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It is widely accepted that the structure of proteins determine their function.

Many computational inference methods that act on proteins or sets of proteins rely

on assigned functional labels from a popular ontology, often the Gene Ontology

(GO). On the other hand, there is rich, easily obtained structural motif information

that is captured for proteins using libraries of Hidden Markov Models (HMMs),

such as Pfam. Because structure relates to function, and many of these HMM-

based-motifs are actually signatures of 3-dimensional substructures within the over-

all protein fold, it would follow that annotation of these HMM domains in a protein

structure should aid in inference of its correct GO functional labels. However, cre-

ating a useful Pfam to GO mapping remains a difficult endeavor, first, because it is

certainly not a one-to-one mapping. Second, different Pfam-derived domains within

a protein structure, either individually, or as a set, might yield different amounts of

specificity in regards to the set of possible GO labels that are appropriate. Estimat-

ing the amount of specificity that a single, or set of, Pfam-derived domains gives,

in regards to GO labeling, is confounded by the unequal representation and/or the

lack of coverage of annotation in both domains across the protein universe.

We revisit issues of sequence patterns, diversity, and representation in the

light of all the new data in current sequence databases. We have developed a suite

of parsers and an Object-Relational Mapping using Python and SQLAlchemy to
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represent selected information of proteins and families from the UniProt and Pfam

databases respectively, while making it easy to access and reason about information

stored in the graphical structures of the GO and Evidence Code Ontology (ECO).

We use this framework to compare dcGO (Fang and Gough, 2013) and GODM

(Alborzi et al., 2017), which are designed to optimize different tradeoffs for coverage

versus false-positives.
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Chapter 1

Introduction

1.1 Background

DNA and protein sequencing technologies have been improving since their incep-

tion, resulting in an exponential increase in sequence information being stored in

databases. Over the same time frame, the rate at which scientists are able to exper-

imentally validate the functions of proteins or the genes has remained fairly linear,

despite some automation of experiments. The difference between these two rates has

resulted in a disparity between sequence information and the number of proven func-

tions of proteins, leaving biological databases filled with protein sequences that have

unknown function. Given this large amount of sequence information and a smaller,

but still substantial, amount of protein structural information, many efforts have

been made to try to deduce the functions of proteins of unknown function given the

information available.

One of these methods involves looking at evolutionarily conserved regions of

a protein’s sequence or structure for information that could provide insight into the

functions of the protein. Proteins are often thought of as molecular machines, so

we can think of deconstructing a protein into its parts according to the secondary

or super-secondary parts of the protein. If we break down every protein of known

function into such a bag of parts, we can try to look at correlation between the

functions of proteins and the parts that they contain. As an analogy to this, suppose
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that we had a bag of Lego blocks that represent secondary and super-secondary

structures of proteins, and we were given this bag in a box with the name of the

protein that could be built out of it and the functional terms associated with the

protein that could be built out of these blocks. Now, if we look only at parts that

are evolutionarily conserved, we limit our view to be a bit more focused, and hope

that the fact that these parts are conserved are indicative of the parts either having

influence over the overall function of the protein or its structural integrity.

1.1.1 Pfam

The Pfam database[F+15] allows us to do exactly this by defining 16,712 Hidden

Markov Models (HMMs) constructed using the HMMER program [JEP10]. These

HMMs are trained on the multiple sequence alignments of some proteins (only us-

ing sequences from a reference proteome in the UniProt database[F+15][Con16]) to

known conserved regions of sequence and/or corresponding structure. Pfam calls

these HMMs families and stores the decomposition of all protein sequences in the

UniProt database[Con16].

Since Pfam allows us to decompose protein sequences into occurrences of

Pfam families, we can get our bag of Legos for all 115,316,915 proteins in UniProt

(557,275 of which have a known function), in comparison to the 139,717 proteins for

which we have known structures found in the RCSB Protein Data Bank[KXdlC+06].

