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Abstract

The purpose of this work is two-fold. First, we will explore what can be said about

some particular conjectures concerning centralizers and orbits of algebraic groups

when considering a ground field of small characteristic. Second, we attempt to un-

derstand non-restricted Lie algebra representations for standard Levi form by gener-

alizing some existing machinery.

Specifically, in Chapter 2 we provide a proof of the existence of Levi decompo-

sitions of nilpotent centralizers in classical groups of bad characteristic. Then, in

Chapter 3, we provide an initial approach to a conjecture of Steinberg in good char-

acteristic related to understanding the orbits of an algebraic group by that of its

faithful representations. This conjecture was previously known (due to Steinberg)

in characteristic zero or “sufficiently large”, while our approach is valid for certain

elements in almost good characteristic and provides a smaller restriction for the anal-

ogous case of certain elements in the Lie algebra. Finally, in Chapter 4 we generalize a

construction of Jantzen in the special setting of standard Levi form. Here we study an

important type of module called a baby Verma module and build its smaller parabolic

analogue. It turns out that these both yield the same unique simple quotient.
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Alex P. Babinski



Chapter 1

Introduction

We begin this work by investigating questions related to orbits and centralizers for

the conjugation action of a reductive algebraic group on elements in its Lie algebra,

as well as orbits of elements in the group. In particular, we study the structure of

nilpotent centralizers and how to begin to understand conjugacy in the group under

different representations, concerning ourselves with how these objects change when

we consider our group over a field of smaller characteristic and many traditionally

useful constructions are not valid.

Next, we examine the irreducible representations of Lie algebras of algebraic

groups in positive characteristic by exploring modules for their reduced enveloping

algebras, looking at so-called nonrestricted representations and try to understand

them algebraically. We will be interested primarily in the situation of “standard Levi

form”, when certain standard modules are endowed with unique maximal submod-

ules. Our aim is to expand on and generalize existing machinery to better realize

simple modules.

In the following sections of this chapter, we will provide some background and an

overview of the results for each of these subjects.
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3

1.1 Orbits and Centralizers of Nilpotent Elements

in Small Characteristic

For more than 50 years, mathematicians have been studying the structure of orbits

and centralizers of nilpotent and unipotent elements in algebraic groups, applying this

information to better understand subgroup structures and Lie algebra representations,

among other subjects. Major results in this area include Steinberg’s connectedness

theorem for centralizers of semisimple elements, the Richardson-Lusztig theorem on

the finiteness of unipotent orbits, and the Bala-Carter-Pommerening classification of

unipotent orbits (see [H95] or [Ca85]).

Over time, much has been learned about these objects, particularly for algebraic

groups over fields of “large enough” characteristic, where the situation mirrors that of

characteristic zero. In chapters 2 and 3, we are interested in what can be said in the

remaining cases — do certain properties still hold, or do certain pathological aspects

of smaller characteristic change the structure of what we are looking at? Specifically,

does a centralizer of a nilpotent element have a Levi decomposition for classical groups

in bad characteristic, and can we distinguish between orbits in small characteristic

by looking at the images of elements under representations?

1.1.1 Levi Decomposition of Centralizers

Let H be a connected linear algebraic group over an algebraically closed field k

with unipotent radical U . A Levi factor of H is a reductive subgroup L such that

H » U ¸ L. We then say that H has a Levi decomposition. It is important to note

that this is an isomorphism of algebraic groups, so the existence of a subgroup of H

isomorphic to H{U is not enough to ensure a Levi decomposition; one must check

that the projection map is an isomorphism at the level of the tangent spaces as well.

This amounts to showing that the Lie algebras of U and L have an empty intersection.

When the characteristic of k is p ą 0, Levi factors need not exist for an arbitrary

group H (see Section 3.2 of [M10]).

Now, consider a reductive algebraic group G over a field k of characteristic p ą 0,

and let g “ LiepGq be its Lie algebra. For a nilpotent element e P g, we might ask

whether its centralizer in G, denoted CGpeq, has a Levi decomposition. When the
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characteristic of our field is very large, this can be shown to be true by embedding e in

an sl2 subalgebra, much as one would in characteristic zero. In the cases where k is of

good characteristic, we can (after some work) use the analogous notion of associated

cocharacters and proceed similarly (see Section 5 of [J04]). The question remains:

what should we do when the characteristic is bad, and associated cocharacters need

not exist?

As a natural starting place, we will first consider the classical groups. So, let G “

SppV q or OpV q for a finite dimensional vector space V over a field k of characteristic

2. A recent book by Liebeck and Seitz ([LS12]) provides a wealth of information

about the structure of centralizers in these (and other) situations. In it, they produce

a distinguished normal form for the action of a nilpotent e on V . This involves

decomposing V into certain indecomposables for the action of e (dating back to

Hesselink in [He79]). In defining this form, they give rise to a certain one-dimensional

torus T which acts by particular weights on chosen basis vectors, somewhat taking

the place of an associated cocharacter.

Liebeck and Seitz give the precise form of the reductive quotient of the con-

nected centralizer CGpeq
0{RupCGpeqq and show that there exists a closed subgroup

L ď CGpeq
0 isomorphic to it as an abstract group. We hope that this L is our Levi

subgroup but, unfortunately, existence as an abstract subgroup is not enough to en-

sure a Levi decomposition in bad characteristic (see Section 3.3 of [M10]). To be sure,

we have to check that the projection map is compatible on the level of LiepCGpeq
0q.

That is, if π : CGpeq
0 Ñ CGpeq

0{RupCGpeqq is the projection map, we need dπ|LiepLq

to be bijective.

When G “ SppV q, we are able to establish uniformly that L is an honest Levi

factor infinitesimally as well as on the level of groups through a bit of representation

theory (see Proposition 2.3.2). This method works occasionally when G “ OpV q;

though when CGpeq
0{RupCGpeqq contains SO2ai`1 factors, these will not act simply on

their natural modules, making this case incompatible with our current approach. To

get a full result in the orthogonal group, we are forced to use a much more “hands-on”

approach (see Proposition 2.4.5). With this, we are able to combine the two results

in Theorem 2.4.6 to state finally that the connected centralizer of a nilpotent element

in a classical group in bad characteristic does indeed have a Levi decomposition.
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1.1.2 Conjugacy Under Representations

Given an algebraic group G with Lie algebra g, at the outset the question might arise

of how to best arrange the elements of G and g. A natural way to do so is to collect

the elements into conjugacy classes for the action of G on itself, or for the adjoint

action of G on g. Then we might wonder: how can we tell these classes apart? Can

we parameterize them in some way?

It turns out that the regular class functions for G, regular functions which are

constant on conjugacy classes, give us a partial answer to these further questions.

They can distinguish between classes of semisimple elements, though they do not

provide enough information to separate classes in general. So, if class functions are

not robust enough, perhaps studying all of the faithful representations of G will do

the job.

In 1966, Steinberg conjectured that it could be determined whether two elements

in a semisimple algebraic group were conjugate by checking that they were conjugate

under every rational representation. He later proved this result when the ground

field was of characteristic zero or “sufficiently large”, greater than roughly four times

the Coxeter number. In Chapter 3, we use a result of Lawther to describe and ap-

proach for verifying Steinberg’s conjecture for certain group elements with exceptional

semisimple centralizers when the characteristic is good, with a single exception in type

F4. We then extend the proof, using results of McNinch, to orbits of certain elements

in the Lie algebra under the adjoint action of G, though with a few more restrictions

on the characteristic.

1.2 Lie Algebra Representations

Early work in the field of modular Lie algebra representation theory is highlighted

by papers of Zassenhaus and Curtis from the 1940’s and 1950’s (see [Z40], [Z54],

[Cu53], [Cu60]), though activity receded a bit over the next few decades. More recent

developments include the algebraic constructions of Friedlander and Parshall in the

late 1980’s and early 1990’s (see [FP88], [FP90], [FP91]); the fundamental 1994 paper

of Andersen, Jantzen, and Soergel ([AJS94]); and later work by Jantzen in the late
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1990’s and early 2000’s (see [J99], [J00], [J04]). Even more recently, the algebro-

geometric methods of Bezrukavnikov, Mirković, and Rumynin gave a count for the

number irreducible Lie algebra representations in [BMR08]. The goal of chapter 4 is

to explore and generalize a previous algebraic approach due to Jantzen.

Let us begin by briefly discussing the mathematical story of Lie algebra rep-

resentation theory in positive characteristic, largely following the great surveys of

Humphreys [H98] and Jantzen [J97]. We will note that realizing the representation

theory in general will depend strongly on understanding different types and structures

of nilpotent elements, suggesting our work in the previous two chapters. Though we

will not use those previous results directly, the interplay between these two fields, Lie

algebra representation theory and nilpotent orbit structure, is very evident.

Let g be the Lie algebra of a reductive algebraic group G over a field k of character-

istic p ą 0. As is often the case, we want to be able to understand the representations

of g. These correspond, as in characteristic 0, to modules for the universal enveloping

algebra Upgq. In contrast to the characteristic 0 situation, a result of Curtis in [Cu53]

states that the dimensions of these modules are finite and, moreover, bounded. This

is due to the fact that the center Zpgq of Upgq is a finitely generated k-algebra in

characteristic p, and Upgq is a finitely generated Zpgq-module.

Now, Zpgq contains xp ´ xrps for all x P g, where xp is the pth power in the

enveloping algebra and xrps is the pth power in g (which injects into Upgq). So, given

a simple Upgq-module M , each xp´xrps acts on M as a scalar χpxqp by Schur’s lemma,

and hence defines a character χ of g called the “p-character” of M . For any χ P g˚,

define

Uχpgq “ Upgq{xxp ´ xrps ´ χpxqp | x P gy.

This is called the reduced enveloping algebra of g for χ. It has dimension pdimpgq and

a Poincaré-Birkhoff-Witt basis of monomials made up of elements of a basis for g

with each exponent less than p. In a way, we can now partition our search for simple

Upgq-modules by characters of g: simple Upgq-modules with p-character χ correspond

to simple modules for Uχpgq. Note that Uχpgq » Uχ1pgq if χ and χ1 are in the same

G-orbit, so we can choose χ up to conjugacy.

When χ “ 0, we call Uχpgq the restricted enveloping algebra. Understanding

this is the goal in some sense, as simple U0pgq-modules correspond to an important
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class of simple rational modules for G. One prospective approach to understand-

ing the restricted representations of g has been by so-called “deformation” from the

non-restricted setting, moving representations continuously through non-restricted

characters until we reach the restricted case (see [FP90]). This, along with interest

in the relationship between the structure of the category of modules of Upgq and the

geometry of conjugacy classes in g “ LiepGq, compels us to study modules for Uχpgq

when χ ­“ 0.

Following Jantzen, we will often impose what are referred to as the “Standard

Hypotheses” on our reductive group G:

(SH1) The derived subgroup of G is simply connected;

(SH2) The prime p is good for g;

(SH3) There exists a G-invariant nondegenerate bilinear form on g.

Highlighting the third condition, notice that such a form p , q gives us an isomorphism

of g » g˚ by identifying x P g with χxpyq “ px, yq.

Now, fix a maximal torus T Ď G and set h “ LiepT q. Let R be the root system

for G with R` a system of positive roots, and let ∆ be the set of simple roots. We

have a triangular decomposition:

g “ n´ ‘ h‘ n`

Here n` (respectively n´) is the sum of all gα root spaces with α ą 0 (respectively

α ă 0), and we call b` “ h‘ n` (respectively b´ “ h‘ n´) the positive (respectively

negative) Borel subalgebra containing h.

We have one last important observation due to Kac and Weisfeiler in [KW71] that

allows us to further narrow down our study of reduced enveloping algebras. It is

enough to understand Uχpgq-modules when χ is nilpotent, i.e. χpb`q “ 0, since one

can essentially find another reductive Lie algebra m and nilpotent character χ1 in m˚

such that the category of modules for Uχpgq is equivalent to the category of modules

for Uχ1pmq.



8

1.2.1 Standard Levi Form

Next, we discuss the algebraic constructions that allow us to find simple Uχpgq-

modules and label them by certain characters of g. This is the positive characteristic

analogue to “Category O” story over C (see [H91]). We will pay specific attention to

the situation when χ is in so-called “standard Levi form” and later investigate what

can be gained by considering parabolic induction, the focus of chapter 4.

For any λ P h˚, we can define a one-dimensional h-module kλ, which is just the

field k with h P h acting as λphq. Now, for λ P Λχ, where we define

Λχ “ tλ P h
˚
| λphqp ´ λphrpsq “ χphqp for all h P hu,

we can extend kλ to a one-dimensional module for Uχpb
`q. Then, define

Zχpλq “ Uχpgq bUχpb`q kλ.

