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Abstract 
 

 Across domains, individuals tend to make judgments and choices about probability that 

are apparently incongruent with the information they are given. This dissertation examines both 

the precise nature of these departures from veridical probability estimation and situations where 

individuals demonstrate accurate judgments. Experiments 1 and 2 apply a method of model 

selection – assessing the logarithmic derivatives of competing models of risky choices – that is 

novel to the field of judgment and decision-making and also introduce a new candidate model to 

the literature. Several candidate models for probability judgment in risky choice are rejected, and 

two models are shown to be superior. Experiments 3-6 assess memory for probability judgments 

in cases where all of the information needed to make such judgments is presented at once and 

risk is not an issue. This set of experiments examines memory for both simple probability 

judgments (in which individuals are asked about one feature of a problem) and for conjunction 

probability judgments (in which individuals are asked about multiple features of a problem). 

Riskless probability judgments are remarkably accurate when mnemonic interference is minimal. 

As interference increases, patterns of misestimation emerge that likely result from a mixture of 

guesses and confident judgments, and this pattern is better fit with a linear model than with a 

high-performing model of risky weighting.  
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Introduction 

  
 

Many of the decisions made in life are between options with some degree of uncertainty 

involved. Order a favorite dish at a familiar restaurant and it may arrive poorly prepared; take the 

highway instead of back roads and construction may slow a commute to a crawl; buy a lottery 

ticket and you will lose but someone might win. What we know about the respective probabilities 

associated with each of the options involved in a choice is an important part of the decision-

making process. However, the probabilities of relevant outcomes have been shown to be an 

imperfect predictor of a person’s choices, that is, people tend regularly to make decisions that are 

consistent with different probabilities than the ones with which they are actually presented. 

These differences are not random: they follow a consistent pattern that can be modeled as a 

nonlinear transformation of the objective probabilities under consideration. The research 

reviewed here regards people’s perception of probability across various domains, as do the 

experiments in this program of study. 

 

Probability Judgment in Risky Choice 
 
 

Models of judgment and decision-making typically assume that individuals weigh 

outcomes according to the respective probabilities of those outcomes when choosing between 

prospects (e.g., Russell & Schwartz, 2012; Tversky & Kahneman, 1992). Early models (e.g., 

Bernoulli, 1738/1954; Huygens, 1657/1970) posited that individuals made these choices based 

on objective probabilities: the actual probabilities of outcomes, based on the relative frequencies 
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of those outcomes or on some feature of the prospect (such as the two sides of a coin or the six 

sides of a die).  

In the mid-20th century, objective probability was shown to be inadequate to explain the 

choices that individuals actually make (Allais, 1953). Since then, it has generally been accepted 

that individuals make choices based on weights given by subjective probability, that is, the 

perceived chance of a loss or gain (e.g., Tversky & Kahneman, 1992). In choices involving risk, 

subjective probability is a tool to describe how individuals perceive the probability of risk or 

gain and how those perceptions impact decision-making.  For example, given a choice between a 

gamble and a certain outcome, individuals tend to choose the certain outcome: a difference of 

1% looms large when choosing between a certain gain and a 99% chance of gain but relatively 

small when choosing between a 10% chance of gain and an 11% chance of gain (Allais, 1953).  

Just as descriptive models have long posited a nonlinear relationship between money and the 

utility of money (Bernoulli, 1738/1954; Stott, 2006), subjective probabilities are typically 

described as non-linear transformations of objective probabilities.  These transformations were 

once commonly performed on the probability density function (e.g., Kahneman & Tversky, 

1979), but the currently preferred approach has been to transform the entire objective cumulative 

probability function onto a subjective probability function (e.g., Chechile & Barch, 2013; Prelec, 

1998; Tversky & Kahneman, 1992). This transformation of objective probability to subjective 

probability is performed by the risky weighting function.  

The weighting of the perceived values (utilities) of two outcomes in a binary choice by a 

subjective probability weight determined by a risky weighting function can be represented by a 

generic form of Cumulative Prospect Theory (CPT: Tversky & Kahneman, 1992): 

 

(Eq. 1) 
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                                      U(G) = ω (p)u(V1) + [1− ω (p)]u(V2 ) ,  

 

where U(G) represents the combined utility of the gamble in relation to an individual’s current 

endowment, ω(p)represents the transformation of probability p, and u(V1) and u(V2) represent the 

utility of the values of outcomes 1 and 2, respectively. It is important to note that probability and 

utility are assumed to be exogenous in this model. There are many candidate risky weighting 

functions (examples include power functions, logarithmic functions, and ratio functions; cf. 

Stott, 2006), however, it is generally agreed that individuals tend to overweight small 

probabilities and to underweight large probabilities. It has also been shown that the risky 

weighting function behaves differently in cases or potential gain versus cases of potential loss: 

individuals also tend to be risk-seeking when prospects are presented in terms of gains and risk-

averse for losses.  Each term in the CPT model (and others like it) involves emotion (e.g., utility) 

and subjectivity (e.g., endowment, risky weighting); thus, in contrast to traditional normative 

models of decision-making that emphasize strict maximization of endowment, the elements of 

feelings and personal perspectives are fundamental (Camerer, Loewenstein, & Prelec, 2005, see 

also discussion of Berns, Capra, Chappelow, Moore, & Noussair, 2008). 

Evaluating Candidates for the Risky Weighting Function 
 

 A useful theory of choice in the CPT framework needs to account for both utility function 

terms and risky weighting function terms. This is a difficult task: candidate models for both 

terms are bound to explain commonly observed patterns in choice (such as marginal utility and 

overweighting small probabilities) and have similar functional forms, and traditional model 

selection techniques must therefore account for fitting combinations of these internally similar 
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terms to the data. For example, Stott (2006) analyzed 256 combinations of candidates for the 

risky weighting function, the utility function, and an error function (predicated on the idea that 

individuals may not always correctly indicate the choices they actually prefer) and evaluated 

model fit with the Aikaike Information Criterion (Akaike, 1973). This approach can evaluate a 

great number of possible functions at a time, but it has its shortcomings: model selection 

statistics may not agree across models (Myung, 2000) and they assess quantitative but not 

qualitative aspects of the model fit (Chechile & Barch, 2013). Moreover, it may be more 

parsimonious to assess one of the terms while holding the other constant. The present research 

does so for the risky weighting function (although similar analyses may be possible to assess 

candidate utility functions).  

 Chechile and Barch (2013) analyzed candidate risky weighting functions using 

logarithmic derivative functions (also known as reverse hazard functions, cf. Block, Savits, & 

Singh, 1998; Chechile, 2003, 2011). The logarithmic derivative of a function is equal to the 

derivative of a function divided by the function itself: this relation makes logarithmic derivatives 

particularly sensitive to changes in slope (to be discussed in more detail in the introduction to 

Experiment 1). The differences between functions with similar slopes over the same regions are 

made more discriminable by using the logarithmic derivatives of those functions. Chechile and 

Barch (2013) examined the risky weighting function for different candidate functions in positive 

gambles (where each option leads to an increase in the endowment of the chooser) and 

introduced a novel model – the Exponential Odds Model – into the literature. The current line of 

research discusses that study and expands the study to examine choice behavior for negative 

gambles (where each option leads to a potential decrease in the endowment of the chooser) and 

further examines the Exponential Odds Model.  
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It is now generally agreed that the perceptions people have of probability when making 

choices under conditions of risk and uncertainty differ from the probabilistic information that 

they are actually given. Do we inherently have difficulty perceiving and understanding 

probabilistic information? Multiple studies, discussed in the next section, provide evidence that 

we do, and that the decisions we make in risky situations are reflective of this difficulty. 

However, if we can accurately perceive probabilities in certain domains, then perhaps our 

decision-making is driven more by attitudes towards risk than any kind of inherent cognitive 

deficit.  

 Probability Judgment Without Risk 
 

Subjective probability is implicated not only in risky choice but in any situation involving 

uncertainty (de Finetti, 1970). Examples of subjective probabilities can also be observed in 

judgments of frequency, proportion, or probability when risk is not involved (e.g., Attneave, 

1953; Gigerenzer, Hoffrage, & Kleinbölting, 1991; Pitz, 1966; Wu, Delgado, & Maloney, 2011). 

More recently, research in judgment and decision-making has examined decisions from 

experience, where individuals experience a series of events and must infer probabilities (e.g., 

Barron & Erev, 2003; Ungemach, Chater; Stewart, 2009). While these inferences are made on 

multiple events, memory judgments based on single presentations of probabilistic events have 

heretofore not been examined in the same manner as stimuli such as words, pictures, faces, and 

others. The current line of research presents all of the probabilistic information about a stochastic 

question at the time of test. 

Research into subjective probability judgments where risk is not involved has shown 

systematic departures from veridical estimation of objective probability, leading to the notion 

that probability judgment in both domains are distorted by the same mental processes and 
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sometimes to the invocation of the functional forms of various risky weighting functions (e.g., 

Reyna & Brainerd, 2008; Zhang & Maloney, 2012). However, while judgments under 

uncertainty across a number of domains may be distorted in similar ways, different cognitive 

processes may be at play, and multiple other explanations that do not involve attitudes towards 

risk have been offered to explain judgments in those domains (e.g., Gigerenzer, 1994; Denes-Raj 

& Epstein, 1994; Kirkpatrick & Epstein, 1992).  One explanation for the errors that are observed 

in the perception of probability is that individuals may attribute equal probability to all the events 

in a sample space, particularly when more precise information is unknown or unavailable. Thus, 

in a planned experiment with n outcomes, individuals judge the probability of each possible 

outcome to be 1/n. This default judgment was called “the principle of insufficient reason” by 

Leibnitz (see Hacking, 1975) and is currently referred to as the ignorance prior (e.g., Fox & 

Rottenstreich, 2003). It is possible that what appears to be distortion of probability is actually a 

mixture of confident, accurate judgments and uninformed guesses of the ignorance prior. 

 

The line of research described in this proposal examines subjective probability judgments 

made regarding a relatively simple and frequently used pedagogical example: the probability of 

retrieving a given object from a jar. It is hypothesized that using a problem that is relatively 

comfortable for participants (Spence, 1990) will lead to more accurate judgments of probability. 

This research also examines memory for probability judgments. The research on memory for 

probability described here examines probability judgments for events that are presented in a way 

that is similar to the way information is presented in studies of risky choice. In studies of 

judgment made under conditions of risk and uncertainty, individuals are presented with all of the 

information they need to make a judgment all at once and at the time of test. In the current 
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studies on memory for probability judgments, individuals are presented with all of the 

information needed to make a judgment (a visual, non-semantic representation of the sample 

space) but at some point before the time of test. This research measures differences in judgments 

across different retention intervals for problems of varying complexity (one or two dimensions of 

features).  

 Judgments of Multidimensional Probability 
 
 
 Naturally, many decisions are more complicated than simple gambles. Often, multiple 

features of a problem must be integrated in order to make a choice. In a common example from 

laboratory settings, the conjunction fallacy (Tversky & Kahneman, 1983) is a logical error that 

occurs when individuals are asked to judge probabilities from scenarios with two simultaneous 

probabilistic features. The conjunction fallacy is committed when individuals judge the co-

occurrence of two events as being more likely than one or both of the constituent events.  In the 

most famous example – the Linda Problem – participants in the study tended to judge the 

conjunction prospect that the 31-year-old Linda, in her undergraduate days a liberal arts major 

who was active in left-leaning causes, was a bank teller and active in the feminist movement as 

more likely than the marginal prospect that she was a bank teller.   

 There are two prevailing explanations for the conjunction fallacy and a third, emerging 

theory.  The first, introduced by Tversky and Kahneman (1983), is that individuals are misled by 

their use of heuristics: Linda’s description is representative of a feminist and examples of 

feminists who fit her description are readily available in memory, and so individuals gravitate 

towards statements that include feminism (Kahneman & Tversky, 1996).  A second explanation 

concerns the wording of conjunction-type problems.  The key semantic issue appears to be 

individuals’ interpretation of probability.  When problems are given frequency representation, 
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the error has been mitigated (Fiedler, 1988; Gigerenzer, 1994; Tentori, Bonini, & Osherson, 

2004).  The third explanation for the conjunction fallacy and other normative errors in 

multidimensional reasoning posits that classical probability theory is insufficient to describe 

cognition in situations where information is considered incompatible. This recently developed 

framework (e.g., Busemeyer, Pothos, Franco, & Trueblood, 2011) instead uses quantum 

probability (von Neumann, 1932) in which probabilities are represented as a vector space that 

can be transformed in such a way that conjunction probabilities can be larger than one of their 

related marginal probabilities to model the choices made in such situations. However, since the 

results of this program of study indicate that more traditional models are sufficient to explain 

judgments of conjunctions and they do so in a much more parsimonious matter, the quantum 

model is discussed but not directly assessed in this paper. 

 The present research examines conjunction-type problems in the same way it treats one-

dimensional probability problems: with all of the information necessary to make judgments at 

once (obviating the possibility of using heuristics stored in long-term memory). Distortions of 

multidimensional probability judgments were examined both immediately and as a function of 

increasing retention interval.  The assumptions of the various theoretical explanations of the 

conjunction error were evaluated in light of the findings of the present program.  

 Experiments 

  
 The experiments that comprise the current program of study evaluate models of 

probability judgment in a number of domains. For judgments of probability in risky choice, the 

leading candidates – plus a novel candidate – are evaluated using logarithmic derivatives. For 

judgments of probability that do not involve risk in relatively simple situations, the linear model 

is evaluated, as a linear relationship between subjective and objective probability would indicate 
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veridical judgment. This model will be examined in judgments made at or near the time of test 

and at various memory lags. Some theorists (e.g., Reyna & Brainerd, 2008; Zhang & Maloney, 

2012) have claimed that distortions of subjective probability in the domain of risk and 

uncertainty are similar to those seen in difficult but risk-free problems. Thus, a model that 

predicts judgments in risky choice very well – the Prelec model – is compared with the linear 

model in a more difficult memory task. These questions will also be investigated in the domain 

of multidimensional probability judgment. In addition to accuracy, the studies of 

multidimensional probability judgment will also examine whether individuals can accurately 

assess conjunction probabilities when there is no possibility of interference from heuristic 

reasoning.  

The first two experiments in this program focus on distortions of probability in risky 

choice. Experiment 1 introduces the use of logarithmic derivatives to the judgment and decision-

making literature to discriminate between competing models in risky choice using a gamble-

matching paradigm with positive gambles. It also introduces a novel function – the Exponential 

Odds Model – to the literature. Experiment 2 expands the analyses of Experiment 1 to examine 

risky choice made in both positive and negative gambles.  

The second set of experiments examines probability judgments in riskless environments. 

Experiment 3 examines memory for probability judgments in a riskless environment using a 

Brown-Peterson paradigm. Experiment 4a examines how individuals make probability 

judgments that require the integration of multiple features. Experiment 4b examines memory for 

the multidimensional probability judgments made in Experiment 4a.  

The third set of experiments use a continuous recall paradigm in order to increase 

mnemonic interference between study and test. Experiment 5a uses this paradigm to examine 
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one-dimensional probability judgments; Experiment 5b examines multidimensional probability 

judgments.   
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Experiment 1 (completed): Assessing the risky weighting function 

ω(p) for positive gambles 
 

Introduction 
 
 
 Risky weighting functions have all been developed to describe the same phenomenon: the 

tendency of individuals to make risky choices that indicate an understanding of the probabilities 

involved in those choices that differs from an objective perspective on those probabilities. Since 

people are consistent in their choice behavior – frequently overestimating small probabilities and 

underestimating large probabilities – these risky weighting functions all take on similar forms 

(illustrated in Figure 1). Discriminating between these functions is thus difficult, as is 

determining which functions work as superior models for describing choice behavior.  

 

Figure 1. Similar ω(p) functions: Goldstein-Einhorn (dashed) and Prelec (solid). Objective 

probability is plotted on the x-axis; ω(p) is plotted on the y-axis 
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The risky weighting function is a relatively new development in theories of choice. The first 

model for decision-making under conditions of risk and uncertainty was a normative model 

derived from expected value theory by Huygens (1657).  The expected value model suggests that 

a risky choice would be advisable if the expected outcome value of the choice were greater than 

the cost of the choice, so that a rational actor should consider a prospect as the sum of all 

possible outcomes with each outcome weighted by the probability associated with each outcome.  