So, only about 0.12% of proteins with known sequence also have a solved structure,

and about 0.48% of proteins with known sequence have at least one known func-

tion. Luckily, Pfam allows us to gain structural information about any protein for

which we have a known sequence. Not all Pfam families are not constructed from

structural motifs; however, those that are not should still be considered as indica-

tive of structural motifs. The the amino acid sequence of a protein, referred to

as its primary structure, has a direct mapping to how it will fold in 3-dimensional

space. There are exceptions to this, where two proteins could have similar sequence,
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yet dissimilar structure (and therefore function), but these cases are few[KK08].

Thus, for most Pfam families, especially those with rich functional information or

high correlation to protein function, we assume that can talk about Pfam families

and 3-dimensional folds or domains interchangeably. By this method, Pfam classi-

fies proteins into families in a flat rather than hierarchical manner, in contrast to

the popular SCOP[MBHC95] and CATH[PTS+05] databases of structural domains.

Pfam looks for anything that is determined to be a family, and does not worry

about assigning types and subtypes to families (although organization into clans

was introduced to Pfam in 2006[F+06]). Furthermore, both SCOP and CATH deal

with structural information alone, and thus are designed to classify proteins whose

3D structures have been fully determined, whereas Pfam’s approach relies only on

sequence information of a protein.

1.1.2 The Gene Ontology (GO)

When trying to predict protein function computationally it is necessary to encode

protein function in a meaningful way. One sensible and widely accepted manner

in which protein function is organized is using the Gene Ontology (GO). The GO

is an ontology, meaning that it is a collection of meaningful terms related to each

other in the structure of a directed acyclic graph (DAG). In language, nouns form

an ontology, as everything can be considered a thing, an apple is a thing, and a

macintosh is an apple and a computer. The GO contains three main root terms

that define namespaces for the all of the terms in the DAG: Molecular Function,

Biological Process, and Cellular Component. Each of these namespaces contains

information that can provide different types of information about a given gene or

protein. Terms in the Molecular Function namespace describe how a protein acts

on a biochemical level. These might be of particular use to a biochemist trying to

identify proteins in a metabolic pathway where many of the compounds are known,

but the protein responsible for a particular step in the pathway may be unknown.

Terms in the Biological Process namespace describe the role that a protein may play

in a metabolic pathway, and are useful for predicting the function of a protein by
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having an idea of what pathway it might affect. The Cellular Component namespace

contains terms that provide known locations of a protein in the cell, and providing

context that may help to infer the function of a protein or at least to help in trying

to experimentally derive a protein’s function.

Figure 1.1: Directed Acyclic Graph (DAG) structure of the GO

Some Pfam families have known associations to function, and these are

determined by a large effort being made by EMBL-EBI (The European Bioin-

formatics Institute) to generate manual annotations of domains in the InterPro

database[CBB+03], which has a subset of entries that matches to Pfam. InterPro

draws entries from many different databases of protein family classification based on

conserved regions or domains. Unfortunately, at this point in time, the annotations

of Pfam families from InterPro2GO are relatively sparse; however, we believe that

there is something to be learned from annotated proteins that contain occurrences

of Pfam families.

Our research focuses on understanding the relationship between protein fam-

ilies and the functions of proteins contained within each family, in the hope that we

can construct rules that read: if a protein contains an instance of this family, then

we are confident that its set of correct functional labels must come from a restricted

set, which can be correlated to that Pfam family.

In order to analyze the intricate relationships between proteins, families, and

GO terms, we mapped out the relationships between each of these entities and their

various properties that should be considered when analyzing how they relate to

each other. We then developed an Object-Relational Mapping (ORM) in Python,

using the SQLAlchemy package, to create objects in code that could act as virtual
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analogs for these entities that could be analyzed with ease, while also maintaining

constraints for any entries stored in a corresponding MySQL database.

Our Object-Relational Mapping and the results found through our work open

the opportunity to try to answer a large number of questions in a powerful way that

abstracts the data and relationships of the entities involved into well-defined classes

in code. This abstraction allows users to quickly write queries to the database,

written in Python, that can help them to understand the relationships between

these entities, and in our case, can help us to understand the relationship between

Pfam families and GO terms. We hope that this model will provide a powerful tool

for investigating the functions of proteins based on synthesizing information from

the decomposition of proteins into Pfam families.

