
Comparing Performance Bounds for Chi-square 
Monitors with Parameter Uncertainty 
 
Jason H. Rife 
Tufts University 
 
 
>> Accepted Article << 
 
 
 
 
 
 
 
 
CITATION: 
J. H. Rife, "Comparing performance bounds for chi-square monitors with parameter uncertainty," in IEEE Transactions on 
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 2379-2389, July 2015. 
doi: 10.1109/TAES.2015.140638 
 
 
CORRESPONDING AUTHOR: 
Jason Rife 
jason.rife@tufts.edu 
 
 
COPYRIGHT: 
© 2015 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 
 
 
FINANCIAL SUPPORT: 
Federal Aviation Administration GBAS Program (Grant FAA-10-G-006) 
 
 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

1

 
Abstract— This paper compares methods for evaluating the 

performance of chi-square monitors while conservatively 
accounting for parameter uncertainty. Chi-square monitors, like 
the Signal Deformation Monitors (SDM) used in GPS 
augmentation, detect failures that threaten safety-critical 
navigation. A chi-square monitor creates a quadratic test statistic 
from a random vector (nominally zero-mean, Gaussian-
distributed). Gaussian model parameters, which may be poorly 
characterized for a real system, strongly influence chi-square 
monitor performance. Through a combination of theory and 
simulation, it is established that tight yet conservative modeling 
of parameter uncertainty is possible with a generalized chi-
square bound for false-alarm risk and with an ellipsoid bound 
for missed-detection risk. 
 

Index Terms—Chi-Square, Integrity, SBAS, GBAS, RAIM 
 

I. INTRODUCTION 

AFE navigation systems rely on continuous monitoring to 
detect anomalous sensor measurements. This paper 

introduces new methods to ensure tight, conservative 
performance bounds for chi-square integrity monitors. 

Integrity monitoring algorithms have played an important 
role in safety-critical applications of satellite navigation 
systems like GPS, GLOSNASS, BeiDou, and Galileo [1]. For 
example, integrity monitors are found in Satellite-Based 
Augmentation Systems (SBAS), Ground-Based Augmentation 
Systems (GBAS), and Receiver Autonomous Integrity 
Monitoring (RAIM) [2]. These systems all perform continuous 
testing of satellite navigation signals, to ensure signals meet 
safety requirements for civil aviation. 

Certifying that an integrity monitor meets safety-of-life 
requirements necessitates that monitor performance be 
evaluated in a conservative manner, accounting for reasonable 
variations in the nominal operating environment. The term 
overbounding is often used to label such analyses, in which a 
conservative probability estimate is obtained from the 
assumption that the actual input noise distribution is not 
known precisely but belongs to a well-defined set of possible 
distributions. Seminal research on navigation overbounding 
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was conducted by DeCleene [3]. This work was later extended 
to cover more general classes of error distribution [4]-[7]. 

To date, most overbounding research has focused on 
Gaussian bounding. Gaussian bounding applies to scalar 
random variables such as vertical-positioning error [8],[9] or 
excessive-acceleration, a statistic used in monitoring for 
satellite-clock failure [10],[11]. Recent work has extended 
bounding concepts to vector signals, such as in bounding 3D 
positioning error [12],[13] or monitoring integrity for a vector 
measurement [14],[15].  

Chi-square integrity monitors are a particularly important 
class of vector monitor, one which quadratically combines a 
vector of input signals to produce a positive, scalar monitor 
statistic [16],[17]. This class of monitor is named for its noise 
distribution, which is nominally chi-square. When an anomaly 
is present, the noisy monitor statistic tends to increase, and so 
large anomalies become observable by continuously 
comparing the monitor statistic to a threshold. Examples of 
chi-square monitors in satellite navigation include Signal 
Deformation Monitoring (SDM), Ionosphere Gradient 
Monitoring (IGM), and least-squares RAIM [18]-[23]. 

In particular, the methods presented in this paper have been 
developed to support verification of the GBAS SDM, which 
monitors for anomalous GPS waveforms that might otherwise 
threaten aircraft during approach and landing. Signal 
deformation events distort correlator peaks for GPS code 
tracking and can result in position errors of tens or hundreds of 
meters [19]. To mitigate associated integrity risk, GBAS SDM 
constructs a monitor statistic from eight correlator taps 
distributed around the correlation peak [20]. This statistic is 
nominally small, but grows quickly in the presence of signal 
deformation. The distribution of the monitor statistic is 
approximately chi-square; however, associated covariance 
parameters are difficult to model precisely, on account of 
nonstationary effects (caused by satellite elevation changes) 
and sensitivity to interference (generated, for example, by 
“personal privacy devices” [24],[25]).  

