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Abstract: The following paper analyzes pitch-level data to determine whether Major League 
Baseball pitchers use optimal mixed strategies. It builds upon an empirical strategy presented in 
the existing literature, while making novel adjustments to account for certain nuances of the 
pitcher-batter interaction. The results of this paper are in accordance with those of prior studies; 
namely, MLB pitchers do not engage in optimal play by throwing a disproportionately high 
number of fastballs. It concludes with the proposition that, to date, the pitcher-batter interaction 
has not been accurately modeled, and going forward studies should incorporate a pitch-
sequencing valuation scheme in order to produce more credible results 
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Section I: Introduction 

 

 Since its inception in the late 1930’s, game theory has been regarded with increasing 

interdisciplinary scrutiny due to its ability to demystify the decision-making processes of 

individuals facing incentive-bearing dilemmas. In its essence the field consists of the study of 

[mathematically] well-defined interactions amongst agents for the purpose of characterizing 

optimal behavior. Despite its ability to provide both predictive and prescriptive insights into the 

behavioral responses of individuals confronted with complex multi-stage interactions, empirical 

evidence in support of the theory associated with even the simplest games has proven to be 

extremely elusive in practice.  

 Any test of the fundamental tenets of optimal play necessarily begins with a clear 

statement of the interaction of interest. This task includes the specification of: the players, the 

rules of the game, the actions available to each player, the payoffs under every potential game 

scenario, and the objectives. For simplicity researchers have historically confined empirical 

studies to simple two-player, simultaneous-move, zero-sum games with clearly defined (often 

binary) objectives. Regardless of the type of interaction being analyzed, the predictions 

characterizing equilibrium behavior rely upon the assumptions that all players are rational agents 

seeking to maximize their respective utilities, and possess a deep understanding of the rules, 

actions, and payoffs of the game. As such, any study seeking to test for optimal play, whether it 

be lab-based or field-based, will ideally analyze games whose participants satisfy these criteria. 

Although they differ in the particulars, a variety of barriers exist which complicate the detection 

of optimal play in both lab-based and field-based analyses of strategic interaction. 
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Evidence of Optimal Play is Elusive in the Lab and Field 

 

Although carefully designed experiments offer researchers the advantage of structuring 

tractable games with a limited number of players, actions, and payoffs, they have generally been 

unable to conclude that participants engage in optimal play as dictated by theory. Oftentimes the 

volunteers for these studies are unfamiliar with the games and must learn them during the course 

of the experiment. As novices they may be unable to effectively optimize their choice of actions 

due to confusion or tentative gameplay. Further confounding the results is the trivial nature of the 

payoffs provided to laboratory participants; even if the players have the capacity to identify and 

play optimal strategies, the incentives provided are often insufficient to prompt them to do so. 

These barriers can be overcome by analyzing real-world, high-stakes interactions in which the 

agents are seasoned professionals in their respective fields.  

Although they are able to circumvent the difficulties associated with inexperienced 

agents typical to lab experiments, studies analyzing field data have similarly yielded 

inconclusive results in verifying the implications of the theory. The primary drawbacks to using 

field data stem from the difficulty of observing and recording distinct actions and payoffs. 

Unlike in the laboratory, naturally-arising interactions (or “games”) with nontrivial consequences 

often consist of actions that vary across multiple dimensions, and payoffs contingent upon a 

variety of factors (many of which may be unobservable). Moreover, the interactions being 

studied often lack a well-defined set of rules to govern the players, which further complicates the 

task of identifying optimal play. In response to the pervasive difficulties of identifying optimal 

play, researchers have shifted their focus to less-traditional venues in hopes of mitigating the 

complications associated with standard lab and field-based studies.  
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Seeking Optimal Strategies in Professional Sports 

 

One promising trend that has recently garnered attention is the behavioral analysis of 

professional athletes. The arena of professional sport possesses a variety of qualities which make 

it an attractive venue for testing the implications of game theory. Professional sports are 

governed by specific rules and objectives known to the players. Due to fierce competition at 

amateur levels, professionals must possess expert-level knowledge of the rules, actions, payoffs, 

and objectives of the sport. Over the span of a season athletes are repeatedly confronted with 

non-trivial choices that will influence their future salaries by millions of dollars. For the 

aforementioned reasons, professional athletes satisfy the typical assumptions of agents upon 

which predictions of optimal play are grounded. 

Large supplies of detailed and freely-available data further facilitate the game theoretic 

analysis of interactions within professional sports contests. Many professional sports leagues, 

teams, and private third-party companies collect and disseminate play-by-play accounts of 

individual games free of charge, making it possible for researchers to break down complete 

games into sequences of distinct actions. The only remaining difficulty is to identify sub-

interactions with clearly defined players, actions, and outcomes. The existing literature focuses 

primarily on sports featuring isolated one-on-one interactions with binary measures of success; 

interactions such as these readily conform to standard theoretical two-player zero-sum games and 

serve as a natural starting point for empirical analysis . 

 Studies analyzing professional sports data typically test whether athletes maximize 

expected payoffs according to two clear and testable predictions of the minimax theorem: 1) 

actions are chosen in proportions such that the expected payoffs are equal across all actions, and 
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2) agents exhibit zero serial correlation in their action choices. Walker & Wooders consider the 

case of serve-and-return play in tennis matches at Wimbledon, and conclude that although 

players do choose strategies such that the payoffs are equal across actions, they do not fully 

randomize with respect to actions, and thus certain actions exhibit serial correlation (2001). 

Palacios-Huerta finds evidence in penalty-kick data from European professional soccer leagues 

that suggests soccer players (both goalkeeper and kicker) choose strategies which satisfy both 

criteria of the minimax theorem (2003).1 Additionally, Chiappori et al. explore the implications 

of player heterogeneity in soccer penalty-kicks, and find evidence in European professional 

soccer league data that players use optimal mixed-strategies (2002).   

Exhaustive analysis of soccer and tennis data has prompted researchers to test for optimal 

play in more complex sports sub-games, with baseball’s pitcher-batter interaction drawing 

interest. Due to the variety and complexity of the actions, outcomes, and payoffs associated with 

a plate appearance, testing whether Major League Baseball (MLB) pitchers optimize with mixed-

strategies poses modeling difficulties not present in the analysis of penalty-kicks and tennis 

serve-and-return play. In the two studies that have investigated this issue to date, both Kovash & 

Levitt (2009) and Weinstein-Gould (2009) respectively find evidence which suggests that MLB 

pitchers fail to adhere to the prescriptions of the minimax theorem. 

 The contents of this paper are organized as follows. Section II provides a critical review 

of the existing studies which test for the use of optimal mixed-strategies by MLB pitchers. 

Section III sets forth a simple theoretical model of the pitcher-batter interaction and characterizes 

optimal play. Section IV introduces an empirical strategy for testing for optimal play and 

highlights the distinction between the strategy used in this paper and those used in preceding 

                                                           
1
 It is worth noting that this is the first study which successfully indentifies serial independence of actions in a field 

setting. 
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studies. Section V describes the source and structure of the data, which contains key variables 

unique to the dataset. Section VI presents the results and their implications, and Section VII 

concludes with a discussion of issues which must be addressed in future research concerning the 

pitcher-batter interaction.  

 

Section II: Literature Review 

 

Comprehensive Overview of Studies Analyzing Pitcher Strategy 

 

 As stated in the introduction, only two studies to date have attempted to test for optimal 

mixed-strategies amongst MLB pitchers. The most notable game theoretic investigation of the 

pitcher-batter interaction was conducted in 2009 by Kenneth Kovash and Steven Levitt and is 

detailed in their paper “Professionals Do Not Play Minimax.” In this study the authors develop 

an empirical framework for the analysis of pitch-level data and conclude that MLB pitchers fail 

to adhere to optimal mixed-strategies as prescribed by the minimax theorem. The dataset used 

was purchased from Baseball Info Solutions, a private company that specializes in collecting and 

analyzing baseball data for their clients, which include professional teams, memorabilia 

companies, agents, and academic researchers.  

 The dataset contains all pitches (roughly 3.5 million) thrown over the 2002-2006 seasons, 

and features variables identifying  the pitch type, pitch result, number of outs, inning, count2, 

runners on base, and identity of both the pitcher and batter. In modeling the pitcher-batter 

interaction as a two-player, simultaneous-move, zero-sum game the authors designate pitch type 

                                                           
2
 The count indicates the number of balls and strikes already thrown in a given plate appearance. For example, a 1-2 

count indicates the pitcher has thrown one ball and two strikes prior to the current pitch.  
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as the sole choice (action) variable. Isolating pitch type as the only choice variable is clearly a 

simplification as pitchers also actively choose where to locate their pitches, but it is a seemingly 

necessary one since including location as a choice variable presents difficulties arising from the 

fact that even the most effective pitchers lack the command to deliver every pitch to the exact 

intended location. Additionally, the dataset used in this study does not contain variables 

identifying pitch location, so allowing for pitchers to choose locations would be impossible.  

 Although MLB pitchers throw a variety of different pitches, the authors collapse all 

pitches into four mutually exclusive categories: fastball, curveball, slider, and changeup. All 

pitches initially coded as forkball, knuckleball, pitchout, screwball, sinker, and unknown, which 

cumulatively account for 6% of the total pitches thrown, are dropped from the dataset. Of the 

remaining pitches, 64.33% are fastballs, 9.53% are curveballs, 13.62% are sliders, and 12.52% 

are changeups. Due to the relative importance of pitch type to the analysis, the authors cross-

check the coding of pitch types with another dataset organized by STATS Inc., and find that the 

coding matches on over 90% of observations, with the majority of discrepancies occurring on 

off-speed3 pitches. 

