous relationships are permanent. In a conventional physical control panel,

the rotational position of each knob is permanently connected to some variable by a continuous

function (typically a linear function, mapping 1-D rotational position to 1-D). In a cockpit flight

simulator, the position of the throttle lever and the setting of the throttle parameter are

permanently connected by a continuous function.

The essence of these interfaces is, then, a set of continuous relationships some of which

are permanent and some of which are engaged and disengaged from time to time. These

relationships accept continuous input from the user and typically produce continuous responses

or inputs to the system. The actions that engage or disengage them are typically discrete

(pressing a mouse button over a widget, grasping an object).

2. SOFTWARE MODEL

Most current specification models are based on tokens or events. Their top-down,

triggered quality makes them easy to program. But we have seen that events are the wrong model

for describing some of the interactions we need; they are more perspicuously described as
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declarative relationships among continuous variables.  Non-WIMP interface styles tend to have

more of these kinds of interactions.

Therefore, we need to address the continuous aspect of the interface explicitly in our

specification model. Continuous inputs have often been treated by quantizing them into a stream

of “change-value” or “motion” events and then handling them as discrete tokens. Instead we

want to describe continuous user interaction as a first-class element of our model. We describe

these types of relationships with a data-flow graph, which connects continuous input variables to

continuous application (semantic) data and, ultimately, to continuous outputs, through a network

of functions and intermediate variables. The result resembles a plugboard or wiring diagram or a

set of one-way constraints. Such a model also supports parallel interaction implicitly, because it

is simply a declarative specification of a set of relationships that are in principle maintained

simultaneously. (Maintaining them all on a single processor within required time constraints is

an issue for the implementation and is discussed below, but it should not arise at this level of the

specification.)

Note that trying to describe the whole interface in purely continuous terms or purely

discrete terms would be entirely possible, but inappropriate. For example:

• In the extreme, all physical actions can be viewed as continuous, but we quantize them in

order to obtain discrete inputs. For example, the pressing of a keyboard key is a

continuous action in space. We quantize it into two states (up and down), but there is a

continuum of underlying states, we have simply grouped them so that those above some

point are considered “up” and those below, “down.” We could thus view a keyboard

interface in continuous terms. However, we claim that the user model of keyboard input

is as a discrete operation; the user thinks simply of pressing a key or not pressing it.
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• Similarly, continuous actions could be viewed as discrete. All continuous inputs must

ultimately be quantized in order to pass them to a digital computer. The dragging of a

mouse is transmitted to the computer as a sequence of discrete moves over discrete pixel

positions and, in typical window systems, processed as a sequence of individual discrete

events. However, again, we claim that the user model of such input is a smooth,

continuous action; the user does not think of generating individual “motion” events, but

rather of making a continuous gesture.

Non-WIMP interactions (as well as some dragging interactions in WIMP interfaces, see Section

3.1) convey a sense of continuous interaction to the user, and our concern is capturing this

continuous quality directly in the UIDL. At the implementation level, the hardware inputs and

outputs are still realized as a series of discrete events. For example, grasping an object and

moving it in 3-space appears to be a continuous interaction and ought to be specified that way in

the UIDL; but, to the underlying software, it is ultimately implemented as a discrete series of

input events.

This leads to a two-part model of user interaction. One part is a graph of functional

relationships among continuous variables. Only a few of these relationships are typically active

at one moment. The other part is a set of discrete event handlers. These event handlers can,

among other actions, cause specific continuous relationships to be activated or deactivated. A

key issue is how the continuous and discrete domains are connected, since a modern user

interface will typically use both. The main connection between the two in our model is the way

in which discrete events can activate or deactivate the continuous relationships.

Purely discrete controls (such as pushbuttons, toggle switches, menu picks) also fit into

this framework. They are described by traditional discrete techniques, such as state diagrams and
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are covered by the discrete event handler part of our model. That part serves both to engage and

disengage the continuous relationships as well as to handle the truly discrete interactions.

Our contribution, then, is a model for combining data-flow or constraint-like continuous

relationships and token-based event handlers. Its goal is to provide a language that integrates the

two components and maps closely to the user's view of the fine-grained interaction in a non-

WIMP interface. Our model and language are intended to be independent of the choice of

constraint solving mechanism used to implement it. In fact, we have built several different

solvers and can use them interchangeably, as discussed in Section 6. The model, UIDL, and

examples given from here through Section 5 are intended not to depend on the solver (but see

Section 5.5 for discussion of one potential type of solver dependency at the UIDL level).

The basic model is:

• A set of continuous user interface Variables, some of which are directly connected to

input devices, some to outputs, and some to application semantics. Some variables are

also used for communication within the user interface model (within or between the

continuous and discrete components); and some variables are simply interior nodes of the

graph containing intermediate results.

• A set of Links, which contain functions that map from continuous variables to other

continuous variables. A link may be operative at all times or may be associated with a

Condition, which allows it to be turned on and off in response to other user inputs. This

ability to enable and disable portions of the data-flow graph in response to user inputs is a

key feature of the model.

• A set of EventHandlers, which respond to discrete input events. The responses may

include producing outputs, setting syntactic-level variables, making procedure calls to the



- 11 -

application semantics, and setting or clearing the conditions, which are used to enable

and disable groups of links.

The model is cast in an object-oriented framework. Link, Variable, and EventHandler

each have a separate class hierarchy. Their fundamental properties, along with the basic

operation of the software framework (the user interface management system) are encapsulated

into the three base classes; subclasses allow the specifier to define particular kinds of Links,

Variables, and EventHandlers as needed. While Links and Variables are connected to each other

in a graph for input and output, they comprise two disjoint trees for inheritance; this enhances the

expressive power of the model.

The model provides for communication between its discrete (event handlers) and

continuous (links and variables) portions in several ways:

• As described, communication from discrete to continuous occurs through the setting and

clearing of Conditions, which effectively re-wire the data-flow graph.

• In some situations, there are analogue data coming in, being processed, recognized, then

turned into a discrete event. This is handled by a communication path from continuous to

discrete by allowing a link to generate tokens which are then processed by the event

handlers. A link function might generate a token in response to one of its input variables

crossing a threshold. Or it might generate a token when some complex function of its

inputs becomes true. For example, if the inputs were all the parameters of the user's

fingers, a link function might attempt to recognize a particular hand posture and fire a

token when it was recognized.
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• Finally, as with augmented transition networks and other similar schemes, we provide the

ability for continuous and discrete components to set and test arbitrary user interface

variables, which are accessible to both components.

A further refinement expresses the event handlers as individual state transition diagrams.

Such state diagram-based event handlers may be intermixed with other, arbitrary forms of event

handlers. Using state diagram event handlers also leads to another method of integrating the

continuous and discrete components. Imagine that each state in the state transition diagram had

an entire data-flow graph associated with it. When the system enters that state, it begins

executing that data-flow graph and continues until it changes to another state. The state diagram

can then be viewed as a set of transitions between whole data-flow graphs. We have already

provided the ability to enable and disable sets of links in a data-flow graph by explicit action. If

we associate such sets with states, we can automatically enable and disable the links belonging to

a state whenever that state is entered or exited. This is simply a shorthand for setting and clearing

the conditions with explicit actions, but it provides a particularly apt description of moded

continuous operations (such as grab, drag, and release) and will be the basis for an alternate form

of our user interface description language.

3. USER INTERFACE DESCRIPTION LANGUAGE

We have developed a language based on this model and are implementing it in several

forms. The main form of the language is a visual one, for which we show an interactive graphical

editor in Section 4. The language can also be used in an SGML-based text form (Section 4.2),

which is intended both for user input and as an intermediate language for use by our graphical

tools, or directly as a set of C++ classes.
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3.1. Expository Example

To introduce the elements of the graphical version of our language, we begin by

considering a simplified slider widget from a conventional WIMP interface. If the user presses

the mouse button down on the slider handle, the slider will begin following the y coordinate of

the mouse, scaled appropriately. It will follow the mouse continuously, truncated to lie within the

vertical range of the slider area, directly setting its associated semantic-level application variable

as it moves.

We view this as a functional relationship between the y coordinate of the mouse and the

position of the slider handle, two continuous variables (disregarding their ultimate realizations in

pixel units). This relationship is temporary, however; it is only enabled while the user is dragging

the slider with the mouse button down. Therefore, we provide event handlers in the form of a

state transition diagram to process button-down and button-up events and enable and disable the

continuous relationship.

Figure 1 shows the specification of this simple slider in our visual notation, running on

our graphical editor, VRED. The upper portion of the screen shows the continuous portion of the

specification using ovals to represent variables, rectangles for links, and arrows for data flows.

The name of each variable is shown under its oval, and, below that, in upper case letters, its kind.