1.2 Past Work

The dcGO database was an early attempt to try to consider relating GO terms and

protein domains/families, including SCOP domains and Pfam families. In particu-

lar, dcGO combines full-length protein-level annotations with the domain composi-

tion of the proteins to statistically infer the domains, or supra-domains (combination

of evolutionarily-associated domains) associated with different GO terms[FG13]. To

make this inference, dcGO creates a matrix with each row representing a GO term

and each column representing a domain or supra-domain. Each entry in this matrix

represents the number of UniProt proteins that contain the domain and are labeled

with that GO term. Using this matrix, dcGO then uses Fisher’s exact test to infer

the correspondence between rows and columns, thus between GO terms and do-

mains. The mapping created by dcGO allowed for the creation of a protein-function

prediction tool, that could predict functions for proteins with no tested functional

labels, but where the domain composition of the protein is known. This idea opens

the door to labeling many proteins with previously unknown function, and further

allows any protein with a known sequence or structure to be assigned functional

labels if it matches any known domains with corresponding GO terms. For Pfam
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specifically, this is possible by matching sequences to the Hidden Markov Models

that define each family, and by mapping structures to Pfam families through the

SIFTS mapping[VDJ+13]. There are two flavors of the dcGO data set, one that

favors quality, only including annotations that comes from single-domain proteins

of known function, and another that is focused on quantity, or rather coverage of

the number of domains that could be annotated, and in turn the number of proteins

that could be annotated[FG13].

Albborzi et al.[ADR17] were also interested in tying GO terms to protein

domains, inspired by a desire to uncover many more annotations than were being

found by existing tools that do this, in particular, dcGO[FG13]. The result of

their research is a content-based filtering approach called GODM. Content-based

filtering is a type of recommendation system, which tries to predict a list of items

that correspond to a customer (in the analogy of online shopping). In particular,

content-based filtering achieves this by identifying common attributes among the

items that a consumer has previously purchased. Extending this to recommending

Pfam families that could be associated with GO terms, the method would look at

existing relationships containing a given GO term and the proteins annotated with

that GO term, and would then examine the Pfam-domain composition of those

proteins to make recommendations of which Pfam domains a GO term seemed to

be correlated with. To get a confidence score in the annotations generated by this

method, GODM verified each GO-Pfam association against individual GO-protein

associations from several databases, including SIFTS, Swissprot, Swissprot-IEA,

TrEMBL, and TrEMBL-IEA.

1.3 Motivation

Fully understanding relationships between Pfam conserved regions, member pro-

teins with various functional annotations, and the protein sequences within a Pfam

family could lead to insights that could open the doors to assigning latent functional

information to proteins that were previously unannotated. This information could
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then, even further, be bootstrapped to existing methods of protein function predic-

tion, such as Protein-Protein-Interaction network methods, to potentially improve

their performance by adding information where there was previously none.

By improving methods of automatic inference of these domains, we are able

to generate functional labels for proteins that would normally not have priority to

be studied in depth, and as a result, better automatic annotations could mean easier

treatment of rare diseases as precision medicine gains traction.
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Chapter 2

Methods

2.1 Defining Relationships

While trying to relate Pfam families, proteins, and GO terms, we found it difficult

to keep track of the many critical relationships between each of the entities we were

examining. To solve this problem, we first develop a way of thinking about the

different entities and relationships of our problem space. We break down the prob-

lem space by distinguishing three main entities: proteins, Pfam families, and Gene

Ontology labels (depicted in pink in figure 2.1). Then we can define relationships

between the entities.