However, Bernoulli (1738/1954) created a hypothetical game wherein it would be irrational to 

pay a price to play that was equal to the expected value of the game.  In this gamble, known as 

the St. Petersburg paradox, a coin is flipped.  If tails, the game ends with the player keeping the 

endowment accrued to that point: if heads, the player’s endowment is doubled and the coin is 

flipped again. The expected value of this gamble is infinite: the exponential growth of the 

potential winnings outpaces the exponential decay of the probability of winning on repeated 

trials. Bernoulli argued that no rational actor would pay more than a relatively small sum to play 

(he suggested a small sum of 20 ducats, and recent research – e.g., Hayden & Platt, 2009 – has 

supported this claim in terms of modern currency).  This thought experiment led Bernoulli to 

propose that the perceived usefulness or utility of value, rather than value itself, was a primary 

driver of decision-making.  He further posited that utility could be represented as a nonlinear 

transformation of value.  Bernoulli proposed a logarithmic function, but recently, power models 

have shown to be more accurate predictors of choice (Stott, 2006).  Expected utility theory 

supplanted expected value theory and became the cornerstone for behavioral economics.  The 

resulting expected utility theory (axiomatized by Von Neumann & Morgenstern, 1944) weighted 

the utility of each outcome by its respective probability: 

E(v) = piU(vi )
i=0

n

∑   (Eq. 2) 
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 Allais (1953) showed that expected utility was insufficient.  Allais proposed the pair of 

gambles represented in Table 1.  Expected utility theory – regardless of the shape of the function 

– predicts that, to be consistent, individuals would choose either the pair [1A and 2A] or the pair 

[1B and 2B].  However, Allais predicted that individuals would tend to choose gamble 1A and 

gamble 2B, a prediction that has since been borne out by empirical data (e.g., Hong & Waller, 

1986).  In this way, Allais demonstrated that a sufficient theory of choice needed to include a 

transformation of probability as well as a transformation of utility [utility functions have several 

competing models and there is not a scientific consensus as to which is preferred (e.g., Stott, 

2006), but these are outside the scope of the current research]. 

 

Table 1. Choices in Allais's Paradox 
 

  

 

 

 

 

This breakthrough paved the way for the theories of choice in which options are given 

decision weights that allow judgments of probability to deviate from actual probabilities.  Early 

iterations of these types of choice models – the most famous being Prospect Theory (Kahneman 

& Tversky, 1979) – could effectively account for Allais-type issues in choice behavior.  Prospect 

Theory effectively explained several other critical choice phenomena, including the endowment 

effect (wherein individuals make choices on the basis of gains and losses rather than on overall 

assets), the isolation effect (the tendency to ignore features that are common to multiple choices) 

Experiment 1 Experiment 2 

Gamble 1A Gamble 1B Gamble 2A Gamble 2B 

Outcome P Outcome P Outcome p Outcome p 

$1 
million 

100% 

$1 
million 

89% Nothing 89% 
Nothing 90% 

Nothing 1% 
$1 

million 
11% $5 

million 
10% 

$5 
million 

10% 
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and the four-fold pattern of risk attitude (differential responses to gains and losses: risk-averse 

behavior for gains with large probabilities and losses with small probabilities, risk-seeking 

behavior for gains with small probabilities and losses with large probabilities).  However, models 

such as Prospect Theory that used transformations of probability densities as decision weights 

were vulnerable to violations of first-order stochastic dominance: that is, that gamble A that has 

a higher cumulative probability of returning an outcome as good or better than gamble B  for all 

probabilities p might still be considered less preferable than B for some candidate p.  To account 

for this apparent paradox1 and to extend the model beyond binary gambles, Tversky and 

Kahneman (1992) incorporated developments from rank dependent utility theories (e.g., Luce, 

1998; Quiggin, 1982, 1993; Schmeidler, 1989), transforming the entire cumulative probability 

function across the range [0,1] to create cumulative prospect theory. This nonlinear 

transformation in cumulative prospect theory and related models is known as the risky weighting 

function, given here, as ω (p).  The weighting of utilities in a binary gamble G by perceived 

probability is given by Equation 1. 

There are many candidates for the risky weighting function ω (p) (examples include 

power functions, logarithmic functions, and ratio functions; cf. Stott, 2006), but all of these 

models account for the tendency of individuals to overweight small probabilities and to 

underweight large probabilities.  In CPT, the overall value of a prospect is the sum of the 

transformed value (utility) of each possible outcome weighted by its perceived probability ω (p), 

thus accounting for the contributions of both Bernoulli and Allais. Investigations into the neural 

bases of these models can be instructive.  For example, they may be able to determine whether 

                                                 
1 Birnbaum (1999, 2004) has argued that violations of first-order stochastic dominance can occur 
with regularity in gambles with more than two outcomes, particularly when coalescing of 
common consequences is ignored, but gambles with more than two outcomes are not considered 
in this paper. 
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the processes assumed to be separable in choice models are actually performed by separate brain 

structures (Camerer, Loewenstein, & Prelec, 2005, see also discussion of Berns, Capra, 

Chappelow, Moore, & Noussair, 2008).   

 There are three essential assumptions of the nature of risky weighting functions. The first, 

represented by Equation 3, is that the risky weight of a probability value of zero is itself zero: a 

certain loss has no utility for an individual. 

ω (0) = 0    (Eq. 3) 

The second of these assumptions is that the risky weight of a probability value of one is itself 

one: the utility of a certain gain is equal to the utility of the gain itself.  

ω (1) = 1   (Eq. 4) 

The third assumption is that the risky weighting function is monotonically increasing across the 

[0,1] interval: regardless of how an individual perceives a probability relative to its objective 

value, that individual will rate a more probable event as more probable than a less probable 

event. This assumption is operationalized in Equation 5. 

ω '( p) > 0    (Eq. 5) 

Taken together, these three assumptions imply another feature of the risky weighting function: 

the range of the risky weighting functions is [0,1]. 

 Candidate models for the risky weighting function are here categorized by their general 

functional form, following Chechile and Barch (2013).  The class of each model has important 

implications for the analysis of the logarithmic derivatives of the models, as each model in a 

given class will have the same η(p) profile. 
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Power Models 

 

 A number of candidate risky weighting functions can be expressed by raising objective 

probability by a power.  For example, expected value and expected utility theories can be 

understood as special cases where the power parameter is equal to 1.  Stevens (1957; 1961), 

introduced power models as translations of the absolute intensities of physical phenomena (e.g., 

light and sound) to individuals’ relative perception of those intensities.  That probability may be 

translated in the same manner was investigated by Luce, Mellers, and Chang (1993).  Diecidue, 

Schmidt, and Zank (2009) expanded this representation into switch-power weighting function, 

which allowed for separate curvatures and elevations for small probabilities (those which tend to 

be subjectively overestimated) and for larger probabilities (those which tend to be subjectively 

underestimated).  Thus, there are two parameters representing the power in the switch-power 

model corresponding to whether the probability in a decision weight is greater than or less than 

the crossover point between objective and subjective probability. 

The Hyperbolic Logarithm Model 

 

 Prelec (1998; also Luce, 2001), in the same paper wherein he presented the more famous 

contribution to the risky weighting function that bears his name (discussed below), derived a 

hyperbolic logarithm model in order to account for projection invariance, that is, that when a 

pair of gambles is considered equivalent and that pair is still considered equivalent when the 

probability of each outcome is multiplied by a constant implies that the gambles would still be 

considered equivalent should each probability be squared. The two risky weighting functions 

classes that could accommodate projection invariance are power models and the hyperbolic 

logarithm model 
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ω (p) = (1−α ln p)
− β

α  (Eq. 6) 

where α and β are fitting parameters2  

Ratio Models 

 

 The Goldstein-Einhorn (Goldstein & Einhorn, 1987) model: 

ω (p) = spa

[spa + (1− p)a ]
 (Eq. 7) 

where a and s are fitting parameters, was derived in an attempt to explain a variety of preference 

reversals. The preference reversal phenomenon, sec. Goldstein and Einhorn, occurs when 

individuals seem to prefer one gamble of a pair when asked to respond in one way – e.g., how 

much they would choose to pay for each gamble) – but to prefer another when asked to respond 

in a different way – e.g., which gamble they would prefer to play when presented both in 

tandem3.  In their exploration of preference reversals, Goldstein and Einhorn note that different 

response methods may invoke the use of incongruent scales: prices assigned to gambles may 

vary differently than do ratings of attractiveness of gambles, judgments of the values of gambles, 

and/or binary choices between gambles.  Thus, the Goldstein-Einhorn model of subjective 

probability is based on a ratio of adjustments between potentially different scales.  Based on the 

assumption that when one of these adjustments (denoted as δ) equals zero or one that the other 

must equal zero or one, Goldstein and Einhorn modified the Karmarkar (1978) function to 

                                                 
2 Although developed to account for context-indifference in Allais-type problems, Takahashi 
(2011) has shown that the Prelec function can also be derived from waiting time in probabilistic 
choices and is related to the hyperbolic discounting function (e.g., Zauberman, Kim, Malkoc, & 
Bettman, 2009) 
3 It has since been shown that preference reversals can occur even when the problem is presented 
in the same way.  For example, Chechile & Butler (2000) elicited preference reversals using a 
paradigm that consistently asked participants to match gambles.  In that study, altering the 
schedule of gains and losses in mixed gambles was sufficient to produce preference reversals.   
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include two free parameters (corresponding to the two different scales required for a preference 

reversal in the Goldstein-Einhorn formulation).  In the case of binary gambles, the proposed 

model of Lattimore, Baker, and Witte (1992) is equivalent to the Goldstein and Einhorn 

formulation.  

Wu and Gonzalez (1996; Gonzalez & Wu, 1999) developed a variant on this class of 

risky weighting functions based on two principles.  The first, discriminability, was adapted from 

Tversky and Kahneman (1992), and describes how the psychological distance between two 

probability values diminishes as the values deviate from a reference point (for example, 

individuals are particularly sensitive to small departures from a reference point of 0, giving rise 

to the certainty effect).  The second, attractiveness, describes the propensity of an individual 

towards a gamble of a given value, which determines the elevation of the curve (and thus the 

crossover point between subjective and objective probability).  The Wu-Gonzalez model 

w(p) = δ pγ

[δ pγ + (1− p)γ ]γ '   (Eq. 8) 

subsumes the risky weighting function used by Tversky and Kahneman (1992) because the latter 

is the special case of the former where γ = 1/γ.     

The Exponential Class 

 

 Prelec (1998) derived a model for the risky weighting function from the phenomenon of 

compound invariance (Allais, 1953).  Compound invariance explains choice behavior in cases 

such as the Allais paradox in which the respective probabilities of two gambles are each reduced 

by an equal proportion: in this case, a riskier prospect that offers a more attractive outcome is 

favored to the less risky prospect.  Prelec’s equation: 

ω (p) = e− s(− ln( p ))a

  (Eq. 9) 
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has a free parameter a, which determines the extent to which subjective probability differs from 

veridicality (i.e., the curvature), and an inflection point (which is the point at which objective 

and subjective probability are equal) that changes with regard to the free parameter s.   

Luce (2001) proposed another form of the Prelec function that replaced the logarithmic 

term of the standard form with an odds ratio raised to a power: 

ω (p) = e
− s

1− p

p








a

  (Eq. 10) 

However, he did not further investigate that model. Chechile and Barch (2013) considered this 

form of the Prelec function and modified it so that the numerator and the denominator of the 

odds ratio could be raised to separate powers. Thus, the decision weights of both the more 

favorable outcome (p) and the less favorable outcome (1 – p) both bear upon the curvature of the 

function. The removal of the constraint that both terms of the odds ratio had to be raised to the 

same power resulted in the Exponential Odds model:  

   (Eq. 11) 

Therefore, the Exponential Odds model takes the principle of compound invariance and adds the 

possibility that there may be separate sub-weighting for low probabilities and for high 

probabilities.  

 As discussed earlier, it is possible to use statistical model selection techniques to compare 

model fit (Stott, 2006), but these techniques provide quantitative but not qualitative assessments 

of error patterns. Other investigations have used non-parametric elicitations of risky weighting 

functions. For example, Abdellaoui (2000) compared prospects with five different probabilities 

(1/6, 2/6, 3/6, 4/6, and 5/6) to certain outcomes. This method does not stipulate a utility function, 

providing for direct study of risk perception, but this approach is vulnerable to Allais-types 

ω ( p) = e
− s

(1− p)b

pa
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paradoxes (Von Nitsch & Weber, 1988), as outcomes that are certain tend to elicit choice 

behavior that is distinct from choices made under risk. Comparison between two risky choices is 

thus preferable. Bleichrodt and Pinto (2000) used a paradigm that asked participants to compare 

choices of different probabilities, but tested only five probability values (0.10, 0.25, 0.50, 0.75, 

and 0.90), limiting the precision of their investigation (Chechile & Barch, 2013). A preferable 

approach would be one that can discriminate among small differences between functions, does 

not require an assumed utility function, and one that compares judgments made in risky choice to 

other judgments made in the same domain. 

 In this experiment, the results of which were published in the Journal of Mathematical 

Psychology, Chechile and Barch (2013) used transformations of risky weighting functions – the 

logarithmic derivative (LD) of those functions – to evaluate candidate models. The LD of a 

function is the ratio of the derivative of a function to the function itself. Because the LD is 

related to the rate of change at each point of a function, it is especially sensitive to model 

curvature, making it particularly useful for detecting small differences between similar curves. 

The LD of a risky weighting function is itself a function of objective probability values and is 

denoted by η(p). Whereas the functional forms of ω(p) models are necessarily similar, the η(p) 

form of those same models can differ substantially, as shown in Figure 2.  
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Figure 2. η(p) of the Prelec function (red), given in Equation 9, the Goldstein-Einhorn function 

(blue) given in Equation 7, and the Hyper-logarithm function (green), given in Equation 6. 

Objective probability is plotted on the x-axis; η(p) is plotted on the y-axis. 

 

 The Prelec function and the Goldstein-Einhorn function, nearly indistinguishable in their 

respective ω(p) forms in Figure 1 (above), show little overlap in their respective η(p) forms in 

Figure 2. The η(p) forms of each of those two models decreases over the range of small 

probabilities to a valley for midrange probabilities and then increases for large probabilities [a 

Decrease-Valley-Increase (DVI) pattern]. A third η(p) function has been included in Figure 2 

for comparison: the hyperbolic-logarithm model (Luce, 2001; Prelec, 1998). This function has a 

decreasing then stable (DS) profile. This and other shape differences will play an important role 

in the analysis of the data for this experiment: for example, if the data indicate that the DVI 
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profile is called for, then the Hyperbolic-Logarithmic model can be discarded. This is a powerful 

advantage for the LD as a model-selection tool. General descriptions of theη(p) profiles for 

leading candidate models for the risky weighting function are presented in Table 2. 

 

Table 2. General Properties of η(p) for Candidate Models for the Risky Weighting Function 

Model η(p) properties 

Power (Luce, Mellers, & Chang, 1993) Monotonically decreasing (MD) 
Switch Power (Diecidue et al., 2009) MD 
Hyperbolic-Logarithm (Prelec, 1998; Luce, 2001) DS 
Goldstein-Einhorn (Goldstein & Einhorn, 1987) MD if a ≥  1; DVI if a < 1 
Lattimore (Lattimore, Baker, & Witte, 1992) MD if a ≥  1; DVI if a < 1 
Wu-Gonzalez (Wu & Gonzalez, 1996) MD if a ≥  1; DVI if a < 1 
Tversky-Kahneman (Tversky & Kahneman, 1992) MD if a ≥  1; DVI if a < 1 
Prelec (Prelec, 1998) MD if a ≥  1; DVI if a < 1 
Exponential Odds (Chechile & Barch, 2013) MD if b ≥  1; DVI if b < 1 

 

The η(p) function can be obtained empirically without stipulating a utility function. The 

derivation of the η(p) function begins by assuming the general form of the CPT function in 

Equation 1 where (a) there are two options in a gamble, (b) the utility of each prospect is given 

by the product of the risky weighting function of the probability of that prospect and the utility 

function of the value4 of that prospect, (c) the risky weighting function and the utility function 

are assumed to be exogenous, and (d) the overall utility of the gamble is given as the sum of the 

utility of the two prospects.  