The kind can be one of: INPUT, OUTPUT, SEM, SYNT, CONST, or INT to indicate its role

in the user interface as, respectively: an actual device input, a variable that affects the display

directly, semantic data shared with the application, syntactic data shared among components

within the user interface, a constant, or a random interior node of the graph. The name of each

link is shown under its rectangle and, below that, in upper case letters, the name of the condition

under which it will be activated or else ALWAYS, meaning it is always active.
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The lower portion shows the event handler in the form of a state diagram, with states

represented as circles and transitions as arrows; further details of this state diagram notation itself

are found in[30, 31]. The state diagram shows, inside each state, in upper case letters, the name

of a condition that is activated when this state is entered; names in lower case letters are just state

names not associated with conditions. Each arc has a token and, optionally, a Boolean expression

that must be true to take this transition and an action that will be executed if the transition is

taken.

Figure 1. Specification of a simple slider, running in the VRED editor, to illustrate our graphical
notation. The upper half of the screen shows the continuous portion of the specification, using
ovals to represent variables, rectangles for links, and arrows for data flows. The lower portion
shows the event handler in the form of a state diagram, with states represented as circles and
transitions as arrows.
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There is additional information, such as the types of each of the variables, the different

input and output slots of each link in case it has more than one, and the body of the link itself

(which is usually written as several lines of C++ code to be evaluated on demand). This

information is entered and viewed through dialogue boxes for each link, variable, flow state, and

transition. The layout of the elements on the screen is at the user's discretion, much like the

arrangement of white space in a conventional programming language. Only the topology or

connectivity of the elements in the diagram is meaningful to the run-time system.

The continuous relationship for this slider is divided into two parts. The relationship

between the mouse position and the value variable in the application semantics is temporary,

while dragging; the relationship between value and the displayed slider handle is permanent.

Because value is a variable shared with the semantic level of the system, it might also be

changed by the application or by function keys or other input, and the slider handle would still

respond. The variable mouse is an input variable, which always gives the current location of the

mouse; handlepos is an output variable, which controls where the slider handle is drawn on the

display. The underlying user interface management system will automatically keep the mouse

variable updated based on mouse inputs and the position of the slider handle updated based on

changes in handlepos. The link mousetoval contains a simple scaling and truncating function

that relates the mouse position to the value of the controlled variable; the link is associated with

the condition name DRAGGING, so that it can be enabled and disabled by the state transition

diagram. The link valtoscrn scales the variable value back to the screen position of the slider

handle; it is always enabled.

The discrete portion of this specification is given in the form of a state transition diagram,

although any other form of event handler specification may be used interchangeably in the
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underlying system. In the start state (st) it accepts a MOUSEDN token that occurs while the

mouse is within the slider handle and makes a transition to a new state, in which the

DRAGGING condition is enabled. As long as the state diagram remains in this state, the

mousetoval link is enabled, and the mouse is connected to the slider handle, without the need for

any further explicit specification. The MOUSEUP token will then trigger a transition to the

initial state, causing the DRAGGING condition to be disabled and hence the mousetoval

relationship to cease being maintained automatically. (The condition names like DRAGGING

provide a layer of indirection that is useful when a single condition controls a set of links; in this

example there is only one conditional link, mousetoval. A link can also be associated with more

than one condition; it would then be enabled when any of those conditions was enabled.) This

very simple example illustrates the use of separate continuous and discrete specifications and the

way in which the enabling and disabling of the continuous relationships by the state diagram

provides the connection between the two. Abowd[1] and Carr[4, 5] also present specifications of

sliders which separate their continuous and discrete aspects in different ways (see Section 7), and

the Kaleidoscope constraint language[15] can support temporary constraints roughly similar to

the one in this example.

Figure 2 shows an alternative form of the visual language. (Unlike Figure 1, a visual

editor for this form is not implemented; Figures 2 and 3 are illustrations to describe this

language, rather than editor screendumps.) This form of the language unifies the two components

into a single representation by considering each state in the state transition diagram to have an

entire data-flow graph associated with it. When the system enters a state, it begins executing that

data-flow graph and continues until it reaches another state. The state diagram can then be

viewed as a set of transitions between whole data-flow graphs. As noted previously, this provides
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a particularly apt description of moded continuous operations like engaging, dragging, and

releasing the slider handle. The nested diagram approach follows that of Citrin[7], although in

this case it is confined to two levels, and each level has a different syntax. One obvious

drawback of this type of language is that it is difficult to scale the graphical representation to fit a

more complex interface into a single static image. For interactive use, a zoomable editor would

address this problem, as would rapid continuous zooming, such as provided by the PAD++

system[2], or head-coupled zooming, as in the pre-screen projection technique[25]. Figure 3

shows the interface from Figure 2, zoomed in on the first state, with its enclosed data-flow

diagram now visible for editing.

Figure 2. The same slider as in Figure 1, illustrating an alternate form of our graphical notation.
Here, the large circles represent states, and the arrows between them represent transitions. Each
state contains a data-flow graph showing the data flows that are operational while the system is
in that state.
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Figure 3. The example interface from Figure 2 after zooming in to edit the data-flow graph
within one of the states.

4. PROGRAMMING ENVIRONMENT

4.1 The VRED Editor

The VRED editor provides a visual programming environment for our language. It

implements both a data flow graph editor (also called a plugboard for its similarity to a digital

logic prototyping bench) and a state diagram editor.  Simple forms and menus are provided for

the programmer to facilitate the entry of text based information such as element names and

programmer annotations. Figure 1 as well as the UIDL figures below are all screendumps from

the VRED editor, showing its base screen. The plugboard editor is the upper of the two drawing

areas. Variables are represented by ellipses, links by rectangles, and data flows by arrows. Each

flow also has three small rectangular handles for controlling the curvature of the arc.  The first

and third handle serve as smooth anchor points for splines while the middle handle is capable of
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generating a cusp in the arc. The state diagram editor is the lower of the two drawing areas.

States are represented by circles (with resizing handles), and transitions by arcs, labeled with

their tokens, conditions, or actions.

A dialogue box can be brought up for a selected variable, link, flow, state, or transition.

For a link, the dialogue box allows the user to enter a C++ code fragment as the link body; this

becomes the body of the Evaluate() method. For a state transition, the dialogue box allows an

optional Boolean condition (in the form of a C++ expression that returns true or false) and/or an

optional action to be taken if the transition is made (as a C++ code fragment). New variables,

links, flows, states, and transitions are added with menu commands and given placements (or

routings, for arcs), which may be modified by dragging. When a new data flow is created, the

user is prompted to select the start and end nodes node for the data flow. If one of these is a link

with more than one input or output slot, a dialogue box will ask the user which of those slots the

flow should be attached to. A smart delete facility automatically eliminates dangling elements.

4.2 Text Language

While the main form of our language is a visual one, Figure 4 shows its text-based form.

We also use this form for dumping and restoring the information from the graphical editor and

for interoperating with other tools. The language uses SGML for its meta-syntax in order to

avoid introducing yet another incompatible meta-syntax into the world, since it is reasonably

human-readable, and is increasingly supported by parsing and editing tools. Figure 4 illustrates

the SGML-based intermediate language by showing the same example as Figure 1 in that form.

It defines the variables, links, data flows between them, and state diagram(s) that make up the

interface in a fairly straightforward way. Figure 4 also shows some of the information that is

entered via dialogue boxes and therefore not visible in the other figures. If the kind attribute of a
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link is “custom”, then the body of its Evaluate() routine is given in C++ directly, between the

<body> and </body> delimiters. The kind field can also be the name of a predefined link,

chosen from a library of links that perform common mathematical and geometric operations; in

that case the <body> element would be absent. The actual contents inside a variable can be of

various data types, as this example shows. The state transition diagram portion is expressed as a

list of transitions from each state, similar to[30, 31]. This form of our language is translated into

C++ code which is loaded along with base classes to implement the interface. The language also

allows an optional <render> tag, not shown here, which can retain layout information generated

and used only by the graphical editor; it does not affect the meaning of the non-visual language.