This is called a “baby Verma module”, suggesting the Verma modules over C, and it

has dimension pdimpn´q as well as a k-basis txa1α1
xa2α2

. . . xanαn b 1 | 0 ď ai ă p, αi P R
`u.

With a theorem due to Rudakov, we can now (almost) label simple modules.

Theorem 1.2.1. ([R70]) Every simple Uχpgq-module is the quotient of some Zχpλq

for λ P h˚.

When χ “ 0, each of the Zχpλq have a unique simple quotient, though this can

break down in the non-restricted case. Let us now focus on a particularly nice class

of χ ­“ 0 where we can still identify the simple quotients of baby Verma modules.

As in [FP90], we define χ P g˚ to have standard Levi form if there exists a subset

I Ď ∆ such that χpx´αq ­“ 0 for α P I, and χpx´αq “ 0 otherwise. We can think

of such a character under the identification g » g˚ as a regular element in the Levi

subalgebra of the standard parabolic pI .

By an early theorem of Zassenhaus [Z40], attributed even earlier to Whitehouse

and Witt, a unipotent Lie algebra (which one can think of as the Lie algebra of a

unipotent algebraic group) has only one simple module up to isomorphism for its

reduced enveloping algebra. This, along with the n´-module isomorphism Zχpλq »

Uχpn
´q, gives us the following theorem (see [J97] 10.2, or [FP90]).
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Theorem 1.2.2. If χ has standard Levi form, then each Zχpλq has a unique maximal

submodule.

So, each such Zχpλq has a unique simple quotient, which we can unambiguously

call Lχpλq. Since each simple Uχpgq-module is the quotient of a Zχpλq, these make up

all of the simple representations. Furthermore, two such simple modules Lχpλq and

Lχpµq are isomorphic if and only if µ P WI‚λ. Here WI is the Weyl of the root system

RI generated by I, and it acts on h˚ via the “dot action”: w‚λ “ wpλ` ρq ´ ρ, with

ρ the unique root such that xρ, α_y “ 1 for all simple roots α.

In the special case of I “ ∆, we are looking at a regular nilpotent character χ.

Premet’s proof ([P95b]) of the Kac-Weisfeiler conjecture ([KW71]) states that every

simple Uχpgq-module has dimension divisible by p
1
2

dim Ωpχq, where Ωpχq is the G-orbit

of χ. When χ is regular, dim Ωpχq “ 2|R`| “ 2 dimpn´q. But now, as observed

above, each Zχpλq has dimension pdimpn´q “ p
1
2

dim Ωpχq, hence must be simple. So, in

this situation, we have Zχpλq » Lχpλq.

1.2.2 Categories and Filtrations

The simplicity (for lack of a better word) of the regular case helps us unravel the

baby Verma modules for more general characters in standard Levi form since, as ob-

served above, such a character corresponds to a regular element in a Levi subalgebra.

Complete knowledge of the composition factors of the Zχpλq would provide valuable

information about the simple modules Lχpλq. In [J97], Jantzen begins the process of

achieving this by building, piece by piece, a map from each baby Verma module to

an appropriate “shifted” module that is dual to it in some sense. In chapter 4, we

will attempt to emulate this machinery in the setting of parabolic baby Verma mod-

ules. It turns out that adapting Jantzen’s approach to the parabolic case encounters

computational and combinatorial difficulties.

Later, in [J00], Jantzen is able to find filtrations of Zχpλq by considering a local ring

A obtained by localizing the polynomial ring krT s at xT y and constructing generalized

baby Verma modules over A in a graded category of modules CA. He builds filtrations

of these A-forms using maps as mentioned in the previous paragraph, which in turn

yield filtrations of the original baby Verma modules over k. This gives a formula
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describing the sum
ÿ

ią0

rZχpλq
i
s

in the Grothendieck group of Uχpgq-modules, where the i index the filtration. This

“sum formula” proves useful because, among other things, it leads to a type of linkage

principle that says if the multiplicity rZχpλq : Lχpλqs ­“ 0, then µ Ò λ for an order rela-

tion Ò. These sorts of results in the parabolic case would be the natural continuation

of the material in chapter 4, if the aforementioned issues were to be overcome.

This all itself is a generalization of results from [AJS94] for when χ “ 0 (and

I “ H). In [J00], Jantzen obtains explicit lists of characters (of length pW : WIq)

in a dot orbit of λ such that, given a character λ1 in a list, the only µ such that

rZχpλ
1q : Lχpµqs ­“ 0 are those also in the list ([J00], Lemma 4.12). He then uses these

results to explicitly compute character and dimension formulae for the simple modules

in specific cases where I is large, and in these cases confirms “Lusztig’s Hope” [Lu97].

Furthermore, in [AJS94], the authors note that when A “ F is a field, the analo-

gous category CF becomes semisimple. Later in chapter 4, we will see that the baby

Verma modules over F are simple just as loc. cit.. We conjecture, though, that they

are not projective, thus we expect not to have CF semisimple for χ ‰ 0 in standard

Levi form.



Chapter 2

Levi Decompositions of Nilpotent

Centralizers in Bad Characteristic:

Classical Groups

2.1 Preliminaries and Good Characteristic

Let G be a connected linear algebraic group over an algebraically closed field k with

unipotent radical U . A Levi factor of G is a reductive subgroup L such that G is

isomorphic to the semidirect product of U and L. We then say that G has a Levi

decomposition. The key here is that we must have an isomorphism of algebraic groups,

so the existence of a subgroup of G isomorphic to the reductive quotient G{U is not

quite enough to know that we have a Levi decomposition. We must check that the

differential of the projection map is an isomorphism of Lie algebras. So, we need to

show that LiepUq and LiepLq have an empty intersection. When the characteristic of

k is p ą 0, Levi factors need not exist in general (see, for example, [H67]).

To see that the existence of a complement to the unipotent radical isomorphic

to the reductive quotient is not enough to ensure a Levi decomposition, consider the

example from Section 3.3 of [M10] (which comes from [BT65] Section 3.15). Let

W “ k2 and V “ SpW , the pth symmetric power of W . Now, consider the subspace

of V of all pth powers of vectors in W , which we will denote W r1s. Then the stabilizer

P “ stabpW r1sq Ď GLpV q is a maximal parabolic subgroup. Let W 1 be any linear

11
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complement to W r1s in V , and let M 1 be the reductive subgroup of P generated

by GLpW q Ď GLpV q and GLpW 1q, the latter acting trivially on W r1s. Now, if π :

P Ñ P {RupP q is the projection map, then π|M 1 is a purely inseparable isogeny,

since M 1 X RupP q is trivial and hence M 1 maps isomorphically as abstract groups

to P {RupP q » GLpW r1sq ˆ GLpV {W r1sq. The usual choice for a Levi factor, M “

GLpW r1sq ˆ GLpW 1q, leaves W 1 invariant, yet there is no complement to W r1s in V

which is stable under M 1. Therefore, M and M 1 cannot be conjugate, which is a

requirement for all Levi factors of a parabolic subgroup ([H75] Theorem 30.2). Thus

M 1 is not a Levi factor of P .

Return now to our general connected algebraic group G over the field k. We say

that the characteristic p of the field k is bad when p “ 2 and G contains a simple

factor not of type An; p “ 3 and G contains a simple factor of type G2, F4, or En;

or p “ 5 and G contains a simple factor of type E8. Otherwise, we say that the

characteristic good.

Let g be the Lie algebra for G, and consider CGpeq the centralizer of a nilpotent

element e P g for the adjoint action of G. In [J04] Sections 5.10-11, Jantzen proves

that, when the characteristic of G is good, CGpeq has a Levi decomposition. Let us

present a rough sketch of the proof.

For a cocharacter τ : kˆ Ñ G, we can get a grading of g given by

gpiq “ tA P g | AdpτptqqpAq “ tiA for all t P kˆu.

Define τ to be associated to our nilpotent element e if e P gp2q, and if there exists

a Levi subgroup H of G such that e is distinguished in the Lie algebra of H and

the image of τ contained in the derived group of H. These cocharacters are meant

to replicate the existence of an sl2-subalgebra containing e in smaller characteristic,

where such subalgebras may not exist unless the characteristic is sufficiently large.

In good characteristic, associated cocharacters exist and are conjugate under the

connected centralizer of e ([J04] Lemma 5.3, originally [P95a] Theorem 2.5).

Now, τ defines a parabolic subgroup Pτ of elements g P G such that the limit

lim
tÑ0

τptqgτptq´1 exists. The Lie algebra of Pτ is the direct sum of gpiq with i ě 0, and

has a Levi decomposition with Levi subalgebra equal to gp0q. Hence, the unipotent

radical of Pτ has Lie algebra the sum of gpiq with i ą 0.

By intersecting the centralizer of e with this Levi decomposition, we find, with
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help from the aforementioned characterization as graded pieces of g, that multiplica-

tion induces an isomorphism of varieties between the centralizer and the product of

its intersections with the Levi factor and unipotent radical of Pτ , respectively. Fur-

thermore, the intersection with the Levi factor is reductive, and hence CGpeq has a

Levi decomposition.

The challenge in bad characteristic is that associated cocharacters do not exist

for all nilpotent elements, so this approach will not work. We will need some other

machinery to understand whether or not CGpeq has a Levi decomposition. To begin,

we may restrict our focus to the first examples of algebraic groups in bad characteris-

tic: the classical symplectic and orthogonal groups over a field of characteristic two.

Fortunately, in [LS12], Liebeck and Seitz provide ample structure which we may use

to answer this question.

2.2 Indecomposables

From this point forward, let G “ SppV q or OpV q for a finite dimensional vector space

V over an algebraically closed field k of characteristic p “ 2, and let g “ LiepGq.

Then G preserves a nondegenerate symmetric bilinear form p , q on V and, when

G “ OpV q, a quadratic form Q. For a nilpotent element of e P g, let V Ó e be

the restriction of V to the action of e. In Chapter 5 of [LS12], Liebeck and Seitz

produce V Ó e as an orthogonal direct sum of certain indecomposables V pmq, W pmq,

and Wlpmq using a one-dimensional torus T Ď G, the impetus of which comes from

Hesselink in [He79]. For SppV q, they are defined as follows:

1. V pmq has basis vi for i “ ´pm´1q,´pm´3q, . . . ,m´3,m´1, with pvi, v´iq “ 1

and pvi, vjq “ 0 for j ‰ ´i. Each vi is a vector of T -weight i, and e acts as a

single Jordan block by e.vi “ vi`2 for i ă m´ 1 and e.vm´1 “ 0.

2. W pmq has basis ri, si for i “ ´pm ´ 1q,´pm ´ 3q, . . . ,m ´ 3,m ´ 1, with

pri, s´iq “ psi, r´iq “ 1 and all other basis inner products zero. Each ri, si is

a vector of T -weight i, and e acts with two totally singular Jordan blocks by

e.ri “ ri`2 and e.si “ si`2 for i ă m´ 1, and e.rm´1 “ e.sm´1 “ 0.

3. Wlpmq for 0 ă l ă m
2

has basis vi, wj for i “ ´p2l´1q, . . . , 2l´1, 2l`1, . . . , 2m´
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2l´1 and j “ ´p2m´2l´1q, . . . , 2l´3, 2l´1. Here, the subspace xwjy is totally

singular, xviy has a radical subspace of xvi | i “ 2l ` 1, . . . , 2m ´ 2l ´ 1y with

nondegenerate quotient, and pvi, w´iq “ 1 with pvi, wjq “ 0 for j ‰ ´i. Each vi

and wj is a vector of T -weight i and j, respectively, and e acts by e.vi “ vi`2

and e.wj “ wj`2, with e.v2m´2l´1 “ e.w2l´1 “ 0.

When G “ OpV q, the indecomposables are:

1. W pmq is defined identically as for SppV q, with the stipulation that Qpviq “

Qpwiq “ 0 for all i.

2. Wlpmq for m`1
2
ă l ď m has basis vi, wj for i “ ´p2l´2q, . . . ,´2, 0, 2, . . . , 2m´2l

and j “ ´p2m ´ 2lq, . . . , 2l ´ 2. Here, the subspaces xviy and xwjy are totally

singular for the bilinear form, Qpv0q “ 1, and Qpviq “ Qpwiq “ 0 otherwise.

Each vi and wj is a vector of T -weight i and j, respectively, and e acts by

e.vi “ vi`2 and e.wj “ wj`2, with e.v2m´2l´1 “ e.w2l´1 “ 0.

Using these indecomposables, Seitz and Liebeck give an orthogonal decomposition

referred to as distinguished normal form:

V Ó e “
ÿ

i

W pmiq
ai `

ÿ

i

Wlipniq `
ÿ

j

V p2kjq
cj

Here the sequences pniq, pliq, and pni ´ liq are strictly decreasing, all cj ď 2, and

ki ą ni ´ li or kj ă li for all i, j (when G “ SppV q). Note that the V p2kjq
cj factors

do not appear when G “ OpV q.

