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Probabilistic Non-Local Means
Yue Wu, Brian Tracey, Premkumar Natarajan and Joseph P. Noonan

Abstract—In this paper, we propose a so-called probabilistic
non-local means (PNLM) method for image denoising. Our main
contributions are: 1) we point out defects of the weight function
used in the classic NLM; 2) we successfully derive all theoretical
statistics of patch-wise differences for Gaussian noise; and 3) we
employ this prior information and formulate the probabilistic
weights truly reflecting the similarity between two noisy patches.
Our simulation results indicate the PNLM outperforms the classic
NLM and many NLM recent variants in terms of the peak signal
noise ratio (PSNR) and the structural similarity (SSIM) index.
Encouraging improvements are also found when we replace the
NLM weights with the PNLM weights in tested NLM variants.

Index Terms—Image Denoising, Non-Local Means, Probabilis-
tic Modeling, Adaptive Algorithm

I. INTRODUCTION

Non-local means (NLM) is a popular data-adaptive image
denoising technique introduced by Buades et al. [1], [2]. This
technique is proven to be effective in many image denoising
tasks and analyzes images on a patch-by-patch basis. In the
classic NLM, a 2D clean image x = {xl}l∈I defined on the
spatial domain I is assumed to be contaminated by identical-
ly and independently distributed (i.i.d.) zero-mean Gaussian
noise with an unknown variance σ2, i.e.

yl = xl + nl, and nl ∼ N (0, σ2). (1)

where yl, xl and nl denote the noisy observation, the clean
image pixel and the pixel noise, respectively. The NLM then
estimates the clean pixel xl by using a weighted sum of the
noisy pixels within a prescribed search region S, typically a
square or a rectangular region:

x̂l =
∑
k∈Sl wl,kyk/Wl (2)

where each weight is computed by quantifying the similarity
between two local patches (denoted as P) around noisy pixels
yl and yk as shown in Eq. (3),

wl,k = exp
(
−
∑
j∈P(yl+j − yk+j)2/h

)
(3)

and the summation of all weights is denoted as

Wl =
∑
k∈Sl wl,k. (4)

Although the original NLM [1], [2] includes a weak Gaussian
smoother, the weight (3) is a simplified version with similar
performance that is also widely accepted [3].
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Within the NLM framework, much progress has been made
in recent years. Some authors have focused on fast NLM
implementation [4], [5], while others have explored NLM pa-
rameter optimization [3], or have adjusted the NLM framework
to achieve better performance [6], [7]. We notice that one
shared interest of these three topics is the weight function of
the NLM, which is the core of the NLM algorithm. Calculation
of NLM weights is the most computationally expensive part
of the algorithm and is related to many parameter optimization
schemes. It has long been noticed that the NLM weight
function is somewhat inadequate [8] because it tends to give
non-zero weights to dissimilar patches. However, the reason
behind this inadequacy has not yet been fully explored.

In this letter, we focus on the NLM weight function and
propose a new probabilistic solution. The rest of the paper is
organized as follows: Sec. II shows the defects of the NLM
weights; Sec. III proposes our PNLM framework with new
probabilistic weights; Sec. IV shows simulation results; and
we conclude the letter in Sec. V.

II. PROBLEMS WITH THE NLM WEIGHT FUNCTION

The NLM weight (3) is considered as wl,k=exp(−Dl,k/h
′),

where h′ is a translation of h in (3) and

Dl,k =
∑
j∈P(yl+j − yk+j)2/2σ2 (5)

is the patch difference between the patches around yl and yk.
In this way, (5) can be interpreted as the standard quantitative
χ2 test to measure the similarity of the two samples [9]. The
statistical interpretation of the exponential function used in (3)
is not straightforward [9], although may be possible to relate
it to Gaussian kernels used in probability density estimation.
Nevertheless, this exponential function gives a larger weight to
a pixel with a smaller patch difference (Fig. 1(a)). Intuitively,
this idea is quite reasonable, as it means that the NLM relies
more on pixels with smaller patch differences. However, we
demonstrate below that this exponential function makes the
NLM weights somewhat problematic.

From now on, we consider Dl,k as a random variable (r.v.)
and assume patches around xl and xk match perfectly, i.e.∑

j∈P(xl+j−xk+j)2 =0. (6)

If they are disjoint, then Dl,k∼χ2
|P|, where | · | denotes the

cardinality of P (i.e. the number of pixels in P). Fig. 1 shows
this distribution on the right, with the corresponding NLM
weight function on the left. It is clear that the NLM weight
function gives two equally probable Dl,ks very different
weights and that it fails to give the largest weight to the most
probable case. For Dl,ks close to its expected value, the weight
errors are not too large because the corresponding region in
the exponential curve is almost linear with a moderate slope.
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Fig. 1: NLM weight function and the distribution of 7×7 patch dif-
ferences. (a) the NLM weight for h = σ2|P|; and (b) the distribution
of disjoint patch differences. Red and green circles denotes two equal
probable patch differences, while are biasedly weighted in NLM.