For the most part, existing overbounds cannot be applied to 
assess chi-square monitor performance when the covariance 
model is itself uncertain. Hence, new overbounding methods 
are necessary. Several relevant chi-square monitor models 
have recently been proposed by the author, including three of 
particular interest: a generalized chi-square bound [26], a 
determinant bound [27], and an ellipsoid bound [28]. This 
paper compares these bounding methods and establishes 
which are best suited to different performance analyses.  
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The paper’s contributions are four-fold. First, the paper 
frames conservative analyses of false-alarm and missed-
detection risk as optimization problems. Second, the paper 
shows that an analytical solution is possible for the false-alarm 
optimization problem. Third, the paper provides a quantitative 
example to motivate why an exact analytical solution is 
difficult to obtain for the missed-detection optimization 
problem. Fourth, the paper applies simulation to compare two 
analytical solutions that conservatively approximate the 
missed-detection optimization; simulation show that an 
ellipsoid bound [27] can be much tighter than a determinant-
based bound [28], by an order of magnitude in simulation. 

II. BACKGROUND 

This section defines optimization problems to compute two 
important performance metrics for chi-square monitors: the 
worst-case false-alarm and missed-detection probabilities. 

A. Chi-Square Integrity Monitors 

Most integrity monitors function by comparing a monitor 
statistic m to a threshold T.  If the statistic ever exceeds the 
threshold, the monitor issues an alert. The alert indicates that 
an anomalous signal has been detected. 

 
alertm T   (1) 

 
The integrity monitor is said to be chi-square when it 

generates m quadratically from the measurement vector x, 
nominally a zero-mean, Gaussian-distributed random vector.  

 
1ˆTm  x P x  (2) 

 
This quadratic operation includes normalization by the matrix 

P̂ , which is a model of the actual covariance matrix P for the 
random vector signal x. 
 

TE    P xx  (3) 

 
Normalizing by estimated covariance enhances monitor 
performance and results in a monitor statistic m with noise that 
is approximately chi-square distributed. Noise is exactly 

chi-square distributed if the model is exact  ˆ P P . 

In practical applications, the estimated covariance is never 
known exactly, which is the natural consequence of estimating 
a statistical quantity from finite data. Estimation is particularly 
difficult for satellite navigation applications, as statistics are 
non-stationary, meaning the true covariance matrix P changes 
continually. Changes in P are amplified when environmental 
conditions are unfavorable, in SDM for example, when 
elevated radio-frequency interference is present [32]. 

To model the difference between the estimate P̂  and the 
true covariance P, it is useful to define an intermediate vector 
y, which is a vector of unit-variance, independent Gaussian 
random variables, related to x as follows. 

 
1/2x P y  (4) 

 
Here P1/2  is the matrix square root, a symmetric matrix that 
results, for example, from an LDLT Decomposition [33]. 
Rewriting (2) in terms of (4), the monitor statistic is 
 

1Tm  y Q y , (5) 

 
where Q is a residual covariance matrix, 

 

 1/2 1 1/2ˆ Q P P P . (6) 

 
The covariance Q, like P, is unknown; however, if the domain 
of Q can be bounded, then it is possible to assess the validity 
of chi-square error modeling. The matrix Q becomes the 

identity I only if the model P̂  is a perfect estimate of the true 
P. Otherwise m is not the sum-square of independent, unit-
variance Gaussian variables and, hence, not chi-square 
distributed. Instead, the noise distribution for m is said to be 
generalized chi-square [29]. The cumulative distribution 
function Pgx2 for a generalized chi-square distribution, inside a 
threshold T with covariance Q and mean , is 
 

 2 ; , ( ; , )
T

gx N
T

P T p dV


 
y y

Q μ y Q μ .  (7) 

 
Here Np  is a multivariate normal distribution with the form 

 
    111

22( ; , ) 2
T

Np e



y-μ Q y-μ

y Q μ Q . (8)  

 
In assessing monitor performance, two important metrics 

are the false-alarm and missed-detection risks.  A false alarm 
occurs when an alert triggers though no anomaly is present. 
False alarms are also called type I errors (in statistics [30]) or 
continuity risk (in navigation [31]). When the true covariance 
matrix is uncertain, the false-alarm probability is  
 

 21 ; ,fa gxP P T  Q 0 .  (9) 

 
This equation computes the probability that the random signal 
lies outside the threshold T, even though the signal is unbiased 
(i.e., has mean 0). By comparison, a missed detection occurs 
when an alert is not triggered though an anomaly is present.  
Missed detections are also called type II errors (in statistics 
[30]) or integrity risk (in navigation [31]). When the true 
covariance matrix is uncertain, missed-detection probability is 
 

 2 ; ,md gxP P T Q μ .  (10) 

 
This equation computes the probability that random noise 
results in a monitor statistic inside the threshold, even though 
the anomaly introduces a nonzero mean . 
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B. Performance Bounding 

Although the precise value of the covariance P and mean  
are uncertain, it may still be possible to constrain these 
parameters to well-characterized sets, Q  and μ . For 

safety-of-life navigation, it is critical to identify the worst 
possible performance metrics (Pmd and Pfa) over these sets.   