 Kovash & Levitt’s primary focus is testing whether pitchers choose pitch types such that 

the average outcome from throwing each pitch type is equalized, which requires the designation 

of some measurement that captures the outcome of any given pitch. To this end the authors enlist 

the use of OPS, a commonly reported statistic that measures offensive productivity by taking the 

sum of a batter’s on-base percentage (OBP) and slugging percentage (SLG)4. Due to the fact that 

OPS is the sum of two distinct offensive averages (with different denominators) it has no simple 

                                                           
3
 Any pitch that is not a fastball is commonly referred to as an off-speed pitch.  

4
 OBP measures the frequency with which a batter reaches base (as a percentage of plate appearances), while SLG 

measures how many total bases per at-bat (base-on-balls and hit-by-pitch are not included in the numerator or 
denominator of this calculation) the batter achieves. 
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intuitive meaning, though it is clear that a higher OPS is indicative of increased offensive 

production. Since the pitcher-batter interaction is zero-sum, the effectiveness of any given pitch 

is related inversely to OPS, with the most effective pitch producing an OPS of zero.  

The calculation of OPS for a single pitch requires that pitch to generate a specific result 

(ie. out, base-on-balls, single, double, triple, home run, etc.), so Kovash & Levitt necessarily 

drop all non-terminal pitches (pitches that do not end the plate appearance) in order to assign 

outcomes to each observation included in the analysis. As noted by the authors, one alternative to 

dropping non-terminal pitches is to code them according to the final result of the plate 

appearance, although this strategy obfuscates the relationship between pitch efficacy and OPS. 

For example, consider a five-pitch at-bat which begins with a fastball thrown for a strike, and 

concludes with the batter hitting a triple on a particularly poor curveball. In this case the first-

pitch fastball will be assigned the relatively high OPS of 4.000, which is likely a 

misrepresentation of its value as a pitch. 

 After trimming the dataset and defining all necessary variables the authors develop an 

empirical strategy to test the hypothesis that MLB pitchers optimize across pitch types. They 

begin with a simple model and build upon it in piecewise fashion in order to address the 

sensitivity of their estimates to the inclusion certain controls. The first specification, which is a 

simple regression of OPS on indicator variables for each pitch type (with changeup as the base 

group) generates the following coefficients: .094 for fastball, -.060 for slider, and -.064 for 

curveball, all of which are statistically significant at the 1% level. The authors interpret the large 

and statistically significant positive coefficient on the fastball indicator as evidence that pitchers 

throw too many fastballs, with the average terminal fastball yielding an OPS that is 94 points5 

                                                           
5
 When discussing offensive statistics baseball statisticians generally refer to 1/10 of 1% as a “point” 
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higher than the average terminal changeup. The converse goes for sliders and curveballs, which 

initially appear to be the most effective pitches in a pitcher’s toolbox.  

 The authors then present the results of four additional regressions in which they phase in 

a variety of controls in cumulative stages. The second specification adds count fixed-effects; the 

third specification adds fixed-effects for innings, outs, and number of runners on; the fourth 

specification adds pitcher, batter, and pitcher*batter interaction fixed-effects; and the fifth and 

most comprehensive specification adds fixed-effects for the pitcher*batter*count interaction. The 

estimates on the curveball and slider indicators decrease in magnitude with the addition of 

controls and the direction changes from negative to positive, although neither is statistically 

significant in the most saturated specification. The estimate on the fastball indicator retains its 

positive sign and statistical significance at the 1% level throughout all iterations, though the 

magnitude ranges from .041 to .073, with .073 occurring in the most saturated specification.  

 Due to the consistently positive and statistically significant effect of fastball on OPS 

across all specifications the authors conclude that MLB pitchers rely too heavily upon fastballs, 

and would do better to throw fewer since they yield the worst outcome on average. The varying 

estimates of the impact of off-speed pitches across different functional forms preclude them from 

arriving at any strong conclusions concerning whether curveballs and sliders are more or less 

effective than changeups on average. Since an OPS differential across pitch types is a relatively 

abstract measurement and does not directly address the degree to which overreliance on the 

fastball hurts pitchers, the authors seek to provide some context in order to make the implications 

of their results more accessible. By citing a formula developed by sabermetrician6  Dan Fox 

which suggests than a incremental increase of a single OPS point generates roughly 1.8 

                                                           
6
 Sabermetrics is a movement amongst baseball statisticians which is concerned with the creation of more accurate 

and precise performance measures than the traditional statistics. SABR is an acronym for Society of American 
Baseball Researchers.  
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additional runs over the span of a season, the authors conclude that a pitching staff could reduce 

the numbers of runs allowed by approximately 15 runs per season by throwing 10% fewer 

fastballs, although they do not specify what pitches (and in what proportions) should be thrown 

instead of the fastballs. 

 The only other existing study that tests whether MLB pitchers adopt optimal mixed 

strategies is detailed in Weinstein-Gould’s 2009 paper “Keeping the Hitter Off Balance: Mixed 

Strategies in Baseball.” This study analyzes pitch-level data from the 2002 MLB season 

purchased from sports data collection company Tendu, which sells game data and analytical 

software to MLB teams, most notably the New York Mets and Oakland Athletics (Byous). 

Although the dataset contains variables for pitcher and hitter identity, pitch type, pitch result, and 

at-bat result, it lacks variables describing the game situation at the time of the pitch, such as outs, 

pitch count, and number of runners on base. 

In addition to lacking situational variables, the dataset was coded manually by former 

college and professional players who viewed footage of television broadcasts, and thus it is 

likely to contain errors. It is worth noting that the proportion of fastballs to total pitches is nearly 

identical to that calculated in Kovash & Levitt’s dataset, although the proportions for off-speed 

pitches differ by 1-2% each. This is to be expected, as distinguishing between a fastball and an 

off-speed pitch is relatively straightforward, while distinguishing between a curveball, slider, and 

changeup requires the ability to discern more subtle differences across pitches.    

 Much like Kovash & Levitt, Weinstein-Gould models the interaction between the pitcher 

and batter as a two-player, zero-sum, simultaneous-move game with pitch type as the sole choice 

variable, but this is where the similarity between the two models ends. Rather than designating 

OPS as the measure of pitch success, the author defines three distinct outcome variables. The 
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first outcome variable, Pitch, is a binary measure of the immediate success of the pitch, which 

takes a value of 1 if the pitch results in a strike or an out and 0 if the pitch results in a ball, hit, or 

walk. The second outcome variable, OnBase, looks at the success of the plate appearance rather 

than the immediate success of the pitch, and takes a value of 1 if the batter reaches base and 0 if 

the batter does not reach base. The third outcome variable, wOnBase, is similar to the second in 

that it also measures the success of the plate appearance, but it weights the result based on its 

likelihood to produce runs. For example, while OnBase takes on a value of 1 for both a single 

and a triple alike, wOnBase assigns a higher value for a triple since it is substantially more likely 

to produce a run. 

 Weinstein-Gould drops a number of pitches from his dataset, so that he only includes the 

first pitch from each plate appearance in his regressions. He reasons that by doing so, all pitches 

will occur at the same count (no balls and no strikes), and will not be contingent upon the pitch 

type thrown immediately prior. This adjustment leaves the dataset with 79,107 observations, 

spanning 135 pitchers and 855 batters. Before testing for optimal mixed-strategies the author 

proposes that, due to the heterogeneity of batters, pitchers will alter strategies across hitters. To 

test this claim he regresses an indicator variable for each pitch type on fixed-effects for both 

hitters and pitchers. These regressions yield highly significant F-statistics for joint significance 

of the hitter fixed-effects for all pitch types excluding split-finger fastballs and knuckleballs, 

supporting his hypothesis that a given pitcher’s strategy is uniquely tailored to the opposing 

batsman. 

 After verifying the batter-dependant nature of pitchers’ strategies Weinstein-Gould 

presents his empirical framework for testing the null hypothesis that MLB pitchers select pitch 

types optimally. His method consists of regressions for each of the outcome variables on 
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pitcher*batter interactions and pitcher*batter*pitch interactions, which, unlike the specifications 

used by Kovash & Levitt, allows the payoff of each pitch type to vary across each pitcher-batter 

matchup. All observations in which the pitcher and batter did not meet at least 10 times are 

dropped in order to impose a minimum cell size on the pitcher*batter interactions.  

Unsurprisingly, the results are dependent upon which outcome variable is used. When 

Pitch is designated as the outcome variable, the pitcher*batter*count interaction terms are jointly 

insignificant with a p-value of .344, suggesting that pitchers select pitch types optimally with 

respect to the immediate outcome of the first pitch. On the other hand, the tests for joint 

significance of the pitcher*batter*count interactions yield p-values of .031 and .095 when 

OnBase and wOnBase are designated as the outcome variables, suggesting that pitchers do not 

select pitches optimally with respect to the final outcome of the plate appearance. The 

regressions which use OnBase and wOnBase as the dependent variables are more akin to the 

specifications used in the Kovash & Levitt study since they assign pitch values according to the 

outcome of the plate appearance, and therefore the results of the respective papers are in 

accordance. Since Weinstein-Gould allows for the return to each pitcher to vary across every 

possible pitcher-batter combination, he is unable to conclude which pitches are being thrown too 

often or too sparingly on average.  

 

Critical Analysis 

 

 Although Kovash & Levitt succeed in establishing a framework for testing whether MLB 

pitchers optimize across pitch types, certain details of their model leave the validity of its 

conclusions open for debate. One aspect of the empirical strategy that drew a great deal of 
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objection amongst the sabermetric community is the use of OPS as the outcome variable (Tango 

2009). The contention arises due to the fact that OPS notoriously undervalues the contribution of 

a base-on-balls (BB). For example, a pitch that results in a single is assigned an OPS of 2.000, 

while a pitch that results in a BB is assigned an OPS of 1.000. Although a single is, on average, 

more valuable than a BB (i.e. a single with a runner on second will often produce an immediate 

run while a BB with a runner on second fails to advance the runner) it is certainly not twice as 

productive.  