<def_system> slider1.UID

  <def_var type=Pos kind=INPUT> mouse
  </def_var>

  <def_var type=float kind=SEM> value
  </def_var>

  <def_var type=Area kind=OUTPUT> handlepos
  </def_var>

  <def_link kind=custom enableflag=DRAGGING> mousetoval
    <in type=Pos> src
    <out type=float> dst
    <body>
      dst->SetI (Scale (0.250 - src->GetI().y, 0., 0.050, 0., 100.));
    </body>
  </def_link>

  <def_link kind=custom enableflag=ALWAYS> valtoscrn
    <in type=float> src
    <out type=Area> dst
    <body>
      dst->SetI (Area ((dst->GetI()).x,
      0.250 - Scale (src->GetI(), 0., 100., 0., 0.050),
      (dst->GetI()).w, (dst->GetI()).h));
    </body>
  </def_link>

  <def_flow>
    <source> mouse
    <destination> mousetoval.src
  </def_flow>



- 21 -

  <def_flow>
    <source> mousetoval.dst
    <destination> value
  </def_flow>

  <def_flow>
    <source> value
    <destination> valtoscrn.src
  </def_flow>

  <def_flow>
    <source> valtoscrn.dst
    <destination> handlepos
  </def_flow>

  <def_state> st
    <transition token=MOUSEDN condition=Inside(mouse,handlepos)> DRAGGING
    </transition>
  </def_state>

  <def_state> DRAGGING
    <transition token=MOUSEUP> st
    </transition>
  </def_state>

</def_system>

Figure 4. Specification of the slider from Figure 1, illustrating the SGML-based intermediate
language, which is used both for saving and restoring files and can be input by the user.

Our UIMS can also be used simply as a set of C++ classes (Link, Variable, etc.). This

provides an object-oriented implementation of the underlying user interface management system.

It can be used to build interfaces directly in C++ by subclassing to define the links needed for a

particular interface and writing C++ code for their Evaluate() methods. Each form of the

language, graphical, SGML, and C++, is ultimately translated into this C++ code, which runs on

our PMIW user interface software testbed. The editor dumps the UIDL in its SGML-based text

form. That form can be translated into C++ code that uses our UIMS classes and which can then

be compiled and run directly. (Translation from SGML to C++ was formerly automatic, but at

this writing it requires manual intervention, since we have updated the language but have not

updated the translator to correspond; the examples below were generated, dumped, and then
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manually edited before compiling.) Our overall UIMS design is intended not to preclude run-

time editing of the UIDL, though the current implementation requires a compile cycle after a

change in the UIDL. The run-time UIMS actually allows adding links, variables, states, and

transitions at any point during execution (and deleting them provided they are not currently in

use).

5. EXAMPLES

5.1. Grabbing an Object

Figure 5 shows the UIDL for a common, very simple interaction in VR: grabbing and

dragging a (weird-looking) object with the hand in 3-D. Figure 6 shows the object and the hand

cursor running under our PMIW system. The diamond-shaped cursor is permanently attached to

the user's hand. The user can grab the object by holding Button 1 down (for simplicity,

regardless of where the cursor is at the time; this is refined in the next example). While the

button is held, the object position follows the cursor position; when the button is released, that

relationship ceases, though the cursor continues following the user's hand.
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Figure 5. Grabbing and dragging an object with the hand in 3-D, a common, simple interaction
in virtual reality. The user can grab the object by holding Button 1 down (for simplicity,
regardless of where the cursor is at the time; see Figure 7). While the button is held, the object
position follows the cursor position because the DRAGGING condition is enabled. When the
button is released, that relationship ceases, though the cursor continues following the user's hand.



- 24 -

Figure 6. The object and hand cursor of Figure 5, running under our PMIW user interface
management system. The diamond-shaped cursor is permanently attached to the user's hand; the
other object can be grabbed and moved in 3-D.

The UIDL for this, in Figure 5, is quite straightforward. The hand (that is, the INPUT

variable polhemus1, the first of the four Polhemus sensors) controls cursorpos, the position of

the cursor, at all times; the link cursor is enabled ALWAYS. The cursor position, in turn,

controls the position posn of the object with an identity function, but only when the condition

DRAGGING is engaged. The condition is engaged by pressing Button 1, which causes a state

transition and disengaged by releasing Button 1, which causes another transition.
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It is worthwhile to note how this and subsequent examples do not require the user to write

code for maintaining the relationships defined in the links nor for responding to change-value

events. Because we use constraints, the user simply provides a declarative specification of the

desired relationship and, if applicable, indicates how it will be turned on and off.

5.2. Arm

Figure 7 shows the UIDL for a simple movable arm, attached to a base column, and

Figure 8 shows its appearance. The user can grab the arm and move it in three dimensions. The

left end is always constrained to be fixed to the base column, as if it were attached by a doubly-

hinged joint, while the rest of the arm can pivot to follow the user's hand cursor. Linkc1

performs the calculations to relate the hand cursor position to the Performer rotation matrix for

the movable portion of the arm. This link is active only while the user is grasping the arm; when

the user lets go of the arm, the link ceases to operate and the arm remains where it was left. The

state diagram shows the state change that occurs when the user grabs the arm (it activates the

link) and releases the arm (deactivates the link). Unlike the simplified example in Figure 5, here

the user must press the button while the hand cursor is touching the arm segment.
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Figure 7. A simple movable arm, attached to a base column. The state diagram shows the state
change that occurs when the user grabs the arm (it activates condition GRASPED1) and releases
the arm (deactivates it). Linkc1 relates the hand cursor position to the arm position continuously
and is active only while the user is grasping the arm.
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Figure 8. The arm specified in Figure 7, running on our system. The user can grab the arm and
move it in three dimensions. The left end is always constrained to be fixed to the base column, as
if it were attached by a doubly-hinged joint, while the rest of the arm pivots to follow the user's
hand cursor.

The pivot1 variable is a constant that contains information about the size and shape of the

arm; it was generated along with the initial geometry specification for the arm. Variable rot1 is

the transform matrix that rotates the movable portion of the arm to follow the hand cursor. It is

tagged as an OUTPUT variable because its value is directly reflected in the appearance of the

screen—not necessarily because it is a sink in the data-flow graph (as will be seen in subsequent
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examples). The UIMS automatically obtains updated values of all output variables and

periodically redisplays the scene using their values. That relationship between an output variable

and its screen display is not represented in the visual language, but it can only be a very simple,

straightforward relationship (anything more complicated should first be calculated via

appropriate links and variables and then fed to a simple output variable). In this example, rot1 is

simply the value of the actual 4 x 4 transform matrix contained in a DCS node of our Performer

scene graph.

Although they are all shown as simple data flows, the variables in this diagram may be of

different data types. For example, polhemus1 and cursorpos are 3-D vectors giving (x,y,z)

position as in Figure 5, and rot1 and pivot1 are 4 x 4 transform matrices. These types match the

corresponding slots in the links to which they are connected. The variable type information and

the names and types of the input and output slots in the links are entered and displayed in pop-up

dialogue boxes in the editor, described in Section 4.1.

5.3. More Complex Arm

Figure 9 shows a two-jointed arm, to give a more interesting use of the links and

variables; Figure 10 shows its appearance. To reduce clutter, polhemus1 and cursor are not

shown in Figure 9. As discussed below, they would be a candidate for encapsulation in a separate

interaction object. The user can grab and move the first (proximal) segment of the arm as in the

previous example. The second (distal) segment is attached by a hinge to the tip of the proximal

segment. The user can grab the distal segment and rotate it with respect to its joint at the tip of

the proximal segment. Linkc1 is active when the hand cursor is controlling the rotation of the

proximal segment of the arm (GRASPED1 condition), and linkc2 is active when the hand

controls the distal segment (GRASPED2). The diagram should clearly show that, depending on
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the state, the hand position controls rot1 at some times and rot2 at other times. Calculating the

rotation of the distal segment of the arm requires knowledge of the rotation of the proximal

portion of the arm. Note how rot1 is therefore no longer a sink in the graph, but it is still an

OUTPUT variable from our point of view because its value directly drives an element of the

graphic display.

Figure 9. A two-jointed arm, using more links and variables. Here, linkc1 is active when the
hand cursor is controlling the rotation of the proximal segment of the arm (GRASPED1
condition), and linkc2 is active when the hand controls the distal segment (GRASPED2). The
figure should show that, depending on the state, the hand position sometimes controls rot1 and
sometimes rot2. (To reduce clutter, polhemus1 and cursor are not shown in this and subsequent
figures; they would be the same as in Figure 7.)
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Figure 10. The arm specified in Figure 9. The user can grab and move the first (proximal)
segment of the arm as in the previous example. The second (distal) segment is attached by a
hinge to the tip of the proximal segment. The user can grab the distal segment and rotate it with
respect to its joint at the tip of the proximal segment.

The UIDL in Figure 11 gives the same behavior as that of Figure 9 but adds two new

unused variables to the graph (and stretches the limit of what can be seen on a single screen; the

sub-assembly mechanism discussed below would be called for here). The new variables, tip1

and tip2, are 3-D vectors that present the absolute location of the tips of this object's proximal

and distal segments, respectively. This object makes them available for the use of other user
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interface objects, though they have no direct bearing its own visual appearance or calculations.

The links that calculate these variables are always active; that is, the variables are, conceptually,

always kept up to date. However if no other links in the user interface use them, our UIMS will

not devote any resources to recalculating them until they are requested. The next example makes

use of these “exported” variables.