For any given protein p, p can be decomposed into a set of Pfam families,

p.families. For a given family F , there is a set of proteins that contains at least one

instance of this family, which we call F.proteins. Since a family can occur at multiple

locations within a protein sequence, we can denote the list of occurrences of a family

F in a protein p as assoc(F, p).locs, giving us the locations of each occurrence of F

in p. Any given protein p also has associated with it GO terms, p.GOterms, which

cumulatively represent the function of the protein p. Among these GO labels, there

are relationships defined according to a rooted ontology (or rather a directed acyclic

graph or DAG). Suppose p is labeled with only 1 GO term, ϕ3, then if we go to

the entry for ϕ3 in the DAG of the GO, we see that ϕ3 has directed edges to ϕ1

and ϕ2 with the label “is a” meaning that if p “is a” ϕ3, then p is also a ϕ1 and a
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Figure 2.1: Diagram of relationships defined in the ORM

ϕ2. So given that a protein is labeled with a set of GO terms p.GOterms, we also

want to consider that the protein is associated with all ancestors of every term in

p.GOterms. Thus we define annotp as the set of all terms which we associate with

a protein p, which we restrict to a cut version of the tree, containing GO terms only

of level 3 or below (>= 3 edges away from a root node):

annotp =

set(p.GOterms) ∪

 ⋃
ϕ∈p.GOterms

set(ancestors(ϕ))

−set(terms < level3)

(2.1)

2.2 The Database and Object-Relational Mapping (ORM)

To protect against human error and ease the process of writing code that works

with data abiding to these various relationships, we decided to use a relational

database with a corresponding Object-Relational model that could be used from

within Python.

An Object-Relational Mapping (ORM) is more than just an API that allows

us to interact with the database, as it defines classes in Python while also defining

how they are mapped to underlying tables in the database and ensuring that the
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relationships between those tables are maintained. So our ORM defines relationships

and behaviors of these various entities and the result is a cleaner way of thinking of

problems and a model that can be asked questions in code that is not too far from

how you may ask them in English.

Although many databases containing all this data already exist, there were

numerous drawbacks to each of them. The web APIs that they provide often limit

the number of queries we were able to make at a time, setting up these databases

locally was usually nontrivial, and even if we did manage to set up a database

locally, the schemas would take some time to decipher and we would need to write

our own ORM in Python that follows the relationships and behaviors of every entity

in whatever database we chose to use.

After considering these factors we decided to create our own MySQL database

using data files provided by Pfam, UniProt, and Gene Ontology respectively, accom-

panied by an ORM written in Python using SQLAlchemy. This allowed us to make

a relatively simple model that was well suited to our task and gave us full control to

make any changes to the database schema and to ensure that we had the most up-

to-date datasets when gathering our results. Using our own dataset further resulted

in the creation of two parsers written in Python for Gene Ontology and for Gene

Ontology Annotation files, that we plan to make publicly available after completing

this work.

To design this ORM and corresponding database, we started by figuring out

what the different entities were and what relationships they had with each other.

The model contains the following classes: Protein, Family, Species, GO, Cluster,

Comment, ProteinFamily, Location, Protein2GO, ECO, and Protein2Species. Each

of these classes defined in the ORM has a corresponding table in the database:

protein, family, go, cluster, comment, protein_family, location, protein_go,

eco, and protein_species respectively.

The Protein2Family and Protein2GO classes not only serves as join tables

between proteins and families and between proteins and GO terms, but, more pre-

cisely, they represent the association between a protein and a family and the associa-
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tion between a protein and a GO term respectfully. Instances of the Protein2Family

class are contained within the lists Protein.families and Family.proteins, and

instances of the Protein2GO class are stored in the lists Protein.GOterms and

GO.proteins (N.B. This differs from the other many-to-many relationships de-

fined by Protein2Species, as Protein.species contains instances of Species,

and Species.proteins contains instances of Protein).