 

The gambles used in this experiment were all binary. In the gamble-matching paradigm, 

one gamble was termed the reference gamble (Gr). The reference gamble was always of the form 

                                                 
4 The values for each prospect in this experiment were positive: the behavior of the η(p) 

function and its implications for candidates for the risky weighting function for negative gambles 
will be explored in Experiment 2. 
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Gr(100, pr, 2), where pr was the probability of winning 100 points and (1 – pr) was the 

probability of winning 2 points (as described in the Methods section below, these points came to 

bear on the amount paid to participants). Each reference gamble was to be matched to one of two 

comparison gambles (Gc+ or Gc-). In half of the trials, participants were asked to compare the 

reference gamble to a comparison gamble where the larger outcome value was greater than that 

of the reference gamble – 120 points – with the lesser value the same (2 points). For these trials, 

the participants were asked to assign the probability of winning the larger value in the 

comparison gamble that they thought would make the two gambles equivalent. The candidate 

probabilities they were given were all smaller than the probability of winning the larger outcome 

in the reference gamble (a greater probability of winning a greater sum of points is obviously 

preferable and thus such gambles would always be imbalanced). In these trials, the comparison 

gamble took the form Gc+(120, pr – pd, 2), where pd (denoting probability down) represented the 

difference between the probability of winning the greater value in the reference gamble and the 

participant-chosen probability of winning the greater value in the comparison value. For the 

other half of trials, the greater outcome value of the comparison gamble was smaller than that of 

the reference gamble – 80 points – and the lesser outcome value was again 2 points. In these 

trials, participants indicated the (larger) probability of winning the greater outcome value that 

would balance the comparison gamble with the reference gamble: these comparison gambles 

took the form Gc-(80, pr – pu, 2), with pu (denoting probability up) being the difference in the 

probabilities of winning the greater outcome value between the reference gamble and the 

comparison gamble. The utility of both gambles to be matched is given by Equation 1, which can 

be expanded into the form of Equation 12: 

U(G) = ω (p)u(V1) + u(V2 ) − ω (p)u(V2 )  (Eq. 12) 
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For comparison gambles of the form Gc+(120, pr – pd, 2), it follows via substitution that 

ω ( pr )u(100) + u(2) − ω (pr )u(2) = ω (pr − pd )u(100 + 20) + u(2) − ω ( pr − pd )u(2)  (Eq. 13) 

when the gambles are matched. Taking the first two terms of the Taylor series expansion of 

Equation 13 results in the approximations: 

u(120) ≈ u(100) + 20u '(100)   (Eq. 14) 

ω (pr − pd ) ≈ ω (pr ) − pdω '(pr ) .  (Eq. 15) 

These approximations can be substituted into Equation 15. Dividing both sides of Equation 15 

by 20ω ( pr )u '(100)  (it can be assumed that the risky weight of a non-zero probability and the 

utility of a gain of 100 points are both positive values and thus this term is positive) gives the 

approximation 

η(pr ) +η(pr )
u(100)

20u '(100)
− u(2)

20u '100)









 ≈ 1

pd

 , (Eq.16) 

where η(pr ) = ω '(pr )

ω (pr )
  : the logarithmic derivative of the risky weighting function at each 

reference probability.  

Similarly, for comparison gambles of the form Gc-(80, pr – pu, 2), taking the first two 

terms of the Taylor series expansion gives the following approximations: 

u(80) ≈ u(100) − 20u '(100)   (Eq. 17) 

ω (pr − pu ) ≈ ω (pr ) + pdω '(pr )   (Eq. 18) 

−η(pr ) + η( pr )
u(100

20u '(100)
− u(2)

20u '(100)









 ≈ 1

pu

 (Eq. 19) 

Equations 16 and 19 are then summed to get the overall estimation of η(pr ) : 

η(pr ) ≈ pu + pd

2Dpu pd

   (Eq. 20) 
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where  

D = u(100)

20u '(100)
1− u(2)

u(100









   (Eq. 21) 

Since it can be assumed that the utility of 100 points and the utility of 2 points are respectively 

constant across trials for each individual participant, D is also a constant. Thus, the LD at any 

reference probability [η(pr )] can be approximated5 knowing only the difference in probabilities 

pu or pd between the reference and the comparison gamble, and a utility function does not need to 

be stipulated for the analyses in this study. 

Chechile and Barch used the LD of leading candidate functions to look for systematic 

patterns in fitting errors as well as traditional parametric regression model fit statistics. This 

experiment used a gamble-matching paradigm with choices presented symbolically with figures 

that elicited precise statements about perceived probability without requiring numeric statements 

and obviating the need for comparisons with choices made with certainty. Finally, this work led 

to the development of a novel candidate for the risky weighting function: the Exponential Odds 

Model.  

 Based on prior research (Prelec, 1998; Luce, 2001; Stott, 2006), the Prelec (1998) model 

was expected to be the best-performing of the extant models. However, while prior research has 

shown some models to be less preferable, the LD approach was expected to be able to rule out 

many underperforming models due to systematic error patterns. It was also hypothesized that the 

Exponential Odds Model would be well-suited to describe the data, although at the cost of one 

more parameter than many of the current candidate models (e.g., the Prelec model). 

                                                 
5 The accuracy of this approximation was tested by taking the logarithmic derivative of the Wu-

Gonzalez function after assuming a utility function of u(V ) = V .3  (see Stott, 2006) at each point 

on the interval [0.5, 0.95]. For fifteen candidate p values, the error was less that one percent, and 
was less than five percent at every point. 
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Method 
 
 
 Participants (n = 10) were recruited via online advertisement. Experimental stimuli were 

created and presented using E-Prime (Psychology Research Tools, Pittsburgh, PA) software. 

Payouts for participation ranged from $20 to $55 in steps of $5: participants were made aware 

that they would be playing a game, that the choices that they made would influence their game 

score, and that the participant with the highest game score would receive the highest payout. 

 The brief first phase of the experiment was designed to allow participants to become 

comfortable with the gamble-matching procedure. In each of the three trials in this phase, 

participants were shown two wheels of fortune on the screen (Figure 3). Each wheel represented 

a gamble: each outcome was represented by a color (linked to values with a key) and the 

proportion of the wheel of each color represented the probability of each outcome. On the left, 

the color red indicated a gain of 100 points and the color blue indicated a gain of 2 points. On the 

right, the color green indicated a gain of either 80 or 120 points and the color blue again 

indicated a gain of 2 points. Participants asked to choose between the two gambles they preferred 

by indicating which of the two wheels they would prefer to spin. After making their choice, a 

pointer appeared above each wheel and the wheels were made to spin: participants earned the 

number of points indicated by the color directly under the pointer when the wheels stopped 

spinning. In this phase and in the following phase of this experiment, a random number generator 

determined the duration of each spin. There were three trials in this first phase of the experiment. 



Assessing Probability Judgments 

 38

 

Figure 3. Screenshot from Phase 1 of Experiment 1  

 

 In the second phase of the experiment, participants were shown a wheel on the left side of 

the screen that we called a “reference gamble.” Outcomes for the reference gamble were always 

100 points (indicated by the color red) and 2 points (indicated by the color blue); the 

probabilities of these outcomes varied between trials. On the right side of the screen, participants 

were shown five options for what we called the “comparison gamble.” For half of the trials in 

this second phase, the outcomes for the comparison gamble were 80 points (indicated by the 

color green) and 2 points (indicated by the color blue). Each of the options in these trials gave a 

probability to win the greater outcome (80 points) that was greater than the probability of 
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winning the greater outcome in the reference gamble (100 points). A sample screenshot is shown 

in Figure 4.  

 

Figure 4. Screenshot from first choice opportunity in Phase 2 of Experiment 1. 

 

Participants were instructed to choose the wheel on the right that they found to be closest 

to balanced with the wheel on the left. The five options were replaced with five new options with 

probabilities of winning the greater outcome that were closely distributed around the probability 

of the option they chose before. After making a second choice, five new options were presented 

in the same manner, allowing participants to balance the gambles precisely without being 

explicitly given numbers to work with. After the third choice, participants were asked if they 



Assessing Probability Judgments 

 40

found the wheels to be balanced (if not, they had the option to begin the process again for that 

trial; see Figure 5). For the other half of the trials, the greater outcome of the comparison gamble 

was 120 points, and the probability of winning 120 points for each option was less than the 

probability of winning 100 points in the reference gamble. 

 

Figure 5. Final opportunity to keep or change decision in Phase 2 of Experiment 1. 

 

 The game was played on one-third of all of the trials in the second phase. Participants 

played against a simulated “audience” of 101 decision-makers, each of which represented utility 

models with a distribution of coefficients based on choices made by participants in earlier 

experiments (Chechile & Butler, 2000, 2003). After participants indicated that they found the 



Assessing Probability Judgments 

 41

two wheels to be balanced, the audience would “choose” the wheel that the majority of the 

models calculated to have the higher overall utility, leaving the other wheel to the participants. 

This modified cake-cutting paradigm (e.g., Deng, Qi, & Saberi, 2012) encouraged participants to 

make careful matching judgments. After the audience chose a wheel, both wheels were spun as 

in the first phase and participants earned the number of points indicated by the pointer on their 

wheel (see Figure 6). The other two thirds of trials simply moved to the next trial after the 

participant indicated that the wheels were balanced to their satisfaction. There were 19 

probability values for the greater outcome for the reference gambles (from .05 to .95 in steps of 

.05) and each value was tested three times for comparison gambles with smaller outcomes and 

three times for comparison gambles with greater outcomes for a total of 114 trials in this phase 

of the experiment. 
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Figure 6. Sample game outcome for Phase 2 of Experiment 1. 

 

Results   
 
 For each of the reference probability values represented in the task (again, there were 19 

such values on the range of [.05, .95] in steps of .05), participants gave via the matching 

procedure three matching probabilities that were shifted up for comparison gambles with smaller 

outcome values and shifted down for comparison gambles with larger outcome values. We 

denote pc- as the average of the three upshifted probabilities, pr as the reference probability, and 

pu as the difference pc- – pr. Similarly, we denote pc+ as the average of the three downshifted 
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probabilities and pd as the difference pc+ – pr. The values of pu and pd are related to the 

logarithmic derivative of the risky weighting function η(pr) given by Equation 21. 

For each of our participants, probability judgments produced a decrease-valley-increase 

(DVI) 2Dη(pr) profile. Median values of 2Dη(pr) are shown in Figure 7. 

 

 

Figure 7. Median η(pr) values across participants in Experiment 1. 

 

This pattern was statistically significant: a contrast between empirically observed η(pr) values for 

the three largest objective probability values (p  = [.85, .95]) showed these values to be 

significantly greater than the values for the next three largest objective probability values (p = 
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[.75, .8]) for each participant via a nonparametric binomial test (p < .001) and a parametric test 

(t(9) = 3.37, p < .005). Power models (of which Expected Utility models are a special case where 

the a fitting parameter is equal to 1) take on an LD function of the form: 

η(pr ) = a

pr

  (Eq. 22)  

which is monotonically decreasing for increasing values of pr. Thus, the observed pattern is 

inconsistent with both expected utility models and with the class of power functions, allowing us 

to dismiss these as wholly incompatible with the observed data.  

The Goldstein-Einhorn, Wu-Gonzalez, Prelec, and Exponential Odds functions can all 

take on parameter values that satisfy a DVI η(pr) pattern. For these models, observed probability 

judgments were used to calculate values for 2Dη(pr) and fit against predicted 2Dη(pr) curves 

with best-fitting parameters. For the Goldstein-Einhorn function with the LD profile 

2Dη(pr ) = 2Da

pr − pr

2 + spr

2 (
pr

1− pr

)a−1

 ,  (Eq. 23) 

and the Wu-Gonzalez function with the LD profile 

2Dη(pr ) = 2Da

p
− 2Das[ pr

a−1 − (1− pr )a−1]

pr

a + (1− pr )a
, (Eq. 24) 

both of which produce a DVI 2Dη(pr) profile for [0 < a < 1], an iterated search of the parameter 

space was used to find the optimal combination of parameters a, s, and 2D for each model that 

minimized the sum of the squared deviations between observed and predicted values for 
pu + pd

pu pd

. Parametric model-fit statistics for each were significant: the Goldstein-Einhorn model had an 

observed R2 of .754 (df = 19, p < .0001) and the Wu-Gonzalez model has an observed R2 of .84 

(df = 19, p < .0001).  
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However, both of these models showed systematic misfits of the data. Errors were 

nonrandom for low objective probability values (p = [.05, .15]) for the Goldstein-Einhorn model 

(χ2(1) = 16.1, p <.00006) and for both low (and mid-range (p = [.2, .8]) objective probability 

values for the Wu-Gonzalez model (χ2(1) = 8.53, p <.0035; χ2(1) = 31.51, p <.000001 for low 

and mid-range, respectively). Thus, while these models can represent DVI η(pr) patterns, they 

also show systematic, non-random error patterns relative to the data, suggesting that these 

models are flawed with regard to predicting valuations of risk in choice. 

 

The best-performing functions in this analysis were the Prelec function and the 

Exponential Odds function.  The LD of the Prelec function takes the form:  

2Dη(pr ) = 2Dsa(− ln pr )a−1

pr

,  (Eq. 25)  

 

with a DVI η(pr) profile for [0 < a < 1]. The parameter search for this function looked for the 

best fitting combination of the a parameter and of the 2Ds term (the 2D parameter cannot be 

calculated separately from the s parameter for the η(pr) form of the Prelec function). The 

Exponential Odds model takes the η(pr) form 

2Dη(pr ) = 2Ds(1− pr )b−1(b − a)

pr

a
+ 2Dsa(1− pr )b−1

pr

a+1
,  (Eq. 26) 

which produces a DVI η(pr) profile for [0 < b < 1]. The parameter search for this function looked 

for the best fitting combination of the a and b parameters and, as with the Prelec function (and 

for the same reason) of the 2Ds term. Both of these models made statistically significant 

predictions of observed 2Dη(pr) values [Prelec: R2 = .83 (df = 19, p < .0001); Exponential Odds: 

R2 .842 (df = 19, p < .0001)]. More importantly, neither of these models showed non-random 
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error patterns in any part of either η(pr) curve (observed χ2 values for low, mid-range, and high 

probabilities for the Prelec function were 1.20, 1.51, and 0.53; corresponding observed χ2 values 

for the Exponential Odds models were 1.20, 3.72, and 0).  Individual parameter fits and the 

Pearson product moment correlation r for the Prelec model for each participant are given in 

Table 3. Individual parameter fits and correlations for the Exponential Odds model are given in 

Table 4. 

 

Table 3. Individual parameter fits for the Prelec model   

Participant a 2Ds r 

1 .06 90 .95 
2 .05 90 .93 
3 .41 36.46 .80 
4 .58 40.8 .73 
5 .24 37.11 .89 
6 .71 9.77 .78 
7 .28 52.08 .98 
8 .21 42.45 .96 
9 .01 90 .86 
10 .41 24.45 .96 

 

Table 4. Individual parameter fits for the Exponential Odds model   

Participant a 2Ds b r 

1 .09 21.45 .39 .94 
2 .11 23.68 .52 .96 
3 .08 27.92 .8 .79 
4 .08 47.20 .69 .79 
5 .12 15.97 .65 .90 
6 .11 60.87 .11 .91 
7 .14 54.59 .11 .98 
8 .06 67.34 .06 .97 
9 .12 13.71 .54 .94 
10 .18 15.81 .89 .98 
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Thus, this method was decisive in showing that a number of candidate models were 

qualitatively inappropriate and converged with a substantially different method (statistical model 

selection) in identifying the best-performing class of model. However, as noted above, this 

experiment was concerned only with positive gambles: participants made choices between 

gambles that could only increase their endowment of points (and the probability of increasing 

their personal monetary endowment). This program of research is expanded to include negative 

gambles in Experiment 2.  
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Experiment 2: Assessing ω (p) for positive and negative gambles 
 

Introduction 

 

 While Experiment 1 examined all of the extant model classes proposed for the risky 

weighting function when individuals make decisions between positive gambles, that study did 

not examine choice behavior when choosing between losing prospects. Indeed, no 

comprehensive evaluation of the risky weighting function for choices made for negative gambles 

has been done to this point. Prior research indicates that individuals react differently to the 

prospect of losses than they to do to the prospect of gains (e.g., Tversky & Kahneman, 1981). 

With specific regard to the risky weighting function, individuals have been shown again to 

overweight small probabilities and to underweight large probabilities, but that curvature of the 

function is less pronounced for losses than for gains (Tversky & Kahneman, 1992).   

Experiment 2 used an experimental paradigm in which half of the trials ask participants to 

match positive gambles and the other half ask about negative gambles. The use of positive 

gambles is intended to be an attempt to replicate the results of Chechile & Barch (2013). The 

same set of analyses are applied to both positive and negative gambles to assess candidate ω(p) 

functions in that context, where the aim of the chooser is not to maximize gains but rather to 

minimize losses. It is hypothesized that the use of η(p) functions again will be able to better 

discriminate between models than are conventional model selection techniques. However, since 

the candidate ω(p) functions have not been examined for negative gambles, it is unclear what the 

η(p) profile would be for those contexts. If the differences in curvature are minimal, it can be 

further hypothesized that Expected Utility and Power models will be decisively rejected as 

candidate models. The best performing model of the risky weighting function for negative 
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gambles is likely to come from the group of candidate functions that were not rejected for 

positive gambles (Goldstein-Einhorn, Wu-Gonzalez, Prelec, and Exponential Odds and the 

models they subsume). Finally, if the Prelec and Exponential Odds models again prove superior 

(capturing the observed data without systemic fitting errors), then there would be even stronger 

evidence in favor of using these functions in comprehensive models of choice.  

The gambles used in this experiment were binary, asking participants to compare 

reference gambles with comparison gambles. In this experiment, the outcome value with the 

lesser magnitude was 0. For positive gambles, the reference gamble was of the form Gr(100, pr, 

0), where pr is the probability of winning 100 points and (1 – pr) is the probability of winning 0 

points. Comparison gambles for positive gambles in this experiment took on one of two forms: 

either Gc+(120, pr – pd, 0) or Gc+(80, pr – pu, 0). For negative gambles, the reference gamble took 

the form Gr(-100, pr, 0), where pr is the probability of losing 100 points and (1 – pr) is the 

probability of losing 0 points. The comparison gambles for negative gambles took either the 

form  or .  