First, consider the worst-case false-alarm probability *
faP . 

This probability is defined by an optimization that maximizes 
Pfa over all allowable residual covariance matrices Q. 

 

  *
2max 1 ; ,fa gxP P T


 

Q
Q 0  (11) 

 
Several approaches for defining the set  are possible 

[27],[32]. Consider covariance matrices N NQ   with 

eigenvalues n for axes  1, ,n N  . In this paper,  is 

defined to contain all Q with eigenvalues n between positive 
upper and lower limits for the n-th axis: max,n and min,n, 
respectively. 

 

  , ,min n n max n     Q Q  (12) 

 
For SDM, these limits correspond to RFI-free conditions 
(min,n) and to worst-RFI conditions (max,n). Geometrically, 
these limits can be visualized as constraints on the lengths of 
the principal axes of Q. To be precise, each eigenvalue is the 
square of a principal axis of the ellipsoid defined by (5) for 
any particular value of m.  

Second, consider the worst-case missed-detection 

probability *
mdP . This probability is defined by an optimization 

that maximizes Pmd over all allowable values of Q and . 
 

  *
2

,
max ; ,md gxP P T
 


Q μ

Q μ  (13) 

 
Again, for this paper, the set of allowable Q will be specified 
by (12). The set of allowable mean vectors  is defined 

 

 b  μ μ .  (14) 

 
This set includes all mean vectors with the same bias 
magnitude b, where b is a positive constant.  Geometrically, 
this set represents the idea that the orientation of the mean 
vector is arbitrary.  

In subsequent analysis, it is convenient to introduce a change 
of variables that has no impact on the  or   constraints. 

Specifically, the new variable is Tz X y , a transform that 

rotates the coordinate axes to align with the principal axes of 
Q. The rotation matrix X is a unitary eigenvector matrix that 
complements the diagonal eigenvalue matrix  in the eigen 
factorization 
 

TQ XΛX . (15) 
 
After transformation, the new random vector z has covariance 

 and mean T
z μ X μ . Hence, the generalized chi-square 

distribution in (7) can be re-written substituting 
 

   2 2; , ; ,gx gx zP T P TQ μ Λ μ . (16) 

 
The covariance constraint (12) is directly expressed in terms of 
eigenvalues, and is thus unaffected by the change of variables. 
Similarly, the bias-magnitude constraint (14) also applies to 

zμ , since for a unitary matrix X, T
z  μ X μ μ . 

III. FALSE-ALARM RISK 

This section derives an analytic result for the worst-case 

false-alarm risk *
faP , which is the solution to optimization 

problem (11). The analytic solution is obtained by showing that 

faP  always increases as the eigenvalues of Q increase. As such, 

the maximum faP  occurs for the matrix Q with all eigenvalues 

at the upper limits defined by (12).  
 

 *
21 ; ,fa gx maxP P T  Λ 0 . (17) 

 
Here the matrix maxΛ  is the diagonal matrix with each 

diagonal element n set equal to the upper limit (12). 
To obtain this result, combine (11) with (7) and (16) to give: 
 

 * max 1 ( ; , )
Tfa N

T
P p dV

 
  

Q z z
z Λ 0 .  (18) 

 
Now integrate the normal distribution Np  in a single 

direction, along the ith coordinate axis.  The result is 
 

 
 

2

1
2

2

0

( ; , ) ; ,0
2

k

kk i

T

z

N N i k
k iTT k

k i

e
p dV P T dz








 
  
 





   z z

z Λ 0


 . (19) 

 

Here 2
k

k i

T T z


  , and PN is the normal cumulative 

distribution between symmetric upper and lower limits: 
 

 
2

22 21
; ,0

2

z

NP e dz






 






  . (20) 

 
The slope of (19) with respect to any one eigenvalue i is 
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k iT i i k

k i

p dV

T e e
dz





  





    
 









  
 
 
 
 



 

z z

z Λ 0






 (21) 

 
The above expression is nonpositive, since the leading 

negative sign multiplies a series of nonnegative terms (noting 

the n T , and the exponentials are nonnegative).  Thus, 
 

( ; , ) 0
T

N
i T

p dV i




 
     


z z

z Λ 0 . (22) 

 
Returning to optimization problem (18), the above result can 

be used to show that 
 

 ; , 0fa
i

P T i



 


Λ 0 . (23) 

 
The above relationship implies that faP  always increases as 

eigenvalues increase, and so false-alarm risk is maximized 
when the eigenvalues on each principal axis reach their 
maximum values, defined by constraint (12).  The resulting 

false-alarm risk is the expression for *
faP  given by (17). 