Figure 11. This object gives the same behavior as that of Figure 9 but also exports two
additional variables, tip1 and tip2, which are 3-D vectors giving the absolute location of the tips
of this object's proximal and distal segments, respectively. They are made available for the use of
other user interface objects, as seen in Figure 12, but have no direct bearing the visual
appearance or calculations of this object. (This figure obviously stretches the limit of what can be
seen on the screen; the sub-assembly mechanism discussed in Section 8 is called for here.)
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5.4. World of Arms

Note that the position input to the simple arm of Figure 7, cursorpos, is simply a 3-D

position vector in world coordinates. It need not be generated by the hand cursor. For example, it

could be the tip position variable produced by yet another arm. In that way, we could create an

arm that tries, within the constraint of the joint at its base, to point to the tip of a different arm.

We have used this in order to create a more complex world, for investigating performance, as

discussed in Section 6.6.

Figure 12 shows a virtual world with two instances of the two-jointed arms, each exactly

like the UIDL in Figure 11. Each can be grabbed and released separately, using the hand cursor,

and each generates its own rotations and its own tip1 and tip2 variables. We then provide a

collection of 24 single-jointed arms in the background. Each of them has a link that takes one of

the tips of the foreground arms as its input position variable instead of cursorpos. Half of the

background arms point to tips of the rightmost foreground arm; the others point to the arm in the

lower center foreground. Alternating background arms point to the proximal tip of their

foreground arm, or to its distal tip. This could be seen by minute examination of Figure 12, but it

is immediately apparent when one of the arm segments moves in the live application.
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Figure 12. A world containing two instances of Figure 11 and 24 of Figure 7, with the input
position variable slots of the latter set to point to the tips of the former. The two foreground arms
can be grabbed and released separately, using the hand cursor, and each generates its own
rotations and its own tip1 and tip2 variables. Each of the 24 single-jointed arms in the
background takes one of the tips of the foreground arms as its input position variable instead of
cursorpos. Some of the background arms point to tips of one of the foreground arms, some to
the other. Alternating background arms point to the proximal tip of their foreground arm, or to its
distal tip.

The world shown in Figure 12 was created simply by instantiating two of Figure 11 and

24 of Figure 7 and changing the input position variable pointers of the latter. In addition, the

background arms were modified to add an extra feature that is not apparent from the
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screendump. Each of the background arms has a state diagram that allows its linkc1 to be turned

on or off with a different keyboard key, color-coded to the colors of the base columns of the

arms. This is helpful for demonstrating the performance of our system, since turning the arms on

and off can be done while a foreground arm segment is moving, and it substantially changes the

number of constraints to be solved without changing the amount of rendering to be done.

5.5. Virtual Environment

Figure 13 shows a more complex example of a small virtual world, containing various

objects and widgets that the user can manipulate. Each object was specified individually in our

UIDL and then loaded all together into the main program. Some of these objects have been

described above: the cube cursor for the hand position at the upper right (Figure 5); a single-

jointed arm in the foreground, far left (Figure 7); a two-jointed arm in the foreground (Figure

11); two more single-jointed arms (Figure 7) that point to two different parts of the two-jointed

arm; and various grabbable objects, including the cylinders, cones, arrows, and most of the

spheres visible on the display (Figure 5, with different geometry but identical UIDL). Some

additional objects are introduced and discussed here: the large throwable ball at the center right

of the display; the orbiting pyramid near the top of the display; and the 3-D slider, seen head-on

in the lower foreground center. As we saw with the interconnected arms, objects can share

constraint graph variables so that, for example, one object can control another. In this example,

two of the single-jointed arms are connected to points on the two-jointed arm, and the slider is

connected to control the speed of the orbiting pyramid.

The 3-D slider highlights (by changing color) when the user's 3-D cursor touches it, and

it further highlights (by extending its handle outward) when the user engages it and drags the

handle. The UIDL for this is a straightforward extension of Figure 1. Its state diagram keeps
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track of the four possible highlighting states as well as turning the dragging on and off; the actual

dragging is handled by the data flow graph, just as in Figure 1.

Figure 13. Screendump from a more complex virtual world, including cube cursor for the hand
position at the upper right; single-jointed arm in the foreground, far left; two-jointed arm in the
foreground; two single-jointed arms that point to different parts of the two-jointed arm;
grabbable cylinders, cones, arrows, and spheres; a throwable ball, center right; 3-D Slider, lower
foreground center, viewed head-on; and an orbiting pyramid near the top.

The large sphere is a throwable ball; the user can not only drag it but also toss it into the

air. Once thrown, the object maintains its course and speed, without friction or gravity; the user

can catch it and throw it again. The pyramid near the top of the frame orbits around the user. Its
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speed is continuously adjustable, controlled by the slider in the foreground. The orbiting pyramid

and the throwable ball are simple examples of physical simulations, introduced here in order to

discuss this topic. In both cases, the output variable we send to the graphics system must be the

location of the object, not its speed or direction, but our user controls are in terms of speed and

direction. Our links must thus perform the calculations to convert the available data into a

location, in one of two ways. The Toss object illustrates the easier case, where the location of the

object is a simple function of  the current clock time and the position, velocity, and time at the

moment it was tossed. From those inputs, we can always calculate the current location anew,

without any need for integrating over other history data. If CPU time becomes scarce and we can

only evaluate this link occasionally, the motion of the ball will become jerky, but its speed will

be correct; that is, it will always jump to the correct position for the current time, as is usually the

preferred degradation strategy in a virtual environment[17, 52].

The orbiting object is an example of the more difficult case, because its current location

depends on integrating over the entire history of the previous settings of the slider that controls

its speed. Unlike the ball, we cannot calculate its correct location from time plus initial position

and velocity without this history. This provides us an example of one potential dependency on

the choice of constraint solver used. A data-driven or forward-chaining solver, run at frequent

intervals, will handle this situation without special provision. A demand-driven or lazy

evaluation solver may not, particularly if the user looks away from the pyramid, so its output is

not requested for some time period. At the UIDL level, we handle this by tagging those

constraints that need this special forward-chaining treatment as instances of the subclass

LinkStep. We discuss LinkStep further in Section 6.4, but note that it is a no-op unless demand-

driven evaluation is being used.
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Figure 14 shows the UIDL for the orbiting object. The link linkrot is a subclass of

LinkStep (though the graphical notation does not reveal this). It reads the current value of

speed, the SYNT variable that is exported by the slider object, along with the current time,

obtained from the timer input variable, which is connected to the system clock (see Section

6.2.5). The linkrot link contains internal variables that accumulate the inputs and integrate them

over time, continuously generating an up-to-date rotation matrix, rot, which gives the transform

to the correct current location for the orbiting pyramid.

Figure 14. Specification for the orbiting pyramid, visible near the top of Figure 13. The speed
variable is exported by the slider; the timer variable is connected to the system clock; and the
rot variable contains a transform to the current location for the pyramid. This object has no
discrete component.
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Figure 15 shows the UIDL for the Toss example; it also shows an additional use of

LinkStep. This example shows two distinct modes, one (TOSSING) while the ball is flying

through the air and the other (DRAGGING) while the user is grasping it with the hand cursor.

While TOSSING, we can simply calculate the position (posn) of the ball anew at any time, from

the current time (timer) and the initial conditions when it was last tossed (initPos, initTime, and

velocity); forward chaining with LinkStep is thus not necessary during TOSSING. However, we

also need to measure the velocity of the ball at the moment it is tossed, just before we make the

transition from DRAGGING to TOSSING. The Polhemus sensor measures the hand position not

its velocity. Therefore, whenever the user is DRAGGING the ball, we use a LinkStep (called

savelast) to save the last two positions of the user's hand and their timestamps (in the four

variables, last1Pos, last2Pos, last1Time, and last2Time, which are shared between the

plugboard and the state transitions, and used to communicate between them). At the moment the

user tosses the object, the state transition  calls the StartToss() action, which uses those most

recent two saved positions and times to determine and set the initial conditions for the next toss

(in initPos, initTime, and velocity, which are also shared between the plugboard and the state

diagram).

Finally, not explicitly visible is the PMIW object that takes head position and orientation

from the Polhemus sensor and controls viewpoint. It uses a simple set of links and variables to do

this job, in the obvious way. This object is normally Update()d out of the usual sequence, at the

last moment before rendering, as described in Section 6.3. It can also be interchanged with a

mouse-driven viewpoint controller, simply by instantiating that object instead. Both produce the

same output variables for viewpoint.
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Figure 15. Specification for the throwable ball, visible in the center right of Figure 13. This
interaction reveals two distinct modes, one (TOSSING) while the ball is flying through the air
and the other (DRAGGING) while the user is grasping it with the hand cursor. While
TOSSING, we continuously calculate the position (posn) from the current time (timer) and the
initial conditions when it was last tossed (initPos, initTime, and velocity). While DRAGGING,
we update the position of the ball based on the hand cursor. We also need to measure the velocity
of the ball at the moment it is tossed. To do this, the savelast link saves the last two positions of
the user's hand and their timestamps (in variables, last1Pos, last2Pos, last1Time, and
last2Time); the state transition action, StartToss(), then uses them to determine the initial
conditions for the next toss.