However, for Dl,ks far away from its expected value, weight
errors are very large because the NLM function tends to give
nonzero weights to these highly improbable cases, so weight
errors grow quickly. In practice, correcting over-weighted
weights has been shown to improve NLM performance. For
example, the center pixel weight (CPW) in NLM is unitary and
thus over-weights center pixels. [10], [11] report noticeable
improvement just by tuning these over-weighted CPWs.

III. PROBABILISTIC NON-LOCAL MEANS

Instead of including the exponential function in weighting
pixels, we propose the following probabilistic weight

wl,k = fl,k
(
D̂l,k/ρ

2
)

(7)

where fl,k(·) is the theoretical probability density function
(p.d.f.) of the r.v. Dl,k, D̂l,k is the estimated distance with
estimated variance σ̂2 in (5), and ρ is a tuning parameter. This
weight function (7) can be interpreted as the probability of
seeing a noisy patch difference when two clean patches match
perfectly. Since it is clear we shall give a smaller weight in the
more typical case when this perfectly matching condition fails,
(7) then gives the largest similarity weight we shall consider.

A. Theoretical Distribution of Patch-wise Distance

Pretend we know the true noise variance σ2 (later we will
show this knowledge is unnecessary). Our goal is to derive the
theoretical p.d.f. of the patch difference when the two clean
patches around pixel xl and xk are perfectly matching (see
(6)). To do so, we denote the pixel distance dl,k as

dl,k=(yl − yk)2/2σ2 (8)

and thus we have Dl,k of the form that

Dl,k =
∑
j∈P dl+j,k+j . (9)

Because two patches are perfectly matching and noise is i.i.d.,
for all j ∈ P we have

dl+j,k+j =
(nl+j − nk+j)2

2σ2
∼ χ2

1.

If all dl+j,k+js are i.i.d., then we have Dl,k∼χ2
|P|, whose mean

is |P| and variance is 2|P|. However, the i.i.d. assumption does
not hold when the two patches overlap, as is the case for many

pairs of patches. Fortunately, it is known that such a summed
correlated χ2 distribution can be well approximated [12] as,

Dl,k ∼ γl,kχ2
ηl,k

(10)

where parameters γl,k and ηl,k can be determined by the first
two cumulants of Dl,k [12] as shown below.

γl,k = var[Dl,k]/(2E[Dl,k]) (11)

ηl,k = E[Dl,k]/γl,k (12)

The cumulant E[Dl,k] is straightforward to find, and it is

E[Dl,k]=
∑
j∈P E[dl+j,k+j ] = |P|. (13)

With regards to var[Dl,k] , the following identity always holds

var[Dl,k] =
∑
i,j∈P cov[dl+i,k+i, dl+j,k+j ] (14)

where the covariance can be written as follows.

cov[dl+i,k+i, dl+j,k+j ] = E[dl+i,k+idl+j,k+j ]− µ2
dl,k

(15)

This equation compares two pairs of r.v.s, Nil,k={nl+i, nk+i}
and Njl,k={nl+j , nk+j}, where l, k are distinctive patch center
indices and i, j are location indices within the patch. Either
0, 1 or 2 of these values may be repeated. If nl, nk, nu, nv
are distinctive noise observations from N (0, σ2), it can be
demonstrated that

E[n4l /σ
4] = 3 (16)

E[n2l n
2
k/σ

4] = 1 (17)

E[nlnknunv/σ
4]=E[n2l nknu/σ

4]=E[n3l nk/σ
4]=0 (18)

This implies that, by expanding E[dl+i,k+idl+j,k+j ] terms, we
can find its expectations under different conditions as follows.

E[dl+i,k+idl+j,k+j ] =


3, if |Nil,k ∩ Njl,k| = 2

1.5, if |Nil,k ∩ Njl,k| = 1

1, if |Nil,k ∩ Njl,k| = 0

(19)

Since var[Dl,k] is the summation over the |P|× |P| covariance
matrix, each term of which is dependent on the number of
overlapping pixels |Nil,k∩N

j
l,k|, var[Dl,k] can be simply found

by computing the number of terms for each case in (19). Case
|Nil,k∩N

j
l,k|= 2 happens only for i= j, i.e. covariance terms

along the main diagonal, and thus there are |P| terms of this
kind. Case |Nil,k∩N

j
l,k|=1 happens for one pixel overlapping.