The utility of both gambles to be matched is given by Equation 1. For comparison 

gambles of the form , it follows via substitution that 

ω (pr )u(100) + u(0) − ω (pr )u(0) = ω (pr − pd )u(100 + 20) + u(0) − ω (pr − pd )u(0)   (Eq. 27) 

when the gambles are matched. We may assume that there is no utility in earning no points: 

indeed, for any candidate model for the utility function in the literature, u(0) = 0 (Stott, 2006). 

Thus, we may simplify Equation X as such: 

ω ( pr )u(100) = ω (pr − pd )u(100 + 20)    (Eq. 28) 

Gc− (120, pr − pd

* ,0) Gc+ (80, pr + pu

*,0)

Gc+ (120, pr − pd ,0)
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Taking the first two terms of the Taylor series expansion6 of Equation 28 results in the 

approximations: 

  (Eq. 29) 

ω ( pr − pd ) ≈ ω ( pr ) − pdω '(pr )  .  (Eq. 30) 

These approximations can be substituted into Equation 12. The risky weight of a non-zero 

probability is a positive value and thus that term is non-zero. Dividing both sides of Equation 12 

by  and setting  to 0 gives the approximation 

 , (Eq. 31) 

and distributing the coefficient on the bracketed expression gives 

η+ (pr ) +η+ (pr )
u(100)

20u '(100)









 ≈ 1

pd

   (Eq. 32) 

 

Similarly, for comparison gambles of the form Gc-(80, pr – pu, 0), taking the first two 

terms of the Taylor series expansion and making the same assumptions above, gives the 

following approximations: 

  (Eq. 33) 

ω ( pr − pu ) ≈ ω (pr ) + pdω '( pr )   (Eq. 34) 

 (Eq. 35) 

Summing Equation 31 with Equation 35 gives the overall LD function for positive gambles 

                                                 
6 The precision of logarithmic derivative models approximated via Taylor series expansion was 
addressed in Chechile and Barch (2013). Across the domain of probability values [0.05,0.95] 
theoretical and empirical logarithmic derivatives differed by less than 5%; in the analyses in this 
paper, data that are apparently misfit by less than that value are considered accurate. 

u(120) ≈ u(100) + 20u '(100)

20w(pr )u '(100) u(0)

η+ (pr )
u(100)

20u '(100)
+1









 ≈ 1

pd

u(80) ≈ u(100) − 20u '(100)

−η+ (pr ) + η+ (pr )
u(100)

20u '(100)









 ≈ 1

pu
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 , (Eq. 36) 

where 2D is a constant and  

 .  (Eq. 37) 

 

For negative gambles, it can be assumed that the utility of a negative outcome is also 

negative, and that a balanced gamble would imply lower probability values for greater potential 

losses. Again assuming that u(0) = 0, for comparison gambles of the form , 

it follows via substitution that 

ω (pr )u(−100) = ω (pr − pd

* )u(−120) ,(Eq. 38) 

when the gambles are matched. As before, taking the first two terms of the Taylor series 

expansion of Equation 12 results in the approximations: 

  (Eq. 39) 

ω (pr − pd

* ) ≈ ω (pr ) − pd

*ω '(pr )  . (Eq. 40) 

These approximations can be substituted into Equation 38. We again assume that the slope of 

utility function is positive to derive: 

 . (Eq. 41)  

For comparison gambles of the form , taking the first two terms of the 

Taylor series expansion and making the same assumptions above, gives the following 

approximations: 

  (Eq. 42) 

η+ (pr ) ≈ pu + pd

pu pd







1

2D

D = u(100)

20u '(100)

Gc+ (−120, pr − pd

* ,0)

u(−120) ≈ u(−100) − 20u '(−100)

η− (pr ) −η− (pr )
u(−100)

20u '(−100)









 ≈ 1

pu

Gc+ (−80, pr + pu

*,0)

u(−80) ≈ u(−100) + 20u '(−100)
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ω (pr + pu

*) ≈ ω (pr ) + pu

*ω '(pr )    (Eq. 43) 

−η*(pr ) − η*(pr )
−u(−100)

−20u '(−100)









 ≈ 1

pu   

 (Eq. 44) 

Equations 38 and 44 are then summed to get the overall estimation of  for negative 

gambles: 

    (Eq. 45) 

where  

    (Eq. 46) 

and is a positive constant because the slope of the utility function and its derivative are both 

positive. Thus, this method of assessing candidate models for the risky weighting function does 

not depend on any utility function given the reasonable assumption that each individual would 

have the same utility function across trials.  

Method 
 
 

 Ten participants were recruited via online advertisement. The experiment was presented 

and the data were collected using E-Prime software (Psychology Software Tools, Pittsburgh, 

PA). Participants were informed that they would be playing a gambling-style game and would be 

paid according to their relative performance. The participant who received the most points won 

$70, the participant with the next highest score received $65, and so on down to the participant 

with the lowest score, who received the guaranteed minimum of $25. This experiment was 

funded by a grant from the Tufts University Graduate School Council. 

 

η(pr )

η*(pr ) ≈ pu

* + pd

*

pu

* pd

*







1

2D*

D* = −u(−100)

20u '(−100)
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 The experimental paradigm was designed so that the task was clear, gave a believable 

representation of stochasm, and did not require explicit mathematical calculations. The task used 

wheels of fortune to represent gambles. A brief (two trials) first phase of the experiment oriented 

participants to the task of gamble-matching: two gambles were presented and the participants 

were be asked to indicate which of two gambles they preferred. After making their choice, a 

pointer appeared above each wheel and the wheels were made to spin. Participants earned the 

number of points indicated by the color directly under the pointer when the wheels stop spinning 

(the duration of each spin was randomized between 3 and 5 seconds) An example trial of this 

phase is shown in Figure 8. 

Figure 8. Screenshot of trial 1 in phase 1 of Experiment 2.  
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 In the second phase of the experiment, participants were shown the reference gamble on 

the left side of the screen. The reference gamble took the form of one of two outcome pairs: a 

win of 100 points/a win of 0 points (a positive gamble) or a loss of 100 points/a loss of 0 points 

(a negative gamble). On the right side of the screen, participants were shown five alternatives for 

the comparison gamble. The comparison gamble for positive gambles could also take the form of 

one of two possible outcome pairs: a win of 120 points/a win of 0 points or a win of 80 points/a 

win of 0 points. For negative gambles, there were two different outcome pairs: a loss of 120 

points/a win of 0 points or a loss of 80 points/a win of 0 points. An example of a negative 

gamble is presented in Figure 9. 

Figure 9. A negative-gamble trial in phase 2 of Experiment 2. 
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 Participants were instructed to choose the wheel on the right that they found to be closest 

to balanced with the wheel on the left. The five options were replaced with five new options with 

probabilities of winning the greater outcome that will be closely distributed about the probability 

represented by the option they chose before, and so on, in three iterations.  

The game was played out for a third of the trials. Players competed against the 

“audience” of 101 utility models with distributions of coefficients based on choices made by real 

participants of earlier experiments (Chechile & Butler, 2000, 2003). After participants made their 

third choice, the audience chose the wheel that the majority of the models calculated to have the 

higher overall utility. The interplay with the audience was, in effect, a cake-cutting paradigm 

(Deng & Saberi, 2012), providing incentive to participants to balance the gambles so as not to be 

left with a less desirable gamble.  

The other two-thirds of the trials simply moved on to the next trial without having the 

game played out. There were 19 probability values for the greater outcome for each reference 

gamble on the interval [.05, .95], with each value tested three times for each outcome pair for 

positive gambles and three times for each outcome pair for negative gambles for a total of 228 

trials in this phase of the experiment. Due to the large number of trials in this experiment, 

participants were given breaks after 45 minutes of participation. The trials were presented 

randomly so as to minimize any order effects. 

 

Section 4: Results  

Each participant demonstrated a Decrease-Valley-Increase 2Dη(pr) profile for positive 

gambles, replicating the findings of Chechile and Barch (2013). Median 2Dη(pr) values for the 

10 participants are presented in Figure 10.  
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 Figure 10. Median 2Dη(pr) values for positive gambles. 

  

The same general pattern was found for negative gambles: 2Dη(pr) values decrease in the 

low range to a valley in the midrange before increasing for high pr values. The medians for the 

observed 2Dη(pr) values are presented in Figure 11. 
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Figure 11. Median 2Dη(pr) values for negative gambles. 

Values of 2Dη(pr) for each participant for positive gambles are presented in Table 5 and 

values of 2Dη(pr) for each participant for negative gambles are presented in Table 6.  

 

Table 5. Values of 2Dη(pr) for each participant for positive gambles. 

pr P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

0.05 133.7 84.8 331.2 113.3 105.0 39.5 67.0 58.0 44.2 105.0 

0.1 75.2 38.7 227.0 29.9 239.2 18.7 44.7 28.7 25.9 71.0 

0.15 46.1 34.7 63.7 26.6 182.3 15.6 32.4 18.2 17.2 40.5 

0.2 35.2 34.1 161.7 20.3 60.1 15.3 22.7 14.8 17.0 47.9 

0.25 39.0 23.5 198.4 25.2 102.8 14.0 21.2 11.3 27.7 49.9 

0.3 66.9 27.1 130.2 18.7 95.8 13.3 19.1 10.6 16.5 36.7 

0.35 32.7 19.5 112.9 19.5 86.9 14.1 18.0 11.0 18.5 35.5 

0.4 26.7 20.1 108.9 19.8 59.4 17.0 18.8 11.6 17.7 31.4 

0.45 19.4 23.9 101.6 15.0 33.3 21.5 14.8 13.0 24.7 31.2 

0.5 24.1 26.4 168.3 23.7 43.4 28.2 18.3 10.2 18.6 36.5 

0.55 19.3 25.1 99.6 13.4 92.2 17.4 13.0 9.8 14.0 26.1 

0.6 12.6 18.4 172.5 12.9 108.9 17.6 17.5 8.6 15.0 59.4 

0.65 14.9 18.5 178.0 16.8 21.8 16.1 16.0 12.0 15.3 29.9 

0.7 15.0 16.9 186.4 14.5 44.9 13.9 13.9 12.1 15.9 37.9 

0.75 15.0 15.3 198.4 18.7 33.5 15.0 15.6 13.3 19.7 158.5 

0.8 12.0 21.2 215.4 19.6 42.9 18.7 20.1 14.0 14.9 181.9 

0.85 13.2 24.2 239.6 28.0 156.5 14.8 23.2 16.7 12.9 198.4 

0.9 15.6 33.0 275.3 28.7 59.5 15.4 26.1 24.0 16.5 212.9 

0.95 29.6 48.9 147.2 48.4 299.9 31.7 48.5 32.3 29.2 289.1 

 

Table 6. Values of 2Dη(pr) for each participant for negative gambles. 

pr P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

0.05 113.4 56.6 262.3 66.6 229.5 28.5 68.4 45.4 43.3 89.1 

0.1 76.5 30.7 260.9 44.0 230.4 16.8 34.5 26.6 22.8 38.5 

0.15 44.2 31.4 178.6 17.5 111.6 13.9 20.7 18.3 19.5 78.2 

0.2 39.6 26.9 208.0 21.8 208.0 15.0 21.3 14.0 19.5 46.2 

0.25 40.1 23.2 192.8 30.3 75.7 13.8 21.0 13.5 20.6 27.8 
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0.3 28.0 30.3 182.0 18.4 15.6 13.3 18.1 10.5 16.7 23.0 

0.35 28.3 25.6 174.4 14.5 95.4 14.5 19.2 9.2 14.6 29.7 

0.4 17.6 24.0 104.6 23.9 22.1 15.6 18.6 14.0 20.2 37.3 

0.45 20.2 27.4 112.1 16.6 166.8 24.3 14.3 11.3 27.0 59.7 

0.5 22.8 28.7 166.2 20.9 81.8 29.7 17.5 11.9 30.0 55.4 

0.55 16.1 24.3 167.5 16.1 52.5 15.6 14.4 9.0 28.1 118.9 

0.6 15.7 27.8 115.9 14.9 47.0 16.1 19.8 10.0 16.3 31.1 

0.65 14.4 20.5 176.6 15.0 142.3 13.9 15.4 9.3 13.3 178.0 

0.7 13.4 26.9 185.2 19.2 125.7 15.9 15.6 8.0 14.7 137.2 

0.75 12.9 32.3 142.7 18.8 143.5 16.5 15.3 13.3 11.8 166.6 

0.8 11.2 26.6 162.1 17.0 129.8 14.7 19.1 16.7 11.8 84.3 

0.85 12.5 32.6 238.7 29.6 166.0 13.9 17.5 15.6 16.2 63.4 

0.9 16.4 42.8 135.5 25.9 173.0 18.7 37.0 26.0 15.2 275.3 

0.95 32.4 82.8 4.2 61.1 309.7 33.5 90.8 53.6 39.8 154.7 

 

 

While the form of the observed 2Dη(pr) function is similar for positive and negative 

gambles, a binomial test shows that the 2Dη(pr) value is greater in the low range for positive 

gambles than negative gambles for a significant proportion of participants (p =.008), but not for 

pr values in the midrange (p = .396) or in the high range (p = .100). The principal difference in 

the risky weighting function between the two types of gambles, therefore, appears to be steeper 

overweighting of small probabilities in positive gambles relative to negative gambles. 

The observed DVI pattern for each type of gamble is incompatible with the class of 

Power models and for the Goldstein-Einhorn, Wu-Gonzalez, and Prelec models where the a 

parameter for each is greater than or equal to 1. Thus, subsequent analyses of the data ruled out 

the Power class and restricted a parameters for the Goldstein-Einhorn, Wu-Gonzalez, and Prelec 

models to the [0,1] interval.  

 For the models that yield the observed 2Dη(pr) pattern, an iterated search of the feasible 

parameter space was conducted. Coefficients of determination for the parameters representing 
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the best fit to the observed 2Dη(pr) values for each participant and type of gamble (positive and 

negative) are presented in Table 7. There are significant main effects of gamble type (F(1, 63) = 

20.600, p <.0001) and model (F(3, 63) = 7.386, p = .0003), but no interaction between gamble 

and model (F(3, 63) = 1.0651, n.s.), indicating that, in general, the 4 models do not tend to differ 

in their descriptive efficacy between positive and negative gambles.   

 

Table 7. R2 values for candidate model fits of 2Dη(pr )  for each participant and type of gamble. 

Exponential Odds Prelec Goldstein-Einhorn Wu-Gonzalez 

P. Positive Negative Positive Negative Positive Negative Positive Negative 

1 0.889 0.935 0.893 0.956 0.888 0.940 0.884 0.949 

2 0.927 0.882 0.932 0.909 0.870 0.552 0.934 0.924 

3 0.423 0.335 0.318 0.132 0.302 0.052 0.518 0.122 

4 0.920 0.873 0.867 0.880 0.902 0.779 0.932 0.893 

5 0.387 0.611 0.422 0.624 0.117 0.002 0.423 0.611 

6 0.550 0.352 0.544 0.383 0.459 0.169 0.579 0.422 

7 0.947 0.939 0.971 0.909 0.904 0.771 0.969 0.942 

8 0.986 0.971 0.970 0.958 0.975 0.912 0.989 0.975 

9 0.693 0.434 0.689 0.474 0.662 0.340 0.688 0.509 

10 0.810 0.395 0.753 0.226 0.630 0.244 0.835 0.414 

Median 0.850 0.742 0.810 0.752 0.766 0.446 0.860 0.752 

 

Model fit in the low [.05, .15], midrange [.2, .8] and high [.85, .95] sections of the 

domain of probability were analyzed for each of the surviving gambles across positive and 

negative gambles. Patterns of misfitting for positive and negative gambles are presented in Table 

8. The Prelec model showed significant underfitting of  in the low probability range for 

negative gambles (χ2 = 4.27, p < .05) The Goldstein-Einhorn model showed systematic 

underfitting in the range of low probability values (χ2 = 11.27, p < .0001) and overfitting in the 

midrange (χ2 = 8.86, p < .005). The Wu-Gonzalez model consistently overestimated values of 

2Dη(p) in the midrange (χ2 = 150.78, p < .00001) and underestimated them in the high range (χ2 

2Dη(pr )
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= 5.40, p < .05). The Exponential Odds model, however showed no systematic underfitting in 

any region, indicating that it was the best performing model for positive and negative gambles. 