IV. MISSED-DETECTION RISK 

This section considers analytical solutions for bounding 
missed-detection risk.  First, the section introduces examples to 
explain why an exact, analytical solution to the worst-case 
missed-detection risk optimization problem is difficult to 
obtain.  Second, the section describes how relaxing the original 
optimization problem, described by (13), makes it possible to 
obtain an analytical, approximate solution. The approximate 

solution mdP  is a conservative model of the exact solution *
mdP

in the sense that 
 

*
md mdP P . (24) 

 
Some conservatism is critical for a safety-of-life system; 

however, excess conservatism may mean that the system 
cannot perform its required function. (In the extreme, a 

probability mdP  going to its maximum value of one is 

equivalent to the assumption that the monitor always fails to 
detect faults, a result which would render the monitor useless.) 

To ensure good monitor performance without sacrificing 
safety, it is desirable to ensure the approximation is tight, 
meaning that the slack in inequality (24) is small. The tightness 
of the ellipsoid approximation proposed in this paper is 
assessed at the end of this section, where a simulation-based 
analysis compares its performance to that of the determinant 
bound, previously introduced in [27]. 

A. Obstacles to Obtaining an Exact Analytical Solution 

This section provides a rationale describing why it is 
difficult to obtain an exact, analytical solution to problem (13), 
the problem of identifying worst-case missed-detection risk 
over the space of unknown parameters. The basic idea is that 
an analytical solution would be easy to obtain if the worst-case 
parameters fell on the boundaries of the allowed parameter 
space ( Q  and μ ).  This was the case for false-alarm 

risk, where the worst-case risk occurred at the edge of the 
domain (with the principal axes of Q reaching their maximum 
possible values).  By comparison, the worst-case parameters 
for the missed-detection risk optimization problem can occur in 
the middle of the allowed domain, and not only at the edges. 
Unfortunately, no analytical formula has been derived to 
identify the worst-case parameters when they lie interior to the 
domain. (Formulae obtained from setting derivatives to zero 
result in difficult-to-solve integral equations). 

Remark 1:  Worst Bias May Not Align with Major Axis.  
First consider the question of which bias direction maximizes 
missed-detection risk, noting that the bias magnitude is fixed 
by constraint (14).  The bias direction may be envisioned as a 
series of rotations between the direction of the vector  and 
the directions of the largest principal axis of the covariance 
matrix . A zero angle represents one limiting case, where the 
mean vector and ellipsoid major axis align, as illustrated in 
Fig. 1(a). It is intuitive to imagine that the missed-detection 
risk will be largest for the zero-angle case, as this 
configuration would seem to project probability directly from 
the distribution center toward the threshold. To illustrate this 
case, the figure shows the threshold as a sphere (or really a 

circle in 2D) with radius T . The Gaussian distribution is 
illustrated as the combination of a mean vector (arrow tip) and 
a covariance matrix (ellipse). The quantity Pmd is the integral 
of the Gaussian distribution inside the threshold. 

 
Fig. 1.  Limiting cases for worst-case bias direction:  (a) bias aligned with 
largest principal axis of covariance ellipse, for b somewhat greater than T , 
and (b) bias aligned with shortest principal axis of covariance ellipse, for b 
somewhat less than T . 

Computations confirm that, when the bias magnitude b is 

somewhat larger than the threshold T , the worst-case Pmd 
does indeed occur for the zero-angle configuration shown in 
Fig. 1(a). More generally, though, if the bias shrinks, the 
worst-case may occur when the bias aligns with the minor axis 
or at some intermediate angle. That the worst angle varies over 
this range is shown in Fig. 2. The figure plots Pmd as a 
function of the angle  between the bias and the major axis of 
the covariance ellipse. Results are plotted for a 2D case with 

 

(a) (b) 

Threshold  Threshold  
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7T  . Contours are shown for several values of bias 

magnitude b in the range  6,8b , a range chosen to include 

biases both above and below the threshold at 7T  .  
For additional clarification, Fig. 3 plots as a function of bias 

magnitude b the angle  maximizing Pmd for each contour. As 
such, Fig. 3 indicates that the worst-case bias direction varies 
continuously, transitioning from alignment with the largest 

principal axis ( = 0) when b is somewhat larger than T  to 
alignment with the shortest principal axis ( = 90) when b is 

somewhat smaller than T . Intermediate values between 
these two limits are relatively sensitive to problem parameters, 
including the vector dimension and the values of T and Q. 

At present, no analytical formulae have been identified to 
compute the width of the transition region or the worst-case 
Pmd values in the transition region; thus, somewhat 
computationally expensive numerical methods were used to 
find *

mdP  in this example described by Fig. 1-Fig. 3. 

 

 
Fig. 2.  Pmd can increase or decrease as the rotation angle  between bias and 
largest principal axis increases. 