Denote Ol,k as the set of overlapping pixels between two
patches, then the number terms of this case is 2|Ol,k|, where
multiplier 2 is from the symmetry of a covariance matrix and
cardinality |Ol,k| is the number of overlapping pixels. Case
|Nil,k∩N

j
l,k|=0 happens for all disjoint pixel pairs. The number

of terms of this type is |P|2−|P|−2|Ol,k|. These results, together
with the fact that µ2

dl,k
=1, are used to find var[Dl,k] as

var[Dl,k] = |P|·(3−1)+2|Ol,k|·(1.5−1)+0=2|P|+|Ol,k| (20)

Since Ol,k is known once l and k are given, var[Dl,k] is then
also known. As a result, γl,k and ηl,k in (11)-(12) can be fully
determined, implying the p.d.f. of Dl,k is

fl,k(D)=χ2
ηl,k

(D/γl,k)=
(D/γl,k)ηl,k/2−1exp(−D/2γl,k)

2ηl,k/2Γ(ηl,k/2)
. (21)
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The different spatial relationships of patch pairs imply differ-
ent |Ol,k|, thus causing different var[Dl,k], γl,k, and finally
p.d.f. fl,k. This conclusion means that NLM weights calculat-
ed without considering spatial correlations are inadequate.

B. Parameters Discussions

Above we did not use fl,k(D̂l,k) as our weight function, but
instead used fl,k(D̂l,k/ρ

2). The parameter ρ2 provides a way
to adjust our probabilistic model when an estimated variance
σ̂2 is used instead of the true σ2. When

ρ2 = σ2/σ̂2 (22)

reflects the ratio of the true noise variance to the estimated
one, all previous derivations hold because

Dl,k =
σ̂2

σ2
D̂l,k = D̂l,k/ρ

2.

The raw probabilistic CPW wl,l=fl,k(0)≈0 under-weights
a noisy center pixel. A more plausible CPW is

wl,l = χ2
|P|(|P|). (23)

which is the same as the weight of the most probable case.
This CPW is used in the rest of the letter.

IV. SIMULATION RESULTS

All of the following simulations are done under the
MATLABr r2012b environment. Our two goals are 1) to show
that the derived p.d.f. fl,k in (21) closely approximates its
true p.d.f.; and 2) to confirm the superiority of the proposed
probabilistic weights and PNLM.

Fig. 2 shows the var[Dl,k] map for a 7×7 search region Sl
with 3×3 patches and the six typical theoretical p.d.f.s fl,k,
plotted with the corresponding sample distributions estimated
from 100,000 realizations on a noise image n, each pixel nl
follows an i.i.d. standard GaussianN (0, 1). It is noticeable that
the var[Dl,k] map is location-dependent and isotropic with one
of the six theoretical values {18,19,20,21,22,24}. The more
pixels overlap, the larger var[Dl,k] is, implying a smaller peak
on its p.d.f. It is clear that the predicted p.d.f.s are very close
to those estimated from a large number of samples.

Since it is clear that the accuracy of the fl,k approximation
degrades as correlation increases, the approximation accuracy
of the most-overlapped cases can be used to characterize the
worst-case accuracy. For each combination of search region
Sl and patch size P, there are four possible ks that attain
the maximum correlation, all of which are one pixel away
from the center pixel (see examples for k=18, 24, 26, and
32 in Fig. 2-(a)). In Table I, we report the averaged P-
values of goodness of fit tests for the most correlated fl,ks,
where each P-value is the averaged from P-values of the four
most correlated fl,ks. Because all observed P-values are above
5%, we say the approximated theoretical p.d.f. (21) gives
satisfactory predictions, so these p.d.f.s can reliably be used
to quantify patch similarities.

In the following simulation, we compare the three pairs
of NLM and PNLM algorithms, namely 1) the classic NLM

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 2: Theoretical and estimated p.d.f. fl,ks for 7×7 search region
and 3×3 patches. (a) theoretical var[Dl,k] map (in each cell, white
indices indicate ks in Sl, background colors represent the magnitude
of var[Dl,k]). (b)-(g) theoretical (red dash lines) and estimated (blue
bars) p.d.f. fl,ks for k=8 (var[Dl,8]=18), k=9 (var[Dl,9]=19),k=
10 (var[Dl,10] = 20),k= 11 (var[Dl,11] = 21), k= 17 (var[Dl,17] =
22) and k=18 (var[Dl,18]=24), respectively.