 

Table 8. Distributions for the frequencies of the signs for the residuals which are denoted as (# of 

positive residuals/# of negative residuals). Models are denoted as EO for Exponential Odds, PR 

for Prelec, GE for Goldstein-Einhorn, and WG for Wu-Gonzalez. Ranges-R are denoted as L, M, 

and H for, respectively, , ,  

Model-
R Participant # 

1 2 3 4 5 6 7 8 9 10 Sum 

EO-L 2/4 3/3 3/3 2/4 3/3 2/4 3/3 3/3 2/4 4/2 27/33 

EO-M 9/17 14/12 16/10 14/12 12/14 11/15 14/12 11/15 11/15 6/20 118/142 

EO-H 2/4 2/4 3/3 4/2 4/2 2/4 2/4 2/4 2/4 3/3 26/34 

PR-L 2/4 2/4 2/4 3/3 3/3 0/6 4/2 3/3 0/6 1/5 20/40* 

PR-M 10/16 16/10 24/2 4/22 12/14 23/3 7/19 2/24 21/5 10/16 129/131 

PR-H 2/4 3/3 3/3 5/1 3/3 0/6 2/4 3/3 1/5 3/3 25/35 

GE-L 3/3 0/6 3/3 1/5 5/1 0/6 1/5 2/4 0/6 2/4 17/43* 

GE-M 12/14 14/12 20/6 12/14 16/10 14/12 11/15 13/13 14/12 14/12 140/120* 

GE-H 4/2 3/3 3/3 3/3 3/3 2/4 4/2 3/3 2/4 3/3 30/30 

WG-L 3/3 2/4 3/3 2/4 3/3 0/6 3/3 3/3 1/5 4/2 24/36 

WG-M 19/7 25/1 26/0 17/9 14/12 26/0 20/6 16/10 24/2 17/9 204/56* 

WG-H 0/6 2/4 4/2 3/3 3/3 0/6 2/4 2/4 0/6 3/3 19/41* 

*p < .05 

  

 Best-fitting model parameters for each of the four candidate models are included in the 

Appendix as Table A1. A series of t-tests was conducted to see if any of the parameters varied 

significantly between fits of positive and negative gambles. The only parameter that varied was 

the a parameter for the Exponential Odds model (t(9) = 2.65, p < .05). To illustrate the difference 

in the behavior of the Exponential Odds model for positive and for negative gambles, the 

function is plotted with b = .6, s = 1, and for both a = .1 (dashed) to represent the significantly 

pr ∈[.05,.15] pr ∈[.2,.8] pr ∈[.85,.95]
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larger value seen in positive gambles and a  = .05 to represent the smaller value seen in negative 

gambles in Figure 12. 

 

Figure 12. Plots of the Exponential Odds model with a = 1 (solid) and a = .05 (dashed) 

Observed 2Dη(pr) values, as noted above, tend to differ between positive and negative 

gambles only in the low range of probabilities. As shown in Figure 12, the significant variability 

of the a parameter affects the shape of the Exponential Odds function in precisely that region. 

The superior performance of the Exponential Odds model across positive and negative gambles 

appears to be due to the increased flexibility in the low range of probability values that allows it 

to capture the differences between perception of the two types of gambles. 

A note should be made here of an analysis that is not included in the discussion of this 

experiment. Since the Prelec and the Exponential Odds models were consistently the best 

performing, we considered an additional analysis of their relative efficacy that could account for 
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the additional parameter carried by the Exponential Odds model. Bayes Factor is a model 

selection technique that naturally accounts for model complexity while directly assessing the 

relative likelihood of two models given the observed data. This analysis would look at the ω (pr ) 

function rather than the 2Dη(pr )  function, converting observed LD data to weighted 

probabilities via the relationship ω (p) = e

− η (y)dy

p

1

∫
 proven in Theorem 3 in the Chechile and Barch 

(2013) paper. However, it quickly became clear that the penalty for additional parameters was so 

severe in the Bayes Factor analysis so as to be misleading. The likelihood of the Prelec model 

given estimatedω (pr ) values for Participant 1 in Experiment 1 – who showed an r value of .95 

for the Prelec model plotted against ω (pr ) data – were compared to the simplest linear model: 

the diagonalω (pr ) = p . This model has no free parameters, but can capture neither over- nor 

underweighting of probability. The Bayes factor comparison showed the linear model to be 2.59 

x 1030 more likely given the data than the Prelec model. This result implies that the probability 

itself is the best predictor of perceived probability in risky choice, which is equivalent to 

Expected Utility theory. However, all of the research on the risky weighting function discussed 

in this paper rejects the linear model. As such, statistical model selection was not pursued, as the 

qualitative misfitting of data is more compelling for models with differing parameterization. 
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Experiment 3: One-dimensional probability and memory in a 

Brown-Peterson paradigm 

Introduction 
 
 

 The first two experiments in this program of study that have been discussed so far both 

assess probability judgments made under conditions of risk and uncertainty. There is some 

research that indicates (e.g., Reyna & Brainerd, 2008; Zhang & Maloney, 2012) that distortions 

of subjective probability in that domain are similar to those seen in problems where probability 

judgments are elicited but there is no risk involved. Experiment 3 was designed to assess such 

claims. The paradigm uses an easily understood example of a probabilistic task – the probability 

of a certain object being drawn from a can – to elicit judgments in a risk-free environment. 

When eliciting judgments in risk, individuals are presented options between two gambles 

(e.g., Bleichrodt & Pinto, 2000; Chechile & Barch, 2013) or between a gamble and a certain 

outcome (e.g., Abdellaoui, 2000) and immediately asked to choose while the information is still 

present. Another line of research elicits judgments of probability based on series of events: 

individuals witness strings of events and are asked to give what they believe to be the probability 

of specified outcomes (e.g., Barron & Erev, 2003; Hertwig, Barron, Weber, & Erev, 2004; 

Ungemach, Chater, & Stewart, 2009). However, no research before the current program of study 

described here has presented complete probabilistic information and then elicited judgments 

following delays. 

 The present study treats probability judgments as a stimulus to be remembered in the 

same way that other studies have examined memory for stimuli such as words, pictures, faces, 

and numbers. While the stochastic elements of choices may be readily accessible in the 

laboratory setting, many naturalistic decisions rely on features of problems that must be retrieved 
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from memory. Experiment 3 studies memory for the probability involved in a single stochastic 

event. The judgments made in this experiment are not accompanied by gambles, so they are not 

affected by individuals’ attitudes toward risk. Judgments are made about simple probabilities – 

each problem has just one feature to be remembered (in this case, color) – so they are relatively 

uncomplicated. Finally, the judgments are based on a familiar diagrammatic representation of 

probability (poker chips in a jar), so the problem is presented in a way that is comfortable for 

participants (Spence, 1990) and does not rely on the participants’ level of numeracy (Peters et al, 

2006; Reyna & Brainerd, 2008).  

This first step in the program of studying memory for probability thus makes the problem 

as simple as possible so as to avoid confounding influences on storage and retrieval of 

probability judgments. If people inherently have difficulties with understanding probabilities, 

then the judgments given in this experiment should follow the pattern of underweighting and 

overweighting observed in studies that involve risk (e.g., Stott, 2006) and those that involve 

complex visual patterns (e.g. Wu, Delgado, & Maloney, 2011), even at short retention intervals. 

Alternatively, if people can spontaneously process and recall probabilistic information, then 

probability judgments should accurately reflect the relative frequencies with which they were 

presented.  

Method 
 

 Participants in this study (n = 41) registered via an online interface and participated to 

fulfill part of the course requirements for either Introductory Psychology or Statistics for the 

Behavioral Sciences. 

The experiment was designed using E-Prime software (Psychology Software Tools, 

Pittsburgh, PA) and was presented via a computer monitor interface. Audio elements were 
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presented via headphones that were worn by the participants throughout the experiment.  After 

giving informed consent, participants were presented with the instructions on the monitor.  

Participants were told that they were to complete two tasks: to judge the probability of choosing 

a poker chip of a given color from a can and to repeat to the best of their ability the letters that 

they would hear over the headphones.   

In each trial, participants first saw a representation of 40 poker chips hovering above a 

gray can.  Two different colors of chips would be presented at a time (Figure 13 is a screencap 

from a trial in which 36 red chips and 4 blue chips were represented).  After one second, the 

chips were animated to fall into the can.   

 

Figure 13. Screencap from the study phase of Experiment 3. 
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Once all of the chips were removed from sight, an instruction was given on the screen to 

repeat aloud letters as they were spoken.  The letters presented over the headphones were spoken 

in a male voice at a rate of two letters a second.  This distractor task lasted for one, four, 15, 30, 

or 60 seconds (corresponding to two, eight, 30, 60, or 120 letters, respectively) depending on the 

condition being assessed by a given trial.  The scripts for the distractor task were generated with 

a random-letter generating program written in QuickBasic.  None of the scripts used featured 

spellings of recognizable English words.  Each participant complied with the distractor task. 

Following the distractor task, participants were asked to judge the probability of pulling a 

certain color of chip from the can based on the last event they had viewed.  Participants were 

allowed to choose probability values between .05 and .95 in steps of .05, and were instructed to 

do so by clicking the appropriate box (Figure 14). Participants were given a two-minute break 

after approximately half of the trials were completed.   In all, there were 57 trials, with each 

objective probability represented three times. 
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Figure 14. Screencap of test phase of Experiment 3. 

Results 
 

Probability judgments elicited in this task correlated almost perfectly with corresponding 

objective probabilities. Moreover, these judgments approached veridicality across all the 

retention intervals studied.  Figure 15 plots median probability estimates from all participants 

across retention-interval conditions.  A linear model provides an excellent fit between these 

medians and the presented probabilities (R2 = .9966). 
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Figure 15. Median probability judgments across all retention intervals in Experiment 3. 

 

Changes in objective probability account for greater than 96% of the variance in 

subjective probability judgments in each of the five retention-interval conditions when compared 

to mean probability estimates, as demonstrated in Figures 16-20.  The greatest degree of 

veridicality was found in the four-second condition (R2 = .993); the smallest was found in the 

sixty-second condition (R2 = .9695).  Subjective probability in this task correlates linearly with 

objective probability, and the linear models for least-squares regression intercept the y-axis near 

y = 0.9899x - 0.4825
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or just below the origin.  The intercepts for the five conditions are -2.40%, -1.20%, -1.05%, -

1.14%, and 1.473%, respectively.  Thus, median responses do not indicate the hypothesized 

overweighting of small probabilities and underweighting of large probabilities.  We did not see 

the curvilinear pattern observed in risky choice in these data, and analyzing medians collapsed 

across conditions yielded both a strong linear correlation and a near-zero intercept (-0.483%).   
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Figure 16. Median probability judgments in the one-second retention interval condition of 

Experiment 3. 
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Figure 17. Median probability judgments in the four-second retention interval condition 

of Experiment 3. 
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Figure 18. Median probability judgments in the fifteen-second retention interval 

condition of Experiment 3. 
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Figure 19. Median probability judgments in the thirty-second retention interval condition 

of Experiment 3. 
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Figure 20. Median probability judgments in the sixty-second retention interval condition 

of Experiment 3. 

 

Generally, participants given a perception-based task and an auditory distractor task 

appeared to be accurate judges of probability. That individuals can be so accurate at all – even 

with any mnemonic demands such as those imposed by the retention intervals used here – is 

remarkable in light of repeated claims that subjective probability is distorted across domains 

(Reyna & Brainerd, 2008; Zhang & Maloney, 2012).   

A closer look at the errors actually made by individuals suggests that, although accurate 

in the aggregate, the individual judgments that enter into that calculation may reside above or 
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high [.7, .95]. Results are presented in Table 9. Contrary to the overweighting and 

underweighting pattern that would be predicted by a risky weighting function, there is no 

evidence of overestimation in the low range of probabilities ( χ 2 = 0.477 , n.s.). We do see 

significant underestimation of large probabilities ( χ 2 = 3.901, p < .05), but also significant 

underestimation of midrange probabilities ( χ 2 = 5.432 , p < .05). Thus, the pattern in one-

dimensional, riskless judgment is distinct from the pattern predicted in risky choice. 

 

Table 9. Proportions of Overestimations and Underestimations of Presented Objective 

Probabilities in Experiment 3. 

po range Overestimations Underestimations χ
2

(1) 

Low [.05, .35] 95 82 0.477 

Mid [.4, .65] 86 135 5.432* 

High [.7, .95] 61 96 3.901* 

*p < .05 

As reviewers of this research suggested, the distractor task in this paradigm might not 

have created sufficient interference to prevent rehearsal of probability judgments: the repetition 

of letters may elicit different mental processes while allowing for concurrent rehearsal of 

numeric information. In order to assess the ways in which memory for probability judgments is 

degraded in various conditions requires a task where individuals do not perform so close to 

ceiling levels. This concern is directly addressed in Experiment 5a and 5b with a continuous 

recognition paradigm. 
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Experiment 4a: Multidimensional probability judgments 

Introduction 
 
 The accuracy of the judgments elicited by the task in Experiment 3 suggests the research 

question of whether individuals’ judgments can be similarly accurate with more complex 

judgment tasks, namely, those involving conjunctions of probabilities.  Previous research has 

shown that individuals appear to assess conjunction probabilities irrationally when they are 

presented in word-problem form. As stated in the introduction, the conjunction fallacy (Tversky 

& Kahneman, 1983) is the logical error made when individuals judge the co-occurrence of two 

events as being more likely than one or both of the constituent (marginal) events.  The most 

famous question that generates fallacious reasoning – which originated in that paper – is the 

Linda Problem.  Participants were given a description of “Linda,” a “bright,” “outspoken” 31-

year old woman who had been interested in the humanities and involved in left-leaning political 

activism while she was in college.  Participants in the study tended to judge the conjunction 

prospect that the 31-year-old Linda was a bank teller and active in the feminist movement as 

more likely than the marginal prospect that she was a bank teller.  As noted in the introduction, 

there are two dominant explanations for the conjunction fallacy: the use of heuristics (e.g., 

Tversky & Kahneman, 1983) and the semantic ambiguity of the question itself (e.g., Gigerenzer, 

1994).  

Experiment 4a was developed to assess the accuracy of conjunction probability 

judgments made regarding a diagrammatic representation. This paradigm replaced the poker 

chips of Experiment 3 with marbles. Each marble had two relevant features: color (either red or 

blue) and pattern (either striped or solid).  As with the poker chips in Experiment 3, marbles were 

shown to hover above a can before falling in to it. Participants were asked to make judgments of 
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marginal probabilities (one feature: e.g., “what is the probability of choosing a red marble?) and 

judgments of conjunction probabilities (two features: e.g., “what is the probability of choosing a 

blue striped marble?”). Asking individuals about marbles of different features removes the 

possibility of relying on heuristics, assessing the ability to process conjunction probabilities 

directly. Based on the results from Experiment 3, it was expected that individuals would 

demonstrate a greater facility with multidimensional probability judgments than would be 

suggested by the errors made consistently in conjunction-type word problems. 

Method 
 
 
 Sixty-eight (45 women) participants between the ages of 18 and 64 (mean = 37.06) were 

recruited from Amazon.com’s Mechanical Turk website (see Buhrmester, Kwang, & Gosling, 

2011).  

Participants first viewed examples of each marble and then received instructions about 

the different categories of marbles.  Marginal categories of marbles corresponded to any single 

dimensional characteristic of the marble: red, blue, striped, or solid.  For example, participants 

learned that a red marble consisted of any marble with red coloring, whether solid or striped.  

The conjunction categories (consisting of two marginal dimensional characteristics) were striped 

red, striped blue, solid red, and solid blue.  

Participants then viewed a series of 18 randomly presented trials for 5 seconds each. 

After each trial, participants made two probability judgments: 1) the probability of selecting a 

marginal marble from the array of marbles displayed and 2) the probability of selecting a 

conjunction marble.  For each question, participants entered a probability from 1-100 using 

whole numbers only (i.e., they entered “50” if they believed there was a 50% chance of selecting 

a red marble). Each of the 18 trials varied in actual probabilities such that a range from 5% to 



Assessing Probability Judgments 

 78

95% was evenly represented. (n.b.: during this experiment, participants also performed a second 

task designed to elicit probability judgments based on violent crime in American society. This 

part of the study is omitted here in order to focus on probability judgments for novel stimuli that 

are unaffected by stereotype usage). 

Results 
 
 Linear regression analyses were performed to assess how well objective probability 

(calculated as a function of the proportions of marbles presented) predicted subjective probability 

(i.e., participant responses). Figure 21 shows median probability estimates for each of the 

objective probabilities tested. Subjective probability estimates were nearly identical to objective 

probabilities (R2 = .95094).  The relationship between objective and subjective probability was 

linear, and the best-fitting line with objective probability x predicting subjective estimates y had 

a near-zero intercept (y = 0.9505x – 0.0853). 
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Figure 21. Median probability judgments for conjunction and marginal probabilities in 

Experiment 4a. 

 

 Judgments for both conjunction and marginal probabilities were similarly accurate. 

Figure 22 and Figure 23 show subjective vs. objective probabilities for conjunction and 

marginal probabilities, respectively. The slopes of both linear best-fitting lines are near one – 

.9639 for conjunction probabilities (R2 = 0.963749) and 0.9722 (R2 = 0.96213) for marginal 

probabilities – and the difference between the correlations is not significant (t = 0.02, n.s.)  
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Figure 22. Median probability judgments for conjunction probabilities in Experiment 4a. 