 

Fig. 3.  As bias magnitude increases, the angle of the worst-case Pmd 
decreases, indicating that the worst bias direction rotates toward the 
covariance matrix’s largest principal axis. 

Remark 2:  Sigma Inflation is Not Always Conservative.  In 
concept, bias-direction sensitivity might be resolved by 
inflating the covariance matrix. In other words, one might 
imagine widening the covariance ellipsoid shown in Fig. 4(a) 
into a larger covariance sphere, with equal variance in all 
directions. By widening the ellipsoid into a sphere, the problem 
would become rotationally invariant, and bias direction would 
not matter. It is even intuitive that this idea might be 
conservative, since widening a distribution (a process 
sometimes called “sigma inflation” in analysis of 1D 
distributions) is generally thought to increase Pmd.  

Although it is intuitively appealing to “inflate sigma” to 
remove bias-direction sensitivity, it cannot be assumed that 
covariance inflation is truly conservative. In fact, Pmd may 
either increase or decrease when the covariance matrix is 
inflated, depending on the orientation of the covariance ellipse 
relative to the mean vector . A simple illustration of a case in 
which inflation is not conservative is shown in Fig. 4. In Fig. 
4(a), an elongated covariance ellipse is shown, whose major 
axis is aligned with the bias direction. If the covariance ellipse 
is inflated such that the ellipse’s minor axis length matches that 
of the major axis, then the covariance ellipse becomes a circle, 
as shown in Fig. 4(b). In the process of inflation, a portion of 
the probability distribution (shaded gray) that was originally 
inside the threshold (bold circle) moves outside the threshold. 
None of the remaining probability distribution (white area) 
moves inside the threshold, and so the total probability inside 
the threshold decreases. The net result is that covariance 
inflation underestimates risk in this case. This type of inflation 
is clearly not conservative if our goal is to obtain an estimate of 
Pmd that is at least as large, or larger, than the actual risk. 

 

 
Fig. 4.  Sigma inflation does not always result in higher Pmd. Note the Pmd 
integral sums all probability within the circular threshold. (a) Probability mass 
that contributes to the original Pmd integral, before inflation, is shaded gray. 
(b) Inflation elongates the gray region, moving some gray-shaded probabilty 
mass outside the threshold and therefore reducing Pmd. 

This result that inflation sometimes underestimates risk is 
further supported by computation. Again consider the 2D case 

where the threshold is 7T  . Also, consider bias 
magnitudes b varying between 6 and 8. Assume that the 
maximum principal axis of the covariance ellipse has unit 
length and aligns with the bias vector . The results of 
computing Pmd versus minor axis length for contours of fixed 
b is shown in Fig. 5. It is evident that the computed risk Pmd 
decreases as min (the minor axis length squared) increases. 
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Fig. 5.  Missed-detection risk Pmd increases with minor axis length. 

 

B. Relaxed Optimization Problem 

In typical applications, missed-detection risk must be 
evaluated repeatedly, for a wide range of conditions, and so it 
is useful to have an algebraic (as opposed to a numerical) 
solution for Pmd. The analysis above shows that intuitive 
bounding methods do not necessarily yield conservative Pmd 
estimates if the bound is assumed to lie at an edge of the 
allowed parameter space. This section discusses an alternative 
approach, one that relaxes the optimization to obtain an 
analytical solution. The approach, called ellipsoid bounding, 
was first introduced in [28]. Ellipsoid bounding is guaranteed 
to be conservative.  

Ellipsoid bounding relaxes the missed-detection risk 
maximization problem (13) by replacing the original volume 

of integration  | TF T y y y  with a larger, inclusive 

volume of integration G. The worst-case missed-detection risk 

computed for the relaxation is mdP , where 

 

 ,
max ( ; , )md N

G
P p dV

 
 

Q μ
y Q μ .  (25) 

 

It can be shown that mdP  is a conservative estimate of the 

actual worst case risk *
mdP , so long as the new volume of 

integration G contains the original volume of integration F. 
This result follows from the fact that the probability 
distribution is everywhere positive, so the integral over G must 
be larger than the integral over F if G  F. 

 

 2 ; , ( ; , )

( ; , )

gx N
F

N
G

P T p dV

p dV

 

 

Q μ y Q μ

y Q μ
  (26) 

 
For an appropriate choice of the volume G, the solution to 

the relaxed problem (25) is the following expression.  

 

 * * 2; ,md ncxP P T DoF b  (27) 

 
Here Pncx indicates a noncentral chi-square distribution. The 
apparent threshold and bias for this distribution are T* and b*. 
 

* max
2
min

T T



  (28) 

 

 * 1 *
maxb b T T   . (29) 

 
In the above expression, the values min and max are the 
smallest and largest possible eigenvalues over all axes, 
according to (12). In other words, min n   and max n   for 

all eigenvalues n of covariance matrix Q.  
An outline of the proof that (27) is the solution to the 

relaxed optimization problem (25) is provided below; however, 
some details of the proof are left to the earlier reference [28]. 