TABLE I: Averaged P-values of goodness of fit tests for the observed
sample distributions.

Search Region Size
7 11 15 21 29

Pa
tc

h
Si

ze 3 0.5853 0.6865 0.2252 0.1001 0.5612
5 0.2675 0.3125 0.3374 0.5746 0.3501
7 0.3967 0.4659 0.1545 0.2645 0.4282
9 0.4741 0.8665 0.5233 0.3405 0.6582

and the proposed PNLM, 2) the classic NLM with the James-
Stein Shrinkage (JSNLM) [11] and the proposed PNLM with
the James-Stein Shrinkage (PSJNLM), and 3) the nonlocal
median with the classic weights (NLEM) [6] and the nonlocal
median with the probabilistic weights (PNLEM). The only
difference between the two algorithms in each pair is the
weight function. With regards to the parameter settings, we
use patch size 7 and search region size 21 for all methods.
For the temperature parameter h in NLMs, we use h= |P|σ2,
which is nearly optimal and suggested in [3], and ρ = 1 is
used in PNLMs. To quantify the quality of a denoised method,
we compute the average PSNR [3] and SSIM [13] scores from
10 realizations for each method and each noise level. These
results are reported in Table II.

From Table II, it is clear that 1) the proposed PNLM method
outperforms the NLM method and those recent variants like
NLEM and JSNLM; and 2) by replacing the NLM weight
with the new proposed probabilistic one, both NLEM and
JSNLM are improved in terms of higher PSNR/SSIM scores.
Fig.3 gives sample denoising results and method noise images
of the NLM and PNLM algorithms. These results show the
effectiveness of the new proposed probabilistic weight and the
superiority of the PNLM framework.
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TABLE II: Performance comparisons for NLM and PNLM methods
PSNR(dB)\ σ 10 20 30 40 50 60 70 80 90 100

ca
m

er
am

an

NLM 32.57 28.92 26.98 24.98 23.52 22.52 21.84 21.24 20.82 20.44
PNLM 32.47 29.08 27.44 26.26 25.19 24.13 23.26 22.44 21.84 21.31
NLEM 32.66 28.90 26.63 24.78 23.35 22.16 21.78 21.31 20.95 20.55

PNLEM 33.06 29.42 27.36 25.72 24.90 23.87 23.11 22.28 21.73 21.13
JSNLM 32.64 29.01 27.13 25.46 24.12 23.10 22.33 21.61 21.09 20.63

PSJNLM 32.21 29.08 27.45 26.16 25.07 24.05 23.20 22.40 21.77 21.23

ho
us

e

NLM 34.08 31.30 28.79 26.88 25.62 24.66 23.85 23.31 22.90 22.45
PNLM 34.92 32.40 30.48 28.70 27.25 26.14 24.98 24.17 23.57 22.98
NLEM 34.30 30.43 27.80 26.53 25.51 24.88 24.13 23.52 22.92 22.43

PNLEM 34.56 31.97 30.24 28.64 27.07 26.11 24.90 24.14 23.38 22.94
JSNLM 34.62 31.70 29.29 27.30 25.94 24.87 23.98 23.35 22.86 22.37

PSJNLM 34.81 32.38 30.36 28.58 27.11 25.89 24.82 23.99 23.36 22.75

le
nn

a

NLM 33.74 30.91 28.72 27.14 26.03 25.13 24.42 23.88 23.44 23.03
PNLM 34.59 32.07 30.17 28.58 27.32 26.23 25.33 24.59 23.98 23.43
NLEM 33.56 30.00 28.41 27.30 26.47 25.65 25.05 24.29 23.64 23.12

PNLEM 33.78 31.21 29.64 28.32 27.26 26.28 25.58 24.80 24.20 23.69
JSNLM 34.38 31.41 29.21 27.49 26.26 25.26 24.47 23.85 23.33 22.86

PSJNLM 34.72 32.07 30.09 28.48 27.20 26.07 25.15 24.38 23.74 23.15

ch
ec

ke
r

NLM 39.04 33.80 30.95 28.94 27.37 25.94 24.45 23.25 21.84 20.87
PNLM 40.34 35.17 32.31 30.26 28.38 26.71 25.37 24.50 23.29 22.76
NLEM 39.68 34.13 30.90 28.94 27.07 25.62 24.59 23.54 22.66 22.09

PNLEM 39.72 34.49 31.25 29.18 27.15 25.77 24.68 23.78 22.93 22.52
JSNLM 39.03 33.79 30.93 28.93 27.35 25.91 24.42 23.22 21.81 20.84