 

 

Figure 23. Median probability judgments for marginal probabilities in Experiment 4a. 

y = 0.9639x + 1.5949
R² = 0.9375

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

S
u

b
je

ct
iv

e 
p

ro
b

a
b

il
it

y
 (

%
)

Objective probability (%)

y = 0.9722x - 3.0123
R² = 0.9621

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

S
u

b
je

c
ti

v
e

 p
ro

b
a

b
il

it
y

 (
%

)

Objective probability (%)



Assessing Probability Judgments 

 81

 

 

 Subjective judgments of probability were remarkably accurate for this task. Individuals 

spontaneously made accurate judgments of both marginal and conjunction probabilities in this 

task and did not demonstrate a pattern of over- or under-weighting either small or large 

probabilities. Thus, it is possible to create a conjunction-type problem on which individuals 

respond with normatively rational answers. There appears to be no fundamental difficulty in 

dealing with multidimensional probabilities. The present results imply instead that normative 

errors occur when heuristics and stereotypes (Bodenhausen, 1990) interfere with probabilistic 

reasoning. Finally, since judgment is essentially veridical in this task, the subjective probability 

values are essentially untransformed from objective probability values. 
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Experiment 4b: Multidimensional probability judgments and 

memory in a Brown-Peterson paradigm 

Introduction 
 

As hypothesized, judgments of multidimensional probability were close to the objective 

probabilities represented in diagrams when individuals made those judgments immediately 

following presentation in Experiment 4a. Memory for these judgments will be examined in 

Experiment 4b. This experiment pairs the paradigm of Experiment 4a – presenting urns filled 

with marbles of one of two colors and one of two patterns representing a probabilistic reasoning 

task with two dimensions of binary features with a Brown-Peterson task (Brown, 1958; Peterson 

and Peterson, 1959), to limit rehearsal and more accurately measure the effect of increasing 

retention interval.7  

Method  
 

As in Experiment 3, participants were given headphones to wear. In a given trial, 

participants first saw an image of marbles hovering over a can. Each marble was either red or 

blue and had either a solid or a striped pattern. After five seconds, the marbles were animated to 

fall into the can. In the 0 lag condition, participants were immediately asked to give the 

probability of retrieving a marble with certain characteristics (for example, a blue striped marble) 

from the can. In the other lag conditions, the participants then performed a distractor task for a 

predetermined period of time (1,4,15, or 30 seconds). The distractor task was auditory: 

                                                 
7 The question of whether the BPP task creates adequate interference is valid in reference to the 
multidimensional probability task as well as it was to the one-dimensional task. Presenting 
multiple color pairs in multiple patterns in brief presentation would likely test the resolution of 
the display and the ability to discriminate between similar hues more than storage and retrieval 
of probability values. However, in response to earlier criticism, the distractor task has been 
changed from letter-repetition to digit-repetition (which is more likely to elicit similar processes 
as does probability judgment). 
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individuals heard recordings of single-digit integers spoken in a male voice through the 

headphones and will be asked to repeat the integers aloud. Probability judgments were elicited 

after the time for the distractor task has elapsed. This process repeated until all experimental 

trials have been completed. 

The exact probabilities represented by the marble configurations ranged from 5% to 95% 

in steps of 5% for 19 total probabilities. Each of these was examined at each lag condition for a 

total of 76 trials. 

Results 
 
 Median probability judgments are plotted against objective, presented probability 

judgments in Figures 24 – 28. There were strong, positive, and significant linear correlations 

between median observed probability judgments and objective probability in all 5 memory 

conditions: 0 seconds (R2 = .97216, p < .0001), 1 second (R2 = .89889 , p < .0001), 4 seconds (R2 

= .77001, p < .0001), 15 seconds (R2 = .64738, p < .0001), and 30 seconds (R2 = .54553, p < 

.001). As expected, the trend of decreasing correlation coefficients with increasing memory lag is 

significant ( ρ  = –1.0, p < .05). To indicate the nature of judgment errors, 

(underestimation/overestimation and magnitude), the interquartile range of each set of judgments 

is indicated with error bars. 
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Figure 24. Median probability judgments in the 0 second lag condition of Experiment 4b. Error 

bars represent 25th (bottom bar) and 75th (top bar) percentiles. 
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Figure 25. Median probability judgments in the 1 second lag condition of Experiment 4b. Error 

bars represent 25th (bottom bar) and 75th (top bar) percentiles. 
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Figure 26. Median probability judgments in the 4 second lag condition of Experiment 4b. Error 

bars represent 25th (bottom bar) and 75th (top bar) percentiles. 
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Figure 27. Median probability judgments in the 15 second lag condition of Experiment 4b. Error 

bars represent 25th (bottom bar) and 75th (top bar) percentiles. 
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Figure 28. Median probability judgments in the 30 second lag condition of Experiment 4b. Error 

bars represent 25th (bottom bar) and 75th (top bar) percentiles. 

 
 
 Residuals were calculated as the difference between each probability judgment and the 

corresponding presented objective probability value. Results are presented as a heatmap in Table 

10. In this table, values near zero are lighter and the hues become more intense as the magnitude 

grows larger: blue for negative residuals (indicating greater underestimation of presented 

probabilities) and red for positive residuals (indicating greater overestimation). Two general 

patterns stand out. The first, as hypothesized, is that the variability of the error increases with 

increasing retention interval. The second is that there appears to be an inflection point in the 

y = 0.7386x + 8.2281
R² = 0.8639

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

P
ro

b
a

b
il

it
y

 j
u

d
g

m
e

n
ts

 (
%

)

Objective probability (%)



Assessing Probability Judgments 

 89

residuals where the average residual value crosses over from overestimation to underestimation, 

indicated by the relatively mild values in the midrange. These errors also reflect the space 

available around each objective probability value: for example, underestimations are large at 

long retention intervals for large probabilities because there is more room for error below those 

values in the domain of possible probabilities. 

 

Table 10. Heatmap of Average Residuals in Percentages Across Presented Objective 

Probabilities (po) and Memory Lag Conditions in Experiment 4b. 

Memory Lag Condition 

Po Zero One Four Fifteen Thirty 

5 2.35 13.57 7.76 13.60 15.33 

10 4.68 7.32 14.02 6.94 16.43 

15 3.40 7.63 9.04 10.27 12.85 

20 2.74 7.18 7.78 10.22 1.55 

25 3.95 -2.43 4.51 4.43 12.80 

30 -0.60 6.98 -5.45 7.11 -0.33 

35 6.40 4.91 4.20 -3.33 3.35 

40 2.33 -4.59 -10.77 3.17 -5.59 

45 0.83 0.42 -2.61 -5.86 -2.43 

50 -2.39 -1.16 -8.82 -11.57 -11.29 

55 -4.18 -0.78 -3.81 -9.47 -12.51 

60 2.33 -6.38 -14.05 -14.29 -17.03 

65 -6.65 -4.58 -16.26 -19.92 -17.92 

70 -0.35 -9.88 -3.84 -18.60 -15.60 

75 -7.87 0.95 -6.58 -11.39 -24.99 

80 -4.94 -7.18 -14.12 -17.05 -14.37 

85 -9.22 -1.86 -22.32 -9.78 -21.22 

90 -2.20 -5.96 -5.88 -20.46 -10.42 

95 -5.10 -4.74 -12.08 -10.07 -25.19 
 

 As suggested by the results of Experiment 5a, the differences between judgments made 

regarding marginal probabilities and those made regarding conjunction probabilities were small. 
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Probability judgments are distinguished between marginal and conjunction presentations in 

Figures 29 – 33 for the 0 second, 1 second, 4 second, 15 second, and 30 second lag conditions, 

respectively. Judgments of conjunction probability are shown in blue, judgments of marginal 

probability are shown in red, and error bars showing the interquartile range of responses are 

included. 

 

Figure 29. Median probability judgments made regarding conjunction and marginal probabilities 

in the 0 second lag condition of Experiment 5b. Note: error bars represent 25th percentile (lower 

bar) and 75th percentile (upper bar) responses. 
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Figure 30. Median probability judgments made regarding conjunction and marginal probabilities 

in the 1 second lag condition of Experiment 5b. Note: error bars represent 25th percentile (lower 

bar) and 75th percentile (upper bar) responses. 
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Figure 31. Median probability judgments made regarding conjunction and marginal probabilities 

in the 4 second lag condition of Experiment 5b. Note: error bars represent 25th percentile (lower 

bar) and 75th percentile (upper bar) responses. 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

P
ro

b
a

b
il

it
y

 j
u

d
g

m
e

n
ts

 (
%

)

Objective probability (%)

conjunction marginal



Assessing Probability Judgments 

 93

 

Figure 32. Median probability judgments made regarding conjunction and marginal probabilities 

in the 15 second lag condition of Experiment 5b. Note: error bars represent 25th percentile (lower 

bar) and 75th percentile (upper bar) responses. 
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Figure 33. Median probability judgments made regarding conjunction and marginal probabilities 

in the 30 second lag condition of Experiment 5b. Note: error bars represent 25th percentile (lower 

bar) and 75th percentile (upper bar) responses. 
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Table 11. R2 Values for Probability Judgments made for Conjunction and Marginal Probabilities 

Condition Conjunction Marginal t(15) 

0 Lag 0.985 0.992 0.210 

1 Lag 0.961 0.980 0.584 

4 Lag 0.946 0.973 0.402 

15 Lag 0.888 0.942 0.294 

30 Lag 0.891 0.944 0.661 

 

In each memory lag condition, the difference between the two types of probability is far too 

small to be statistically significant. However, the fact that the linear correlation is larger for 

judgments of marginal probability suggests a trend (although these data are not independently 

assorted because this is a within-groups analysis, the binomial probability of five out of five pairs 

having the same relationship is 1/32 or .03125). The relative performance of participants in 

judging conjunction and marginal probabilities may be driven by guessing strategies. It is 

possible that the ignorance prior for marginal probabilities may be perceived as .5: to ask 

whether a marble is blue or red, for example, is to imply a 50/50 proposition if no other 

information is available from memory. On the other hand, there are 4 possible conjunction 

outcomes: red and solid, red and striped, blue and solid, and blue and striped. Given these 4 

outcomes, participants may default to a belief that each has a chance of .25 of occurring. Thus, 

responses were collapsed across memory lag conditions and analyzed along the lines of the 

hypothesized ignorance priors of .5 and .25 for trials where the prior being tested was not the 

correct answer. Proportions of these responses, along with 95% confidence intervals on those 

proportions, are presented in Table 12. When questions were asked about marginal probabilities, 

participants tended to give equal probability to each marginal event, giving responses of “50%” 

for 13.1% of questions where “50%” was not the actual probability, compared to a frequency of 
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3.8% when asked about conjunction probabilities. Similarly, “25%” was the response when that 

was not the correct answer for 5.7% of conjunction-type questions and for 2.7% of marginal-type 

questions. The actually presented probabilities in this experiment were balanced over the [.05, 

.95] range for both types of question, so this tendency can be seen not as a response to the 

presented stimuli but rather as a default guessing strategy spontaneously generated by 

participants. Because the presented objective probabilities were balanced about .5, guessing the 

ignorance prior led to smaller squared errors in the case of marginal-type questions, but to larger 

squared errors in the case of conjunction-type questions. 

 

Table 12. Proportions of Incorrect Responses of .25 and .5 for Conjunction and Marginal 

Probabilities 

Response Conjunction 95% CI Marginal 95% CI 

.25 .057 [.055, .058] .027 [.023, .032] 

.5 .038 [.033, .044] .131 [.121, .141] 

 

 To test whether judgments made for multidimensional probability tasks where risk is not 

involved and the problem is novel (that is, free from the influence of social stereotypes) hew 

closer to veridicality or to judgments made in risky situations, a linear model was compared with 

a leading candidate for the risky weighting function. The observed data were regressed via the 

Prelec model and compared with least-squares linear regression data for each participant at each 

lag condition. As noted earlier, the Bayes Factor is a model selection statistic that compares the 

likelihood of two competing models given the observed data. The relative complexity of each 

model is a factor in the calculation of each of those likelihoods; thus, more complex models 

naturally incur a penalty and more parsimonious models are naturally favored. For these data, the 

likelihood of the linear model ps = mpo + b  given the data was compared with the likelihood of 
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the Prelec model ps = e− s ln( po )a

, where m, b, a, and s are fitting parameters and for both models 

ps
 denotes a subjective probability judgment and po

 denotes the objective probability about 

which the subjective judgment was made. Model-fit statistics and parameters for the linear model 

and the Prelec model are presented in Table 13 and Table 14, respectively. Bayes Factor values 

are presented in Table 15.  

 

Table 13. Model-fit statistics and parameters for the linear model 

Memory Lag r R2 Slope Intercept 

0 seconds 0.99 0.98 1.06 -0.02 
1 second 0.99 0.97 1.01 0.00 

4 seconds 0.96 0.93 0.94 0.05 

15 seconds 0.94 0.88 0.75 0.01 

30 seconds 0.93 0.86 0.76 0.08 

 

Table 14. Model-fit statistics and parameters for the linearized Prelec model 

Memory Lag r R2 Slope Intercept 

0 seconds 0.93 0.86 0.97 0.96 
1 second 0.88 0.77 0.92 0.92 

4 seconds 0.78 0.62 0.86 0.81 

15 seconds 0.20 0.04 0.14 1.00 

30 seconds 0.74 0.55 0.53 0.97 

 

Table 15. Bayes factors for individual participants and overall by condition: Linear model/Prelec 

model 

Memory Lag 

Participant 0 s 1 s 4 s 15 s 30 s 

1 3.50E+14 3.34E+14 1.94E+15 7.88E+19 2.53E+17 

2 2.73E+14 8.54E+14 1.20E+17 1.28E+19 3.42E+17 



Assessing Probability Judgments 

 98

3 3.93E+15 2.73E+15 2.15E+16 1.13E+17 1.49E+22 

4 4.50E+17 9.79E+16 1.47E+18 4.36E+17 1.38E+18 

5 6.20E+15 6.98E+14 1.20E+18 2.30E+17 1.05E+22 

6 3.30E+17 1.32E+15 2.35E+19 3.59E+16 8.56E+19 

7 9.39E+13 2.64E+15 1.66E+16 1.17E+16 1.47E+18 

8 4.97E+14 9.19E+14 6.06E+16 5.65E+17 9.79E+15 

9 5.31E+14 1.51E+14 1.08E+14 2.00E+14 1.76E+14 

10 7.95E+15 2.45E+14 1.60E+18 4.96E+19 7.01E+18 

11 2.52E+15 5.60E+14 2.61E+14 3.23E+15 3.04E+17 

12 1.06E+14 2.32E+14 1.00E+15 1.70E+14 9.41E+14 

13 3.59E+14 4.71E+14 1.77E+15 4.03E+17 3.14E+15 

14 3.27E+15 6.49E+14 1.54E+16 1.02E+18 1.92E+17 

15 1.72E+15 5.74E+13 1.82E+16 2.89E+16 1.77E+18 

16 2.99E+14 7.15E+15 2.21E+16 5.69E+18 3.60E+17 

17 2.40E+14 1.61E+15 2.74E+20 3.99E+19 1.37E+24 

18 7.36E+17 2.12E+16 9.45E+23 1.85E+18 1.22E+19 

19 9.32E+14 3.87E+17 8.43E+15 7.22E+16 3.86E+16 

20 1.32E+14 2.25E+15 3.25E+18 8.28E+18 3.77E+24 

21 9.57E+16 5.12E+15 1.17E+20 2.08E+23 2.85E+23 

22 1.88E+15 4.30E+14 1.12E+14 1.93E+16 9.97E+15 

23 1.88E+15 4.44E+16 3.09E+19 2.96E+18 2.81E+17 

24 3.40E+14 5.79E+14 4.49E+17 1.43E+18 2.91E+20 

25 6.69E+14 5.02E+15 1.84E+16 1.73E+16 2.33E+17 

26 1.25E+15 2.75E+18 2.46E+18 9.25E+17 4.10E+20 

27 1.76E+14 3.67E+15 7.69E+21 1.17E+16 1.19E+20 

28 1.93E+17 1.72E+16 2.58E+15 2.93E+18 9.48E+16 

29 1.92E+16 2.30E+15 1.29E+18 3.95E+19 7.46E+18 

30 1.64E+14 2.68E+14 5.62E+15 5.10E+15 3.63E+15 

31 1.84E+15 8.48E+14 2.21E+17 7.02E+15 5.26E+15 

32 4.62E+17 1.13E+16 1.22E+19 2.53E+16 1.71E+16 

33 6.08E+15 2.13E+15 3.50E+14 8.04E+16 8.61E+18 

34 1.51E+17 1.77E+14 1.90E+18 5.91E+17 1.55E+19 

35 7.35E+14 7.28E+16 3.87E+20 2.75E+16 2.24E+28 

36 2.78E+15 6.69E+14 7.45E+14 7.05E+15 1.48E+18 

37 2.85E+16 8.51E+15 7.96E+16 1.89E+18 2.01E+20 

38 7.65E+13 7.79E+14 3.15E+15 7.89E+14 2.44E+14 

39 9.72E+14 1.94E+14 2.00E+15 7.36E+15 2.59E+16 

40 9.44E+14 7.30E+14 4.09E+18 8.26E+19 3.09E+20 

41 1.33E+17 1.21E+15 2.79E+16 4.55E+20 7.19E+17 

42 1.04E+15 6.09E+16 4.61E+15 2.98E+18 1.11E+15 

43 2.86E+14 1.78E+14 2.14E+15 1.04E+17 3.03E+14 
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44 1.63E+15 8.96E+15 1.91E+18 1.41E+16 3.60E+15 