In constructing the proof, the most important step is the 
definition of the volume of integration G. In order to simplify 
analysis, the relaxed boundary of integration is chosen to be an 
ellipsoid of the same shape as the covariance ellipsoid Q. In 
the following analysis, the covariance ellipsoid is rotated into 
z coordinates, as defined above; consequently the covariance 
matrix Q is replaced with the diagonal eigenvalue matrix . In 
these coordinates, the boundary G of the relaxed volume of 
integration G is 
 

    1T

g g gG T    z z μ Λ z μ . (30) 

  
The parameter Tg is a scaling parameter that controls the 

size of the ellipse. The ellipse center is shifted by the vector 
g. In order to ensure a tight bound, the offset g is selected 
such that the volumes F and G are tangent at a contact point zc 
that lies along the direction of the distribution mean z.  

 

c z

T

b
z μ  (31) 

 
Making the bound tangent to the original threshold at zc 
ensures the new boundary of integration is a close 
approximation to the original boundary precisely where 
probability is highest (near the mean z). As such, this choice 
adds only a small degree of overconservatism when G replaces 
F. An example of an ellipsoid bound that is tangent to a 
spherical threshold is illustrated in 2D in Fig. 6. 

As proved in [28], the two volumes are tangent if g is 
 

g

g cT
c c

T 
  
 
 

μ I Λ z
z Λz

. (32) 
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It is shown in [28] that the ellipse G is large enough to entirely 
contain F as long as  
 

 2min

T
c c

g

nn

T



z Λz

. (33) 

 
This condition depends on uncertain parameters: the 
covariance matrix , which is the eigenvalue matrix for the 
original covariance Q, and the bias vector z, which sets the 
contact point zc according to (31). To ensure that all possible 
parameter values are covered on the range Q  and μ , 

it is sufficient to set *
gT T , where *T  is defined by  (28). 

This result can be shown by noting in (33) that the largest value 
of the numerator, over μ , is maxT; likewise, the smallest 

value of the denominator, over Q , is 2
min .   

Having set *
gT T , the ellipse G is fully specified. The next 

step is to show that expression (27) is a solution to the relaxed 
optimization problem (25) for G described by (30)-(32). To do 
this, introduce another coordinate transformation, substituting 
w for z where 
 

 1/2
g

 w Λ z μ . (34) 

 
This substitution transforms G from an ellipsoid into a sphere. 
The substitution does the same for the Gaussian probability 
distribution, mapping its contours of constant probability from 
ellipsoids into spheres. The resulting covariance is the identity 
matrix I. 
 

,
max ( ; , )

T
g

md N tot w
T

P p dV
  

 
  

 Q μ w w
w I μ  (35) 

 
The transformed bias is  
 

 1/2
tot z g

 μ Λ μ μ . (36) 

 
In w coordinates, the integral has now become a noncentral 

chi-square distribution. The noncentral chi-square distribution 
Pncx is a special case of the generalized chi-square distribution, 
one with an identity covariance matrix.   Because the identity 
covariance matrix is symmetric under rotation, the direction of 
the bias totμ  does not matter. Only its magnitude totb  matters. 

The magnitude-squared 
22

tot totb  μ  is sometimes called the 

noncentrality parameter, and the rank of the identity matrix I 
is sometimes labeled degrees-of-freedom DOF. Using this 
notation, the following formula can be written to relate the 
noncentral and generalized chi-square distributions. 
 

 
*

* 2; , ( ; , )
Tncx tot N tot

T
P T DoF b p dV


 

w w
w I μ  (37) 

 

 
Fig. 6.  Bounding Concept – An ellipsoid G with fixed shape must contain a 
spherical volume F  when both surfaces are tangent at zc. 

 

Thus the integral in (35) may be rewritten as follows. 
 

  * 2

,
max ; ,md ncx totP P T DoF b
 


Q μ

 (38) 

 

In this expression, the parameters *T  and DoF are fixed 
constants. The only remaining variable is the mean vector z, 
whose direction influences the magnitude of btot. Importantly, 
the dependence of the distribution on btot is a simple 
relationship; the noncentral chi-square probability always 
decreases as the noncentrality parameter grows: 
 

 * 2; , 0ncx tot
tot

P T DoF b
b





. (39) 

 
Thus, (38) is maximized when the bias magnitude btot takes its 

minimum value. Label this value *b ,  
 

 *

,
min totb b
 


Q μ

. (40) 

 
The original problem of maximizing an integral has been 

transformed into the much simpler problem of minimizing a 
scalar expression. It is convenient to square the scalar btot 
before finding this minimum, as the squaring operation does 
not affect the parameter values resulting in the minimum, 
given that btot is positive. An expression for btot squared is 
 