Additionally, Kovash & Levitt miscalculate OPS to further undermine the value of a BB 

by not accounting for the fact that OPS is actually the sum of two averages, OBP and SLG, with 

distinct denominators. Their calculation implicitly codes a BB with an SLG of 0.0000, when in 

fact a plate appearance that results in a BB is not included in the denominator of SLG, so it will 

not penalize SLG, but rather leave it unchanged. Since off-speed pitches like curveballs, sliders, 

and changeups are more difficult to command than fastballs (and perhaps more likely to result in 

a BB), it may be the case that the use of OPS as the outcome variable mutes the downside to off-

speed pitch types even when it is calculated correctly. The miscalculation, which serves to 

further reduce the value of a BB, will only exacerbate this bias.  

 An additional drawback to the choice of OPS as the outcome variable relates to its 

esoteric nature as a statistic. In modeling any two-person, zero-sum interaction one must 

designate a specific outcome which both players attempt to manipulate through the selection of 

distinct actions available to them. Although OPS is certainly a valid proxy for both pitcher and 

batter success, the proposition that MLB pitchers (and batters) explicitly try to minimize (and 

maximize) the OPS of the batter seems unrealistic. It is more likely that the ultimate objective of 

each player is to win the game as a whole rather than each individual at-bat, which is 
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accomplished from the pitcher’s perspective by run prevention and from the batter’s perspective 

by run production. In this case a more appropriate outcome variable would be one that weights 

each outcome according to its ability to produce runs, much like wOnBase from Weinstein-

Gould’s third specification.  

 Another aspect of Kovash & Levitt’s empirical strategy that leaves its results susceptible 

to criticism is the fact that only pitches which end the plate appearance are analyzed. This 

strategy neglects the possibility that a specific pitch type may perform especially well when it is 

not a terminal pitch. For example, suppose a fastball frequently results in a strike when it does 

not end the plate appearance, but performs comparatively worse than off-speed pitches when it 

does end the plate appearance. In this case an analysis of only terminal pitches will mask the 

value of the fastball’s ability to record strikes which do not terminate the plate appearance, thus 

making it appear less effective than breaking pitches. It is worth noting that Kovash & Levitt do 

provide tables which indicate that the average OPS of a fastball is not substantially different 

from the average OPS of breaking pitches when the pitches do not end the plate appearance, but 

as previously mentioned, the ability of OPS to capture the value of a non-terminal pitch is 

dubious.  

 The empirical strategy used in the Weinstein-Gould paper also contains aspects which 

threaten the validity of the results. The most glaring issue is the lack of controls included in the 

regressions, which is entirely a function of the dataset. Since his dataset lacks information 

describing the game situation, Weinstein-Gould is unable to condition on situational variables 

like count, inning, outs, and runners on. The omission of relevant controls creates the potential 

for bias in the estimates of interest, which are the coefficients on the pitcher*batter*pitch 

interaction terms. For example, if pitchers tend to throw more fastballs with runners in scoring 
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position and hitters perform better with runners in scoring position, then the estimate on fastball 

may contain an upward bias, making it look as if fastballs are less effective than they truly are. 

 Perhaps the most important determinant of pitch type that is not controlled for is count; 

conventional baseball wisdom indicates that pitchers throw pitches with different proportions 

according to whether they are faced with an advantageous or disadvantageous count. The author 

deals with this problem by choosing to only analyze the first pitch of each plate appearance, thus 

guaranteeing that all pitches analyzed are thrown at the same count: no balls and no strikes. 

While this strategy eliminates any potential bias due to omitting count fixed-effects, it spawns 

new complications concerning the link between the action choice and outcome. Consider the 

specifications in which OnBase and wOnBase, which are both defined according to the final 

result of the plate appearance, are designated as the outcome variable. In a one-pitch at-bat the 

link between the first pitch and the outcome is clear, but for longer at-bats the influence of the 

first pitch on the final result diminishes with each subsequent pitch. In a seven-pitch at-bat 

resulting in a home run it is likely that the first pitch plays a minor (or perhaps nonexistent) role 

in allowing the home run, thus testing whether pitchers select the first pitch optimally with 

respect to the outcome of the plate appearance makes little sense and may contribute to findings 

which contradict the theory. 

 

Section III: Theoretical Model 

 

 In accordance with the existing literature this paper presents the pitcher-batter interaction 

as a two-player, simultaneous-move, zero-sum game in which the pitcher chooses which pitch to 

throw and the batter chooses which pitch to anticipate. The game is considered simultaneous-
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move because hitters do not have enough time to choose their action after the pitch is thrown; 

when facing an 87 mph pitch (which is the average pitch speed over the 2009 and 2010 seasons) 

the hitter has roughly .47 seconds to respond, thus from a practical standpoint the batter does not 

observe the pitcher’s action prior to selecting his own.  Additionally the game is assumed to be 

played with complete information since all professional teams retain extensive scouting 

departments to track the historic tendencies and performances of both pitchers and hitters (and 

even umpires), so detailed accounts of the past strategies and payoffs of the opponent are known 

to all players (McCauley et al.).    

 The following example motivates why pitchers must throw pitches in a proportion that 

equalizes outcomes across pitch types in order to optimize their expected payoff. Consider a 

simplified version of pitcher-batter interaction in which the pitcher chooses to throw either a 

fastball or an off-speed pitch and the batter chooses to anticipate either a fastball of an off-speed 

pitch. The following payoff matrix characterizes the associated payoffs with each pairing of 

actions: 

 

Batter 

Fastball Off-speed 

 Fastball φff φof 

   Pitcher 

Off-speed φfo φoo 
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Although the outcome measure of the actual pitcher-batter interaction is a complex and 

nuanced concept, the preceding example assumes that the batter simply attempts to reach base, 

while the pitcher attempts to record an out (similar to Weinstein-Gould’s second specification 

which uses OnBase as the dependent variable), so ϕij represents the probability that the batter 

reaches base when he anticipates pitch type i and the pitcher selects pitch type j. We can safely 

assume that the batter is able to hit more effectively when he correctly anticipates the pitch type, 

so that ϕff > ϕfo, ϕff > ϕof, ϕoo > ϕof, and ϕoo > ϕfo, thus a pure strategy equilibrium does not exist.  

 In this case both pitcher and batter must adhere to strategies in which they randomize 

across both action choices with certain probabilities. In order to maximize his expected payoff, 

each player must choose to mix actions so that the opponent is indifferent between his available 

actions. Let ρf  represent the probability that the pitcher throws a fastball. The pitcher must 

choose ρf to satisfy the equality ρf ϕff + (1- ρf )ϕfo = ρf ϕof + (1- ρf )ϕoo, where the left side of the 

equation represents the batter’s probability of reaching base if he chooses to anticipate a fastball 

and the right side represents the batter’s probability of reaching base if he chooses to anticipate 

an off-speed pitch. If the equality does not hold then the batter would do better to choose a pure 

strategy in favor of the action that yields the higher probability of reaching base. The same logic 

applies to the batter, who must choose βf, the probability that he anticipates a fastball, in order to 

satisfy the equality βfϕff + (1- βf )ϕof = βfϕfo + (1- βf )ϕoo, so that the pitcher must be indifferent 

between throwing a fastball or throwing an off-speed pitch.  

 In this case, if each player is maximizing his expected payoff, then both pitcher and batter 

must be indifferent between actions since the payoffs across actions must be equalized. If one 

action choice yields a  higher expected payoff than the other, then the player can enhance his 

return by choosing that action more frequently until the disparity in payoffs between the two 
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actions is eliminated. If the disparity is never eliminated such that one action always yields a 

higher expected payoff than the other, then the action with the lower expected payoff will never 

be played. The end result of this process is that in equilibrium, all actions that are played with a 

positive probability must yield the same outcome on average. Although the preceding example is 

admittedly a simplification, the fundamental result of equalized payoffs across actions can be 

extended to the actual pitcher-batter interaction, which is characterized by multiple actions 

choices (pitch types) and a more complex, non-binary outcome measure. The next section details 

the dataset used in this study, while Section V presents an alternative empirical strategy for 

testing whether expected outcomes are equalized across action choices using MLB pitch-by-

pitch data.  

 

Section IV: Data 

 

Source 

 

The data analyzed in this study were generated by MLB with a technology known as 

Pitch f/x. Pitch f/x is a system developed by sports technology company Sportsvision which 

captures a wide variety of physical measurements and situational information concerning pitches 

thrown in MLB games. MLB rolled out the use Pitch f/x on a limited basis in the 2007 season, 

and had fully implemented the system in all 30 stadiums by the beginning of the 2008 season 

(Nathan 2007). To date, no study investigating the use of optimal mixed-strategy amongst MLB 

pitchers has analyzed Pitch f/x data.  
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The primary purpose for the integration of Pitch f/x technology into MLB stadiums was 

to provide fans without access to televised broadcasts a means of following games on a pitch-by-

pitch basis in real-time. The data collected by Pitch f/x are immediately posted to MLB.com’s 

“Enhanced Gameday” website, which features a graphical interface illustrating the locations and 

result of each pitch, enabling fans to “watch” the game without actually tuning in to a televised 

broadcast (Newman). The data are also stored permanently to an archive section of MLB’s 

website with distinct inning files for each game, and is available free of charge. 

 In the simplest sense Pitch f/x is a system of three high-speed cameras (30 frames-per-

second), all of which are strategically located in different areas of the stadium, just behind the 

outfield fence. The cameras are calibrated by technicians prior to every game in order to 

triangulate the strike zone, which is a somewhat nebulous concept defined in vague terms by 

MLB (Newman). Although the horizontal range of the strike zone is explicitly defined as the 

width of home plate, which is exactly 17 inches across, the vertical range is more open to 

interpretation and is laid out in the rulebook as follows: “the upper limit… is a horizontal line at 

the midpoint between the top of the shoulders and the bottom of the uniform pants, and the lower 

level is a line at the hollow beneath the knee caps” (“Official Rules”). In order to deal with this 

potentially confusing definition, system technicians assign unique vertical coordinates for the top 

and the bottom of the strike zone for each player during batting practice prior to the start of play. 