45 1.47E+17 4.83E+16 4.59E+20 3.42E+16 3.85E+18 

46 3.20E+16 4.38E+15 7.48E+16 2.10E+14 2.12E+17 

47 9.14E+16 1.65E+15 7.18E+14 2.19E+15 1.75E+15 

48 7.37E+13 6.14E+15 2.07E+15 2.23E+16 5.69E+15 

49 1.46E+21 6.06E+16 4.32E+21 3.32E+23 1.84E+21 

50 1.58E+14 1.78E+16 2.81E+15 1.85E+17 8.78E+18 

51 1.99E+16 1.55E+20 1.06E+16 1.88E+16 1.03E+24 

52 2.66E+16 1.74E+14 1.46E+15 1.56E+15 8.03E+20 

53 4.61E+16 1.08E+17 7.13E+16 1.41E+23 5.16E+19 

54 8.21E+16 1.98E+15 4.24E+18 2.67E+18 1.56E+17 

55 3.45E+13 5.78E+19 2.51E+15 7.86E+13 6.02E+14 

56 9.15E+14 1.91E+14 9.72E+14 1.97E+15 1.57E+16 

57 1.19E+16 1.49E+14 4.40E+16 5.97E+15 2.65E+17 

58 6.20E+13 7.22E+15 1.62E+15 2.72E+15 2.48E+15 

59 1.01E+15 2.22E+15 7.84E+16 1.08E+15 8.90E+15 

60 7.06E+13 4.06E+14 6.77E+12 4.74E+19 7.80E+15 

61 1.07E+15 1.55E+16 5.13E+15 1.62E+16 4.16E+15 

62 3.01E+17 9.43E+14 3.74E+14 7.92E+13 5.56E+15 

63 4.48E+15 8.09E+16 2.91E+18 7.45E+17 6.82E+17 

64 7.12E+15 5.00E+15 4.10E+16 1.11E+16 4.91E+19 

65 7.58E+14 2.12E+16 3.29E+17 1.13E+20 6.11E+23 

66 2.07E+15 3.10E+15 1.37E+15 5.76E+15 7.07E+15 

67 1.96E+17 7.42E+15 1.55E+23 2.81E+18 7.20E+17 

68 1.81E+14 5.36E+14 2.20E+15 2.41E+14 1.38E+17 

69 2.17E+14 8.81E+14 9.32E+15 2.82E+15 1.64E+15 

70 1.67E+16 2.06E+16 2.39E+15 1.06E+17 6.80E+22 

71 7.56E+13 9.15E+16 2.70E+20 3.96E+14 4.99E+16 

72 1.37E+15 1.30E+14 3.12E+15 4.11E+16 5.68E+18 

73 4.62E+17 3.61E+14 8.04E+16 5.02E+14 1.62E+19 

74 1.54E+15 5.38E+14 1.28E+16 6.20E+15 1.26E+18 

75 8.52E+14 3.14E+15 3.67E+18 1.96E+18 1.31E+18 

76 6.89E+13 2.58E+14 4.63E+15 1.07E+16 6.37E+17 

77 2.50E+16 8.26E+13 1.59E+17 2.93E+14 1.84E+17 

78 3.50E+15 5.09E+15 4.66E+17 2.32E+16 2.32E+17 

79 6.86E+14 1.54E+14 1.27E+14 1.64E+16 2.55E+15 

80 3.04E+15 4.09E+15 1.25E+15 5.04E+14 2.05E+15 

81 5.23E+15 3.48E+18 2.37E+19 2.08E+18 5.11E+22 

82 2.58E+16 5.69E+14 5.95E+16 1.15E+19 5.23E+19 

83 3.54E+15 8.03E+14 4.60E+15 6.60E+19 1.36E+16 

84 8.48E+16 2.31E+16 4.08E+16 2.10E+16 8.48E+15 
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85 5.21E+13 2.45E+15 5.29E+15 1.47E+16 6.00E+15 

86 8.24E+15 1.45E+14 8.16E+14 1.72E+16 7.68E+14 

87 4.32E+13 1.86E+14 6.36E+15 7.09E+15 2.29E+16 

88 6.20E+15 7.34E+17 3.74E+21 7.21E+18 6.26E+17 

89 1.31E+16 2.58E+16 2.33E+14 5.37E+14 2.21E+14 

90 7.27E+16 6.85E+14 3.80E+16 1.19E+19 7.75E+16 

91 8.11E+14 4.65E+14 3.03E+16 9.72E+17 1.48E+17 

92 7.18E+14 1.53E+14 1.53E+15 1.10E+14 2.57E+14 

93 4.09E+14 1.91E+15 1.08E+16 1.15E+17 1.89E+15 

Median 1.84E+15 1.98E+15 2.15E+16 3.42E+16 2.53E+17 

Note: Overall Bayes Factor values are not presented, for they are quite large. 

 The Prelec model can capture the linear model as a special case where a = s = 1, and thus 

can accurately model veridical judgment. However, its endpoints are restricted to (0,0) and (1,1) 

and does not capture horizontal lines (which would indicate guessing) as well as the linear 

model. Further, although the curvature of the model in cases where either parameter is not equal 

to 1 allows the model to better fit data where there is systematic underestimation or 

overestimation of probabilities over given objective probability domains, but at a cost that is 

captured by the calculation of Bayes Factor. The greater complexity of the Prelec model relative 

to the linear model means that the range of likely parameters for the Prelec model is smaller than 

that of the linear model. The current analysis divided the parameter space into 11 equal steps 

across the observed range of parameter values for each model. For the linear model, the m 

parameter was examined across 11 steps of .1 on the domain [0, 1], and the b parameter was 

examined across 11 steps of .05 across the domain [0, .5]; for the Prelec model, the a parameter 

was examined across 11 steps of .05 across the domain [1, 1.5] and the s parameter was 

examined across 11 steps of .02 across the domain [.8, 1]. This meant that the likelihood of the 

Prelec model was integrated over a domain much closer to the maximum likelihood parameters 

of that model but that the prior probability of each kernel likelihood (assuming a flat prior for 

both models) was five times smaller than the prior probability of the kernel likelihood of the 
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linear model. For each participant, the likelihood of the linear model was many orders of 

magnitude larger than that of the Prelec model, likely due largely to the exponentially 

compounded price of the added complexity of the latter. That the linear model is much more 

likely given the data than is a risky weighting function may be taken as additional evidence that 

the process of judging probability in a riskless environment is different from the risky weighting 

of probability that occurs in decision making.  
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Experiment 5a: One-dimensional probability and memory in 

continuous recall 

Introduction 
 
 Experiment 5a was conducted in response to suggestions that the letter-shadowing 

distractor task in a Brown-Peterson paradigm might not have created enough mnemonic 

interference to prevent rehearsal. In order to maximize interference between study and test, 

Experiment 5a used a continuous recall paradigm. It was hypothesized that the effect of 

increasing retention interval would be more pronounced in this paradigm, with subjective 

probability judgments deviating substantially from objective probability judgments, possibly to 

such an extent that the linear model would become insufficient to predict the data. In order to test 

this hypothesis, the linear model was compared in a Bayes Factor analysis with the Prelec model, 

which was developed to describe probability judgments made under conditions of risk and 

uncertainty but has been used to describe non-linear relationships between objective and 

subjective probabilities in riskless assessment (e.g., Zhang & Maloney, 2012). 

 

Method 
 

Participants (n = 68) registered via online interface and participated to fulfill part of the 

course requirements for either Introductory Psychology or Statistics for the Behavioral Sciences. 

Experimental materials were presented via E-Prime software. In this within-subjects continuous 

recall design, participants were presented with study trials and then were asked to recall 

probability judgments after retention intervals of 0, 1, 2, 4, 8, 16, and 32 intervening trials.  
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In each study trial, participants were first presented with an image of a can at the bottom 

of the screen. Cans were bisected with one color on the left side and another color on the right. In 

order to make each can distinct, each was overlaid on the center with a recognizable image. 

These images, which included celebrities, works of visual art, and fictional characters were pilot-

tested with a group of ten individuals aged 18-67 and were included only if the images were 

unanimously recognized. The can was presented for one second before an array of 40 chips 

appeared to hover above the can. The chips took either of the colors of the can: participants were 

instructed to pay attention to the proportion of chips of the color of the left side of the can. A 

screenshot of the chips hovering above a sample can for a given study trial is shown in Figure 

34. After 5 seconds, the chips were animated to fall into the can, and the next trial (either a study 

trial or a test trial) began. 

 

Figure 34. Screencap from the study phase of Experiment 5a. 

Results 
 
 Increasing retention interval led to increasing departures from veridicality. Figures 35-41 

are charts of median probability judgments for each of the subjective probabilities tested. In the 
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zero lag condition, subjective probability is again closely correlated with objective probability 

(R2 = .98609), with a slope near one (0.9212) and an intercept near zero (0.04). As the retention 

interval increases, so does the tendency towards assuming the ignorance prior of 50%, and the 

slope of the linear regression line flattens. The median probability judgment is 50% for three 

objective probability values at the zero interval (objective probability = [.5, .55, .60]), and it is 

the median judgment for three objective probability values at the one interval [.50, .55, .60], for 

four at the two interval [.50, .55, .60, .65], for six at the four interval [.40, .45, .50, .55, .60, .65], 

for six at the eight interval [.45, .50, .55, .60, .65, .90), for ten at the sixteen interval [.25, .35, 

.40, .45, .50, .55, .60, .70, .80, .85], and for nine at the 32 interval (.35, .40, .45, .50, .55, .60, .65, 

.75, and .95). This trend is significant ( ρ  = .9456, p = 0.0129).   
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Figure 35. Median probability judgments in the zero retention interval condition in Experiment 

5a. 
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Figure 36. Median probability judgments in the one retention interval condition in Experiment 

5a. 

 

Figure 37. Median probability judgments in the two retention interval condition in Experiment 

5a. 
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Figure 38. Median probability judgments in the four retention interval condition in Experiment 

5a. 
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Figure 39. Median probability judgments in the eight retention interval condition in Experiment 

5a. 
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Figure 40. Median probability judgments in the sixteen retention interval condition in 

Experiment 5a. 

y = 0.5319x + 22.772

R² = 0.7128

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100



Assessing Probability Judgments 

 110

 

Figure 41. Median probability judgments in the thirty two retention interval condition in 

Experiment 5a. 

 

 As in Experiment 4b, residuals were calculated as the difference between each probability 

judgment and the corresponding presented objective probability value. The average errors for 

each objective probability value and retention interval are presented as a heatmap in Table 16. 

The magnitude of average errors tends to increase with increasing retention interval. Small 

probabilities, likely influenced by both floor effects and the ignorance prior, tend to have large 

overestimations. Large probabilities, again influenced by the ignorance prior but also by ceiling 

effects instead, tend to have large underestimations.  
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Table 16. Heatmap of Average Residuals in Percentage Points Across Presented Objective 

Probabilities (po) and Retention Intervals in Experiment 5a. 

Retention Interval 

po Zero One Two Four Eight Sixteen Thirty Two 

5 9.66 7.60 16.49 17.91 40.46 19.41 37.46 

10 7.66 17.17 24.76 27.60 22.76 25.54 32.12 

15 8.46 9.97 13.77 17.79 15.97 16.12 21.29 

20 -0.29 16.83 9.24 10.86 17.00 24.03 16.18 

25 8.06 4.00 17.34 8.68 7.54 19.71 17.03 

30 3.74 7.43 12.06 10.31 11.18 11.20 6.44 

35 5.23 7.24 10.23 0.00 3.77 7.97 11.71 

40 6.00 4.54 5.35 4.43 3.21 7.51 9.79 

45 -1.00 -7.12 -4.14 7.94 5.46 3.38 5.66 

50 -4.66 -3.33 -1.99 -3.46 -0.81 -5.21 -5.16 

55 -3.54 -3.56 -4.11 -2.53 -2.80 -10.53 -8.57 

60 -6.29 -6.97 -8.38 -8.06 -9.65 -8.54 -10.44 

65 -2.80 -11.91 -17.83 -13.06 -8.14 -7.06 -14.11 

70 -4.14 -4.49 -12.00 -12.83 -18.09 -20.34 -15.97 

75 -7.83 -13.09 -7.69 -10.59 -29.18 -23.24 -30.60 

80 -6.06 -15.37 -15.53 -21.66 -29.00 -30.00 -22.06 

85 -7.60 -24.18 -17.69 -22.18 -25.06 -29.91 -29.86 

90 -9.54 -18.63 -26.97 -39.20 -40.71 -13.91 -33.00 

95 -7.46 -23.88 -23.46 -29.82 -25.71 -22.94 -39.20 

 

 Tending towards the ignorance prior will naturally produce patterns that resemble the 

overweighting/underweighting patterns seen in risky choice: a guess of 50% will be too high in 

trials that assess small objective probabilities and too low in trials that assess large objective 

probabilities. Since there is an underweighting and overweighting pattern, we can assess a risky 

weighting function as a model to fit these data. The Prelec model is an attractive option for two 

reasons: it subsumes the linear model as a special case and thus will perform at least as well as 

the linear model for short retention intervals where judgments tend to be veridical and it has been 

shown in the past to outperform other models of risky weighting (Chechile & Barch, 2013; Stott, 

2006).  
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 Observed median data were log-transformed and fit to the linearized two-parameter 

Prelec function (the a parameter adjusts to magnitude of overweighting and underweighting and 

the s parameter adjusts the curvature of the function). Model fit statistics and parameter values 

for fits of the linear model and for the Prelec function are shown in Table 17 and Table 18, 

respectively. R2 values for the two models, as expected, are similar in the zero lag condition 

(linear: 0.986, Prelec: 0.987). The linear model outperforms the Prelec model in every other 

retention interval condition except for the lag of 16 trials.  

 

Table 17. Model-fit statistics and parameters for the linear model  

Retention 

Interval r R2 Slope Intercept 

0 Lag 0.993 0.986 0.921 0.0394 

1 Lag 0.983 0.966 0.869 0.0535 

2 Lag 0.971 0.943 0.795 0.0908 

4 Lag 0.908 0.825 0.585 0.172 

8 Lag 0.837 0.701 0.423 0.257 

16 Lag 0.844 0.713 0.532 0.228 

32 Lag 0.781 0.610 0.237 0.342 
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Table 18. Model-fit statistics and parameters for the Prelec function 

Retention 

Interval r R2 a s 

0 Lag 0.993 0.987 1.172 0.917 

1 Lag 0.980 0.960 1.445 0.827 

2 Lag 0.947 0.897 1.570 0.762 

4 Lag 0.894 0.798 1.332 0.851 

8 Lag 0.823 0.677 1.207 0.909 

16 Lag 0.879 0.773 1.229 0.907 

32 Lag 0.728 0.529 1.061 0.973 
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Bayes Factors were calculated using R (R Development Core Team, 2008) on an individual-

participant basis to assess the relative predictive value of the two models in each of the retention 

interval conditions. For this analysis, likelihoods were calculated assuming a normal model. For 

each model, 10 parameter values in steps of .01, centered about maximum likelihood parameters 

for judgments made in the immediate recall (0-lag) condition, were sampled from flat prior 

distributions (a total of 100 combinations of possible parameters for each model). The sums of 

these likelihoods were used to estimate the area under the overall likelihood of the data given 

each candidate model. The results of this analysis are presented in Table 19.  