5.6. Interaction Techniques in Virtual Reality

In addition to those presented above, we have experimented by sketching UIDL

specifications for other interaction techniques in virtual reality and, thus far, they have turned out

to be surprisingly straightforward in our UIDL, like the examples shown above. The geometrical
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calculations themselves within a link may be complex, but the interaction sequence or syntax,

that is, what input actions cause what results, are thus far easy to express. Most grabbing or

dragging interactions resemble the examples above. Some menu or selection interactions are

almost entirely discrete, represented by the state transition diagram portion of the UIDL.

Figure 16 sketches the UIDL for one of the more innovative interaction techniques for

VR, the daisy menu, a new type of 3-D menu developed by Jiandong Liang and Mark Green[39].

(We have not implemented the graphics for this object, just the UIDL shown in Figure 16.) This

menu pops up a sphere containing the command icons around the position of the Polhemus

sensor held in the user's hand. “These primitives [i.e., the menu command items] can be chosen

from the shell of a 3-D spherical menu, called a daisy, using the bat [a Polhemus sensor with 3

buttons attached].... Primitives are selected by rotating the menu until the desired primitive enters

a selection cone that always faces the user.”[20] The state transition diagram shows how the

menu is activated and deactivated by Button 3. While it is activated, the links shown in the figure

are all enabled, causing the sphere and the highlighted selection cone to move. The data-flow

diagram shows clearly how the menu sphere and the selection cone both follow the position of

the bat in the user's hand (identity1 and identity2). However sphere also rotates with the bat

(identity3), but the cone does not, it just keeps pointing toward the eye (calcvector).
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Figure 16. Specification of a 3-D “daisy menu” developed by Jiandong Liang and Mark Green
for selecting commands in VR. The menu pops up a sphere containing the command icons
around the position of the Polhemus sensor held in the user's hand. The state transition diagram
shows how the links are all activated and deactivated by Button 3. The data-flow diagram shows
that the menu sphere and the selection cone both follow the position of the user's hand (identity1
and identity2). However sphere also rotates with the hand (identity3), but the cone does not, it
just keeps pointing toward the eye (calcvector).

The action for the BUTTON3DN transition would be:

Show daisy and selection cone;

For BUTTON3UP transition, it is:
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If (intersection of cone and daisy covers a menu item) {
     Select that item;
}
Hide daisy and selection cone;

Even the daisy menu is fairly straightforward in our UIDL. This may reflect the power of

our approach, but it also reflects the relative infancy of this area of non-WIMP interaction

techniques. While WIMP interfaces seem to have stabilized around a set of standard widgets, to

the point where developing new interaction techniques or widgets is a rare activity, non-WIMP

interfaces are a long way from this type of codification. They provide a far richer range of

mechanisms to engage and communicate with the user, and the search for the right set of

interaction techniques in this realm has just begun[24, 60]. For this reason, languages to enhance

programming of WIMP widgets are not a major practical concern, since so few genuinely new

widgets are developed. (This may be a cause-and-effect problem: Programming new widgets

with current tools is much more difficult than plugging in existing widgets, creating an incentive

to make do with existing ones.) We believe there will be a growing need for usable languages to

help facilitate inventing and experimenting with new interaction techniques for virtual

environments.

6. IMPLEMENTATION ISSUES AND THE USE OF CONSTRAINTS

6.1. UIMS Implementation

The software for our PMIW user interface management system is written in C++ for

Unix. We use Silicon Graphics Performer software[51] for graphics and rendering (but not for

input). PMIW is separated into portions dependent on and independent of the SGI Performer 3-D

graphics system; the latter can be run on other flavors of Unix, by providing different means of
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drawing output on the screen. For example, the simple slider in Figure 1 uses X graphics only

and runs on Sun Unix. We use the MR toolkit[52] for communicating with the Polhemus tracker.

Our main loop reads X window input (from a conventional X window or a Performer

GLX window) and then input from our own additional devices, dispatches the inputs (either to

the plugboard as changes in its input variables or to the event handler as tokens), allows the

plugboard to recalculate as needed, propagates changes in output variables to the Performer

scene graph data, reads the head tracker, and then calls Performer to render the scene graph. The

state diagram interpreter is based on one developed in previous work[31, 32]. The constraint

solvers are discussed in this section.

The constraint solver is required because the system is implemented on a conventional

digital computer with serial input devices, where all inputs, processing, and outputs are

ultimately discrete, not continuous. Our goal is to provide a model that allows the user interface

designer to think of continuous variables and a language that allows the designer to program

them as though they were continuous—because we posit that the user and designer will think of

some aspects of the interaction as continuous. Our runtime system ultimately merges the

continuous and event-based portions of the specification and runs them in discrete steps in a

single thread main loop, which includes the constraint solver. The point is that the user interface

specifier need not be concerned with this level (as long as we can provide sufficiently good

performance).

6.2. Fundamental Classes

Our runtime UIMS functionality is encapsulated in a set of base classes. These are

described here, along with lists of the principal methods of their public interfaces. The discrete

event handler is contained in the EventHandler class; the plugboard or constraint solver is
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contained in the Variable, Link, and Condition classes; the connection from input devices to

events and plugboard variables is contained in DeviceBase; and the connection from output

variables to the screen is provided (by the user) in the IO (interaction object) class.

6.2.1. Variable

Variable (kind)

GetE ()
SetE (value)

GetI ()
SetI (value)

These are the nodes in the plugboard; they represent continuous user interface Variables,

some of which are directly connected to input devices or outputs. The Variable class provides a

container for holding a value, with code for determining when it needs recalculation.

Access to the value of a Variable is different depending on whether you are calling from

inside a constraint solver (that is, from within the Evaluate() routine of a Link) or not. GetE()

returns the value of the variable, and SetE(value) sets it. Inside the solver (that is, within the

body of the Evaluate() routines), GetI and SetI are used instead. The external routine (GetE)

always returns an up to date value, recalculated if necessary (but subject to the time management

degradation features). The internal routine (GetI) simply accesses the value field without

triggering further calculation; it is only used within a recalculation cycle.

Internally, the implementation of Variable is divided into a VariableBase class

containing common routines and a template for instantiating classes to hold different data types,
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such as Variable<int> and Variable<float> or aggregate data types such as Variable<pfVec3>

and Variable<pfMatrix>

The kind tag in the constructor indicates how this variable is used. It is currently mainly

for documentation; the system makes limited use of this information. The choices are:

• INPUT: Input coming directly from a device

• OUTPUT: Output destined for a device (or for the Performer scene graph)

• SEM: Semantic data, that is, data shared with the application or semantic layer, outside of

the UIMS

• SYNT: Syntactic data, that is data used within the UIMS to keep track of state or other

user interface information

• INT: Other intermediate node in plugboard

• CONST: Constant data (could be semantic, syntactic, or intermediate).

6.2.2. Link

Enable ()
Disable ()

static Recalc ()
abstract Evaluate ()

A Link is a part of a plugboard; it connects the nodes (Variables) and contains a function

that maps from one or more variables to one or more other variables. The base constructor adds
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the Link to the plugboard by adding each instance of any of its subclasses to a (static, class

variable) list of all Links to be evaluated when the solver is run. The base destructor removes it

from this list.

A library of common, specific kinds of Links is provided. For others, the user subclasses

Link and overloads Evaluate(). The Evaluate routine accesses Variables in the plugboard via

GetI() and SetI(). This syntactic sourness can be avoided by using the overloadings we provide

for “=” and “*” for Variables or by using the SHADOW precompiler, mentioned in Section 6.7.

A Link may be Enable()d or Disable()d by calling the respective methods; this is usually done

via a Condition, described in the next section.

Implementation is divided into the LinkBase class, which contains the basic functionality

of Links, irrespective of the solver used, and Link, which adds a specific solver implementation.

The solver is triggered by calling GetE on a Variable. For a forward-chaining solver, this causes

a complete recalculation of all dirty nodes in the graph (via the static method Link::Recalc). For

a backward-chaining solver, only those Links needed to satisfy the particular GetE request are

recalculated, and there would be no Link::Recalc method.