This is an important point and was also necessary to define the relationships

between proteins, families, and the location of the conserved regions associated with

a given family within a given protein sequence within our ORM, as one conserved

region can appear multiple times in different locations within the same protein

sequence, and our model needed to reflect this.
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Figure 2.2: Design of ORM classes and relationships between entities
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To really grasp just how useful and expressive an ORM can be, let us walk through

an example of a function. Suppose that we want to find the names of all proteins

found in humans that have at least one conserved region that appears exactly twice

in its sequence, then we can write in code:

Figure 2.3: Example code written using the ORM

Walking through this function, we create a new session, which is needed to interact

with the database, then we find the entry in the species table that represents a
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human, then iterate through each protein object in the set of all proteins found

within humans, and for each of those proteins we then iterate over all Pfam families

that it is a member of and add the protein to a list if any conserved region associated

with a family appears in the protein sequence in exactly two locations.

Notice again that we say for family_association in protein.families

instead of for family in protein.families since each element of the list

protein.families is an instance of the class Protein2Family, not of Family, and

will thus have different properties. However, we do say for protein in human.proteins,

since human.proteins is of the type Species.proteins, which is a list of objects

of the class Protein.

Since entities in the ORM are defined as Python classes, we are also able

to include properties of the data that existed outside of the relational database as

well as methods associated with each of these entities that can help to write more

simplified and reusable code. The most powerful example of how we were able to

take advantage of this was by creating a class-level object representing the DAG of

GO as a graph using the networkx package. This allowed us to have rapid access

to the graph structure of GO, while still having a bridge between each GO term

and any other entities in the database. This was particularly feasible because of the

relatively small size of Gene Ontology, and in fact the model pulls the most up-to-

date data file from Gene Ontology’s website each time it is run, and the impact on

runtimes is small enough that the tradeoff is worthwhile.

2.3 Measurements

There is much variety among Pfam families and the associated set of proteins that

contain at least one occurrence of the Pfam family, which we call member proteins

of the Pfam family. Some properties of Pfam families include diversity of mem-

ber proteins, the sizes of each occurrence, the number of occurrences per protein,

similarity in the decomposition of member proteins, functional similarity between

members, and quality of annotations of members.
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We used our Object-Relational Mapping to analyze these properties of Pfam

families and the sets of proteins that contain them in order to develop a definition

of what we consider to be a functionally informative family. The first of these

properties that we consider include the sequence diversity of the member proteins

for a given family and the spread of GO terms associated with these proteins. We

define the spread of GO terms as the dissimilarity of GO terms associated with a

given set of proteins, with a tight spread giving strong correlation of proteins in the

set to a specific subset of GO terms.

Figure 2.4: Classification of Informative Families

We consider families that fall into the top left quadrant of figure 2.4 to

be functionally informative. For these families, the GO terms associated to each

member protein all fall within a close measure of similarity to each other and the

set of member proteins is adequately diverse enough that we can infer that the family

appears in a diverse enough set proteins that the cause of the correlation between the

set of proteins and function seems to be the due to the conserved region(s), detected

by Pfam, that all of these proteins have in common. If the spread of GO terms is too

high, we have a low correlation between a protein containing a family and having

a particular GO term, thus we cannot consider any families with high spread of
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Figure 2.5: Classification of Homologous Informative Families

GO terms to be functionally informative. For Pfam families where the member

proteins have low diversity, which we call homologous, and have a low spread of

GO terms, we find that we need to investigate further. There are two cases of Pfam

families that can be considered homologous: the first is Pfam families where a single

occurrence takes up most of the protein sequence for every member protein of the

Pfam family (left half of figure 2.5), and the second is Pfam families where the Pfam

family does not cover most of every member protein’s sequence, but the sequences

are all homologous (right half of figure 2.5). This second case is inconclusive as to

whether or not we should consider a family informative to function, as we have no

evidence that if another sequence matched to this family, but was otherwise diverse

in sequence from all other member proteins, that it would have the same functional

labels as the other member proteins.

So, if a Pfam family has a tight spread of associated GO terms and a ho-

mologous set of member proteins, we only consider it to be informative if there is a

high percentage of every member protein’s sequence covered by a single occurrence

of the Pfam family.