After a pitch is captured by the cameras the footage is immediately transmitted to a processing 

truck stationed at the loading dock of the ballpark. The processing truck contains three 

computers which calculate a variety of measurements associated with each pitch, and then post 

this information online to both the “Enhanced Gameday” feature and the archival data section of 

MLB.com (Newman).  
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 Although the information collected by the Pitch f/x system is conveniently located online 

free of charge, collecting data for a full season is an extremely cumbersome process due to the 

fact that each inning has its own distinct file (a full season is roughly 24,570 innings, excluding 

extra innings). In response to the large up-front costs of assembling the data, a number of 

prominent baseball researchers with experience in computer programming have created scripts 

that collect the data from its original source and organize it into workable databases, some of 

which are made freely available online. While these scripts necessarily vary in their respective 

details, the general process is always similar: they use a simple programming language to create 

a program which pulls the data from the website and stores it in text files, which are then parsed 

into single or multiple SQL databases.  

The dataset used in this paper was obtained in the form of two seasonal SQL databases 

from a website run by Joe Leftkowitz, an amateur baseball researcher.7 Each SQL file contains 

every Pitch f/x observation from the 2009 and 2010 seasons, excluding postseason play. The 

databases respectively contain 717,254, and 710,329 observations. Due to the gargantuan size of 

the datasets and the intricacies of the Pitch f/x system, it is unsurprising that the raw datasets 

contains errors which must be removed prior to analysis.  

 

Errors in the Dataset 

 

 The most common error present in the dataset arises as a result of Pitch f/x system 

malfunctions, which are inevitable given the intricacies of the system. The databases for both of 

the aforementioned seasons contain a number of observations in which certain pitch-level 

                                                           
7
 These datasets, and more, can be found at Joe Leftkowitz’s website, located at: 

http://www.joelefkowitz.com/index.php 

http://www.joelefkowitz.com/index.php
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variables that can only be measured by high-speed video footage, such as start speed, end speed, 

vertical location coordinate, horizontal location coordinate, and others, are recorded as null. For 

these same observations other pitch-level variables which can be recorded without the system of 

cameras, such as pitch type, pitch designation as a strike or a ball, the count, and others, are 

accurately recorded. It seems likely, due to the fact that the only measurements not properly 

recorded are those which require high-speed video footage to calculate, that these errors are a 

result of a camera malfunction.  

 Another type of error present in the dataset again relates to only those pitch-level 

variables which cannot be read in without the system of cameras. Each observation contains a 

date and timestamp which records the date, hour, minute, and second at which the pitch was 

recorded by the system. There are a number of pitches thrown within a given game that posses 

the same timestamp. These pitches often occur during different at-bats, and in addition to sharing 

the timestamp, they also share all variables which can only be read in by the system of cameras. 

Variables such as count, pitch type, etc. are presumably accurately recorded for these pitches.  

Since many of the variables that are rendered null or inaccurate by the aforementioned 

errors are instrumental to my analysis, these observations have been deleted from the dataset. 

Additionally, I have deleted every observation from half-innings in which at least one of these 

errors is present, so that the seasonal samples consist of only pitches from half-innings in which 

the Pitch f/x system accurately recorded every single pitch. This extra precaution addresses the 

possibility that even the pitches for which all variables were recorded during a half-inning 

containing at least one system malfunction may contain inaccuracies due to technological 

complications. After deleting all such observations the seasonal datasets are left with 665,294 

and 665,759 observations for the 2009 and 2010 seasons respectively.  
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Variables of Interest 

 

In addition to containing error pitches, the datasets also contain a large number of 

variables which are not explored in this study. The Pitch f/x cameras are able to track the path of 

any given pitch from the release point of the pitcher’s hand to its final destination, whether that is 

the glove of the catcher or the bat of the hitter. The high frame-rate of the footage allows the for 

the calculation and estimation of a large number of measurements related to each pitch which 

were previously unobservable, such as location, spin direction, spin rate, break angle, and others. 

The system records roughly 41 variables for each observation, but in order to reduce the size of 

the datasets I have dropped all variables not used in this study, which leaves me with a total 29 

variables for each pitch.  

The following table presents a description of all relevant variables contained in the raw 

SQL files. All variables used in this study that are not explained in the following table are 

generated from information captured by these variables, and will be carefully explained in the 

empirical strategy and results sections. Level describes the stratification along which these 

variables remain constant. To clarify, game-level variables do not change within games; inning-

level variables do not change within innings; atbat-level variables do not change within atbats; 

and pitch-level variables may potentially change across every pitch.  
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Variable Name Type Level Description 

gid string game identifies date, home team, and away team 
stadium numeric game unique id for stadium 
ump numeric game unique 6-digit id for home-plate umpire 
pitching_team string inning identifies team in field 
batting_team string inning identifies team at-bat 
inning numeric inning identifies inning 
pitcher numeric atbat unique 6-digit id for pitcher 
p_throws string atbat "L" if lefty, "R" if righty 
batter numeric atbat unique 6-digit id for batter 
batter_handedness string atbat "L" if lefty, "R" if righty 
sz_top numeric atbat coordinate of top of strike zone for given batter 
sz_bot numeric atbat coordinate of bottom of strike zone for given batter 
atbat_num numeric atbat number of atbat for given pitcher 
atbat_result string atbat description of result of given atbat 
sv_id numeric pitch date and timestamp for given pitch 
pitch_count numeric pitch pitch number for given pitcher 
atbat_pitch_num numeric pitch pitch number for within a given atbat 
pitch_type string pitch identifies pitch type 
pitch_result string pitch description immediate result of given pitch 
balls numeric pitch number of balls thrown in atbat prior to pitch 
strikes numeric pitch number of strikes thrown in atbat prior to pitch 
outs numeric pitch number of outs recorded prior to pitch 
on_first numeric pitch 1 if runner on first, 0 if not 
on_second numeric pitch 1 if runner on second, 0 if not 
on_third numeric pitch 1 if runner on third, 0 if not 
start_speed numeric pitch speed (in mph) of pitch as it leaves pitcher's hand 
end_speed numeric pitch speed (in mph) of pitch as it crosses plate 
px numeric pitch horizontal coordinate of pitch as it crosses plate 
pz numeric pitch vertical coordinate of pitch as it crosses plate 
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Section V: Empirical Strategy 

 

Choice Variable 

 

 In accordance with the modeling strategies set forth by both Kovash & Levitt and 

Weinstein-Gould, I assume that pitchers’ strategies consist of selecting only pitch type. A richer 

model would include pitch location as a choice variable, but this presents complications 

stemming from the fact that pitchers often fail to deliver the pitch precisely to the intended 

location. This could potentially lead to a false rejection of optimal play due to faulty execution of 

pitch strategy rather than sub-optimal selection of actions.  This problem does not arise when 

pitch type is regarded as the sole choice variable; a pitcher cannot unintentionally throw a 

curveball when he intends to throw a fastball. The coefficients on the indicator variables for pitch 

type are of primary interest in this study; if pitchers truly optimize across actions then each pitch 

type should have no impact on the outcome measure, relative to the base group.  

 A pitcher’s strategy is comprised of the following four actions: fastball, curveball, slider, 

and changeup. The raw Pitch f/x data provided by MLB codes each pitch as one of 18 different 

type pitches. Depending on the initial pitch type code I assign each pitch into one of the four 

mutually exclusive ‘umbrella’ groups or drop it from the dataset. For consistency I group pitches 

according to the same scheme employed by Kovash & Levitt. Fastball includes pitches initially 

coded by the Pitch f/x system as fastball, two-seam fastball, four-seam fastball, and cut fastball; 

curveball includes curveball and knuckle-curve; slider includes only slider; and changeup 

includes changeup and split-finger fastball. The remaining pitch types, which cannot be neatly 

collapsed into one of the four ‘umbrella’ groups, are classified as other, and dropped from the 
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dataset prior to analysis. The following table identifies each pitch type’s proportion of total 

pitches thrown in the dataset.  

 

Pitch Type 2009 2010 
Number of Pitches Frequency Number of Pitches Frequency 

Fastball 395704 59.48% 364390 54.73% 
Slider 111901 16.82% 95789 14.39% 
Curveball 61744 9.28% 61693 9.27% 
Changeup 79035 11.88% 86059 12.93% 
Other 16910 2.54% 57828 8.69% 
 

 

The table highlights the fact that the proportion of pitches designated as other increased 

drastically from the 2009 to the 2010 season, which suggests structural changes in Pitch f/x pitch 

type coding over time. The following table breaks down all pitches designated as other in order 

to explore the trend.  