6.2.3. Condition

Add (link)
Enable ()
Disable ()

Condition is one of the principal communication paths from the discrete to the

continuous portion of the UIDL, it effectively re-wires the data-flow graph in response to user

inputs. A Link may be associated with one or more Boolean flags or Conditions, which allow
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groups of Links to be turned on and off (usually in response to state transitions).  A link may

belong to any number of such groups, or none. Links may be added to a Condition with the Add

method (or optionally in the Condition constructor). The Condition may then be Enable()d or

Disable()d via the corresponding methods. Enable and Disable are not normally called by the

user. Instead, a state in a state transition diagram may be associated with a Condition. Whenever

the state diagram interpreter enters or exits that state, it will make the corresponding Enable() or

Disable() call automatically.

6.2.4. EventHandler

static IH (token)
SendTok (token)
IhIo (token)

Each object that can receive tokens from discrete inputs inherits from this class. The

UIMS sends each token to EventHandler::IH, which dispatches it to the IhIo methods of its

individual instances. The user supplies an IhIo method for each instance, to receive tokens and

respond to them. The responses may include making state transitions, setting syntactic-level

variables, or making procedure calls to the application semantics. If the EventHandler is defined

by a state machine, a precompiler generates the body of the IhIo method from the state transition

diagram[30, 31]. Each EventHandler object remembers its state in its state transition diagram as

an instance variable. Finally, EventHandlers, Links, and other objects can generate their own

tokens by calling SendTok.

6.2.5. DeviceBase

Read ()
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Dispatch ()

Subclasses of this class receive inputs and dispatch them to EventHandlers and/or input

Variables, as discussed in more detail in Section 6.3. Subclasses are provided for

DeviceXWindow (reads mouse and keyboard events for regular X windows or Performer GLX

windows, which share the same input mechanism), DevicePolhemus, and DeviceEye (ISCAN

eye tracker over serial port). A DeviceTimer is also provided to feed the current time (read from

the system clock) into the plugboard.

6.2.5. Interaction Object (IO)

static UpdateAll ()
abstract Update ()

Objects that produce output Variables that must be propagated to the scene graph inherit

from IO and supply the body of the Update method. The IO constructor maintains a list of all

instances of its subclasses created; the IO::UpdateAll() static method then Update()s each of

them.

6.3. Connecting with Inputs and Outputs

Our constraint solvers receive input variables, process the constraints as needed, and

ultimately generate output variables. We discuss here how the input variables are connected to

the actual input devices and how the output variables are connected to outputs to the screen.

These aspects are outside the UIDL and hence not visible to the user interface designer; they
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appear as basic capabilities hard-coded into the UIMS. There is also provision for extending the

UIMS to include additional devices, by subclassing DeviceBase.

Each input device (including input half of a window) is encapsulated in a subclass of

DeviceBase. While our current input devices all communicate serially, some of them are fed into

the UIMS as discrete events and others as continuous variables. Each of the subclasses of

DeviceBase provides a Read() method and a Dispatch() method; the separation is to

accommodate unusual devices that might require scheduling reading and dispatching separately.

Read() is optional; it does any required periodic servicing of the device that might be needed.

For example, if device streams data continuously, this routine could drain the serial port input

queue and stash the data away for us to use later. Dispatch() then processes the input. It may

read all the device data, just the latest value of the device data, or use data saved by Read(). If

the input generates an event (keyboard key, mouse button), Dispatch simply converts it to a

Token and calls EventHandler::IH(token), which processes the event synchronously as it is

called. If, however, the input is destined for a continuous variable (mouse position, Polhemus

position, eye point of regard), Dispatch takes the input and sends it to the SetE() method of the

corresponding input variable. It follows that the mapping of input device data to our input

Variables is coded in these Dispatch methods. Performing the SetE sets dirty flags as needed,

but does not cause any other calculation until later, when the constraint solver is run. As noted in

Section 6.4, there is also a provision for designated Links to be reevaluated for every new input

value.

The other half of the interface to the outside world connects our continuous variables to

outputs on the screen or head-mounted display (these are our only output devices at present).

Under Performer, this means each of our output variables ultimately controls some data element
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in the Performer scene graph. Again, since the underlying output hardware is digital, a

continuous variable must ultimately be read out at a discrete time and sent to the frame buffer.

Unlike the input variables, which are permanently connected to their corresponding hardware

devices, the output variables differ for each application. For example, the Grab object (Figure 5)

outputs the 3-D position of the grabbed object in world coordinates; Arm2 (Figure 9) produces a

4x4 rotation matrix for each of its two movable joints. For each object with output variables, the

user must thus provide an Update() routine, which takes the values of its variables and sets the

corresponding pieces of data in the Performer scene graph. Under our approach, this code should

simply GetE() the variable and copy its value into the appropriate element of the scene graph (to

which it has retained a pointer). If more substantial calculation were needed, it ought to be done

in a link, where we can manage and schedule execution; the Update() simply copies the data to

its final destination. Objects that need to be Update()d are all subclasses of IO, as described

above.

All that now remains is for the main loop to perform the following steps repeatedly. Each

step is described in English and also shown in C++ below:

• Call the Read() and then Dispatch() methods for each of the input devices you are using.

Three devices are shown here: XWindow, for mouse and keyboard events; eye tracker,

which includes the Polhemus data; and timer, a pseudo-device that reads the system

clock. (See Section 6.4 for special callback argument to deviceEye->Dispatch):

     pfwindow-> GetDeviceXWindow()-> Read ()
     deviceEye-> Read ()
     deviceTimer-> Read ()

     pfwindow-> GetDeviceXWindow()-> Dispatch ()
     deviceEye-> Dispatch (&LinkStep::Step)
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     deviceTimer-> Dispatch ()

• Process any LinkSteps specially (see Section 6.4). This iterates over all instances of

LinkStep and allows them to recalculate as needed:

     LinkStep::Step ()

• Update() all the IOs. This iterates over all instances of IO and calls the Update  method.

These in turn trigger recalculation as a side effect:

     IO::UpdateAll ()

• Update the head position just before rendering the frame:

     pfSync ()
     headCoupler-> UpdateManual ()
     pfFrame ()

Observe that the Update() routines will call GetE() for any variables they need to output; this

triggers the constraint solver to do its work. The main loop is written to run no more than once

per video frame (via the pfSync() and pfFrame() calls), but may well run less frequently. As

discussed below, there is also a special provision for LinkSteps that should be evaluated more

frequently than once per frame (those that accumulate input history from streaming input

devices).
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6.4. Constraints

We find thus far that constraints are indeed a good element of a UIDL for virtual reality

and other non-WIMP interfaces—with the following modifications:

• They are restricted to simple one-way, non-ambiguous constraints, that is, the constraint

graph is simultaneously solvable. (We will consider cases where, for execution speed, we

do not solve it all; but given enough execution time the constraints are written so that

they could all be satisfied simultaneously.)

• Constraints are permitted to be temporary, that is, there is an efficient mechanism for

turning constraints on and off, and it can be triggered by the discrete user interface.

• The constraint specification is combined with an additional mechanism for discrete

interactions and incorporated into our overall UIDL.

While we introduced the plugboard constraint graph for its expressive power in

describing parallel, continuous interaction, we found that, although constraints are often viewed

as introducing performance penalties compared to conventional coding, our approach provides

leverage for improving performance or interactive responsiveness. This is because our

constraint-based formalism allows a separation of concerns between the desired interactive

behavior and the implementation mechanism. The user interface designer can thereby

concentrate on and express the former, in a high-level, declarative, continuous-oriented way,

while the underlying runtime system can perform optimization, tradeoffs, and conversion into

discrete steps independently, beneath the level of the UIDL. One could thus tailor the response

speeds of different elements of the user interface (specifically, the individual constraints in the
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constraint graph) within the available computing resources from moment to moment[58]. All this

would be specified separately from the user interface description; the UIDL need only describe

the desired behavior (i.e., the behavior if infinite computing resources were available). By the

same token, because the Links and Variables that comprise the continuous portion of our system

are only a declarative specification of the desired user interface behavior, a run-time constraint

solver is required to implement the interface.

The language described up to this point is intended to be independent of the particular

constraint solver used, and we see our principal contribution as this model and language, rather

than as introducing a new constraint solver into the world. The semantics of our UIDL make

relatively modest demands on a constraint solver: a set of non-ambiguous one-way constraints,

executed once per video frame, or less frequently if necessary. We have therefore implemented

several quite different constraint solvers. We will discuss some of them briefly here, but since we

intend the language to work with other solvers as well, the details of our current solvers are not

an integral ingredient of our approach. They implement the same semantics, but have different

real-time performance characteristics. They are each implemented as alternate definitions for the

Link and Variable subclasses, derived from the common LinkBase and VariableBase classes.