The following lemma will go very far in aiding our pursuit of Levi decompositions,

particularly in the symplectic group:

Lemma 2.2.1. Let C Ď GLpV q, R be the unipotent radical of C, and H ď C be a

reductive closed subgroup such that H » C{R as abstract groups. Let 0 “ V0 Ă V1 Ă

. . . Ă Vn “ V be a filtration for C. If W “
À

i Vi{Vi´1 is a faithful module for H on

which R acts trivially, then the projection map

π : C Ñ C{R

has the property that dπ|LiepHq is a bijection. In particular, H is a Levi factor of C.
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Proof. First, note that, since H » C{R, the bijectivity of dπ|LiepHq follows from

injectivity for dimensional reasons. So, we need only prove that dπ|LiepHq is injective.

Let P Ď GLpV q be the full stabilizer of W . So, C Ď P and P {RupP q » GLpW qˆ

GLpV {W q. Consider the map from C to GLpW q given by

φ : C ãÑ P � P {RupP q » GLpW q ˆGLpV {W q� GLpW q

composing inclusion, the quotient map, and projection to the first coordinate. The re-

striction φ|H is a closed embedding, as W is a faithful H-module. Since the unipotent

radical of C acts trivially on W , and we have R Ď kerpφq.

We now have the commutative diagram

C{R

��

H

π|H
33

//

φ|H ++

C

π

;;

φ

##
GLpW q

where the map C{RÑ GLpW q comes from the universal property of the quotient.

Since φ|H is a closed embedding, so too is π|H . Therefore, dπ|LiepHq is injective.

2.3 The Symplectic Group

For the one-dimensional torus T used to define the indecomposables, let CGpT, eq “

CGpeq X CGpT q. Then, using the distinguished normal form, Seitz and Liebeck give

the following results in [LS12].

Theorem 2.3.1. Let G “ SppV q and e be a nilpotent element of LiepGq with the

given distinguished normal form of V Ó e. Then

(i) CGpeq is connected with CGpeq » RupCGpeqqCGpT, eq,

(ii) CGpeq{RupCGpeqq »
ś

i Sp2ai,

(iii)
ś

i Sp2ai ď CGpT, eq.
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So, the reductive quotient of CGpeq exists as a closed subgroup, but we must check

that the projection map is compatible on the level of LiepCGpeqq in order to have a

Levi decomposition. To show this, we will use Lemma 2.2.1 along with the explicit

construction of
ś

i Sp2ai ď CGpT, eq by Liebeck and Seitz in [LS12] Lemma 5.7. As

we will see, the actions defined in loc. cit. are fairly natural; the key is that these

subgroups can be shown to give the entire reductive quotient.

Also note that we need only check the Levi decomposition of CGpT, eq. By Theo-

rem 2.3.1, the Lie algebra of the proposed Levi factor is contained entirely in T -weight

zero, and thus it can only intersect the Lie algebra of RupCGpeqq within LiepCGpT, eqq.

Specifically, since CGpT, eqXRupCGpeqq is connected (see [H75] Proposition 28.1) and

CGpeq » RupCGpeqqCGpT, eq, we have CGpeq{RupCGpeqq » CGpT, eq XRupCGpT, eqq.

Proposition 2.3.2. Let G “ SppV q for V a finite dimensional vector space over a

field k of characteristic 2, and e be a nilpotent element of LiepGq with distinguished

normal form V Ó e as in Section 2.2. Then CGpeq has a Levi decomposition with Levi

factor
ś

i Sp2ai.

Proof. Let H “
ś

i Sp2ai , and let 0 “ V0 Ă V1 Ă . . . Ă Vn “ V be a composition

series for C “ CGpT, eq. Consider a summand Z “ W pmiq
ai of the distinguished

normal form of V Ó e.

(i) Suppose mi is even. Then we have an embedding Spmi b Sp2ai ď SppZq. The

restrictions of e and T to Z are conjugate to a nilpotent element emi acting

as a single Jordan block on spmi and a one-dimensional torus T 1 acting with

the appropriate weights on Spmi , respectively. These are obviously centralized

by Sp2ai , giving the factor Sp2ai ď CGpemi , T
1q “ CGpe, T q. Now, kerpemiq “

k~x b k2a for some mi-dimesnional vector ~x. So 1 b Sp2ai acts on kerpemiq as

Sp2ai naturally acts on k2ai , which is simple and faithful.

(ii) Suppose mi is odd. Then T decomposes Z into 2ai-dimensional weight spaces

Zj for weights

j “ ´pmi ´ 1q, . . . ,´2, 0, 2, . . . , pmi ´ 1q.

Z0 is non-degenerate under the bilinear form with a group Sp2ai acting on it

preserving this form. The action of Sp2ai is extended to all of the other weight
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spaces on Z by applying e (which takes Zj to Zj`2), and this action commutes

with T and e. Let emi be the restriction of e to Z. Now, we have Sp2ai ď CGpT, eq

acting simply and faithfully on, in particular, kerpemiq “ Zmi´1 » k2ai .

Putting this all together, we have H “
ś

i Sp2ai acting simply and on each

kerpemjq, since an Sp2ak factor acts trivially when k ‰ j.

Let Mi “ Vi{Vi´1. Since R “ RupCGpT, eqq is normal, the fixed point set MR
i ĎMi

is a C-submodule. By the Borel fixed point theorem ([H75], 21.2), MR
i is nonempty,

thus we must have MR
i “ Mi by simplicity. Now that we know R acts trivially on

each Vi{Vi´1, they become simple C{R-modules. Hence, as H » C{R, each kerpemiq

must appear as a composition factor, with H acting faithfully on
À

i kerpemiq. We

now extend the faithful action of H to all of
À

i Vi{Vi´1 by letting it act trivially on

the remaining factors. By Lemma 2.2.1, H is a Levi factor of CGpT, eq, proving the

claim.

2.4 The Orthogonal Group

As in the symplectic group, Liebeck and Seitz give an explicit description of the

reductive quotient of the centralizer of a nilpotent element in OpV q in [LS12] using

distinguished normal form.

Theorem 2.4.1. Let G “ OpV q and e be a nilpotent element of LiepGq with the given

distinguished normal form of V Ó e. Then

(i) CGpeq{CGpeq
0 is a 2-group with CGpeq » RupCGpeqqCGpT, eq,

(ii) CGpeq
0{RupCGpeqq »

ś

mi even

Sp2ai ˆ
ś

mi odd

I2ai, where I2ai “ SO2ai`1 or SO2ai

according to whether or not V Ó e has a summand of the form Wlpnq with

2pn´ lq ď mi ď 2l ´ 1,

(iii)
ś

mi even

Sp2ai ˆ
ś

mi odd

I2ai ď CGpT, eq.

In the case that the reductive quotient contains only symplectic and even dimen-

sional special orthogonal factors, we can hope to proceed using Lemma 2.2.1 much as
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we did when G “ SppV q. There arise some issues with this approach, though, when

we encounter factors of the form SO2ai`1. For example, the natural module k2ai`1

is not necessarily simple, so when building a filtration which has it as a factor we

cannot guarantee that R will act trivially. We will deal with these issues with more

“hands-on” methods, but first we record what our original yields in the orthogonal

case with a lemma.

Lemma 2.4.2. Let G “ OpV q for V a finite dimensional vector space over a field k

of characteristic 2, and e be a nilpotent element of LiepGq with distinguished normal

form V Ó e such that for each odd mi, mi ă 2pnj ´ ljq or mi ą 2lj ´ 1 for all j. Then

CGpeq
0 has a Levi decomposition with Levi factor

ś

mi even

Sp2ai ˆ
ś

mi odd

SO2ai.

Proof. This follows exactly as in the symplectic case of Proposition 2.3.2. In the

situation where mi is odd, the quadratic form is preserved on the zero weight space

(see [LS12] Lemma 5.7), so we get a simple, faithful action of SO2ai on its natural

module k2ai » kerpemiq.

Now we wish to proceed with the case where the reductive quotient contains odd

dimensional special orthogonal factors. First, we have a technical lemma that states

that the W pmqai factors of V Ó e for which there are no Wlpnq factors satisfying the

inequality in Theorem 2.4.1 part (ii) are CGpT, eq-stable.

Lemma 2.4.3. Let V Ó e “
ř

iW pmiq
ai `

ř

iWlipniq be the distinguished normal

form for e with G “ OpV q. Consider a factor W pmiq
ai. If mi is even, then W pmiq

ai

is fixed by CGpT, eq. Furthermore, if mi is odd and, for each factor Wljpnjq, we have

mi ą 2lj ´ 1 or mi ă 2nj ´ 2lj, then W pmiq
ai is fixed by CGpT, eq.

Proof. First, suppose a factor W pmjq has mj of a different parity than mi. Then

for a t-weight vector v P pW pmiq
aiqt and g P CGpT, eq, a linear combination of basis

vectors for g.v cannot have a summand in W pmjq since g centralizes T . So, suppose

we have W pmjq where mi and mj have the same parity and are unique.

Assume mi is odd, and let q “ mi´1
2

. In the zero-weight space, let r0 P pW pmiq
aiq0

and v0 P pW pmjqq0. For g P CGpT, eq, suppose that g.r0 has a linear combination

with a summand of v0. If mi ă mj, then

0 “ g.peq`1r0q “ eq`1
pg.r0q
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has a eq`1v0 “ vmi`1 ‰ 0 summand, a contradiction. Similarly, if mi ą mj, then

g.r0 “ g.peqr´pmi´1qq “ eqpg.r´pmi´1qq.

This implies that v0 is the image of some vector under eq, contradicting the the block

size of W pmjq relative to e, since mi ą mj.

The case of mi even follows similarly, beginning in the 1-weight space. So, CGpT, eq

cannot map a vector in W pmiq
ai to a linear combination containing vectors from

W pmjq with mi ‰ mj. Now we wish to show that such a linear combination cannot

contain vectors from the other factors. Note that the only odd weight spaces occur

for W pmiq
ai when mi is even, so a similar parity argument as above shows that, in

this case, W pmiq
ai must fixed by CGpT, eq. We now proceed with mi odd.

Consider a Wljpnjq factor with basis as given in Section 2.2, so that the zero-weight

space is pWljpnjqq0 “ tv0, w0u. By assumption, we have mi ą 2lj´1 or mi ă 2nj´2lj.

Once again, let r0 P pW pmiq
aiq0 and g P CGpT, eq. We need to consider a few cases.

Suppose first that g.r0 is a linear combination of basis vectors with a v0 summand,

and once again let q “ mi´1
2

. If mi ą 2lj ´ 1, then

g.r0 “ g.peqr´pmi´1qq “ eqpg.r´pmi´1qq

has a v0 summand. Hence v0 is the image of some vector under eq, contradicting the

the block size of Wljpnjq relative to e, since mi ą 2lj ´ 1. On the other hand, if

mi ă 2nj ´ 2lj, then

eq`1
pg.r0q “ g.peq`1r0q “ g.0 “ 0.

But eq`1v0 “ vmi`1 ‰ 0 by block sizes, contradicting v0 as a summand of r0.

Now suppose that g.r0 is a linear combination with a w0 summand. By the

definition of Wljpnjq in Section 2.2, we have
nj`1

2
ă lj, which implies 2lj ´ 1 ą

2nj´2lj`1. Now suppose mi ą 2lj´1. This implies, with the inequality above, that

´pmi´ 1q ă ´p2nj ´ 2ljq. Therefore, w0 cannot be the image of any vector under eq.

But now,

g.r0 “ g.peqr´pmi´1qq “ eqpg.r´pmi´1qq

has a w0 summand, a contradiction. Similarly, suppose mi ă 2nj ´ 2lj. Note from

above that 2nj ´ 2lj ă 2lj ´ 2, and hence mi ă 2li ´ 2. Therefore, eq`1pg.r0q has a
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wmi`1 ‰ 0 summand while

eq`1
pg.r0q “ g.peq`1r0q “ g.0 “ 0

for a final contradiction.

Thus, we have shown that a vector in pW pmiq
aiq0 must be mapped by g P CGpT, eq

to a linear combination of basis vectors with summands neither in W pmjq for mi ‰ mj

nor in Wljpnjq with mi ą 2lj ´ 1 or mi ă 2nj ´ 2lj. Since g must centralize e,

this applies in all weight spaces. Therefore, given our hypotheses, each W pmiq
ai is

CGpT, eq-stable.