22

2

11 2 1

tot tot

gT
c c gT

c c

b

T Tb b
T

T T




   
       
   

μ

z Λ z
z Λz

. (41) 

 
This expression is obtained by combining (31), (32), and (36). 
Further simplification is possible by noting the contact point zc 

lies on the sphere of radius T in an arbitrary direction, which 

can be described by an arbitrary unit vector û . Substituting 

ˆc Tz u  gives 

zc

G F 

g 
O
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   2
2 1ˆ ˆ 2

ˆ ˆ

gT
tot gT

T
b b T b T T    u Λ u

u Λu
. (42) 

 
This expression is minimized when the vector ûaligns with the 
maximum principal axis of the eigenvalue matrix .  
 

       
 

22* 1
2

max max

g

g
n nn n

T
b b T b T T

 
      (43) 

 
Noting the maximum eigenvalue of  over the set  has 
previously been labeled max, complete the squares. 
 

   1
*

max gb b T T


    (44) 

 
This step recovers equation (29) and completes the proof 

that (27) is an analytical solution that optimizes (25). 

C. Quantifying Conservatism in Relaxed Bound 

The bound mdP  derived in the previous section is guaranteed 

to be conservative, such that *
md mdP P . It has been 

hypothesized that the ellipsoid bound is tight, because the 
ellipsoid threshold closely approximates the original spherical 
threshold at the location where probability is highest as shown 
in Fig. 6; however, this claim has not previously been tested. 
The goal of this section is to apply simulation to assess 
overconservatism in two ways:  by comparison to cases from 
the original design space ( μ  and Q ) and also by 

comparison to an alternative bounding strategy called 
determinant bounding [27]. 

Simulations considered in this section are representative of a 
particular class of integrity monitor used in safety-critical 
satellite navigation: Signal Deformation Monitoring (SDM). 
SDM is a key monitor for two civil aviation systems, the 
Satellite-Based Augmentation System (SBAS) and Ground-
Based Augmentation System (GBAS) [19]-[21]. To model the 
GBAS implementation of SDM, a 7 degree-of-freedom system 
is considered. The Q matrix is assumed to be uncertain but 
constrained according to (12), with eigenvalues between upper 
and lower limits. Upper eigenvalue limits are unity on all axes. 
Lower eigenvalue limits min,n  are drawn from [27]. The set of 

lower eigenvalue limits is the following. 
 

 0.42, 0.45, 0.56, 0.59, 0.64, 0.75, 0.93min,n   (45) 

 
Per constraint (14), bias direction is arbitrary. The monitor 
threshold is set to a value of T = 45.7 (representing a nominal 
chi-square false-alarm probability of 10-7). Bias magnitude 
values b ranging from 0 to 10 are considered, so as to fall on 

either side of T  (i.e., on either side of 6.76). 
For these parameters, four different estimates of Pmd are 

evaluated. These include (1) a baseline model, (2) an actual 
case, (3) the ellipsoid bound, and (4) the determinant bound. 
Each of these estimates is described in more detail, below. 

The first Pmd estimate is the baseline, which assumes the 
covariance matrix has the widest principal axes possible 
(Q = I). The baseline is not guaranteed conservative, as Pmd 
risk can shrink for a wider covariance matrix, as seen in Fig. 4. 
The baseline model Pbase is evaluated 

 

 2; ,base ncxP P T DoF b . (46) 

 
The second Pmd estimate is an actual case from the design 

space ( Q ). Specifically. eigenvalues are set to their 
minimum values for all principle axes except the largest 
principle axis, for which the eigenvalue is set to unity: 
 

 0.42, 0.45, 0.56, 0.59, 0.64, 0.75, 1.0n  . (47) 

 
The bias vector  is chosen to be aligned with the largest 
principle axis of Q. This choice appears to be the set of 
parameters resulting in the worst Pmd when the bias magnitude 
b is large, as illustrated in Fig. 1 through Fig. 3. To control 
numerical accuracy in integrating the generalized chi-square 
distribution function of (10) for this actual case, a Monte Carlo 
simulation with 106 trials is used. 

The third Pmd estimate is the ellipsoid bound mdP , which is 

computed by evaluating equations (27) through (29). Because 

mdP  has been shown to be a conservative bound, mdP  is 

expected to exceed the actual Pmd values for all parameter sets 
in the allowed parameter space (including the “actual case” 
simulated with Monte Carlo methods, as described above). 

The fourth Pmd estimate is the determinant bound detP . This 

bound was proposed in [27] as a conservative overestimate of 

the generalized chi-square distribution ( *
mdP Pdet ). The form 

of the determinant bound is the following: 
 

 2
1/ 2

,

1
min 1, ; ,det ncx

min n
n

P P T DoF b


 
   
 
 


. (48) 

 
The determinant bound is considered here for the sake of 
comparison, as a means of evaluating the level of 
overconservatism for the ellipsoid bound. 