 

Pitch Type 2009 2010 
  Number of Pitches Frequency Number of Pitches Frequency 

Sinker 10973 1.6493% 48603 7.3004% 
Knuckleball 2386 0.3586% 4153 0.6238% 
Knuckle-Curve 0 0.0000% 994 0.1493% 
Screwball 0 0.0000% 109 0.0164% 
Forkball 0 0.0000% 217 0.0326% 
Eephus 0 0.0000% 89 0.0134% 
Intentional Ball 3019 0.4538% 3137 0.4712% 
Pitchout 441 0.0663% 517 0.0777% 
Balk 1 0.0002% 1 0.0002% 
Unknown 90 0.0135% 8 0.0012% 

Total 16910 2.5417% 57828 8.6860% 
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 The preceding table indicates an increasing sophistication of the Pitch f/x system to 

distinguish between pitches that are not fastballs, sliders, curveballs, or changeups. The most 

striking change is the roughly 340% increase in the number of pitches initially coded as sinkers 

over the 2009 to 2010 seasons. The falling proportion of pitches designated as fastballs and 

sliders over the two seasons suggests that the majority of these sinkers are coming out of the 

fastball and slider categories. This proposition is bolstered by the fact that sinkers are roughly the 

same speed as fastballs and sliders, and often mimic the downward movement that characterizes 

both pitches. The increasing likelihood that a sinker is properly identified may potentially have 

ramifications on the estimates of fastball and slider since the pitches that comprise these groups 

have changed over the two seasons. Additionally, the system codes four new pitch types that 

were not present during the 2009 season, though this change is unlikely to affect the estimates of 

interest since the new pitch types only account for approximately .21% of the total pitches 

thrown during the 2010 season. 

 

Outcome Variable 

 

 The primary deviation of the empirical strategy employed in this paper from those 

suggested in the existing literature lies in the designation of Run Expectancy (RE) as the 

outcome variable. RE is a measure of offensive production developed in the 1970s by revered 

sabermetrician Pete Palmer and is an essential component in the calculation of Wins Above 

Replacement (WAR), a statistic used to evaluate players by a number of MLB general managers 

(DiFucci). Although it is known by a variety of monikers, the measure was initially introduced 

under the name linear weights due to the fact that it assigns weights to certain events according 
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to the event’s ability to generate a run. For example, the generally accepted RE for a single 

(unconditional on the situation) is roughly .47, meaning that the average single creates .47 runs 

for the offensive team prior to the end of the inning. Accurate calculation of the RE of any given 

event requires vast play-by-play databases which depict every play from every game over a 

specified period of time.  

 An RE score for a given event is calculated as follows. For simplicity let us assume the 

event is a single. First, the base-out state (number of outs and location(s) of runner(s) on base) 

prior to the occurrence of the single is determined, and the average number of runs scored prior 

to the end of the inning (RBOI) from that specific base-out state is calculated. Next, the base-out 

state following the single is determined, and the RBOI from the resulting base-out state is 

calculated. The difference between the RBOI of the beginning and resulting states plus the 

number of runs scored on the single is the ‘runs added’ for that specific single. Unconditional RE 

for a single is then calculated by averaging the ‘runs added’ for all singles occurring in a 

specified time frame (Birnbaum). Since RE measures are generated by empirically-based 

calculations they are only able to capture the run production of certain events for give time 

period, although the values tend to remain relatively stable over season-long intervals (Klaassen).  

RE possesses a comparative advantage over other measures of production for a variety of 

reasons. While it is impossible to know the utility functions of major league pitchers and batters 

(or whether they are homogenous for that matter), it is likely that all players attempt to maximize 

the probability of winning to some degree. Most players are eligible for annual bonuses tied to 

both personal and team performance, and players judged to be most instrumental in wins are 

often rewarded with generous long-term contracts. The most conspicuous means of directly 

contributing to a win is through run prevention and production for pitchers and batters 
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respectively, thus it is appropriate to assume that within the context of an individual plate 

appearance, pitchers and batters respectively attempt to minimize and maximize RE. The 

straightforward relationship between run creation and wins lends credence to the designation of 

RE as the outcome variable as opposed to other productive statistics such as OBP or OPS, which 

have more tenuous connections to wins.   

The designation of RE as the outcome variable provides an additional benefit beyond 

being more representative of the actual objectives of the pitcher-batter interaction; it allows for 

the valuation and inclusion of non-terminal pitches in the analysis. I assign non-terminal pitches 

value based solely on whether they are balls or strikes, a strategy grounded on the assumption 

that the probabilities of success for both pitcher and batter vary across the count. This 

assumption is regarded as fact in the baseball community; any professional batter will tell you he 

is more likely to get a base hit on a pitch that is thrown with two balls and no strikes than a pitch 

that is thrown with no balls and two strikes. Since each count has distinct payoffs associated with 

it, a pitch can be valued according to its ability to transition from one count to another.  

Assigning non-terminal pitches value requires one to calculate the RBOI from each of the 

twelve possible counts – a straightforward calculation given the proper play-by-play data. 

Sabermetrician Joe P. Sheehan has calculated these values and makes the count-based RBOI 

values available on the website ‘The Baseball Analysts’. With these values I code each non-

terminal pitch with a RE score, which is the difference between the RBOI of the count prior to 

the pitch and the RBOI of the count resulting from the pitch. For example, since the RBOI from 

a 1-1 count is -.015 and the RBOI from a 1-2 count is -.082, any pitch thrown for a strike, 

regardless of whether is a fastball, curveball, slider, or changeup, is coded with a RE of -.067, 

indicating that, on average, the batter will produce .067 fewer runs due to that pitch. Although 
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this method allows for the inclusion of non-terminal pitches in the analysis, it is imperfect, since 

it neglects any value a pitch may have in setting up another pitch (ie. a high fastball preceding a 

low changeup), and thus ignores any strategic pitch sequencing on the part of the pitcher. 

Additionally, all terminal pitches are coded conditional on the count, thus a single (unconditional 

RE of .49) from a 0-2 count (RBOI of -.104) is coded with a RE of .594. RE scores for all 

possible terminal and non-terminal pitches are included in the following table: 

 

Count RE Ball Strike Out Sac Sac Fly HPB 1b 2b 3b HR 

0-0 0.000 0.034 -0.043 -0.289 -0.200 -0.080 0.338 0.494 0.790 1.068 1.407 
0-1 -0.043 0.027 -0.062 -0.246 -0.157 -0.037 0.381 0.537 0.832 1.110 1.450 
0-2 -0.104 0.022 -0.185 -0.184 -0.096 0.024 0.442 0.598 0.894 1.172 1.511 
1-0 0.034 0.063 -0.050 -0.323 -0.234 -0.114 0.304 0.460 0.756 1.034 1.373 
1-1 -0.016 0.050 -0.067 -0.273 -0.184 -0.064 0.354 0.510 0.805 1.083 1.423 
1-2 -0.083 0.046 -0.206 -0.206 -0.117 0.003 0.421 0.577 0.872 1.150 1.490 
2-0 0.097 0.110 -0.062 -0.385 -0.297 -0.177 0.241 0.397 0.693 0.971 1.310 
2-1 0.035 0.103 -0.071 -0.323 -0.235 -0.115 0.303 0.459 0.755 1.033 1.372 
2-2 -0.037 0.098 -0.252 -0.252 -0.163 -0.043 0.375 0.530 0.826 1.104 1.443 
3-0 0.207 0.131 -0.070 -0.496 -0.407 -0.287 0.131 0.287 0.583 0.861 1.200 
3-1 0.137 0.201 -0.076 -0.426 -0.337 -0.217 0.201 0.356 0.652 0.930 1.269 
3-2 0.062 0.276 -0.351 -0.350 0.262 -0.142 0.276 0.432 0.728 1.006 1.345 

 

  

The contents of the table indicate that recording a strike is most valuable to a pitcher with 

two strikes, because this records an out, and the value increases in number of balls due to the fact 

that more balls are advantageous to the batter because of the increased threat of a BB. Balls are 

most detrimental to the pitcher when they result in a BB, which can only occur during a count 

with three balls, and the detriment is increasing in number of strikes since more strikes reduce 

the likelihood of the batter generating an event that is likely to score a run. Additionally it is 

clear that terminal pitches are substantially more consequential in terms of RE than non-
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terminals since they result in events which directly contribute to run production/prevention, 

while non-terminal pitches can only contribute to run production/prevention through their 

influence on the count. Although an intentional base-on-balls (IBB) does have a unique RE 

which is significantly less of that of a BB, it is not included in the preceding table, and all plate-

appearances in which an IBB is issued are dropped from the dataset prior to the analysis. The 

reason for this is that the discretion to issue an IBB is solely awarded to the manager, and thus 

any plate appearance in which an IBB occurs is not representative of the pitcher’s choice of 

actions.  

 

Controls 

 

 Like the Kovash & Levitt study I am able to control for a variety of standard game 

circumstances such as inning, number of outs, number of runners on base, and count. The detail 

of the Pitch f/x measurements for each pitch allows me to control for certain factors unobserved 

in previous studies. Perhaps the most important circumstance that I am able to control for is pitch 

location. To get a truly ceteris paribus interpretation of the differences in the effectiveness of 

each pitch type one would ideally compare different pitch types in the same part of the strike 

zone: clearly a fastball thrown high and inside and a curveball thrown low and away differ in 

more dimensions than just pitch type. If certain pitches are thrown more frequently in areas of 

the zone where the batter is at either an advantage or disadvantage, then the estimates of those 

pitches on RE will be biased.  

In order to control for pitch location I divide the entire area over which pitches are 

located in my dataset, which includes areas both inside and outside of the strike zone, into 
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thirteen different zones. The first nine zones are areas that are likely to have substantially 

different average REs. For example, if hitters, on average, are able to hit balls better in a certain 

location, then this location will have a higher average RE. The final four zones encompass areas 

far outside of the strike zone, and thus pitches in these zones are likely to be mistakes and called 

balls. How the zones are structured in this area is less important since most of these pitches are 

called balls and the deviation of average RE across these zones will not vary as drastically as the 

first nine zones. The following diagram illustrates how I have apportioned the area over which 

pitches travel into zones for the purpose of location controls. 
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 In the preceding diagram the red area represents the official strike-zone as calibrated by 

Pitch f/x technicians prior to the start of the game. The area outside of the official strike-zone but 

within zones 1-9 is a 6-inch wide frame in order to account for umpiring inconsistency. Since 

umpires are not perfect and often call pitches that narrowly miss the official strike-zone, hitters 

often swing at these pitches, and thus the potential outcomes and average RE may vary 

substantially across these areas. Zones 10-13 represent all pitches that are thrown at least 6 

inches from any part of the strike zone, which will elicit very few swings and predominantly be 

called balls. If RE does in fact vary across these zones, and certain pitches are thrown with 

greater frequency in certain zones, then any estimators that seek to determine the impact of pitch 

type on RE will be biased if location is not controlled for. Since hitters are generally able to hit 

pitches in certain locations better than others, including location controls will remove the benefit 

of a pitch that arises solely as a result of the location and not the pitch type. 