We will now need a bit of homological algebra concerning the natural module. Let

H “ SO2n`1 with maximal torus TH contained in a Borel subgroup BH . Thus we

have determined a set of simple roots α1, α2, . . . , αn P X
˚pTHq. Considering the first

fundamental dominant weight $1, Section II.2.18 of [J03] tells us that the standard

module H0p$1q » N˚, where N is a vector space of dimension 2n ` 1 over k with

quadratic form Q on which SO2n`1 acts as the natural module. Therefore, by Section

II.2.13 of loc. cit., N must be the Weyl module V p$1q. In the case charpkq “ p ‰ 2,

this means that N is simple. Though, in our situation of p “ 2, we have a 2n-

dimensional simple quotient L “ N{kf for a fixed point f , so that L “ Lp$1q. This

actually gives the natural highest weight representation for Spn (see the discussion

following Theorem 3.2 in [H05], or exercise 6 of [Sp98] 7.4.7).

Lemma 2.4.4. Consider N the natural module for H “ SO2n`1, with L “ N{kf the

simple quotient for a fixed point f . Let W be a finite dimensional, trivial H-module,

and let

0 Ñ W Ñ E Ñ LÑ 0

be a short exact sequence of H-modules. Then either there is a H-module isomorphism

E » L‘W or E » N ‘W1 for some subspace W1 Ă W of codimension one.

Proof. First note that it follows from [J03] Proposition II.2.14 that, for a trivial

module k, the space of extensions Ext1
HpL, kq is one dimensional. Suppose that it is

spanned by a nonzero extension class β. Then classes γ P Ext1
HpL, kq correspond to
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isomorphism classes of extensions of H-modules

0 Ñ k Ñ Eγ Ñ LÑ 0,

with E0 » L‘ k and Etβ » Eβ » N as H-modules for all 0 ‰ t P k.

Now, the short exact sequence

0 Ñ W Ñ E Ñ LÑ 0

determines a class δ in

Ext1
HpL,W q » W bk Ext1

HpL, kq “ W bk kβ,

hence we may write δ “ w b β for some w P W . In the case that w “ 0, we have

δ “ 0 and E » L‘W .

If w ‰ 0, we can extend it to a k-basis tw, w̃1, w̃2, . . . , w̃d´1u for W . Letting

W1 “

d´1
ÿ

i“1

kw̃i,

we have W “ kw ‘W1 and an isomorphism:

φ : Ext1
HpL,W q

„
ÝÑ Ext1

HpL, kwq ‘ Ext1
HpL,W1q

Under this isomorphism we have φpδq “ pβ, 0q, and hence E » Eβ ‘W1 » N ‘W1.

We are now ready to consider Levi decompositions in the orthogonal group in

earnest, improving upon Lemma 2.4.2.

Proposition 2.4.5. Let G “ OpV q for V a finite dimensional vector space over a

field k of characteristic 2, and e be a nilpotent element of LiepGq with distinguished

normal form V Ó e as in Section 2.2. Then CGpeq
0 has a Levi decomposition with Levi

factor
ś

mi even

Sp2ai ˆ
ś

mi odd

I2ai, where I2ai “ SO2ai`1 or SO2ai according to whether

or not V Ó e has a summand of the form Wlpnq with 2pn´ lq ď mi ď 2l ´ 1.

Proof. Recall from Theorem 2.4.1 that CGpeq
0{RupCGpeqq »

ś

mi even

Sp2ai ˆ
ś

mi odd

I2ai

and there exists a subgroup M ď CGpT, eq such that M » CGpeq
0{RupCGpeqq. If
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R “ RupCGpeqq, we know that M and R have trivial intersection as abstract groups,

which we will write as Mpkq X Rpkq “ 1. As mentioned in Section 2.1, we must see

that these have trivial intersection in the Lie algebra.

Let Ξ “ tmi | mi ą 2lj ´ 1 or mi ă 2nj ´ 2lj for each Wlipniqu. Consider a factor

W pmiq
ai such that mi P Ξ and recall that, by Lemma 2.4.3, W pmiq

ai is stable under

CGpT, eq. For each weight t, the subgroup M acts on pW pmiq
aiqt as Sp2ai or SO2ai

depending on whether mi is even or odd, respectively. Let us look at the odd case. So,

the restriction of the action of M to pW pmiq
aiqt is precisely SO2ai » SOppW pmiq

aiqtq.

Since we know that Mpkq X Rpkq “ 1 and R preserves the quadratic form, we must

have R acting trivially on pW pmiq
aiqt. Thus, Lie(R) acts trivially on pW pmiq

aiqt

and intersects the Lie(SO2ai) factor of Lie(M) trivially. We have a similarly trivial

intersection in the case of Sp2ai with mi even.

Since
ř

miPΞ

W pmiq
ai is stabilized by CGpT, eq, so too must be

p
ÿ

miPΞ

W pmiq
aiq
K
“

ÿ

miRΞ

W pmiq
ai `

ÿ

i

Wlipniq.

This is where we look next. Consider W pmiq
ai with mi R Ξ, and let Wljpnjq be a

factor such that 2nj ´ 2lj ď mi ď 2lj ´ 1. Then the action of SO2ai`1 on the zero-

weight space is defined as follows. Let Wljpnjq have the basis as given in Section 2.2

with zero weight vectors tv0, w0u, and recall that Qpv0q “ 1. Then the stabilizer of

xv0y gives an SO2ai`1 subgroup for the restrcition of the quadratic form on V that also

stabilizes the 2ai ` 1-dimensional xv0y
K X pW pmiq

ai `Wljpnjqq0, which is generated

by v0 and the 2ai basis vectors in pW pmiq
aiq0. We then let this SO2ai`1 act on the

other weight spaces of W pmiq
ai `Wljpnjq by surjecting along the map given by e to

the positive weight spaces and pulling back along the injective map given by e to the

negative weight spaces. Lastly, we let SO2ai`1 act trivially on all other weight spaces,

as well as other factors of V Ó e. This choice we have made of a specific Wljpnjq leads

potentially non-conjugate Levi factors. For an example of the setup given here, see

Section 2.5.2.

We must take some care here since, since though we have a natural module for

SO2ai`1, we need to ensure that this is a CGpT, eq-module. As a module for SO2ai`1,

the zero weight space V0 is an extension of the natural module N2ai`1 we have just
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identified by the sum of several trivial modules. Then we have the short exact se-

quence

0 Ñ W Ñ V0
π
ÝÑ N2ai`1 Ñ 0

where W is a finite dimension trivial module for SO2ai`1. Consider V R
0 , the R “

RupCGpT, eqq fixed points on V0. By the Borel fixed point theorem ([H75], 21.2), we

have V R
0 ‰ H, and thus we have three possibilities. First, we could have V R

0 Ď kerpπq.

In this case, we have V R
0 contained in the sum of trivial modules, so we might as well

start again considering V0{V
R

0 . Next, we could have V R
0 “ V0. If this is true, we

are done, since then R acts trivially on the entire zero weight space and thus so

must Lie(R), ensuring that it intersects Lie(SO2ai`1) trivially as desired. Our final

possibility is that V R
0 “ π´1pkv0q, where v0 is again the fixed point in the natural

module for SO2ai`1.

When V R
0 is the preimage of the line generated by the fixed point, the situation is

more interesting. Note that in this case SO2ai`1 acts trivially on V R
0 . Then the short

exact sequence above gives way to

0 Ñ V R
0 Ñ V0

π1
ÝÑ LÑ 0

where L “ N2ai`1{xkv0y is the 2ai-dimensional simple quotient of N2ai`1. By Lemma

2.4.4, such extensions by trivial modules must be split, hence V0 » L ‘ V R
0 or V0 »

N2ai`1‘F1 as SO2ai`1-modules, where F1 is a codimension one subspace of V R
0 . The

former case is impossible, though, as V0 contains N2ai`1 as a quotient whereas L‘V R
0

does not. Hence we must have V0 » N2ai`1 ‘ F1.

Now, F1 Ď V R
0 “ π´1pkv0q is acted on trivially by M and R, and since these

generate CGpT, eq as an abstract group, F1 is a trivial CGpT, eq-submodule. Therefore

we have V0{F » N2ai`1 as a CGpT, eq-module where SO2ai`1 acts naturally. Thus,

since R must respect the quadratic form and intersects SO2ai`1 trivially as an abstract

group, it must act trivially on the natural module as before. Therefore, Lie(R)

intersects Lie(SO2ai`1) trivially, as desired.

With this, we have successfully shown that Lie(R) intersects all factors of Lie(M)

trivially, and therefore must intersect Lie(M) itself trivially. Thus, our abstract sub-

group M » CGpeq
0{RupCGpeqq is in fact a Levi factor.

Finally, by combining Propositions 2.3.2 and 2.4.5, we have the unified result:
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Theorem 2.4.6. Let G “ SppV q or OpV q for V a finite dimensional vector space

over a field k of characteristic 2, and e be a nilpotent element of LiepGq. Then CGpeq
0

has a Levi decomposition.

In particular, it has Levi factor

(i)
ś

i Sp2ai if G “ SppV q; or

(ii)
ś

mi even

Sp2ai ˆ
ś

mi odd

I2ai if G “ OpV q, where I2ai “ SO2ai`1 or SO2ai according

to whether or not V Ó e has a summand of the form Wlpnq with 2pn´ lq ď mi ď

2l ´ 1.

Remark 2.4.7. In the case that G is an exceptional group, Liebeck and Seitz prove

that we have a semidirect product CGpeq “ RupCGpeqqCGpT, eq in [LS12] Theorem 9.1

part (iv), so long as p ‰ 2 and pG, p, eq ‰ pE8, 3, pA7q3q or pG2, 3, pÃ1q3q. In type E8,

outside of the excluded case, CGpT, eq is in fact seen to be reductive, and hence this

gives a Levi decomposition. Though, dealing with the rest of the exceptional groups

seems much more difficult in general.

2.5 Examples

We will conclude this chapter with some examples of cases that have been covered.

As we have seen, the nontrivial pieces of the reductive quotient come from the factors

of V Ó e of the form W pmq, with Wlpnq factors also playing a part in the orthogonal

group. As each W pmq has dimension 2m, in order to see more general situations

it will be convenient to consider larger vector spaces and hence quite large classical

groups.

2.5.1 The 210-dimensional Symplectic Group

Let V be a 20-dimensional vector space over a field k of characteristic 2 and consider

G “ SppV q, which has dimension 20
2
p20 ` 1q “ 210. Let e P sppV q be a nilpotent

element such that

V Ó e “ W p3q2 ‘W p4q.
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Now, we turn our attention to the centralizer CGpeq. By [LS12] Lemma 5.4, it has

dimension

dimpCGpeqq “
6

ÿ

i“1

piti ´ χptiqq “ 66

where t1, t2 “ 4 and tj “ 3 for 3 ď j ď 6 are the Jordan block sizes of e, and

χ is a function given by taking the maximum of Hesselink’s χW functions over the

indecomposables (see [He79]). In this case, each χptiq “ 0. We also know that CGpeq

is connected by Theorem 2.3.1.

We expect to have a Levi factor of the form Sp2ˆSp4. Let us see how to construct

each piece. First, consider the W p4q factor of V Ó e. This has basis (divided into

weight spaces)

tr´3, s´3u, tr´1, s´1u, tr1, s1u, tr3, s3u

where the vectors pair such that pri, s´iq “ psi, r´iq “ 1 and all other pairings are

zero. Now, we have a natural, faithful action of Sp2 on the top weight space tr3, s3u “

kerpe|W p4qq which centralizes e and T .

Next, consider the W p3q2 factor of V Ó e. Here we have a basis

tx´2, y´2, u´2, v´2u, tx0, y0, u0, v0u, tx2, y2, u2, v2u

with nonzero pairings pui, v´iq “ pvi, u´iq “ pxi, y´iq “ pyi, x´iq “ 1. The zero weight

space is clearly nondegenerate under the bilinear form and has a natural Sp4 action

preserving this form as well as centralizing e and T . We can then extend this action

to the top weight space pW p3q2q2 “ kerpe|W p3q2q.

Now, kerpe|W p4qq “ tr3, s3u and kerpe|W p3q2q “ tx0, y0, u0, v0u are simple submod-

ules of V for the action of CGpT, eq, hence they appear as composition factors in the

composition series 0 “ V0 Ă V1 Ă . . . Ă Vn “ V . Suppose

kerpe|W p4qq “ Vk{Vk´1 and kerpe|W p3q2q “ Vl{Vl´1

for 1 ď k, l ď n. Then Sp2 ˆ Sp4 acts faithfully on pVk{Vk´1q ‘ pVl{Vl´1q, and we

can extend this action trivially to the rest of the composition factors giving a faithful

action of Sp2 ˆ Sp4 on
À

i Vi{Vi´1. Since RupCGpT, eqq acts trivially on each of the

simple composition factors, Lemma 2.2.1 allows us to conclude that Sp2 ˆ Sp4 is a

Levi factor of CGpT, eq.
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2.5.2 The 1653-dimensional Orthogonal Group

Let V be an 58-dimensional vector space over a field k of characteristic 2 and consider

G “ OpV q, which has dimension 58p58´1q
2

“ 1653. Let e P opV q be a nilpotent element

such that

V Ó e “ W p13q ‘W p5q ‘W6p7q ‘W4p4q.