2.3.1 Measuring Diversity of Pfam Family Members

In order to measure sequence diversity, we sought to cluster homologous protein

sequences within a given family, and then count the number of clusters of homologous
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sequences that we found. Our approach to this involved removing regions of the

proteins that align well within the region(s) that determine their membership in the

given family, and then comparing sequence composition after removing this Pfam-

family-specific homology. Seeking to limit the number of redundant sequences as

much as possible, we use the UniRef90[SWH+15] data set from UniProt to reduce the

Swiss-Prot proteins associated with each family to only contain one representative

sequence per 90% identity UniRef90 cluster, ensuring that no two sequences within

the set for a given family will be 90% or more identical.

First, we perform a multiple sequence alignment of all representative pro-

tein sequences in a given family, using MAFFT[KS13], then we remove all columns

from the alignment where all residues in the column are identical and all residues

in the column fall within the bounds of an occurrence of the Pfam conserved re-

gion. We then stitch these cut-up sequences back together and calculate the pairwise

similarity, using blastp[A+97] between every two proteins in the family, creating a

similarity matrix representing homology of the family. In order to keep runtimes

down, for families with more than 50 genes we took a random sampling of 50 pro-

teins to run this procedure on. By creating a sequence similarity matrix, we could

then imagine a Pfam family as an undirected weighted graph of sequence similarity

between member proteins. This graphical view allowed us to visualize clusters of

similar sequences within a given family by removing edges below a certain weight

(i.e. < 80% similarity) and counting the number of connected components. If the

number of connected components in the graph after removing all edges is still 1,

then we can say that all proteins are likely within the same group of homologous

sequences (note that this does not mean that each protein in the family is ≥ 80%

similar to every other protein).

We then wanted establish a normalized measure of diversity that accounted

for not only this ratio of connected components to total number of nodes in the

graph, but also that rewarded more for large and diverse families, than for small

and diverse families. For a given family, fi, with ci connected components and ni

proteins in its sequence similarity matrix (note that this will be capped at m = 50),
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we define

Diversity(fi) =
ci
ni

logm ci (2.2)

Note that we run our measure of diversity only on member proteins that

are contained in the Swiss-Prot dataset, excluding any sequences in the TrEMBL

dataset. The result of this is that our diversity score also penalizes against Pfam

families for which few of the proteins have known function and verified sequences,

and also penalizes against Pfam families for which the sequences in Swiss-Prot are

homologous, even if there are matches in TrEMBL that would provide evidence of

the family being diverse. The rationale for this was that this would also help us in

ensuring that when we have a family that scores well on our diversity metric and has

an annotation with high coverage, we could consider that protein to be functionally

informative.

2.3.2 Measuring the Spread of GO terms among Pfam Family Mem-

bers

If we want to measure the correlation of a Pfam family F to a given GO term ϕ,

we would divide the number of proteins in the family labeled with that term by

the number of proteins in the family, giving us the proportion of terms in a family

labeled with term ϕ.

P (p labeled with g|p ∈ F ) = P (p← ϕ|p ∈ F ) =
∑
i∈|F |

yi yi =


1 if pi labeled with ϕ

0 otherwise

(2.3)

Since GO is an ontology, we know that if a protein p is labeled with term

ϕ (ensured by methods in our ORM), then, by the definition of an ontology, it is

understood that p can be correctly labeled with every ancestor term of ϕ. Also,

in most cases, we have evidence that a protein p has multiple GO annotations,
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ϕ1, · · · , ϕn, and would then also be annotated with each term in the set of the

ancestors of ϕ1, · · · , ϕn. We call the annotation set of p, annotp, the set containing

ϕ1, · · · , ϕn and ancestors of ϕ1, · · · , ϕn.

If we extend the idea of correlation between a single family-GO term pair to

the correlation of a set of GO terms to a set of genes or proteins, as we do when

we consider all members of a Pfam family, then we would want to calculate the

probabilities

P (p← ϕi|p ∈ F )∀ϕi ∈
⋃
pi∈F

annotpi (2.4)

If we only consider all of these terms ϕi where the probability of an arbitrary

protein in F being labeled with ϕi is 1, we can calculate this set as:

overlapF =
⋂
pi∈F

annotpi (2.5)

This overlap set gives us a prediction of terms that could be correlated to a

given family; however, we also wanted to measure how representative this prediction

was of the family.