 

Section VI: Results 

 

Replication of the Kovash & Levitt Study 

 

 Prior to analyzing the data using the empirical framework set out above I completed a 

replication of the Kovash & Levitt study, although I run separate regressions for the 2009 and 

2010 seasons while they pool the data across all seasons. I replicate the first four estimation 

procedures set forth in the Kovash & Levitt study; the first three regressions use the exact 

specifications, while the fourth represents a slight deviation. In their fourth regression they 

include fixed-effects for pitcher, batter, and pitcher*batter interactions. My strategy is similar, 
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although rather than including fixed-effects for pitcher, batter, and pitcher*batter interactions, 

which limits the identification to cases in which the same pitcher and batter meet on multiple 

occasions, I create ‘group fixed-effects’ and their interactions for pitchers and batters according 

to characteristics that presumably influence pitcher strategy.  

I stratify pitchers across three dimensions: handedness, velocity, and command. The 

groups for handedness are simple: each pitcher is designated as either right-handed or left-

handed. I then create three exhaustive, mutually exclusive groups for both pitcher velocity and 

command, which allows for classification of each pitcher according to his ability to throw hard 

and locate pitches. In order to assign pitchers into groups based on velocity I calculate the 

average fastball start speed for each pitcher on a seasonal basis, and then classify pitchers by the 

top, middle, and bottom third of these average start speeds. I use a similar strategy for control; 

for each pitcher I calculate the proportion of balls thrown in 0-0 counts over the span of the 

season8, and assign pitchers to groups representing the top, middle, and bottom third for this ‘ball 

rate.’  

I also characterize batters across two dimensions: handedness and ability. Like pitchers, 

batters are classified as either right-handed or left-handed (pitches in which switch hitters are 

batting are coded according to which side of the batter chooses for that given at-bat). To 

characterize batters based on ability I calculate the average OPS of each batter on a seasonal 

basis and assign them to groups representing the top, middle, and bottom third. Although OPS is 

not a direct measurement of ability, it does capture the batter’s performance over a given period 

of time, and since batter performance is highly visible to all pitchers, it likely exerts strong 

influence on a pitcher’s perception of a given batter’s ability.  

                                                           
8
 The validity of this measurement of control hinges upon the assumption that pitchers generally attempt to throw a strike on the first pitch of the 

at-bat. 



34 
 

I include these ‘group fixed-effects’ for both pitchers and batters and their interactions 

because the groups are based on characteristics of a given pitcher-batter matchup that directly 

influence a pitcher’s strategy. For example, a right-hander who throws 95 mph with poor control 

facing an elite left-handed hitter will employ a different strategy than a left-handed slow-

throwing command pitcher facing a mediocre right-handed hitter. If it happens that a particular 

matchup incentivizes the pitcher to throw a certain pitch type more often than others, and that 

particular matchup is either advantageous or disadvantageous to the hitter (as measured by the 

differential in average RE from the base-group matchup), then coefficients on the pitch types 

will be biased. 

Including interaction terms for the group fixed-effects (which essentially adds 108 unique 

‘matchup’ indicator variables as controls) should emulate a specification which includes pitcher, 

batter, and pitcher*batter fixed effects as long as the pitcher and batter characteristics that form 

the basis for the groups represent the essential determinants of pitcher strategy. Doing so will 

remove the benefit (or penalty) that any pitch receives from being use more (or less) frequently 

in matchups that favor the pitcher (or batter). In this case the use of broad ‘group fixed-effects’ 

may be preferable to fixed-effects for pitchers, batters, and their interactions, since it does not 

limit identification to cases in which the same pitcher and batter meet on multiple occasion, but 

rather situations in which certain types of pitchers meet certain types of batters on multiple 

occasions, and thus causes a comparatively smaller increase in standard errors.  

The results of the replication are presented in the following table, with each numbered 

column representing the corresponding specification from the Kovash & Levitt study. Although 

the general spirit of the results is similar to those found by Kovash & Levitt, some differences 

are observed, likely due to the separation of datasets by season. 
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  (1) (2) (3) (4) 

VARIABLES 2009 2010 2009 2010 2009 2010 2009 2010 

           

Fastball 0.093*** 0.118*** 0.029*** 0.047*** 0.031*** 0.050*** 0.049*** 0.068*** 

  -0.009 -0.009 -0.009 -0.008 -0.009 -0.008 -0.009 -0.009 

Curveball -0.159*** -0.082*** -0.036*** 0.021* -0.032*** 0.024** -0.024* 0.032*** 

  -0.013 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 

Slider -0.088*** -0.051*** -0.032*** 0.002 -0.028*** 0.006 -0.014 0.020* 

  -0.011 -0.011 -0.01 -0.01 -0.01 -0.01 -0.011 -0.011 

Inning1     0.066*** 0.058*** 0.040*** 0.029** 

      -0.013 -0.013 -0.013 -0.013 

Inning2     0.041*** 0.038*** 0.049*** 0.045*** 

      -0.013 -0.013 -0.013 -0.013 

Inning3     0.027** 0.037*** 0.036*** 0.043*** 

      -0.013 -0.013 -0.013 -0.013 

Inning4     0.062*** 0.073*** 0.060*** 0.069*** 

      -0.013 -0.013 -0.013 -0.013 

Inning5     0.041*** 0.054*** 0.049*** 0.061*** 

      -0.013 -0.013 -0.013 -0.013 

Inning6     0.065*** 0.059*** 0.061*** 0.054*** 

      -0.013 -0.013 -0.013 -0.013 

Inning7     0.022* 0.034*** 0.022* 0.034*** 

      -0.013 -0.013 -0.013 -0.013 

Inning8     0.015 0.021 0.012 0.019 

      -0.013 -0.013 -0.013 -0.013 

Extras     0.008 0.025 0.008 0.026 

      -0.023 -0.024 -0.023 -0.024 

Nonedown     0.097*** 0.095*** 0.094*** 0.093*** 

      -0.007 -0.007 -0.007 -0.007 

Onedown     0.080*** 0.071*** 0.080*** 0.070*** 

      -0.007 -0.007 -0.007 -0.007 

None_On     -0.052*** -0.053*** -0.054*** -0.058*** 

      -0.017 -0.017 -0.017 -0.017 

One_On     -0.049*** -0.032* -0.053*** -0.038** 

      -0.017 -0.018 -0.017 -0.018 

Two_On     -0.036** -0.021 -0.041** -0.026 

      -0.018 -0.019 -0.018 -0.019 

Observations 169,460 158,172 169,460 158,172 169,460 158,172 169,460 158,172 

R-squared 0.006 0.005 0.043 0.044 0.045 0.045 0.051 0.051 
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Column (1) presents the results from the simple regression of OPS on each pitch type 

with no controls, with changeup serving as the omitted base-group. This specification yields 

coefficients for fastball, slider, and curveball of .093, -.088, and -.159 for the 2009 season and 

.118, -.051, and -.082 for the 2010, all of which are individually significant at the 1% level. The 

magnitude of the coefficient on curveball in the 2009 season is the only substantial deviation 

from the Levitt & Kovash study for this specification, which indicates that, when nothing else is 

controlled for, curveballs are more likely to generate a positive outcome for the pitcher in 2009.  

The inclusion of count fixed-effects in column (2) greatly reduces the magnitude of the 

coefficients on all pitch types for both seasons, although the indicators for all pitch types remain 

significant in the 2009 data while slider is insignificant and curveball is only marginally 

significant in the 2010 data. The fact that the inclusion of count fixed-effects mutes the OPS gaps 

across all pitch types suggests that off-speed pitches are thrown with a higher frequency in 

pitcher’s counts and fastballs are thrown with a higher frequency in hitter’s counts. This makes 

sense intuitively as fastballs are easier to locate, and thus pitchers are more likely to rely upon 

them in situations where the danger of issuing a BB is high (which is always the case in a hitter’s 

count). Kovash & Levitt’s results display the same effect upon the inclusion of count fixed-

effects.  

The inclusion of fixed-effects for inning, outs, and runners on base in column (3) leaves 

the estimates of interest essentially unchanged, as is the case with the Levitt & Kovash study. 

The final and most saturated specification in column (4) yields coefficients of .049 and .068 for 

fastball in the 2009 and 2010 data respectively, which represent increases in magnitude over 

specification (3). The climbing magnitude on the coefficients for fastball as a result of the 

inclusion of ‘group fixed-effects’ and their interactions suggests that on average fastballs are 
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being thrown with a higher frequency in matchups which favor the pitcher, an example of which 

would be a hard throwing left-hander with excellent control facing a struggling left-handed 

batsman. The impact of both curveballs and sliders vary greatly across the two seasons: in 2009 

slider is insignificant and curveball has a marginally significant positive effect, while in 2010 

slider has a marginally significant positive effect and curveball has a highly significant positive 

effect. Kovash & Levitt report both curveball and slider as insignificant in their fourth 

specification. 