Again by [LS12] Lemma 5.4, the centralizer of e has dimension

dimpCGpeqq “
2

ÿ

i“1

piti ´ χptiqq “ 161

where the Jordan block sizes are t1, t2 “ 13; t3, t4 “ 7; t5, t6 “ 5; and t7, t8 “ 4. This

time we have χp13q “ 7, χp7q “ 6, and χp5q “ χp4q “ 4. By [LS12] Theorem 5.12,

the component group of CGpeq is a 2-group, specifically CGpeq{CGpeq
0 » Z2.

We hope that CGpeq
0 has a Levi factor of the form SO2 ˆ SO3. Starting with

W p13q, we see that 13 ą 2p6q ´ 1 when considering W6p7q (our “largest” piece of

V Ó e of type Wlpnq). Now we can build a factor of SO2 acting first on the CGpT, eq

submodule pW p13qq0. Here SO2 centralizes e and T while preserving the bilinear

and quadratic forms on its natural two-dimensional module, and thus the unipotent

radical acts trivially.

On the other hand, 2 “ 2p7 ´ 6q ď 5 ď 2p6q ´ 1 “ 11 and 0 “ 2p4 ´ 4q ď 5 ď
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2p4q ´ 1 “ 7, so we must consider W p5q ‘W6p7q ‘W4p4q together. This has basis:

W p5q : W6p7q : W4p4q :

tw´10u

tw´8u

tw´6u tx´6u

tu´4, v´4u tw´4u tx´4u

tu´2, v´2u tw´2, z´2u tx´2u

tu0, v0u tw0, z0u tx0, y0u

tu2, v2u tw2, z2u ty2u

tu4, v4u tz4u ty4u

tz6u ty6u

tz8u

tz10u

The nonzero pairings are pwi, z´iq “ pxi, y´iq “ pu0, v´iq “ pvi, u´iq “ 1, and only w0

and x0 are isotropic with respect to the quadratic form. In [LS12] Lemma 5.10, the

SO3 action which we hope to be part of our Levi factor is defined as follows.

Consider part of the zero weight space Z0 “ pW p5q ‘W6p7qq0 “ tu0, v0, w0, z0u.

This has an action of O4 with the stabilizer of xw0y giving the action of SO3 ˆ Z2

on xw0y
K and Z0{xw0y. We can extend this to the other weight spaces by the action

of e; moving up in weight surjectively from Z0{xw0y in the the zero weight space, or

pulling back to the negative weight spaces from xw0y
K along the injective map given

by e. Finally, let SO3 act trivially on all other weight spaces. The action of SO3 is

then on all of W p5q ‘W6p7q ‘W4p4q, centralizes e and T , and preserves both the

bilinear and quadratic forms.

In the proof of Proposition 2.4.5, we showed that we could pick w0 for our fixed

point and, with some work, get the 3-dimensional natural module we wanted in a

CGpT, eq-filtration. Thus, with the unipotent radical acting trivially, we get a trivial

intersection with SO3 in the Lie algebra. So finally we can say that SO2 ˆ SO3 is a

Levi factor.

Note that we made a choice in letting w0 be our fixed point rather than similarly
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acceptable x0 P W4p4q, or any other anisotropic vector. Choosing a different fixed

point amounts to choosing a different, often nonconjugate, Levi factor. For instance,

the submodule structure of V for the action of the SO3 given by fixed point w0 involves

four copies of the natural module and one copy of the two-dimensional simple module,

whereas the action of the SO3 given by fixed point x0 involves three copies of the

natural module and two copies of the simple. So, although both of these choices

give a Levi factor for CGpT, eq, they must be nonconjugate due to having different

submodule structures on V .



Chapter 3

Steps Towards a Conjugacy

Conjecture of Steinberg in Small

Characteristic

3.1 Preliminaries and Semisimple Classes

Let G be a semisimple algebraic group over an algebraically closed field k. Recall the

definition of good characteristic from Section 2.1. We say furthermore that p is very

good if it is good and p does not divide n´ 1 whenever G contains a simple factor of

type An. We will also need slight modifications of these definitions. We will say that

the characteristic is L-good (resp. very L-good) if p is good (resp. very good) and, if

p “ 7, G contains no simple factor of type F4.

If krGs is the usual algebra of regular functions onG, then define the class functions

as

CrGs “ tf P krGs | fpghg´1
q “ fphq for all g, h P Gu.

So, these are the regular functions on G which are constant on orbits. Then CrGs

is just krGsG, the invariants of krGs under the action induced by conjugation with

G. We will see that, in good characteristic, the class functions on G are enough to

separate semisimple orbits.

Fix a maximal torus T of G, and let W “ NGpT q{T be the corresponding Weyl

group. Following Humphreys’ exposition in [H95] chapter 3 (see also [S65] Section

29
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6), the semisimple classes correspond to the W -orbits in T , since any semisimple

element is conjugate to an element of the maximal torus and any two toral elements

are conjugate under NGpT q. If krT sW is the algebra of regular function on T which are

constant on W -orbits, then it turns out that the restriction from krGs to krT s induces

an isomorphism these two algebras CrGs and krT sW . This gives [H95] Theorem 3.2,

due to Steinberg:

Theorem 3.1.1. There is a k-algebra isomorphism CrGs » krT sW . Furthermore,

CrGs has a k-basis of the characters of irreducible rational representations of G.

Moreover, the same approach works for the Lie algebra, with class functions re-

placed with AdpGq-invariant polynomials on g. Now, T {W has an affine quotient

variety structure with affine algebra krT sW . This variety corresponds to the semisim-

ple classes by the discussion above, and hence CrGs separates semisimple classes by

the isomorphism of Theorem 3.1.1. Thus, we get [H95] Theorem 3.4 (alternately,

[SS70] Corollary II.3.3) and [SS70] 3.17:

Theorem 3.1.2. (i) If s, t P G are semisimple and not conjugate, then there exists

a class function f such that fpsq ‰ fptq.

(ii) If h, k P g are semisimple and not conjugate, then there exists f an AdpGq-

invariant polynomials on g such that fphq ‰ fpkq.

When G “ SLn and W “ Sn, one can think of the class functions as symmetric

polynomials in n variables T1, T2, . . . , Tn. Then each class function is a polynomial in

the elementary symmetric functions in the variables Ti, with W acting by permutation

on the indices. The value of fpgq for f P CrGs and semisimple g P G is just the

symmetric polynomial f evaluated at the eigenvalues of g.

Unfortunately, class functions are in general not enough to distinguish orbits;

they must take same value on the closure of a class, whereas the semisimple classes

are the only closed orbits. In [S78] Theorem 3, though, Steinberg proves that two

elements of an algebraic group over a field of large characteristic are conjugate in

the group if and only if they are conjugate under each rational representation of G.

Thus, understanding the orbits under each representation is sufficient to determine

the orbits in the group.
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Theorem 3.1.3. Suppose that G is a semisimple algebraic group over a field k of

characteristic p “ 0 or p ą 4h, where h is the Coxeter number of G. Two elements

a, a1 P G are conjugate in G if and only if fpaq and fpa1q are conjugate in GLpV q for

each irreducible rational representation pf, V q of G.

This was orginally conjectured in [S66]. Gauger proved in [G77] the analogous

result for Lie algebras over fields of characteristic zero. As mentioned, a year later in

[S78], Steinberg presented a somewhat simpler proof of the conjecture in the Lie alge-

bra which was adaptable to the original setting of groups. Steinberg’s proof involves

the use of sl2-triples as well as exponentiation, and so is valid only in characteris-

tic zero or when the the characteristic is “sufficiently large”, roughly four times the

Coxeter number.

One might initially hope to replace the sl2-triples in Steinberg’s approach with the

associate cocharacters mentioned last chapter in Section 2.1, as this tactic is often

successful in replicating similar arguments in smaller characteristic. The problem

in doing this is that associated cocharacters do not necessarily behave well under

homomorphisms. Specifically, if φ : GÑ H is a homomorphism of reductive algebraic

groups and X P g is nilpotent with τ : kˆ Ñ G a cocharacter associated to X, then

φ ˝ τ need not be associated to dφpXq (see [J04] Section 5.12). So, we are not

guaranteed that a cocharacter associated to a nilpotent element will stay associated

under a representation, and we must find a different solution.

In the next section, we are going to verify the validity of Theorem 3.1.3 for good

primes smaller than four times the Coxeter number in the event that the centralizers

of the semisimple parts of a, a1 P G can distinguish between unipotent orbits in the

group by way of its adjoint representation. One such fundamental situation is when

the centralizer is the product of exceptional groups, where a result of Lawther from

[La95] verifies this unipotent class split in this way. The goal here is to display an

approach which, while only valid when this centralizer can split unipotent orbits in

its adjoint representation, we hope in the future can be applied in general using other

representations.
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3.2 Algebraic Groups

When G is a classical group, we can usually recover the conjugacy classes of unipotent

elements by examining their Jordan block sizes on the natural module, though this

fails when we are examining “very even” orbits in type Dn (see [J04] Proposition

1.12). Unfortunately, when G is simple and exceptional, there is no such geometrically

“natural” module to consider, though we can look at the adjoint representation on

the Lie algebra. In most cases there is a smaller representation for each exceptional

group, though we will be utilizing the adjoint representation (see remark 3.2.4).

Through much calculation and working with cases, Lawther proves that in fact

the Jordan block sizes for the adjoint action are enough to determine the conjugacy

classes in exceptional groups. The following is contained in [La95] Theorem 2.

Theorem 3.2.1. Let G be a simple exceptional algebraic group over a field k whose

characteristic is L-good, and let g be its Lie algebra. Let u, u1 P G be unipotent. If u

and u1 have the same Jordan block sizes for their action on g, then they are conjugate

in G.

In the classical case, it seems that the adjoint representation may not be able to

determine the conjugacy of unipotent elements in classical groups, as this might cause

issues even in type An. Sometimes, though, this representation will be sufficient, as

is evident by the previous theorem of Lawther for exceptional groups.

With all of this in mind, define a semisimple algebraic group G to be adjoint

adequate when it is true that if u and u1 are conjugate under the adjoint representation

of G, then u and u1 are conjugate in G. So, we have the following lemma restating

Lawther’s result in these terms and adapting it to semisimple groups.

Lemma 3.2.2. Suppose that G is a semisimple group over a field k of L-good charac-

teristic. If each simple factor of G is of exceptional type, then G is adjoint adequate.

Proof. Suppose that u, u1 P G are unipotent elements such that u and u1 are conjugate

under the adjoint representation of G. It suffices to prove the lemma for G adjoint,

as conjugacy is preserved under isogeny. So, suppose G “ G1 ˆ G2 ˆ . . . Gn with

each Gi simple and exceptional, and let u “ u1 ` . . . ` un and u1 “ u11 ` . . . ` u1n

with ui, u
1
i P Gi. Now, we know that Adpuq and Adpu1q are conjugate in the adjoint
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representation. Therefore Adpuiq and Adpu1iq are conjugate for each i and, since each

Gi is exceptional, we know by Lawther’s Theorem 3.2.1 that ui and u1i are conjugate

in Gi. Thus, u and u1 are conjugate in G.

So, by assumption we know Theorem 3.1.3 for unipotent elements in adjoint ade-

quate groups over fields of L-good characteristic, and this version of Lawther’s result

from [La95] gives us a class of semisimple groups which satisfy the hypothesis. Since

we have the result for semisimple elements in good characteristic from Theorem 3.1.2,

the work now is to combine both of these cases with a Jordan decomposition to obtain

the result for arbitrary elements, with some adjoint adequacy restriction. We initially

follow Steinberg’s approach in [S78] Theorem 3.

Theorem 3.2.3. Suppose that G is a semisimple algebraic group over a field k of

good characteristic, and consider two elements a, a1 P G with Jordan decompositions

a “ us and a1 “ u1s1. Suppose that the centralizer Gs is adjoint adequate. Then, a

and a1 are conjugate in G if and only if fpaq and fpa1q are conjugate in GLpV q for

each irreducible rational representation pf, V q of G.

Proof. The “only if” direction is clear; it remains to prove the “if” direction.

Once again, we may assume that G is adjoint. Consider a, a1 P G and suppose that

fpaq and fpa1q are conjugate in GLpV q for each irreducible rational representation

pf, V q of G. Recall that a “ us and a1 “ u1s1 are the Jordan decompositions of a

and a1, respectively, with u, u1 unipotent. The semisimple parts fpsq and fps1q are

conjugate in GLpV q, hence s and s1 are conjugate in G by the Theorem 3.1.2 part

(i). So we may assume s “ s1, and now u, u1 P Gs, the centralizer of s in G.

Moreover, fpuq is conjugate to fpu1q in GLpV qfpsq for each rational representation.