To measure the annotation diversity across a given Pfam family, we used a

generalized form of the Term Overlap (TO) score presented by Mistry and Pavlidis

[MP08].

We call this new metric as Gene Set Term Overlap (GeSTO), and its deriva-

tion from TO is quite trivial.

TO is defined by Mistry and Pavlidis as:

simTO(p1, p2) = |annotp1 ∩ annotp2 | (2.6)

Asking the question: how many functional annotations do genes p1 and p2 share?

Our generalized metric asks the question: how many functional annotations

do genes p1, · · · , pn have in common? This is equivalent to calculating the size of

the overlap set of these genes. When dealing with a set of genes that may not all be
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adequately annotated, we further ensure that if the annotation set of a given gene

is empty, we ignore it in the computation of our GeSTO score, as not to build up

more Pfam families with a GeSTO score of 0.

We define GeSTO as

simTO(p1, . . . , pn) =

∣∣∣∣∣
n⋂

i=1

annotpi ||annotpi | > 0

∣∣∣∣∣ (2.7)

The normalized counterpart to GeSTO, NoGeSTO, which derives from the

Normalized Term Overlap score defined by Mistry and Paylidis, would then be

simNTO =
simTO(p1, . . . , pn)

mini(|annotpi | > 0)
(2.8)

NoGeSTO is then the size of the overlap set in proportion to the most sparsely

annotated annotation set of any given protein in the family. In other words, No-

GeSTO is measuring how well the overlap set represents the most sparsely annotated

protein. To supplement this, we also measure overlap coverage, to measure how well

the overlap set represents the entire family, or gene set.

We define overlap coverage as:

coverage(overlapF ) =
|overlapF |

|
⋃

pi∈F annotpi |
(2.9)

So we can now score the assignment of a set of GO terms to a given family

by how well it can represent any protein in the family and additionally, how well it

covers the functions of all other proteins in the family.

To further ensure that we are obtaining only high-quality annotations, we

add a constraint on how we define annotp. We build annotp by ignoring any found

labeling of p with function ϕ where there is no manual evidence that p should have

label ϕ, but rather, the evidence code found alongside the association of protein p

with label ϕ conveys that this association was determined by computational infer-

ence, rather than by experimental evidence or manually-curated inference.

UniProt provides evidence codes alongside each association of a GO term
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with a protein, and each of these evidence codes are part of an ontology called the

Evidence Code Ontology, which has the same directed acyclic graph structure as

GO. We leverage this structure when determining whether or not a protein-term

association is automatic by searching for term names that contain one of a few

key words that may infer that the association was determined computationally.

These ’blacklist’ words include ’auto’, ’high’, ’throughput’, ’computational’, and

’not recorded’. Though crude, this method enables us to be selective about which

annotations we include within the annotation set for a given protein, ensuring that

the overlap set that we calculate for each family is as meaningful as possible.

21



Chapter 3

Results and Analysis

3.1 Results and Analysis

First, we break down sequences by diversity. Based on the distribution of the diver-

sity score (see figure 3.1), we visually classify all Pfam families with a score greater

than or equal to 0.5 to be diverse and less than or equal to 0.2 to be homologous.

Any Pfam families where the sequences of all proteins that contain the family are

80% more composed of one or more occurrences of that Pfam family (these Pfam

families are assigned a diversity score of 0 for purposes of classification).

Figure 3.1: Distribution of Diversity Scores

We then break down all 16,712 Pfam families according to 4 categories: Diverse,

Homologous Informative, Homologous Uninformative, and Other (as seen in figure
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3.2). We found that 44.3% of Pfam families (Homologous Low Sequence Coverage +

Others) were deemed uninformative to function by this measure of diversity alone,

leaving 9,314 informative families.