Chow tests for the first three specifications reject the null hypothesis that the effects of all 

independent variables are identical across the two seasons, though the null hypothesis is not 

rejected for the fourth specification, indicating that it may be preferable to pool the data for the 

most saturated specification. It is not surprising that the Chow test for the fourth specification 

reveals an inability to reject the null hypothesis; the inclusion of over 100 additional regressors 

(the ‘group fixed-effects’ and their interactions) substantially reduces the numerator degrees of 

freedom, thus putting downward pressure on the F-statistic and lowering the probability of a 

rejection. Although the results of the Chow tests imply that the data should not be pooled for the 

first three specifications, the following table reports the results of the Kovash & Levitt 

replication when the seasons are pooled. The table contains results that are remarkably similar to 

those found in the Kovash & Levitt study, which may suggest that the disparity between the 

results of the replication and the results of the Kovash & Levitt study is an artifact of running the 

regressions separately for each season.   
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  (1) (2) (3) (4) 
VARIABLES         

Fastball 0.107*** 0.039*** 0.042*** 0.060*** 
  (-0.006) (-0.006) (-0.006) (-0.006) 
Curveball -0.120*** -0.006 -0.003 0.005 
  (-0.009) (-0.009) (-0.009) (-0.009) 
Slider -0.068*** -0.014* -0.009 0.004 
  (-0.007) (-0.007) (-0.007) (-0.007) 
Inning1   0.062*** 0.035*** 
    (-0.009) (-0.009) 
Inning2   0.040*** 0.047*** 
    (-0.009) (-0.009) 
Inning3   0.032*** 0.039*** 
    (-0.009) (-0.009) 
Inning4   0.067*** 0.064*** 
    (-0.009) (-0.009) 
Inning5   0.048*** 0.055*** 
    (-0.009) (-0.009) 
Inning6   0.062*** 0.057*** 
    (-0.009) (-0.009) 
Inning7   0.028*** 0.028*** 
    (-0.009) (-0.009) 
Inning8   0.018* 0.016* 
    (-0.009) (-0.009) 
Extras   0.017 0.017 
    (-0.017) (-0.017) 
No_Outs   0.096*** 0.094*** 
    (-0.005) (-0.005) 
One_Out   0.076*** 0.075*** 
    (-0.005) (-0.005) 
None_On   -0.052*** -0.056*** 
    (-0.012) (-0.012) 
One_On   -0.041*** -0.046*** 
    (-0.012) (-0.012) 
Two_On   -0.029** -0.034*** 
    (-0.013) (-0.013) 

Observations 327,632 327,632 327,632 327,632 
R-squared 0.005 0.043 0.045 0.05 
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Results from an Alternative Empirical Strategy 

 

 The following section presents the results from the empirical strategy set forth in Section 

VI of this paper, in which RE is the dependent variable. This strategy analyzes all pitches from 

each plate appearance, rather than just the first, as in the Weinstein-Gould study, or the last, as in 

the Kovash & Levitt study.  Although the effectiveness of pitch types differ across seasons, as is 

the case in the Kovash & Levitt replication above, the general tone the results are strikingly 

similar to those produced by both Weinstein-Gould and Kovash & Levitt; not only do pitchers 

not optimize across pitch types, but they appear to rely too heavily upon the fastball over both 

seasons analyzed. The results for both seasons across all functional forms are displayed in the 

table on the following page.  

Column (1) presents the estimates from a simple regression of RE on fastball, curveball, 

and slider, with changeup serving as the omitted base-group. The disparity across seasons is 

again readily apparent. The 2009 data generates a coefficient of 0.000 for fastball, while both 

curveball and slider have similarly negative impacts on RE and are both significant at the 1% 

level. The 2010 data paints an extremely different picture: both fastball and slider are statistically 

significant at the 1% level with coefficients of .003 & -.004 respectively, while curveball has a 

coefficient of 0.000. Since this specification includes no controls whatsoever, the results merely 

indicate the difference between the average RE of each pitch type and the base-group, and thus 

are not especially useful due to the fact that they neglect to account for the impact on RE of a 

variety of game situations. 

 

 



40 
 

 
  (1) (2) (3) (4) 

VARIABLES 2009 2010 2009 2010 2009 2010 2009 2010 

         

Fastball 0.000 0.003*** 0.004*** 0.007*** 0.004*** 0.007*** 0.006*** 0.009*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Slider -0.008*** -0.004*** -0.008*** -0.003*** -0.007*** -0.003** -0.006*** -0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Curveball -0.007*** 0.000 -0.008*** -0.001 -0.008*** 0.000 -0.007*** 0.000 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Inning1     0.009*** 0.008*** 0.005*** 0.004*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning2     0.006*** 0.005*** 0.006*** 0.005*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning3     0.006*** 0.006*** 0.006*** 0.006*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning4     0.009*** 0.009*** 0.008*** 0.008*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning5     0.007*** 0.008*** 0.007*** 0.008*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning6     0.010*** 0.009*** 0.008*** 0.007*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning7     0.005*** 0.005*** 0.004*** 0.005*** 

     (0.001) (0.001) (0.001) (0.001) 

Inning8     0.003** 0.003** 0.003* 0.003** 

     (0.001) (0.001) (0.001) (0.001) 

Extras     0.003 0.004* 0.002 0.004* 

     (0.002) (0.002) (0.002) (0.002) 

One_Out     -0.002*** -0.003*** -0.002** -0.003*** 

     (0.001) (0.001) (0.001) (0.001) 

Two_Outs     -0.012*** -0.011*** -0.011*** -0.011*** 

     (0.001) (0.001) (0.001) (0.001) 

One_On     0.003*** 0.005*** 0.002*** 0.004*** 

     (0.001) (0.001) (0.001) (0.001) 

Two_On     0.004*** 0.006*** 0.004*** 0.006*** 

     (0.001) (0.001) (0.001) (0.001) 

Three_On     0.008*** 0.009*** 0.008*** 0.009*** 

     (0.002) (0.002) (0.002) (0.002) 

Observations 599,793 562,011 599,793 562,011 599,793 562,011 599,793 562,011 

R-squared 0 0 0.013 0.013 0.013 0.013 0.016 0.016 
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 Specification (2), which adds fixed-effects for pitch location, illustrates a substantial 

magnifying effect for the fastball coefficient across both seasons. The coefficients on the fastball 

indicator increase from 0.000 to 0.004 in the 2009 data and 0.003 to .007 in the 2010 data, 

implying that the location-specific benefits to the fastball were relatively constant across the 

seasons. The impact of throwing a fastball on RE becomes statistically significant at the 1% level 

across both seasons, whereas in specification (1) fastball had no effect (significant or practical) 

on RE in the absence of location controls in the 2009 data. The inclusion of location controls has 

virtually no effect on the impact of throwing curveballs and sliders, with the coefficients on these 

indicators remaining constant across the first two specifications in both seasons. 

The upward sensitivity of the impact of throwing a fastball on RE suggests that, on 

average, fastballs are thrown in locations in which hitters are less likely to produce damaging 

outcomes for the pitcher. This result is expected as fastballs are considerably easier for pitchers 

to command than off-speed pitches, and thus are more readily able to exploit location-specific 

batter disadvantages. Since, in the context of this study, the pitcher-batter interaction is modeled 

such that the pitcher only chooses pitch types and not location, including fixed-effects for pitch 

location strips away the benefit a pitcher receives from strategically locating fastballs. It is also 

unsurprising that the inclusion of controls for pitch location does not affect the impact of 

throwing off-speed pitches since curveballs and sliders are notoriously difficult to locate 

effectively, and as a result are unlikely candidates for pitches to be strategically located.   

The following tables illustrate the average RE for each location zone across the two 

seasons, as well as the proportion of fastballs to total pitches thrown in each location zone. As 

expected from the upward sensitivity of the fastball coefficient to the inclusion of the location 
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controls, the tables indicate that pitchers tend to throw fewer fastballs in zones in which the hitter 

is at a substantial advantage.             

 

         Average RE by Zone (2009)                   Average RE by Zone (2010) 

 

        

          Fastball Rate by Zone (2009)                Fastball Rate by Zone (2010) 
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 The preceding tables indicate that, amongst pitches located within Zones 1-9 (those zones 

which are likely to elicit swings), batter leverage is greatest on low pitches.  Additionally, the 

proportion of fastballs to total pitches thrown in Zones 1-9 is lowest on low pitches, suggesting 

that pitchers are able to avoid locations in which they are most vulnerable to offensive damage 

with fastballs. The consistently high average RE values for Zones 10-13 is due to the fact that not 

only are these pitches more likely to be called balls (which invariably carry positive RE values), 

but also that they are much less likely to elicit swings than pitches in Zones 1-9, and thus rarely 

generate outs, which carries the highest negative RE value. Pitchers also seem to avoid these 

zones with fastballs, especially Zones 10 and 13 which represent the outside and low locations, 

although admittedly to a lesser extent than they do with low and hittable locations. The above 

tables clearly demonstrate that the fastball provides a benefit to pitchers in the fact that it is 

easier to throw with precision, which allows pitchers to strategically locate it. This effect gives 

the indicator for fastball a downward bias in the specification (1), which is corrected for with the 

inclusion of location controls. 

 In accordance with the Kovash & Levitt replication, the inclusion of fixed-effects for 

inning, outs, and number of runners on base, which corresponds to column (3), produces 

virtually no effect on the variables of interest. This suggests that no pitch type is thrown 

substantially more or less often in a game situation in which the batter is a clear advantage and 

disadvantage. Column (4) adds the ‘group fixed-effects’ explained above (although in this case 

batters are placed into groups segmented by average RE, not OPS), and has a generally 

magnifying effect on the impact of a fastball. The coefficient on fastball rises from .005 to .007 

in 2009 and .008 to .010 in 2010, with both estimates remaining statistically significant at the 1% 
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level. In 2009 both curveball and slider are relatively unaffected by the inclusion of ‘group fixed-

effects’; each has a coefficient of -.006 and is significant at the 1% level. In the 2010 data the 

inclusion of ‘group fixed-effects’ moderately reduces the impact of throwing a slider, with 

coefficient falling from -.003 in specification (3) to -.001 in specification (4), rendering is 

statistically insignificant.  