The examples here can run on any of them, with no changes to the UIDL or to any other code

shown here, except for actually loading the subclasses that contain the desired solver. Note that

the tagging of certain links as LinkStep (Section 5.5) provides extra runtime information for

backward chaining solvers, and is a no-op for forward chaining ones.

Our first implementation is a correct but simple-minded forward-chaining constraint

solver. Whenever the value of a variable is requested, it performs a complete recalculation of all

dirty nodes in the graph. Setting a variable to a new value sets its dirty flag, indicating that links
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that depend on this variable must be recalculated. Recalculation iterates until all flags are cleared

(or a maximum count is reached, to break infinite cycles). Of course, if several variables are

requested in succession, and the inputs have not changed, only one full recalculation would be

executed, because it would have cleared the dirty flags.

Our next solver is LoVe a backward-chaining system, using incremental, lazy evaluation.

Its algorithm is based on that of Hudson's Eval/Vite system[26, 28]. This is an optimal algorithm,

which evaluates the minimal set of links for each request. LoVe accepts cyclic graphs, i.e., one

can define a relationship x = x' + 4 where x' is the previous value of x. When the value of a

variable is requested, LoVe recursively finds all the links that need to be re-evaluated and

evaluates them in the correct order (so that each link is evaluated at most once). Because the

algorithm is incremental, there may be some links that don't need to be re-evaluated because their

dependencies are up-to-date. As LoVe finds links to be re-evaluated, it also marks them as

visited so that it will know when a cycle exists in the graph, and cease recursion. The algorithm

clears the dirty flag of the variables that depend on each link that is re-evaluated, to record the

fact that these variables are now up to date. LoVe adds some new aspects to the algorithm of

Eval/Vite, which are specific to our application, such as the ability to turn Conditions on or off

without reinitializing and a set of hooks to accommodate time management features. LoVe is set

up to allow its user to change the constraint graph at run time via Conditions, thereby redefining

the relationships of the variables and modifying the behavior of the system dynamically. When it

is done, the algorithm and the data structure remain intact; there is thus no penalty for changing

the graph as often as desired at run-time.

Despite the performance benefits of a demand-driven solver, there are a few cases where

a formula is easier, or simply becomes possible, to express if a forward-chaining solver could be
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assumed. With lazy evaluation, we cannot be sure that a particular output variable will be

calculated on every frame, and, therefore, that those constraints that feed it directly or indirectly

will be evaluated every frame. We have seen examples of cases where it is more straightforward

to express an algorithm if we can assume that certain constraints are called fairly regularly,

regardless of the state of the demand-driven solver. As mentioned in Section 5.5, we support this

by defining the LinkStep subclass; instances of this subclass are called more regularly than

ordinary links, that is, regardless of whether the solver needs their output. There are three

situations where this is necessary:

• Input history-dependent calculations, such as the Orbit example in Section 5.5.

• Simulations. For example, a simple physical simulation involving colliding objects is

often easier to write if you do not have to predict ahead when the moving objects are

going to touch, but just write code to step through the simulation at a fixed time step.

• Recognizer links, which scan the input stream for patterns (gestures, eye fixations) and

fire tokens when they are recognized.

As seen in the main loop above, LinkSteps are evaluated explicitly once on each cycle.

Finally, we allow for LinkStep processing that should be done more often than once per

frame. Links that process streaming input and search it for patterns (such as gesture or eye

fixation recognizers) or accumulate input history should be executed for every new input value

that is handled. They are handled by the optional callback argument to Dispatch (note the call to

deviceEye->Dispatch(&LinkStep::Step) above. Dispatch then calls the given routine on every

new input value it handles; LinkStep::Step() evaluates the LinkStep links as needed for it.
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We are also experimenting with DLoVe, a solver that distributes the constraint solving

workload over several computers to improve speed. As with the other solvers, it is designed to

provide identical semantics but use parallel processing to improve performance.

Finally, the SHADOW system[41, 42] incorporates its own solver along similar lines,

along with features for time management and runtime decimation of link bodies.

6.5. Multi-user Interfaces

The principal use of the distributed constraint solver, DLoVe, is to exploit the

computational power of additional workstations to solve the Links and Variables faster.

However, it can also be used to support multi-user, collaborative virtual worlds. Using DLoVe,

the dataflow graph (that is, all Links, Variables, and Conditions) is automatically shared among

all workstations.  Updates made on one workstation will (eventually) be seen by all of them. This

makes it easy to implement a multi-user interface. The UIDL consists of a single set of state

diagrams and dataflow graphs, which together describe what happens in response to inputs from

users on all of the devices and workstations.

From the interface designer's point of view, the only difference is that the UIDL for a

meaningful multi-user interface will typically need to refer to inputs from the different users

individually. A mouse or Polhemus on one workstation must thus be named differently from

those on another; the UIDL may refer to either or both as required to describe a two-person

interaction. The UIDL code for multi-user interfaces should refer to the mouse of each user

specifically.  In some cases, the users may have different roles in the collaborative interaction

(pitcher vs. catcher). To accommodate this, the (shared) dataflow graph thus contains an array of

Variables, mice[0..N], one for the mouse of each workstation, and the tokens for mouse buttons

on the different mice are named LEFTDN_1, LEFTDN_2, etc. For example, we have developed
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two-person versions of both Grab and Toss. In the Grab example, the state transition diagram is

written so that while one user is dragging the object, the other user can grab it away. The state

diagram keeps track of whose turn it is. For variety, in the two-person Toss example, when one

user is dragging the object, the other user cannot grab it away. One user can throw the object and

either can then catch it. These were simple extensions of the UIDL shown in Figures 5 and 15.

No other special coding was required, other than handling the multiple input devices as described

above and launching the distributed version of the system on at least two workstations.

(Additional workstations may participate in the calculation workload, but this UIDL calls for

only two mice, so any other mice would be ignored.)

6.6. Performance

Many non-WIMP interfaces must meet severe performance requirements in order to

maintain their perceptual illusions. For virtual reality, in particular, these requirements are the

driving force behind the design of most current implementations[51]. We want to introduce

higher level, cleaner user interface description languages into this field, but we must not

compromise performance. We claim that our underlying model contains nothing that adversely

impacts run-time performance—all penalties are paid at compile-time—because the links or

constraints are one-way and the event handler technology is straightforward. Keeping the model

conceptually simple leaves some degrees of freedom available to our run-time system to manage

CPU resources in a specialized way tuned to the peculiarities of a video-driven VR system. The

simple homogeneous system of links also allows us to build optimized constraint systems

underneath it, providing the same semantics and incorporating optimizations invisible at the

UIDL level, as seen here. We thus try to separate the concerns of interface modeling and run-

time optimization. We obtained a rough subjective impression of performance under LoVe by
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modifying the world in Figure 12 to increase the complexity of its constraint graph, by making

each arm point to its immediate neighbor in a chain instead of to one of the foreground arms.

Running on an SGI Indigo2 Extreme workstation with a single 200 MHZ IP22 CPU, running

IRIX 5.3 and Performer 1.2 and our non-distributed LoVe solver, we grasp one of the foreground

arms with the cursor (attached to the mouse) and move it rapidly. We found that the frame rate

(reported by pfDrawChanStats() call to Performer) varied between 24 and 36 Hz., and the

subjective effect was of very rapid response. This rate was maintained with the input cursor

stationary or moving rapidly and with some Conditions turned off or all turned on. The response

to turning a Condition on or off seems subjectively instantaneous.

6.7. SHADOW: Scaling Up to Larger Worlds

We are developing a more ambitious system based on this approach[41, 42]. SHADOW

uses the same two-part model, combining one-way constraints for its continuous part with state

transition diagrams for its discrete part. It adds further enhancements to the UIDL, particularly in

the area of specifying a hierarchy of objects within other objects. It allows entire subsystems

defined in their own UIDL specifications to be plugged into a larger constraint graph and

activated or deactivated by its event handler. We have demonstrated its scalability by developing

a nontrivial “rookery” VR world with it. This fairly complex world of penguins and ice floes

required 24 visual program diagrams and a total of 4000 lines of C++ code in our language. Each

diagram is a relatively simple, self-contained specification, containing an average of 2.3 states,

1.9 state transitions, and 4.1 constraints. Of the 4000 lines of code, 2000 were array initialization

for the vertices of the graphic objects (which would normally have been generated with a 3-D

modeling tool) and 1000 were library modules for device and window handling (which would

not be written anew for another world). The remaining 1000 lines of “real” code were contained
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in relatively small, self-contained modules (average procedure body = 24.5 lines, average

constraint body = 11.7 lines), and had an average Cyclomatic Complexity measure of 3.0 (where

a lower value indicates better code maintainability, and values under 10 to 20 are generally

considered good).