Figure 3.2: Categorization of Pfam Families by Sequence Diversity
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Figure 3.3: Final categorization of Pfam families using overlap annotations (our

method). Note that we consider the family “Diverse” in the legend if the family

scores >= 0.7 by our diversity measure (See equation 2.2), “Homologous” if the

family scores <= 0.2, and ”Other” if our diversity measure scores between 0.2 and

0.7.

Next, we measure the spread of GO terms that we want to assign to a given Pfam

family. To do this, we need to consider different methods of assigning GO terms

to Pfam families. We compare the annotations defined manually in InterPro2GO

against those derived by dcGO, GODM, and by our measure of taking the overlap

set of member proteins of a Pfam family (being the intersection of all GO terms

and their ancestor trees associated with each member protein). We can think of

the two measurements that we defined as measuring precision and accuracy. The

NoGeSTO score that we define can be thought of as how precisely can we predict

the function of a member protein given the annotation set of this particular Pfam
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family. The coverage score that we define can be thought of as accuracy, measuring

the ratio between possible functions of member proteins and common functions

between member proteins. By a combination intuition and trial and error, we set

thresholds for these values both at 0.7 or higher and obtain the results seen in figure

3.4 for families considered to be diverse informative and in figure 3.5 for families

considered to be homologous informative.

Figure 3.4: Venn diagram showing how the 781 diverse informative families found

by our method (light blue in figure 3.3) compared to diverse informative families

found by other Pfam-family GO annotations.

25



Figure 3.5: Venn diagram showing how the 664 homologous informative families

found by our method (light orange in figure 3.3) compared to homologous informa-

tive families found by other Pfam-family GO annotations.

We notice that there is not much overlap between every of these methods, but it

appears that our method of taking the overlap set of GO terms associated with

member proteins of families detects more of the same informative families as the

manual annotation set than any other metric we compare to, and additionally, that

GODM finds a respectable number of informative families that are not detected by

our method. The disconnect between these methods lead us to believe that taking

an approach of using multiple methods of determining Pfam-family-level annotation
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sets and choosing the best annotation set from these various methods will yield the

best results when trying to use Pfam family level annotations for predicting protein

function.
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Chapter 4

Conclusion and Future Work

We have presented a framework in which users can write readable Python code,

using our Object-Relational Mapping, that preserves the complex relationships be-

tween the various entities that need to be considered when relating Pfam families to

protein function. Further, we have shown how this framework can be used to make

meaningful insights about these entities, as well as to retrieve any of these properties

and their relationships efficiently from the database in a manner that could be easily

incorporated into a protein function prediction implementation written in Python,

or that could be used to generate input for implementations not written in Python.

We also provide an analysis of various annotation mappings, showing how

well they each represent the sets of proteins that each Pfam family contains. We

found that across these different Pfam-family to GO term mappings, the sets of

informative families found by each has little overlap. This opens up a new set of

questions about properties of these mappings and properties of the families that

each finds exclusively. For the time being, we suggest that integration of multiple

mappings to generate an aggregate mapping for informative families would be the

best solution to finding the most Pfam-family-level annotations.

There are many paths that could extend from this research. The first of which

would be to test the performance of existing methods of protein function prediction

after incorporating these different family-level annotation sets both blindly and for

families above different thresholds of the measurements discussed. One could also
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extend the ORM to make queries of the databases without needing to reconstruct

them locally. This would involve the use of the UniProt SPARQL Endpoint, which

allows for SQL-like queries to be made to the publicly available instance of the

UniProt database, and the SIFTS subset of the PDBe REST API to retrieve Pfam

entries. By retaining the model that we define, while removing the need for a

separate database, this framework becomes far more usable, and ensures that the

most up-to-date information is being retrieved.

Another path could be to look more closely at proteins in the TrEMBL

dataset that match to Pfam families. This could help to increase the number of

diverse families detected, and thus give us more families for which we could anno-

tate. Different HMM-derived families could also be incorporated, and structural

mappings to families through the SIFTS database could also provide more evidence

of correlation between domain and function.
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