The results from the most saturated specification indicate that, not only are pitchers not 

optimizing, but they employ different sub-optimal strategies across seasons. The 2009 results 

suggest that pitchers threw too many fastballs and too few curveballs and sliders, relative to 

changeups. The 2010 results seem to indicate that pitchers adopted a relatively better strategy 

than in 2009 by throwing curveballs and sliders such that the marginal benefit from throwing 

them was reduced to zero, but continued to rely too heavily on the fastball, which resulted in a 

higher penalty to throwing the fastball. The differences in the estimates of all regressors across 

both seasons are statistically significant at the 1% level across all specifications, with Chow-tests 

for each specification yielding F-statistics in excess of the associated critical values.   

The estimates from specification (4) which uses RE as the dependent variable indicate 

that a pitching staff could have allowed 17 and 24 fewer runs in the 2009 and 2010 seasons 

respectively, by throwing 10% fewer fastballs, though this calculation assumes that each fastball 

is replaced with a changeup, and that the RE differential across pitch type remains constant 

despite the change in strategy.  These estimates likely overstate the downside to throwing too 

many fastballs, as replacing fastballs with changeups (or any other pitch for that matter) would 

likely decrease the RE gap between the fastball and the replacement pitch due to behavioral 

responses by the hitter.  Despite the substantial adjustments to the empirical strategy, my results 

are surprisingly similar to those of Kovash & Levitt, who estimate that a pitching staff could 
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reduce the numbers of runs allowed over a season by approximately 15, though the authors do 

not specify which pitches (and in what proportions) should replace the fastballs.  Clearly the 

‘runs added’ estimates are highly dependent upon the specifications from which we draw the 

estimates, so I include the following table, which contains ‘potential runs saved’ estimates for 

each specification across both seasons, in order to quantify the sensitivity of these estimates to 

inclusion of various controls. 

 

 

                      ‘Potential Runs Saved’ by Season and Specification 

Season (1) (2) (3) (4) 

2009 0.00 9.72 9.72 14.58 
2010 7.29 17.01 17.01 21.87 

 

 

 

Sensitivity of the Estimates to Subsets of the Data 

 

The estimates generated above suggest that MLB pitchers fail to optimize across pitch 

types with respect to RE, and that they do so to an extent that inflicts tremendous losses on their 

teams, and perhaps themselves individually in the form of less lucrative contracts than they could 

otherwise command. This result is highly counter-intuitive given that professional pitchers are 

expert-level agents; possess extensive information concerning the strengths, weaknesses, and 

behavioral patterns of their opponents; and face tremendous monetary consequences for sub-

optimal performance.  If the empirical strategy presented above correctly models the pitcher-

batter interaction so that the that failure to detect optimal mixed-strategies is not merely an 
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artifact of improper characterization of the interaction, then a logical next step is to determine 

what factors cause pitchers to deviate from optimal play. 

Isolating instances in which pitchers adhere to the predictions of the theory will allow for 

the identification of characteristics that systemically differ across those who optimize and those 

who do not, and may contain some predictive power regarding optimization. The table on the 

following page presents the estimates from specification (4) for different subsets of the 2009 data 

in order to illustrate a first-attempt at identifying subsets of the data in which optimization is 

observed. The first three columns represent the bottom, middle, and top third of pitchers by 

average RE, while the last the three columns represent the bottom, middle, and top third of 

batters by average RE.  

The table reveals an unexpected trend: the positive RE gap on fastball is actually 

increasing in pitcher performance, with the best pitchers receiving the worst outcomes on the 

fastball.  On the other hand the negative impact of off-speed pitches on RE diminishes with 

pitcher performance, implying that the best pitchers tend to throw curveballs and sliders such 

that the resulting RE is equalize with that of the changeup. While these results are initially 

surprising, one potential explanation lies in the failure of my empirical strategy to account for 

pitch-sequencing concerns. As stated in the Section V, I value non-terminal pitches solely based 

upon their classification as balls or strikes. In this case, a pitch that is used strategically to set up 

the batter for failure on the following pitch obtains no value for its role in recording the out, but 

rather only for its role in transitioning the count. It may be that the best pitchers in MLB are able 

to effectively retire batters due to sophisticated pitch sequencing. If these pitchers primarily use 

fastballs to set up batters, and then record outs with off-speed pitches, the fastball will generate 

fewer negative RE values, and thus will look as though it results in a worse outcome on average.  
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 (1) (2) (3) (4) (5) (6) 
VARIABLES       
       
Fastball 0.004* 0.007*** 0.010*** 0.009** 0.006*** 0.006*** 
 (0.002) (0.001) (0.002) (0.004) (0.001) (0.001) 
Slider -0.010*** -0.004** -0.003* -0.013** -0.006*** -0.006*** 
 (0.003) (0.002) (0.002) (0.005) (0.002) (0.002) 
Curveball -0.007** -0.007*** -0.001 -0.022*** -0.007*** -0.006*** 
 (0.003) (0.002) (0.002) (0.006) (0.002) (0.002) 
Inning1 -0.003 0.002 0.003 0.010 0.001 0.006*** 
 (0.004) (0.002) (0.002) (0.009) (0.002) (0.002) 
Inning2 0.001 0.003 0.005** -0.005 0.006*** 0.007*** 
 (0.004) (0.002) (0.002) (0.006) (0.002) (0.002) 
Inning3 0.001 0.003 0.004** -0.012* 0.005** 0.007*** 
 (0.004) (0.002) (0.002) (0.006) (0.002) (0.002) 
Inning4 0.006* 0.005** 0.005** -0.012* 0.009*** 0.009*** 
 (0.004) (0.002) (0.002) (0.006) (0.002) (0.002) 
Inning5 0.004 0.004 0.006*** -0.005 0.005** 0.008*** 
 (0.004) (0.002) (0.002) (0.006) (0.002) (0.002) 
Inning6 0.009** 0.005** 0.006*** -0.005 0.010*** 0.008*** 
 (0.004) (0.002) (0.002) (0.007) (0.002) (0.002) 
Inning7 0.005 0.002 0.004** -0.010 0.003 0.006*** 
 (0.004) (0.002) (0.002) (0.007) (0.002) (0.002) 
Inning8 0.005 0.000 0.002 -0.002 0.003 0.003 
 (0.004) (0.002) (0.002) (0.007) (0.002) (0.002) 
Extras 0.009 0.001 -0.000 -0.007 -0.001 0.005 
 (0.007) (0.004) (0.003) (0.012) (0.004) (0.003) 
Onedown -0.001 -0.001 -0.003** -0.003 -0.002 -0.002** 
 (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) 
Twodown -0.014*** -0.010*** -0.009*** -0.004 -0.010*** -0.012*** 
 (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) 
One_on 0.006*** 0.000 0.002* -0.007** 0.003** 0.003*** 
 (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) 
Two_on 0.011*** 0.002 0.001 0.001 0.004*** 0.004*** 
 (0.002) (0.001) (0.001) (0.004) (0.001) (0.001) 
Three_on 0.013*** 0.004 0.008*** -0.002 0.009*** 0.008*** 
 (0.004) (0.003) (0.003) (0.006) (0.003) (0.003) 
       
Observations 113,746 263,241 222,806 19,975 225,102 354,716 
R-squared 0.012 0.015 0.021 0.057 0.017 0.011 
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Section VII: Conclusions 

 

 The results of this study are in direct agreement with both papers that have tested for 

optimal mixed-strategies in the pitcher-batter interaction: MLB pitchers appear to rely too 

heavily upon the fastball, rendering it significantly less effective than the changeup, curveball, 

and slider. The increased impact of throwing a fastball on RE in the presence of controls for 

pitch location suggests that the estimates on the impact of a fastball in the previous studies, 

which were unable to control for pitch location, may have contained a downward bias, perhaps 

causing the authors to understate the penalty inflicted upon pitchers from throwing fastballs too 

frequently. The impact of throwing both sliders and curveballs on RE varies substantially across 

seasons and specifications, thus I can draw no strong conclusions regarding their effectiveness 

compared to the changeup.  

 The consistently positive impact of throwing a fastball on RE across all specifications 

used in all studies analyzing this topic serves as strong evidence that MLB pitchers do not 

optimize according to the predictions of the minimax theorem, and thus perform below their 

potential. Since compensation in professional sports is a direct function of performance, it seems 

that players are ‘leaving money on the table’. Interesting work on this issue going forward will 

attempt to identify groups of MLB pitchers whose strategies do adhere to the standard 

predictions of the minimax theorem. Doing so could shed light upon what traits, if any, 

systematically differentiate those that optimize from those that do not.  Locating specific 

characteristics or situations in which pitchers do optimize will provide more general behavioral 

insight into why certain agents underperform their potential in settings outside of professional 

sports which been unable to generate data indicating the use of optimal mixed-strategies.  
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 Another potential explanation for the inability to detect optimal mixed-strategies is that 

the studies analyzing this issue have not successfully accounted for the nuances of the pitcher-

batter interaction in their empirical strategies. The finding in Section VI that the best pitchers 

appear to employ the worst strategies (with respect to overuse of the fastball) may be interpreted 

as evidence that future work on this topic must attempt to incorporate a valuation system for 

strategic pitch sequencing. In this case the benefit (or penalty) to a terminal pitch that records an 

out (or results in an unfavorable outcome to the pitcher) must be somehow apportioned over 

previous pitches which may have contributed to this final outcome. The use of RE as the 

outcome variable in this study represents a first step towards this end in that is able to assign 

value to non-terminal pitches, though it is clearly limited in its ability to account for strategic 

pitch sequencing. Future studies attempting to identify optimal mixed-strategies amongst MLB 

pitchers can produce more credible estimates by incorporating a means of attributing value to 

pitches for their use in strategic pitch-sequencing situations. 
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