7. RELATED WORK

The contribution our model makes for non-WIMP interaction is its separation of the

interaction into two components, continuous and discrete, and its framework for communication

between the two spheres—more than the internals of the two components themselves, which

draw on existing techniques. We first separate non-WIMP interaction into continuous and

discrete components, then, within each of the two spheres, we build on different threads of

previous user interface software research. The discrete component draws on research in event-

driven user interface management systems[48]. The continuous component is similar to a data-

flow graph or a set of one-way constraints between actual inputs and outputs and draws on

research in constraint systems[26, 28]. The model provides the ability to “re-wire” the graph

from within the dialogue.

A variety of specification languages for describing WIMP and other previous generations

of user interfaces has been developed, and user interface management systems have been built

based up on them[45], using approaches such as BNF or other grammar-based specifications[48-

50, 53], state transition diagrams[29, 46], event handlers[13, 21], declarative specifications[48],

frames[57], and others[14, 18, 36, 43, 54, 61]. For example, although BNF had been a good

match for programming languages or batch command interfaces, interactive, moded graphical

interfaces were perhaps better captured by state transition diagram-based approaches[30]; and

modern modeless WIMP interfaces fit a coroutine-based model[32].
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In the continuous domain, several researchers are using constraints for 2-D graphical

interfaces[22, 23, 27, 44, 59]. Kaleidoscope[15] is a constraint-based language motivated by 2-D

WIMP interfaces, and it explicitly supports temporary constraints. The CONDOR system uses a

constraint or data-flow model to describe interactive 3-D graphics[37]. TBAG also uses

constraints effectively for graphics and animation in the interface[11]. Gleicher provides

constraints that are turned on and off by events[16]. Other recent work in 3-D interfaces uses a

continuous approach[55] or a discrete, but data-driven approach[3]. Mackinlay, Card, and

Robertson address the description of interfaces by continuous models by discussing interface

syntax as a set of connections between the ranges and domains of input devices and intermediate

devices[40].

While their focus is on widgets found in current WIMP interfaces, Abowd[1] and Carr[4,

5] both present specification languages that separate the discrete and continuous spheres along

the same lines as this model. Both approaches support the separation of interaction into

continuous and discrete as a natural and desirable model for specifying modern interactive

interfaces. Carr provides an expressive graphical syntax for specifying this type of behavior, with

different types of connections for transmitting events or value changes. Abowd provides an

elegant formal specification language for describing this type of behavior, and uses the

specification of a slider as a key example. He strongly emphasizes the difference between

discrete and continuous, which he calls event and status, and aptly refers to temporary,

continuous relationships as interstitial behavior, i.e., occurring in the interstices between discrete

events. Kearney and Cremer[9, 10] also use an approach that combines discrete events with

continuous data flows to program a sophisticated virtual environment automobile driving

simulator.
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Other work from the formal specifications area is also relevant, such as that of Sufrin and

He[56]; and Zave and Jackson[62], who provide a formal basis for combining multiple

specification techniques to describe a single system in a coherent way. Myers' Interactors[34]

also combine discrete state changes with what might be viewed as continuous actions. The

continuous actions are handled as sequences of state transitions by providing a transition from a

state back to itself, which accepts a “mouse-motion” or “value-changed” input token. Hill[21]

and Chatty[6] have both provided UIDLs that handle parallel input from multiple input devices,

particularly suited to two-handed input; their approaches are both based on discrete events.

Software architectures for virtual reality interfaces have been developed by Feiner and

colleagues[12] and by Pausch and colleagues[8]. Green and colleagues developed a toolkit for

building virtual reality systems[52]. Most of this work has thus far concentrated on the

architecture or toolkit level, rather the user interface description language. Lewis, Koved, and

Ling, addressed non-WIMP interfaces with one of the first UIMSs for virtual reality, using

concurrent event-based dialogues[38].

8. CONCLUSIONS

We have presented a software model for describing and programming the fine-grained

aspects of non-WIMP style interactions (Section 2) and a UIDL that embodies it (3). It is based

on the notion that the essence of a non-WIMP dialogue is a set of continuous relationships, most

of which are temporary. The underlying model combines a data-flow or constraint-like

component for the continuous relationships with an event-based component for discrete

interactions, which can enable or disable individual continuous relationships. The language thus

separates non-WIMP interaction into two components and provides a framework for connecting

the two. To exercise our new model, we have then presented:
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• The VRED visual editor for this language (Section 4)

• Some simple examples, running under our PMIW UIMS, to illustrate the applicability of

the language for describing non-WIMP interactions (5)

• Our use of constraints in a performance-driven interactive situation and our LoVe and

DLoVe constraint systems (6).

Software for virtual environments usually uses one or both of two models: event queues

or device polling. Our constraint- or plugboard-based model is slightly different from both of

these. Writing a constraint or data-flow graph is different in a small but important way from

writing code that says “Whenever variable X changes, do the following calculations.” Instead,

the constraint expresses something closer to: “Try to maintain the following relationship to input

X, whenever you have time, doing the best you can.” The distinction becomes meaningful when

the system is short on time, which is often the case in a virtual environment. We believe this is

closer to the user's view of the situation and closer to what the programmer would like to

express. Experience with our examples showed the straightforwardness of this declarative

specification. The interface designer writes no code to maintain the relationship or handle the

change-value events, but simply declares a relationship and then turns it on or off as desired. Our

restricted use of such declarative specification does not hurt performance; in fact, it makes

possible introducing time management and optimization designed specifically for the needs of a

video-driven virtual environment.

Finally, we note some areas of non-WIMP interfaces that our language specifically does

not address, and how they would be connected to this work:



- 63 -

• 3-D Modeling: We treat this as a separate issue, to be done offline from our system and

imported into it (specifically, we can import into Performer from DXF, Open Inventor

which is similar to VRML, and a variety of other formats). Figure 5 shows an example of

this process using an object that we modeled in IRIS Inventor 1.0 and then imported.

Figure 13 makes clear that our research focuses on interactive behavior, rather than

attractive graphical appearance!

• Animation: Our UIDL is not an animation language; it is a language for interaction with

the user. These two aspects of the interface would be integrated by having the underlying

animation system provide parameters or “levers” that the user's inputs can control. Our

system then connects user actions to changes in these animation parameters or levers via

variables in our graph or actions taken on state transitions. A user interaction might

thereby start or stop an animation, change its acceleration, path, or destination. PMIW

provides the user interface to the “levers;” the animation software provides the levers.

• Physical Modeling: Many VR systems include extensive geometric and physical models

and simulations, in contrast to typical WIMP applications. Most systems also require

some capabilities that do not mimic the real world and cannot be described simply by

their physical properties. There are usually ways to fly or teleport, to issue commands,

create and delete objects, search and navigate, or other facilities beyond the physical

world analogy. These behaviors are where our UIDL will be most useful, since they

cannot be described by relying only on the real-world analogy. We therefore view

physical modeling in a similar way to animation. That is, there might be an underlying

physics engine or simulation engine with controllable parameters, and we provide the

means for the user's inputs to control parameters of the physical simulation. (Our data-
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flow language might also be good for the sort of ad-hoc, purpose-built physical models as

are found in many VR systems today.) In the future, we envisage a more general, separate

system for handling physical simulation in much the same way that rendering 3-D

geometry is now usually handled by a separate graphics system. Our UIDL will specify

the aspects of the interface that do not follow directly from physical laws (fly, teleport,

delete, pop-up a menu) and turn them into inputs to the simulation system; the normal

action of the simulation will handle those aspects that follow directly from physical laws.

• Sub-Assemblies: Our current system will obviously explode with complexity as we build

bigger worlds; Figure 11 is already too cluttered. To address this, PMIW is designed to

allow higher-level sub-assemblies to be defined in a straightforward way. Any set of links

and variables can be packaged into a single component, with some of its inputs and

outputs exposed and others encapsulated internally, much as an electronic sub-assembly

encapsulates a set of components and provides a reduced set of input and output pins.

This is currently available in our system, but not yet accessible from the editor. Note that

such encapsulation has no bearing on run-time operation. At run time, the components

are exploded back into their individual links and variables and executed by the constraint

system; the higher level encapsulations have no performance impact. The Polhemus-to-

cursor function that appears in some of the figures is an example of a simple candidate

for such an assembly. In fact, we have implemented it as a plug-compatible module

which can be replaced by one that lets a moded mouse control the 3-D position of the

cursor instead; both export the same cursorpos variable and thus can be used

interchangeably
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Our goal is to provide a model and abstraction that captures the formal structure of non-

WIMP dialogues in the way that various previous techniques have captured command-based,

textual, and event-based dialogues. We seek to bring higher level, cleaner user interface

description language constructs to the problem of building of non-WIMP interfaces. We have

demonstrated how such a language can be used and implemented and shown that it need not

compromise real-time performance.
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