The four models are plotted together on axes of Pmd versus 
bias magnitude b in Fig. 7. The baseline curve is shown as a 
dash-dotted green line, the Monte Carlo trials are plotted as 

red circles, the ellipsoid bound mdP  is plotted as a solid blue 

line, and the determinant bound as a dotted mauve line. On the 
plot, the region where the bias falls inside the threshold has a 
gray shaded background, and the region where the bias falls 
outside the threshold has a white background. 

A first observation is that the baseline estimate does not 
conservatively bound the actual (Monte Carlo) case; rather, the 
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baseline case is everywhere lower. Hence, the baseline estimate 
should not be used to compute the missed-detection risk for a 
safety-critical system if input noise parameters are uncertain. 

A second observation is that both the ellipsoid and 
determinant bounds are confirmed to be conservative, in that 
they both somewhat overestimate risk for the actual case 
simulated with Monte Carlo methods. It is readily apparent 
that, at least for this analysis, the ellipsoid bound is 
significantly tighter than the determinant bound. That the 
ellipsoid bound is a much tighter estimate than the determinant 
bound is confirmed in Fig. 8, which plots the data from Fig. 7 
after normalizing each Pmd value by the baseline estimate (46) 
for the same bias magnitude b. Normalization removes the 
trend in Fig. 7, making it clear that the determinant bound 
(dotted curve) lies much farther than the ellipsoid bound (solid 
curve) from the Monte Carlo case (circles). Even on the right 
side of the plot, where the ellipsoid bounds starts to deviate 
slightly from Monte Carlo simulation (30% inflation), the 
determinant bound is still substantially more conservative 
(approximately 250% inflation). 

A minor note regarding Fig. 8 is that the ellipsoid bound 
(solid curve) appears to approach the determinant bound 
(dotted curve) as bias increases. The determinant bound 
reaches a plateau (a constant multiplier times the baseline 
model) once the overbound value drops below unity, which 
happens when the bias becomes somewhat larger than the 
threshold. It is a reasonable question to ask whether the 
ellipsoid and determinant bounds ever cross, such that the 
determinant bound becomes tighter than the ellipsoid bound. 
The answer is that a crossing does eventually occur, as 
illustrated by Fig. 9, which plots the normalized Pmd bounds 
from Fig. 8 as a function of the normalizing value Popt, from 
(46). The crossing occurs at a Popt of 10-80, which is much, 
much smaller the Pmd requirements for aviation safety systems 
(which typically put requirements on Pmd risk at a level of 10-9 
or larger). In other words, for practical safety-of-life designs, 
it is unlikely that the determinant bound will ever outperform 
the ellipsoid bound. 

Full details of applying the ellipsoid overbound to integrity 
verification are beyond the scope of this paper; however, it is 
worth briefly noting the relevance of Pmd overbounding for 
SDM verification in GBAS. Monitor verification requires that, 
for a particular value of user-ranging error E, no threat has Pmd 
greater than a specified limit. A Pmd versus b curve (as shown 
in Fig. 8) can easily be converted into the required Pmd versus 
E curve, by using existing threat models that relate bias 
magnitude b to a worst associated error E [19]-[21]. In this 
sense, the ellipsoid overbounding model presented here can 
serve a key role in SDM verification. 

V. SUMMARY 

This paper introduced tools for tight but conservative 
performance characterization of chi-square integrity monitors 
for which the input noise is characterized by uncertain 
parameters. A first contribution was to frame as optimization 
problems the determination of worst-case parameter 
configurations that maximize false-alarm and missed-detection  

 
Fig. 7.  Comparison of models of missed-detection probability as a function of 
bias magnitude b 

 

 
Fig. 8.  Comparison of models of missed-detection probability, after 
normalization by a noncentral chi-square cumulative distribution 

 

 
Fig. 9.  Cross-over point where ellipsoid bound meets determinant bound 
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risk. A second contribution was to prove that an exact, 
analytical solution is possible for the problem of computing 
false-alarm risk. A third contribution was to provide an 
illustrative example to explain why a similar exact, analytical 
solution has not been found for the missed-detection risk 
optimization problem. A final contribution was to 
demonstrate, through simulation, that an approximate 
analytical solution called the ellipsoid bound can provide a 
very tight approximation for missed-detection risk.  

Simulations of Pmd indicated that the ellipsoid bound is very 
tight. As compared to an actual distribution from the allowed 
parameter space, the ellipsoid bound was inflated by no more 
than 30% (out to a Pmd risk of 10-5). The implication is that 
ellipsoid bounding is a useful (conservative but tight) method 
for approximating Pmd for chi-square monitors where 
parameter uncertainty exists and where an analytical solution 
is needed to streamline performance analysis. 
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