Consider the adjoint representation pAd, gq. We wish to conclude that u and u1 are

conjugate in Gs, but the previous lemma only allows us to say that they are conjugate

in G given the appropriate hypotheses. We need to show that an element of GLpgqAdpsq

restricts to an element of GLpgsq “ GLpLiepGsqq.

So, let h P GLpgqAdpsq such that h conjugates Adpuq to Adpu1q. Then, for Y P gs,

AdpsqphpY qq “ hpAdpsqpY qq “ hpY q,

hence the image of h|gs is contained in gs. On the other hand, assume hpZq P gs for
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Z P g. Then

hpAdpsqpZqq “ AdpsqphpZqq “ hpZq,

thus AdpsqpZq “ Z as h is invertible. So, Z P gs. Now we’ve shown that h restricts

to an endomorphism of gs, and therefore h|gs P GLpgsq.

To summarize, we have u, u1 P Gs such that Adpuq is conjugate to Adpu1q in

GLpgsq. Since we have assumed Gs is adjoint adequate, we may now conclude that u

and u1 are conjugate in Gs. Thus, a “ us and a1 “ u1s are conjugate, completing the

proof.

Unfortunately, there does not seem to be a satisfactory assumption we can place

on G to ensure Gs is adjoint adequate. The hope is that this can be avoided and that a

similar argument may work with any rational representation (since we have access to

all of them by hypothesis). In particular, we might use the natural modules for simply

connected classical groups of types An, Bn, and Cn, or use the spin representations

to take care of simple factors of type Dn.

Remark 3.2.4. The L-good condition restricting the appearance of simple factors of

type F4 when p “ 7 comes from Theorem 2 in [La95]. There, we see that there are

unipotent elements which may be conjugate under the adjoint representation with

partition r77, 13s despite being in separate B3 and C3 orbits in the group (in Bala-

Carter notation), given by partitions r73, 15s and r72, 62s, respectively. In loc. cit.,

Lawther also verifies that a certain “natural module” V also splits orbits in the group

without this condition. It does not seem obvious here why an element of GLpV qfpsq

should restrict to an endomorphism of the natural module for Gs, which is the crux

of the difficulty in attempting to use the usual natural modules for classical groups.

3.3 Lie Algebras

As mentioned above, we have the analogous conjecture from [S66] for Lie algebras,

proved by Steinberg for sufficiently large characteristic in [S78] Theorem 2.

Theorem 3.3.1. Suppose that G is a semisimple algebraic group over a field k of

characteristic p “ 0 or p ą 4h, where h is the Coxeter number of G. Let g be the
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Lie algebra of G. Two elements A,A1 P g are conjugate in G if and only if fpAq and

fpA1q are conjugate in GLpV q for each irreducible rational representation pf, V q of

G.

The difficulty here, in small characteristic, is that it is not obvious how Lawther’s

result for the adjoint representation of unipotent elements can be transported to

consider nilpotent elements in the Lie algebra. Fortunately, using a Springer iso-

morphism, good A1 subgroups, and sub-principal homomorphisms, McNinch obtains

Lawther’s result in in [M02b] when our nilpotent element is p-nilpotent, as well as in

general for classical groups. We say that an element X P g is p-nilpotent if X rps “ 0.

We call the characteristic of k very M-good for G if p is very good and greater

than the Coxeter number for each simple factor of type F4 or En. This ensures that

every nilpotent element of G is p-nilpotent when restricted to exceptional factors not

of type G2 ([M02a], Corollary 4.4). If X P g is nilpotent, then by [M02b] Proposition

3 there is a G-equivariant isomorphism θ : N Ñ U such that θpX rpsq “ pθpXqqrps. In

the simple exceptional cases, the requirement that X be p-nilpotent allows for the

existence of the good A1 subgroup (see [Sz00]) and sub-principal homomorphism (see

[M03]) containing θpXq needed in the proof of [M02b] Theorem 10.

Finally, note that very M-good implies very L-good.

Lemma 3.3.2. Let G be an adjoint adequate algebraic group over a field k of very

M-good characteristic. Suppose that X,X 1 are nilpotent elements of g “ LiepGq. If

X and X 1 are conjugate under the adjoint representation of G, then X and X 1 are

conjugate in G.

Proof. Once again, by [M02b] Proposition 3 there exists a G-equivariant isomorphism

θ : N Ñ U such that θpY rpsq “ pθpY qqrps for all Y P g. Let u “ θpXq and u1 “ θpX 1q.

Now, by loc. cit. Theorem 10, Theorem 24, and Theorem 30, the partitions of

Adpuq and Adpu1q are the same as the partitions of AdpXq and AdpX 1q, respectively.

Thus, u and u1 are conjugate under the adjoint representation and, by adjoint ade-

quacy, u and u1 are conjugate in G. Since θ was G-equivariant, we must have X and

X 1 conjugate in G.
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We are now able to to prove a result for Lie algebras mirroring our proof for group

elements (again following Steingberg in [S78] Theorem 2 initially).

Theorem 3.3.3. Suppose that G is a semisimple algebraic group over a field k of good

characteristic. Let g be the Lie algebra of G and consider two elements A,A1 P g with

Jordan decompositions A “ X`S and A1 “ X 1`S 1. Suppose that the centralizer GS is

adjoint adequate and has very M-good characteristic. Then, A and A1 are conjugate in

G if and only if fpAq and fpA1q are conjugate in GLpV q for each irreducible rational

representation pf, V q of G.

Proof. Let A “ X ` S and A1 “ X 1 ` S 1 be the Jordan decompositions with X,X 1

nilpotent and S, S 1 semisimple. The semisimple case is known from Theorem 3.1.2

part (ii), so since fpSq is conjugate to fpS 1q in GLpV q, we know that S is conjugate

to S 1 in G. Thus we may assume S “ S 1 and we have X,X 1 P gS, the centralizer of

S in g.

Considering the adjoint representation, we now know that adpXq is conjugate to

adpX 1q in GLpgqadpSq. As before, we want to show that an element of GLpgqadpSq

restricts to an element of GLpgSq.

So, let h P GLpgqadpSq. Then for Y P gS, we have

adpSqphpY qq “ hpadpSqpY qq “ hp0q “ 0.

Thus the image of h|gS is contained in gS.

Alternately, if hpZq P gS for Z P g, then

hpadpSqpZqq “ adpSqphpZqq “ 0.

Since h is invertible, adpSqpZq “ 0 and Z P gS.

Once again, we have shown that h P GLpgqadpSq restricts to an automorphism on

gS, thus h|gS P GLpgSq. So, we have X,X 1 P gS such that adpXq is conjugate to

adpX 1q in GLpgSq. Therefore, by Lemma 3.3.2, X is conjugate to X 1 in GS. Hence,

A is conjugate to A1.

It may be possible to achieve a more universal restriction than GS having very M-

good characteristic. To ensure very good characteristic descends to the centralizer, it
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suffices to assume that G is “strongly standard” in the sense of [M05] and subsequent

papers along these lines (see Remark 3 in loc. cit.). In this case we have Springer

isomorphisms as above, but we will still need p ą h in GS to ensure p-nilpotentcy for

the application of results from [M02a].

Remark 3.3.4. Of course, if we know that the exceptional parts of X and X 1 are

p-nilpotent to begin with, the restriction to characteristics greater than the Coxeter

number is unnecessary. One hopes that Lawther’s result for unipotent partitions in

exceptional groups always has an analogue for nilpotent elements in good character-

istic, rather than just in the p-nilpotent case, though a non-computational approach

remains unclear.

3.4 Future Work

Our work here presents ample opportunity for future explorations. First, as discussed

above, we hope that a similar argument is admissible for representations beyond the

adjoint. We possibly need the spin representations to deal with unipotent elements

in groups of type Dm, and the natural modules for other simply connected classical

groups. Then we may only need top level restrictions relative to the group G, such

as G being strongly standard for the Lie algebra analogue.

One would imagine that there is a more uniform solution to the results of [La95]

and subsequently Lemma 3.2.2. A closer examination of associated cocharacters might

yield similar conclusions, but for now we use Lawther’s computational approach.

Additionally, we could attempt to modify the argument in the proof of Theorem 3.2.3

to utilize the representation Vd from [La95] rather than the adjoint representation,

thus removing the L-good restriction for components of type F4 when p “ 7 (see

remark 3.2.4).

We might also expect that the restriction to p-nilpotent elements built into the

M-good characteristic condition of Lemma 3.3.2 and Theorem 3.3.3 could be avoided.

Such a hypothesis does not seem intrinsic to the result but, as mentioned above,

was used in a fundamental way in the proof of [M02b] Theorem 10. A case-checking

approach to the nilpotent elements similar to that of [La95] should work, though
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an alternative uniform approach with Springer isomorphisms might be less computa-

tional.

Lastly, in the future we plan to investigate the setting of bad characteristic, where

the situation is surely more delicate. In this case we cannot hope for a correspondence

between unipotent and nilpotent elements, though we might still expect the bad

characteristic analogue to Theorem 3.2.3 to be true. As noted in [H95] section 3.7, a

complete proof would imply a more direct approach to proving the Richardson-Lusztig

finiteness theorem (see Theorem 3.11 in loc. cit.).



Chapter 4

Modules in Standard Levi Form

4.1 Preliminaries and Parabolics

We start by considering the Lie algebra g of an algebraic group G over a field k of

characteristic p ą 0. Assume the “standard hypotheses” for g from Section 1.2.Now,

for χ P g˚, let

Uχpgq “ Upgq{xxp ´ xrps ´ χpxqp | x P gy

be the reduced enveloping algebra for g, where Upgq is the usual enveloping algebra

of g. Fix a maximal torus T Ă G and X “ XpT q its group of characters. Let R` Ă R

be a system of positive roots with set of simple positive roots ∆ and Weyl group W .

Now, let h “ LiepT q and let n`(respectively, n´) be the sum of the root spaces gα

with α ą 0 (respectively, α ă 0). Denote b` “ h ‘ n` the standard positive Borel

subalgebra.

In our quest to understand Uχ-modules, a well known result of Kac and Weisfeiler

in [KW71] says that we need only consider those for conjugacy classes of nilpotent

χ. So, in fact, it will suffice to work with those characters such that χpb`q “ 0. We

will be concerned with a special type of nilpotent χ, investigated first by Friedlander

and Parshall in [FP90], said to be in standard Levi form. We define χ P g˚ to have

standard Levi form if there exists a subset I Ď ∆ such that χpx´αq ­“ 0 for α P I,

and χpx´αq “ 0 otherwise.

Let J Ď ∆ be another subset of simple roots such that IXJ “ H, and let P “ PJ

be the standard parabolic subgroup defined by J containing our maximal torus T .

39
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Then b` Ď p “ LiepP q. The Levi subalgebra l of p decomposes as the direct sum

l “ l1 ‘ z, where l1 “ LieprL,Lsq and z “ LiepZpLqq. Let T 1 be a maximal torus in

rL,Ls, and define h1 “ LiepT 1q. Then RJ Ď X˚pT 1q and h “ h1 ‘ z.

If u` (resp. u´) is the nilradical of p (resp. p´), then g has a triangular decom-

position of sorts:

g “ u´ ‘ l‘ u` “ u´ ‘ l1 ‘ z‘ u`

Finally, following [J97] Section 11.3, we first have a grading of Uχpgq by ZR due to

the Poincaré-Birkhoff-Witt basis, where each xpα is contained in Uχpgqpα for xα P gα

and hp ´ hrps ´ χphqp has degree zero. In standard Levi form, we then get a coarser

grading of Uχpgq by ZR{ZI.

4.2 Parabolic Baby Verma Modules

Here we will define the central objects of our study in standard Levi form. For each

λ P h˚, let kλ be the one-dimensional h-module such that each h P h acts as λphq

acting on k. We wish to extend this to a module for p, much as in section 1.2.1, by

simply letting n` and
À

αPR`J

g´α act trivially. Here we must consider, though, that if

λ is to vanish on root vectors xα and x´α for α P RJ , we must have λprxα, x´αsq “ 0

on h1. So, in a sense, by increasing the size of J we are restricted to fewer characters

λ P z˚. Now let

Λχ,J “ tλ P h
˚
| λph1q “ 0 and λphqp ´ λphrpsq “ χphqp “ 0 for all h P hu.

Note that χphq “ 0 for h P h since we are assuming that χ is nilpotent. Then for

λ P Λχ,J we can we may define the p-module kλ and further extend it to a Uχppq-

module.

We are now ready to define:

Zχ,Jpλq “ Uχpgq bUχppq kλ

We call this a parabolic baby Verma module. Since Uχpgq is free over Uχppq, we know

Zχ,Jpλq has basis tua1´α1
ua2´α2

. . . ual´αlb1 | αi P R
`zRJ and 0 ď ai ă pu and write 1b1

for the generator. Since dimpZχ,Jpλqq “ pdimpu´q, these modules are smaller in general
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than the usual baby Verma modules Zχpλq defined in Section 1.2.1. Furthermore, as

u´-modules, Zχ,Jpλq » Uχpu
´q.