PSJNLM 34.64 30.86 31.23 29.73 27.95 26.39 25.08 24.25 23.10 22.60
SSIM(%)\ σ 10 20 30 40 50 60 70 80 90 100

ca
m

er
am

an

NLM 91.08 82.92 78.50 73.87 68.97 64.18 59.78 55.58 51.87 48.69
PNLM 91.64 84.65 80.23 76.61 73.26 69.72 66.18 62.72 59.45 56.60
NLEM 88.68 80.24 72.53 64.98 59.15 53.04 48.67 43.96 40.45 35.95

PNLEM 91.16 83.22 78.13 73.31 68.89 63.11 58.90 54.51 50.54 46.18
JSNLM 91.23 84.32 78.91 73.63 68.74 64.01 59.62 55.34 51.36 48.23

PSJNLM 89.69 84.04 79.29 74.97 71.01 66.98 63.13 59.30 55.61 52.82

ho
us

e

NLM 87.63 83.77 79.88 75.11 70.63 66.34 62.16 58.30 54.86 51.40
PNLM 89.38 85.00 81.72 78.18 74.70 71.05 67.43 63.99 60.81 58.05
NLEM 88.06 81.79 75.43 69.11 63.09 57.09 51.09 45.81 41.19 37.04

PNLEM 89.17 84.11 79.92 75.17 70.40 65.40 59.92 54.59 49.58 46.80
JSNLM 89.12 84.14 79.54 74.52 69.78 65.19 60.80 56.94 53.33 49.86

PSJNLM 89.34 84.57 80.64 76.45 72.35 68.03 63.80 60.11 56.49 53.34

le
nn

a

NLM 87.86 83.98 79.39 74.90 70.72 66.72 62.87 59.23 55.82 52.59
PNLM 89.69 85.00 81.18 77.56 74.16 70.78 67.57 64.51 61.44 58.81
NLEM 88.21 81.19 75.44 69.48 63.71 57.57 52.22 46.92 42.29 38.54

PNLEM 89.56 84.02 79.03 74.05 69.42 64.64 60.09 55.85 51.87 48.25
JSNLM 89.37 83.94 79.16 74.48 69.95 65.67 61.61 57.86 54.32 50.99

PSJNLM 89.75 84.64 80.21 76.00 71.93 67.97 64.16 60.70 57.23 54.11

ch
ec

ke
r

NLM 99.01 97.38 95.35 93.23 90.75 87.94 84.22 80.76 76.31 72.00
PNLM 99.33 98.32 97.03 95.68 93.82 91.79 89.48 87.61 84.87 82.95
NLEM 99.10 97.67 95.46 92.65 89.20 85.12 81.90 78.73 74.26 71.71

PNLEM 99.22 97.99 96.03 94.26 91.83 88.85 85.91 83.16 79.38 77.35
JSNLM 99.00 97.34 95.24 93.11 90.53 87.59 83.79 80.23 75.65 71.18

PSJNLM 94.25 92.72 95.09 93.74 91.66 89.53 86.86 84.83 82.02 80.14

V. CONCLUSION

In this letter, we pointed out the insufficiency of the NLM
weights and showed a new promising PNLM framework,
whose weights better reflect patch similarities. The proposed
PNLM framework connects the denoising process and the
noise type and thus is meaningful for denoising other types of
noise. As long as a noise p.d.f. is known, we can estimate fl,k
correspondingly. In this way, a universal denoising framework
(see example in [14]) for multiple types of known noises and
mixed noises may be developed. In addition, the proposed
PNLM can also be extended to capture non i.i.d. noises,
because one can easily to replace the p.d.f. of patch difference
fl,k with more general forms. For example, for Gaussian
noises with changing variance,

∫
fl,k(D|σ2)Pr(σ2)dσ2 can be

used in place of fl,k(D). The proposed PNLM also provides a
theoretical basis to quantify patch similarities, namely critical
values D∗±α such that Pr(D∗−α ≤D≤D∗+α |fl,k)=α, which can
be used as early terminations (see [4] for similar usage) and as
thresholds to reject or accept a so-called similar patch, e.g. the
empirical BM3D [15], [16] hard thresholds τmatch in Eq. (2)
of [15]. A PNLM implementation is provided in MATLABr

central file exchange site (file ID: #41390).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: NLM and PNLM denoising results for σ=80 (cropped and
enlarged from results of image checker). (a) clean image; (b) noisy
observation; (c) to (h): denoising results and method noise images of
NLM, PNLM, NLEM, PNLEM, JSNLM, and PJSNLM, respectively.
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