These objects were first explored for standard Levi form in [FP90], though simply

inducing from a Borel subalgebra (when J “ H) soon attracted the most interest,

as this provides a bit more “flexibility” in constructions. We will see some of the

challenges that arise when dealing with a parabolic subalgebra that is not a Borel in

the next few sections.

As we mentioned in Theorem 1.2.2, in standard Levi form each Zχpλq “ Zχ,Hpλq

has a unique maximal submodule with simple quotient denoted Lχpλq. This is also

true of parabolic baby Verma modules and, in fact, we get the same simple quotient.

To prove this, we first need to know about representations when g is unipotent; that

is, when g is the Lie algebra of a unipotent algebraic group. More directly, this means

that for all g P g there exists r ą 0 such that grp
rs “ 0. The following Lemma is

contained in [J97] Proposition 3.2 and Theorem 3.3, due to Zassenhaus in [Z40].

Lemma 4.2.1. Let χ P g˚. If g is unipotent, then Uχpgq has only one simple module

up to isomorphism.

Proof. First, we consider χ “ 0. In U0pgq, x
p “ xrps and hence xp

r
“ xrp

rs “ 0.

Therefore, U0pgqg is a nilpotent ideal which annihilates the trivial g-module k and

thus is contained in the radical of U0pgq. Since k » U0pgq{pU0pgqgq, the trivial g-

module can be the only simple U0pgq-module up to isomorphism.

Now, return to general χ P g˚. If M and N are simple Uχpgq-modules, then

M˚ b N » HomkpM,Nq is a U0pgq-module. By above we have the g-submodule

k Ď HomkpM,Nq, and hence HomkpM,Nq ‰ 0. Thus, by an application of Schur’s

lemma, we must have M » N .

Recall that, if M and L are modules with L simple, we denote the multiplicity of

L as a composition factor of M by rM : Ls.

Now we are ready to prove the parabolic analogue to Theorem 1.2.2, which said

that, when J “ H, the modules Zχpλq had unique simple quotient Lχpλq. It turns out

that our smaller parabolic baby Verma modules will have the same simple quotient.

We approach the first part of the following theorem in a fashion similar to [J97]

Proposition 10.2.
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Theorem 4.2.2. Let χ P g˚ have standard Levi form for I Ď ∆, and let J Ď ∆ such

that I X J “ H. For λ P Λχ,J , Zχ,Jpλq has a unique maximal submodule, and this

submodule gives a unique simple quotient isomorphic to Lχpλq. Furthermore, we have

rZχ,Jpλq : Lχpλqs “ 1.

Proof. Recall that we denote by u´ the nilradical of p´, the negative parabolic sub-

algebra defined by J . Since χ is nonzero only on simple negative root spaces, looking

at weights we can conclude that χpru´, u´sq “ χpu´rpsq “ 0. So, χ defines a one

dimensional u´-module kχ which we can consider as a Uχpu
´q-module. By Lemma

4.2.1, since u´ is unipotent, this is the unique such module up to isomorphism. Now,

as an u´-module, Uχpu
´q has a simple head since it is the projective cover of kχ. On

the other hand, we know that Zχ,Jpλq » Uχpu
´q as u´-modules. Thus, Zχ,Jpλq has a

simple head (and unique maximal submodule) as a Uχpgq-module.

Now, consider both Uχpgq-modules Zχpλq and Zχ,Jpλq with unique simple quo-

tients Lχpλq and Lχ,Jpλq, respectively. Consider the map ψ : Zχpλq Ñ Zχ,Jpλq given

by ψp1 b 1q “ 1 b 1. Since by definition u.ψp1 b 1q “ 0 for u P n`, this is a ho-

momorphism which is moreover seen to be surjective by examining bases. Let N be

the unique maximal submodule of Zχpλq and let π : Zχpλq Ñ Lχpλq be the projec-

tion map. By unique maximality we have kerpψq Ď N “ kerpπq. Therefore, by the

universal property of quotients, there exists a unique homomorphism

π̃ : Zχpλq{ kerpψq » Zχ,Jpλq Ñ Lχpλq

such that π̃ ˝ ψ “ π.

Since ψ and π are both nonzero, we must have π̃ nonzero. Thus, the image of π̃

must be isomorphic to Lχpλq by simplicity, and we have Zχ,Jpλq{ kerpπ̃q » Lχpλq. This

is a simple quotient of Zχ,Jpλq, hence we must have Lχpλq » Lχ,Jpλq by uniqueness.

By the discussion in section 2.8 of [J00], we know that rZχpλq : Lχpλqs “ 1. More-

over, since we have just displayed Zχ,Jpλq as a quotient of Zχpλq, each composition

factor of Zχ,Jpλq must appear as a composition factor of Zχpλq. Thus we must have

rZχ,Jpλq : Lχpλqs “ 1, proving the final assertion.

Combining this with Theorem 1.2.1, we can use the parabolic baby Verma modules

to find all of the simple Uχpgq-modules as unique simple quotients just as we did with
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the larger Zχpλq. It also allows us to use some of the other results from the J “ H

case in the parabolic setting, as we will see soon.

4.3 Isomorphic Modules

Given that we have now explicitly constructed modules with which we can identify

simple modules in our nonrestricted enveloping algebra, we may wish to know when

such modules (and simple quotients) are isomorphic. We will explore such an idea in

this section, with some restriction on our choice of subset of simple roots J Ď ∆.

Considering a simple root space gα for α P ∆, let hα P rgα, g´αs be the toral

element with αphαq “ 2. Now, for any element w P W , the “dot action” on h˚ is

defined as w‚λ “ wpλ ` ρq ´ ρ, where ρ P h˚ is the element such that ρphαq “ 1 for

all α P ∆ (see, for example, [J97] section 9.2). We will write WI for the subgroup of

W generated by the simple reflections sα for α P I.

Given two subsets of simple roots I1, I2 Ď ∆, we will say that I1 and I2 are non-

adjacent if they are disjoint and α1 ` α2 is not a root for all α1 P I1 and α2 P I2.

This implies that xα, β_y “ 0 (see [H80] Lemmas 9.4 and 10.1) and, since α and β

generate a root subspace of type A1 ˆ A1, we have αphβq “ 0. In what follows, we

will require I and J to be non-adjacent, as interaction between their respective root

systems turns out to be problematic. This restriction will be important if we wish

to study any sort of “linkage” between parabolic baby Verma modules, as evident in

the proof of the following lemma.

Lemma 4.3.1. Let χ P g˚ have standard Levi form for I Ď ∆, and let J Ď ∆ such

that I X J “ H. Consider λ P Λχ,J . For α P I, if I and J are non-adjacent, then

sα‚λ P Λχ,J .

Proof. First we will check that sα‚λph
1q “ 0. It suffices to consider hβ for β P J .

Now,

sα‚λphβq “ psαpλq ´ αqphβq “ pλ´ λphαqα ´ αqphβq,

and since λphβq “ 0 by assumption, we have

sα‚λphβq “ ´αphβqpλphαq ` 1q.
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By non-adjacency, we know that αphβq “ 0, and therefore sα‚λphβq “ 0.

Now, for any γ P ∆, the calculations above show that

sα‚λphγq “ λphγq ´ pλphαq ` 1qαphγq.

Therefore, using that αphγq
p “ αphpγq “ αphγq and χ vanishes on h, we have

psα‚λphγqq
p
´ sα‚λphγq “ rλphγq ´ pλphαq ` 1qαphγqs

p
´ rλphγq ´ pλphαq ` 1qαphγqs

“ λphγq
p
´ pλphαq

p
` 1qαphγq ´ λphγq ` pλphαq ` 1qαphγq

“ rλphγq
p
´ λphγqs ´ rλphαq

p
´ λphαqsαphγq

“ χphγq ´ χphαqαphγq

“ 0

Hence, sα‚λ P Λχ,J as desired.

Remark 4.3.2. We see in the proof of Lemma 4.3.1 that, were I and J to be adjacent,

we could encounter α P I and β P J such that α ` β P R, and thus αphβq ‰ 0. In

this case, if we were to want sα‚λ P Λχ,J , we would have to ensure λphαq “ ´1. In

some sense, this simply builds the restriction of non-adjacency into the what we may

choose for λ.

Now that we know when we can define Zχ,Jpsα‚λq for α P I, we will see that the

resulting modules are isomorphic.

Lemma 4.3.3. Let χ P g˚ have standard Levi form for I Ď ∆, and let J Ď ∆ such

that I and J are non-adjacent. If λ P Λχ,J and α P I, then Zχ,Jpλq » Zχ,Jpsα‚λq.

Proof. Consider sα for any α P I. Proceeding as in [J97] Section 6.9, we see that

gα and g´α generate an sl2 subalgebra, so we may chose xα and x´α such that hα “

rxα, x´αs satisfies rhα, xαs “ 2xα, rhα, x´αs “ ´2x´α, and h
rps
α ´ hα “ 0.

Now, since λ P Λχ,J and χphαq “ 0, we have λphαq
p ´ λphαq “ 0, and hence

λphαq “ a for some integer 0 ď a ă p. Let vλ “ 1 b 1 P Zχ,Jpλq. Then the vector

xa`1
´α .vλ can be seen to be annihilated by all of n`. For β P R`J , x´β commutes with x´α

due to the non-adjacency of I and J , hence x´βpx
a`1
´α .vλq “ 0 as well. Furthermore, h

acts on xa`1
´α .vλ as sα‚λ “ λ ´ pa ` 1qα. Therefore, we have a homomorphism of the

induced modules

φα : Zχ,Jpsα‚λq Ñ Zχ,Jpλq
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given by φαpvsα‚λq “ xa`1
´α .vλ. Since

x
p´pa`1q
´α .pxa`1

´α .vλq “ xp´α.vλ “ χpx´αq
pvλ,

the image contains a multiple of our basis vector, hence the map is surjective. More-

over, as both modules have the same dimension, φα must be an isomorphism. Thus,

Zχ,Jpλq » Zχ,Jpsα‚λq for all α P I.

Now we are in position to prove a isomorphism principle similar to [J97] Proposi-

tion 10.8 when J “ H.

Proposition 4.3.4. Let χ P g˚ have standard Levi form for I Ď ∆, and let J Ď ∆

such that I and J are non-adjacent. Then,

Zχ,Jpλq » Zχ,Jpµq ðñ Lχpλq » Lχpµq ðñ µ P WI‚λ

for λ, µ P Λχ,J .

Proof. The right-hand equivalence is precisely [J97] Proposition 10.8. Also, if Zχ,Jpλq »

Zχ,Jpµq, then clearly Lχpλq » Lχpµq. So what is left to prove is the “if” implication of

the left-hand equivalence. Suppose then that Lχpλq » Lχpµq. In this case, the right-

hand equivalence implies µ P WI‚λ, so let µ “ w‚λ for w P WI . If w “ sα1sα2 . . . sαl

is a reduced decomposition in WI for w, then repeated application of Lemma 4.3.3

gives an isomorphism Zχ,Jpλq » Zχ,Jpw‚λq “ Zχ,Jpµq.

4.4 Further Parabolic Exploration

One might hope to follow a similar path to that of Jantzen started in [J97] and

continued in [J00], where homomorphisms are built from simple reflections in WI

(much as in Lemma 4.3.3) which, when composed, give a map from a chosen Zχ,Jpλq

to another module that has Lχpλq as its socle. Unfortunately, a similar construction

has several difficulties in the case of nonempty J .

To see this, define

wp “
à

αą0

gwα ‘
à

αPJ

g´wα ‘ h
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as the parabolic subalgebra “shifted” by w. Now let wu` “
À

αPR`zRJ
gwα, and let wl

be the Levi subalgebra of wp with center denoted wz. Finally, let wl1 be the derived

subalgebra of wl and let wh1 denote its maximal torus.

As above, each λ P pwh1q˚ defines a one-dimensional wp-module kλ where h P h

acts as λphq, and with
À

αą0

gwα and
À

αPR`J

g´wα acting trivially. But now, to consider

kλ as a Uχpwpq-module, we need χpwpq “ 0. This is only satisfied by shifting with

elements in the following subset of W :

W I,J
“ tw P W | w´1

pαq P R`zRJ for all α P Iu

When J “ H, this is the subset W I in [J97] Section 11.12. In that case, W I has a

description as minimal length coset representatives for W {WI , where WI is the Weyl

group generated by simple reflections for the roots in I (see [H90] Section 1.10). It

seems, though, that W I,J does not seem to have a similar characterization.

We are now ready to generalize the construction in the previous section and define

the shifted parabolic baby Verma modules. For λ P Λχ,wJ and w P W I,J , we now know

that kλ defines a Uχpwpq-module, since χpwpq “ 0. Furthermore, Uχpgq is free over

Uχpwpq of rank dimpUχpwu
´qq “ pdimpu´q “ p|R

`zRJ |. So define:

Zw
χ,Jpλq “ Uχpgq bUχpwpq kλ

Once again, we will write 1 b 1 for the generator of this module. When w “ 1, we

have our usual parabolic baby Verma modules from the previous section, and will

omit the superscript to simply write Zχ,Jpλq.

Given two elements of W I,J that differ by a simple reflection, we want to define

a homomorphism from one to the other much as we did in Lemma 4.3.3. In this way

we hope to obtain a parabolic analogue to the contents of [J97] Section 11.12 and

[J00] Lemma 3.4.

Conjecture 4.4.1. Let λ P Λχ,J , w P W I,J , and suppose α is a simple root such that

wsα P W
I,J . Then there exists a homomorphism

φα : Zw
χ,Jpλq Ñ Zwsα

χ,J pλ´ pp´ 1qwαq.

Here is where constructions that mirror those of Jantzen encounter difficulties,

largely due to the necessity of keeping track of p after it is shifted by elements of

W I,J .
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First, note that if α P J then wp “ wsαp, so in this case the map 1 b 1 ÞÑ 1 b 1

gives an isomorphism. Thus, suppose that α P ∆zJ . We may attempt to define the

map φα by

φαp1b 1q “ xp´1
wα b 1,

where xwα is the generator for the root space gwα. In order for this to be a homomor-

phism of induced modules, we need to see that xwβpx
p´1
wα b1q “ 0 for all β P R`YR´J .

It turns out that this is not always possible.

Consider, for example, g “ sl6 with simple roots α1, α2, α3, α4, α5, and let I “ tα1u

and J “ tα3u. Suppose that we wish to define the map

φα2 : Zχ,Jpλq Ñ Z
sα2
χ,J psα2‚

λq

given by φα2p1b 1q “ xp´1
α2

b 1. Now, for x´α3 P Uχppq, we need to look at

x´α3px
p´1
α2

b 1q “ xp´1
α2

x´α3 b 1.

This is nonzero, though, since xsα2 p´α3q “ x´pα2`α3q R p implies x´α3 R sα2p. There-

fore, this cannot be a homomorphism.

One possible solution to this problem is to build more information about J into

the φα maps; that is, to make the image of the generator involve root vectors for

the shifted parabolic rather than simply using xp´1
α b 1. The issue then becomes the

computation necessary to verify that this is a homomorphism, which greatly increase

in rank from the sl2 calculations of the original approach of Jantzen with J “ H.

As mentioned above, the eventual goal in creating these maps would be to compose

them so as to build a homomorphism from Zχ,Jpλq to a module which contains the

unique simple quotient as its socle. In this way, through a bit of category theory, we

hope to construct a filtration of Zχ,Jpλq much as in [J00] Proposition 3.10. In the

case of parabolic baby Verma modules, this filtration should be shorter, though at

the same time contain the simple quotient as its first factor.

The “target” module in the parabolic case seems to be ZwI,J

χ,J pw
I,J
‚λq where wI,J “

wIw0wJ for w0, wI , and wJ the longest words in W0,WI , and WJ , respectively. An-

other combinatorial challenge then arises. For each intermediate composition of maps

φw : Zχ,Jpλq Ñ Zw
χ,Jpw‚λq
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between Zχ,Jpλq and ZwI,J

χ,J pw
I,J
‚λq, we must verify that w P W I,J . In the case of

J “ H, this is due to the shortest length coset representative description of W I and

results concerning more general reflection groups. Unfortunately, with parabolic baby

Verma modules it turns out that it is not always possible to ensure this. The question

is then: given a subset of simple root I, what restrictions are there on a second non-

adjacent subset J such that there is a reduced decomposition wIw0wJ “ sα1sα2 . . . sαn

with sα1sα2 . . . sαi P W
I,J for all 1 ď i ď n?

4.5 Categories of Modules

As mentioned in the previous section as well as section 1.2.2, the filtration of Zχpλq

in [J00] is obtained by considering more general categories of modules than those for

our usual reduced enveloping algebra Uχpgq. We will now investigate some properties

of these categories. For the remainder of this chapter, the baby Verma modules will

be induced over a Borel subalgebra (so that J “ H).

Let U “ Upgq{Fχ, where Fχ is the ideal

ă xp ´ xrps ´ χpxqp | x “ xα for α P R ą .

Note that this is similar to the Uχpgq that we have been working with, but without

quotienting by elements hp ´ hrps ´ χphqp for h P h. By the Poincaré–Birkhoff–Witt

basis theorem, we have an isomorphism of vector spaces:

Uχpn
´
q b Uphq b Uχpn

`
q » U

Let U0 be the image of Uphq in U . Now, let A be any commutative k-algebra with

identity, and consider π : U0 Ñ A a k-algebra homomorphism. There is a ZR{ZI-

grading on U with each gα contained in degree α ` ZI.

We will define a category CA of certain X{ZI-graded U b A-modules as in [J00]

section 3. These will be modules M such that the following conditions hold:

1. Uµ ¨Mν ĎMµ`ν for all µ P ZR{ZI and ν P X{ZI.

2. A ¨Mν ĎMν for all ν P X{ZI.

3. M is finitely generated over A.
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4. The action of h is diagonalizable on each U0-submoduleMν , withMν “
Â

λpMνq
λ

over all k-linear maps λ : hÑ A. Furthermore, we require λ “ π` dpξ ` ξ1q for

some ξ1 P ZI when pMξ`ZIq
λ ­“ 0.

This is a generalization of the category CA introduced in [AJS94] for the important

case of χ “ 0 (that is, when I “ H). For any I Ď ∆, define

W I
“ tw P W | w´1

pαq ą 0 for all α P Iu,

which is simply our W I,J from the previous section when J “ H.

Define now, for all λ P X and w P W I , the modules

Zw
Apλq “ U ‘U0Uχpwn`q Aλ,

where Aλ is the pwb`q b A-module A such that h P h acts as multiplication by

πphq ` dλphq and wn` acts trivially. This induces an action of Upwb`q factoring

through U0Uχpwn
`q. In [J00], Jantzen uses a filtration of these modules (with w “ 1)

to obtain a filtration of the usual “baby Verma” modules Zχpλq in the category Ck.
The filtration in question comes from a map seen in [J00] section 3.10:

φA : ZApλq Ñ ZwIw0

A pλ´ pp´ 1qpρ´ wIw0ρqq

For the sake of brevity, let wI “ wIw0 and write

ZwI

A pλ
wI
q “ ZwIw0

A pλ´ pp´ 1qpρ´ wIw0ρqq.

As observed by Jantzen, when we tensor with the field of fractions of A, which we will

denote by F , the map φF becomes an isomorphism. This should imply, as in Lemma

3.11 from loc. cit. with scalars extended to F , that each ZF pλq is simple. To prove

this, we will work more generally.

The following three results are valid for any discrete valuation ring A with residue

field k “ A{xty and field of fractions F . Considering U any A-algebra which is free of

finite rank as an A-module, we get a k-algebra Uk and an F -algebra UF by extension

of scalars.

Lemma 4.5.1. Suppose N is a UA-module which is free of finite rank as an A-module,

and consider a UF -submodule E Ď N bAF . Then there exists a U-submodule X Ď N

such that E “ F.X and the U-module M{X is a free A-module.
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Proof. Consider the module X “ E XN . Then we have E “ F.X, so what is left is

to show that N{X is free as an A-module. So, consider pn`Xq P N{X and let a P A.

Then, if apn ` Xq “ an ` X “ 0, we have an “ x P X. Thus, n “ 1
a
x P E implies

n P E XN “ X, so we must have had n`X “ 0. What we have just shown is that

N{X is torsion free as an A-module and therefore, since it is finitely generated and

A is a discreet valuation ring, we know that N{X is a free.

Lemma 4.5.2. Let M and N be U-modules which are free of finite rank as A-modules.

Then the natural map

HomUpM,Nq{pt.HomUpM,Nqq Ñ HomUkpMk, Nkq

is injective, where Mk and Nk are the Uk-modules M{tM and N{tN , respectively.

Proof. Consider the short exact sequence of U -modules

0 Ñ N
ˆt
ÝÑ N

π
ÝÑ N{tN “ Nk Ñ 0.

Then we can apply the left exact functor HomUpM,´q to get the exact sequence

0 Ñ HomUpM,Nq
ˆt
ÝÑ HomUpM,Nq

π1
ÝÑ HomUpM,Nkq » HomUkpMk, Nkq.

Since t.HomUpM,Nq “ kerpπ1q, we have injectivity of the natural map above.

Proposition 4.5.3. Let φ : M Ñ N be a U-module homomorphism, and denote the

maps induced by extension of scalars φk : Mk Ñ Nk and φF : MF Ñ NF . Suppose

(i) Mk has a unique maximal submodule and Nk has a simple socle L;

(ii) φkpMkq “ L;

(iii) rNk : Ls “ 1;

(iv) φF is an isomorphism.

Then NF is a simple UF -module.

Proof. Consider a simple UF -submodule E Ď NF . Then by Lemma 4.5.1, there exists

a U -submodule X Ď N with E “ F.X and N{X a free A-module of finite rank.

Given the short exact sequence

0 Ñ X Ñ N
ψ
ÝÑ N{X Ñ 0,
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we can once again apply the left exact functor HomUpM,´q to get

0 Ñ HomUpM,Xq Ñ HomUpM,Nq
ψ1
ÝÑ HomUpM,N{Xq,

noting that we have φ P HomUpM,Nq. Now, the simple socle L appears as a com-

position factor for Nk with multiplicity one and Xk contains L since Xk Ď Nk is a

Uk-submodule, hence L is not a composition factor of Nk{Xk. Therefore, we must

have HomUkpMk, pN{Xqkqq “ 0 since Mk certainly contains L. Now, Lemma 4.5.2

and Nakayama’s Lemma give us that HomUpM,N{Xq “ 0. Thus φ P kerpψ1q, and

so φ is in the image of HomUpM,Xq. This means that φpMq Ď X Ď N , and hence

φF pMF q Ď E. Now, since φF is an isomorphism and E was chosen to be simple, we

must have NF “ φF pMF q “ E. Therefore, NF is simple.

Now, we are able to prove our previously expected result.

Theorem 4.5.4. For λ P X, the module ZF pλq is a simple UF -module.

Proof. By [J00] section 3.10, we have a nonzero homomorphism of U -modules

φ : ZApλq Ñ ZwI

A pλ
wI
q

such that extension of scalars gives an isomorphism φF of UF -modules. Over k, we

know that Zχpλq has a unique maximal submodule as usual; ZwI

χ pλ
wI q has a simple

socle Lχpλq by [J97] Lemma 11.13; and the image of φk is equal to Lχpλq by [J00]

Lemma 3.11.

By [J00] 2.8(4), we have rZχpλq : Lχpλqs “ 1. Now, looking at [J97] section 11.16,

we see that ZwI

χ pλ
wI q » τ pZχpλq

˚q for τ an automorphism of g. Thus, the equivalences

in section 11.17 of loc. cit. yield:

1 “ rZχpλq : Lχpλqs “ rpZχpλq
˚
q
˚ : Lχpλqs “ r

τ
pZχpλq

˚
q : Lχpλqs “ rZ

wI

χ pλ
wI
q : Lχpλqs

Thus, we may apply Proposition 4.5.3 to conclude ZwI

F pλ
wI q is simple. Finally, since

φF is an isomorphism, this gives ZF pλq as a simple UF -module.

Remark 4.5.5. In fact, the conclusion that rZwI

χ pλ
wI q : Lχpλqs “ 1 is true due to

general arguments in more abstract situations. See, for example, [Se77] section 15.2

Theorem 32 or [CR81] Proposition 16.16.
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In the case of χ “ 0, this result is observed in [AJS94] (see the remark in section

6.3). There they go on to observe that, in fact, ZF pλq “ QF pλq where QF pλq is the

projective cover, so that CF is a semisimple category. We conjecture that this is not

the case when I ‰ H for χ in standard Levi form.

Conjecture 4.5.6. For λ P X, let QF pλq be the projective cover of ZF pλq in the

category CF . Then QF pλq has a filtration of length |WI‚λ| where all of the composition

factors are isomorphic to ZF pλq.

If this is true, then our category CF is not semisimple in general (when χ ‰ 0). In

fact, this should be observable directly in the specific case of χ regular. The intuition

for Conjecture 4.5.6 comes from viewing results such as [J00] Proposition 2.9 over F ,

where the modules ZF pλq are simple as proven in Theorem 4.5.4. In general, though,

it takes a bit of care to work with the projectives rigorously.
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