 

Table 19. Bayes factors for individual participants and overall by condition: Linear model/Prelec 

model 

  Interval 

Subject 0 1 2 4 8 16 32 

1 5.537614192 2.940427474 0.010378697 6203822391 18.48534871 6.129184128 3.325516194 

2 5.557702117 1691686576 1963.491578 63442.72717 1047.850165 789553.2308 133.3168535 

3 4.805718101 3.38E+28 1.93168E+16 9.59E+29 9.13E+39 1.41E+127 4.83E+151 

4 5.484326178 0.486362272 55.56532803 1.159119857 1.007762205 1.340670522 3.502864994 

5 4.283464781 0.093054489 0.024371754 3.533471915 53605.20519 22.65295267 231449651.5 

6 3.559745453 152077.1357 1812.672915 730.0264712 4.922231851 183.8952259 61.73047175 

7 5.794889975 23.2309721 7.426593011 221.0741368 6.664963863 0.002265326 23.69278273 

8 5.413808398 25241.34259 50618.08041 34384514062 13689.98288 22.39075429 5.022145203 

9 6.271336187 102.1129019 11.95754497 1127662.052 269.1559304 0.123865602 8146714.13 

10 4.735596855 914215.1141 24950.62263 0.96774139 16468.4916 324.3430678 403.5579754 

11 21.14210611 536660590.7 8.27E+28 3.32E+23 6.67E+26 4.77351E+17 2.78589E+17 

12 2.654649127 9253541.742 215.591383 10873625.45 3.26718E+13 1141799181 6.26563E+15 

13 2.891143217 1.842741512 552987.807 570153.3851 250432414.8 9473355.108 35367223.45 

14 5.589406843 50.04988621 14.56032073 151.6826707 108.2467557 10.47877581 3.072840346 

15 0.141995554 3.55E-22 56.95440754 410969.883 16.09638436 47.18991076 492535123.8 

16 4.560890139 976942.347 5.36E-11 2.40512862 6530.569114 13.83557057 52.43937035 

17 3.19810354 79610.08622 7.585187841 429.165459 654.2377906 14292.98177 43.22024104 

18 32.96082346 1.76024E+11 3.26E+20 1606053.404 2.1631E+14 1.60306E+15 1.35732E+19 

19 10.03745301 10.35477387 1.840318745 48.86018886 123.5661554 2285.083628 325.3710394 

20 73.87385459 6.19E+77 91364291269 6.28615E+12 8.01E+123 8.55733E+17 1.28E+49 
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21 4.478021774 8.54E-08 6948.392742 0.50796099 144728.5242 2.921904687 31.13755484 

22 4.451558909 40847.72335 0.531052728 892.5281142 78966.41096 21031.68506 0.832549211 

23 4.27556993 5.065448829 0.033273401 229413531.4 11489.29951 41566974.45 991431.5794 

24 4.773668326 0.003041929 1958.82459 3.010649192 576.1958012 27006959.44 30.58162244 

25 6.791252454 0.507443814 33975.7635 47810768.67 16.87997092 1037.67689 16.62488339 

26 1.627807798 190057.0028 8.26E+29 1.2206E+11 2.417657902 3.72E+51 4056034.667 

27 4.001560813 11325319.77 1216.908086 1.92865E+17 16435.9033 709.0974025 77290403567 

28 11.47404904 0.009403129 754087206.2 2.19E-06 1.76684E+11 0.128296347 8.13847E+12 

29 5.53273136 4.962712044 50.86693031 40.4557003 2.226959958 0.721697803 3.888047137 

30 6.90990853 165714428.3 70.37119591 174782238.7 95.41121112 1105.536648 3379894532 

31 4.754640393 3.725250913 12387161919 12426.72435 1368.845474 1.343224808 0.562836166 

32 4.688411241 7.20E+22 2.694783801 0.213898325 81984.92216 1.598262013 7744.305148 

33 4.925937278 1.97131E+13 3.27E+18 5.68E+24 114375550.1 966625.733 6.02E+26 

34 4.073487528 22877.15087 0.678790098 118927574.7 4.163284178 956.3567239 201.7507395 

35 3.686022062 0.000401565 0.032193884 41.53754259 1.065652758 115546.8874 69.2111311 

36 4.739254432 28325.40525 70.47548364 21.5747062 119052.6285 1.02E-06 2.139581948 

37 2.488611142 1.69E-11 183.0334865 112.655594 0.009583675 1641.670682 9504.285782 

38 4.893645265 4.88E-06 85.09719585 2.22E-05 2.86E-05 0.389573115 0.000487196 

39 0.034909595 3.79377424 1.017276196 37.15361521 1086.597797 3.440278468 542.6453144 

40 4.325307432 38748.53882 0.014530502 14.57972864 107876.143 1.58648357 535.5218107 

41 1.638350987 0.001689698 659523.4708 51942.51037 6420.500282 2.54387E+15 13091244.24 

42 14.20605355 24.54155087 0.431605429 124.9929286 556934.7241 8.776195539 81.60020078 

43 6.287809243 162210.6817 8.12803E+11 768.4453698 536.2872387 79.5856522 44811.83058 

44 16.21603936 3.80E+25 2455943009 566175.3066 66790.08369 3.85434E+11 4821.925748 

45 7.244519127 5487279.366 15.77049765 0.010158988 1434.362123 0.470218307 8.542956742 

46 18.89425485 28683.48896 21423.22354 434.5360455 14226.79689 14402831.1 43.97504934 

47 0.94352647 2.18E-06 0.017241383 0.073910526 1636159.354 43.7131158 35.8671132 

48 9.622213737 18.83670931 7.94216E+19 2.40E+26 3.27E+23 15235.26113 185101270.2 

49 1.945729313 48302862.04 0.00695771 762.3693015 9.307547533 72.88148138 80842.19937 

50 2.868593057 0.388709774 559.3877434 19.71084478 31.8200613 1.884931851 6984.638626 

51 5.264727621 24202.96639 28631144.06 9358150.715 2.200435461 168041.1923 6609597265 

52 264.3447918 2.593853624 0.013816208 0.037353234 21.87477412 1.254478899 93.41105026 

53 25.66221058 1392747.362 179666785.1 2.82922E+14 3.07E+20 6.45006E+13 2.22E+27 

54 10.72504839 2939.510142 0.225850857 14.68184887 514870.0064 1.464576039 62461018.68 

55 6.004952521 2.51533E+13 3.342146342 4.299453982 239.2931553 4.66936E+13 15521.0334 

56 3.989424841 2.81E-08 8.896092352 125339.8929 9857095272 260106.1576 495589572.9 

57 11.2692293 81943.03112 0.083232594 10146.91493 9.455690154 0.259726687 3560.354643 

58 4.45749456 42615165.56 29.45746522 11499.59029 77313376.2 10.91862932 1.45639E+14 

59 6.033046461 5735.730443 56.5753322 0.422129899 31541544.2 177.5481293 823.0559851 

60 4.8031439 0.066147462 9.553417812 0.146960007 34.01241857 1.339845097 406.9881563 

61 7.973367938 1.982293754 2.52822E+18 155.4177171 5.623940748 0.011954352 0.25175668 

62 4.642195259 31978.04746 486391171.3 0.123193078 903.8160477 2118.975531 669.9734666 

63 11.01851048 9396902.861 3859.221793 26017669.55 3026.014041 1464050.25 99253.22771 
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64 5.770475145 375.6781782 20.66231373 854705118.9 16.22246997 706461.8568 2418705.282 

65 4.385892281 4342.016931 5.58097E+16 45878424.62 25.40737276 307.8267754 9.89443E+14 

66 5.543467516 50.10806968 3089870325 2444.769819 9490102.862 306226.9613 3.319939257 

67 4.193943205 8.15E-59 5867916.853 417022.3444 1229616.096 97.11665446 13761.32856 

68 3.52617626 50.68822553 45.5998545 119006.5135 50488.38021 0.453826186 1.44185E+19 

69 5.881746493 1.32E-08 1.07E+26 12.57898048 2.47E-09 2.16E-07 35.40490422 

 

Bayes Factor values in many conditions were extremely large. In many cases, this 

resulted from apparent confusion on the part of participants, with several giving subjective 

probability judgments for a given set of condition-trials that were negatively correlated with the 

objective probabilities. Other participants gave subjective judgments that correlated neither with 

the linear model nor with the Prelec model, indicating non-storage and/or non-retrieval of 

probability judgments. Thus, before calculating the overall Bayes Factor on a per-condition basis 

– which required taking the product of each individual Bayes Factor – outlying data were 

excluded in situations where judgments for a given condition and participant correlated with 

neither the linear model nor the Prelec model. This led to 10 excluded Bayes Factors in the zero-

lag condition, 20 in the one-lag condition, 27 in the two-lag condition, 27 in the four-lag 

condition, 39 in the eight-lag condition, 29 in the sixteen-lag condition, and 44 in the 32-lag 

condition (all out of 69 possible). Overall Bayes Factors and median participant-level Bayes 

Factors are presented in Table 20. Using the criteria proposed by Jeffreys (1961), there is 

decisive evidence in favor of the linear model for all intervals in the experiment: the linear model 

is more likely than the Prelec model given the observed data by at least 23 orders of magnitude. 

Thus, it appears that the linear model is more than sufficient to explain probability judgments 

made under most conditions when risk is not involved, but may be even more useful when those 

judgments are very difficult. 
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Table 20. Overall Bayes Factor products and median participant-level Bayes Factor ratios after 

exclusions 

 
  Interval 

Measure 0 1 2 4 8 16 32 

Product 7.69792E+41 1.88217E+23 3.4898E+156 3.0476E+123 3.3543E+123 2.5339E+273 1.563E+101 

Median 4.754640393 50.04988621 33.13108411 153.5501939 1047.850165 18.11316243 81.60020078 

 

 In sum, the results of Experiment 5a indicate that while riskless probability judgments 

can be described using models developed in the context of risky choice, these models are 

unnecessary. The judgments made by individuals about probabilities presented in a familiar and 

easily understood context can be considered accurate, with a simple linear relationship between 

objective and subjective probability. When the presented information becomes degraded due to 

increasing retention interval, then individuals appear to tend to rely on the ignorance prior, 

leading to a reduction of variance in probability judgments, which in turn flattens the slope and 

increases the intercept of the linear model that describes those judgments. More taxing tests of 

memory for probability, such as those with longer retention intervals as in this experiment, can 

naturally be likened to more difficult probability judgments, which may help explain the 

similarity in difficult riskless probability judgments to probability judgments made in risky 

choice found in earlier research (e.g., Zhang & Maloney, 2012). 
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Experiment 5b: One-dimensional probability, memory, and 

confidence in continuous recall 
 

Introduction 
  

 When there is insufficient information available in memory to make an accurate 

judgment, guessing based on the ignorance prior may represent a viable strategy to individuals. 

Experiment 5b examines whether individuals are more likely to default to the ignorance prior 

when they do not feel confident that they remember the probabilistic features of a problem. In 

addition to eliciting probability judgments, this experiment also elicits confidence ratings on a 

three-point scale (1 = low confidence; 2 = educated guess; 3 = fully confident).  

It was hypothesized that individuals will tend away from the ignorance prior when they 

can access probabilistic information with high confidence. Thus, linear models of given 

parameters (slope approaching 1, intercept approaching 0) should better predict probability 

judgments following high confidence ratings.  They should, conversely, tend towards the 

ignorance prior when they cannot confidently recall probabilistic judgments. In these situations, 

individuals may show judgments that follow different patterns. Thus, different models were 

assessed. This experiment is thus designed to examine a possible cause of why riskless 

judgments made in previous studies (e.g., Reyna & Brainerd, 2008; Zhang & Maloney, 2012) 

follow patterns similar to judgments made under risk and uncertainty: the influence of the 

ignorance prior in guessing. 

Method 
 

Experiment 5b used the same experimental stimuli as Experiment 5a. In order to obtain 

more data in a reasonable experimental timeframe, the longest lag condition (32-lag) was 
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removed and the script was rewritten such that each test trial had the appropriate number of 

intervening trials from its corresponding study trial. 

This experiment added an elicitation of a confidence rating for each judgment to each test 

trial. After giving their judgment of the probability of retrieving a chip of a given color from a 

given can, participants will be asked to rate their confidence on a three-point scale.  

 

 Results 
 

 Individuals indicated higher confidence on test trials following short retention intervals 

and lower confidence following longer retention intervals. There is a nearly perfect negative 

correlation between the use of low and high confidence ratings (r = -.972, p < .0001) across 

retention interval. Midrange confidence ratings were fairly consistent across conditions ( ρ  = -

.314, n.s.).  The proportions for each type of response stratified by retention interval are 

presented in Table 21.  

 

Table 21. Proportions of Confidence Rating Responses Stratified by Retention Interval for 

Experiment 5b. 

 Confidence Rating 

Retention 
Interval 1 2 3 

0 11.77% 41.61% 46.61% 

1 20.48% 40.97% 38.55% 

2 22.74% 42.58% 34.68% 

4 34.03% 43.71% 22.26% 

8 42.58% 41.29% 16.13% 

16 52.42% 32.58% 15.00% 
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 These confidence ratings were a strong indicator of veridicality in probability judgments, 

indicating that confidence was fairly well calibrated with accuracy. Median probability 

judgments are plotted against presented objective probabilities in Figures 42(a-c) – 47(a-c). At 

each retention interval, the correlation is strongest for judgments accompanied by the high 

confidence rating, weaker for judgments accompanied by the middle confidence rating, and 

weakest for judgments accompanied by the low confidence rating. For each confidence rating, 

there is a general downward trend in the proportion of variance explained by presented objective 

probability values. 

 

Figure 42(a-c). Median Probability Judgments Given With Confidence Rating 1, 2, and 3 in the 0 

Item Memory Lag Condition. Label values are in terms of percentages. 

 

Figure 43(a-c). Median Probability Judgments Given With Confidence Rating 1, 2, and 3 in the 1 

Item Memory Lag Condition. Label values are in terms of percentages. 
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Figure 44(a-c). Median Probability Judgments Given With Confidence Rating 1, 2, and 3 in the 2 

Item Memory Lag Condition. Label values are in terms of percentages. 

 

 

 

Figure 45(a-c). Median Probability Judgments Given With Confidence Rating 1, 2, and 3 in the 4 

Item Memory Lag Condition. Label values are in terms of percentages. 
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Figure 46(a-c). Median Probability Judgments Given With Confidence Rating 1, 2, and 3 in the 8 

Item Memory Lag Condition. Label values are in terms of percentages. 

 

 

Figure 47(a-c). Median Probability Judgments Given With Confidence Rating 1, 2, and 3 in the 

16 Item Memory Lag Condition. Label values are in terms of percentages. 
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Table 22. Linear Pearson Product Moment Correlations of Median Probability Judgments With 

Presented Objective Probabilities Stratified by Confidence Rating and Retention Interval  

Confidence Rating 

Retention 
Interval 1 2 3 

0 0.86*** 0.96*** 1.00*** 

1 0.34 0.93*** 0.98*** 

2 0.07 0.72** 0.91*** 

4 0.45 0.87*** 0.98*** 

8 0.44 0.73** 0.85*** 

16 0.48* 0.87*** 0.97*** 

***p < .0001, **p < .001, *p < .05 
 

 The shape parameters of the best-fit line, shown in Table 23, also indicate the accuracy of 

median probability judgments. Again, judgments made with high confidence were the most 

accurate across retention intervals: the best-fit lines resulting from those judgments had slopes 

that are closest to 1 and intercepts close to 0, thus, they best replicated the identity line that 

would indicate perfectly veridical judgment. These best-fit lines drifted away from the diagonal 

and towards the horizontal for less confident judgments. However, in no case was the slope of a 

best-fit line negative, indicating that even as memory decays, participants still had some ability 

to discriminate between smaller and larger probability values. 

   

Table 23. Linear Model Best-fit Parameters (slope, intercept) of Median Probability Judgments 

With Presented Objective Probabilities Stratified by Confidence Rating and Retention Interval  

 Slope  Intercept  

 Confidence Rating Confidence Rating 

Retention Interval 1 2 3 1 2 3 

0 0.79 0.84 0.98 1.01 5.18 -1.06 
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1 0.14 0.75 1.01 26.78 8.74 -1.20 

2 0.03 0.53 0.84 36.91 16.44 5.54 

4 0.18 0.56 0.98 33.33 20.03 -1.36 

8 0.19 0.46 0.79 31.79 22.69 12.63 

16 0.13 0.61 1.01 34.45 17.24 -2.24 

 

It has been argued that, when guessing, individuals tend to give judgments that indicate a 

belief in equal probability, assigning each possible outcome a probability value of 1/n known as 

the ignorance prior (e.g., Fox & Rottenstreich, 2003). With two possible outcomes (as each trial 

presented chips of two colors), it was hypothesized that participants in this experiment would 

tend to give probability judgments of 50% when not confident and following longer retention 

intervals. The tendency to give that value was examined on trials in which 50% was not the 

actual probability value given. Collapsing across retention intervals, participants gave judgments 

equal to the ignorance prior in 13.67% of low confidence judgments (95% CI = [13.00%, 

14.36%]), in 11.62% of middle confidence judgments (95% CI = [11.09%, 12.15%]), and in 

12.22% of high confidence judgments (95% CI = [11.58%, 12.86%]). The proportions of 50% 

judgments increased almost monotonically with increasing retention interval: 16.6% (95% CI = 

[12.3%, 20.8%], 24.5% (95% CI = [19.5%, 29.4%]), 28.3% (95% CI = [23.1%, 33.5%]), 28.3% 

(95% CI = [23.1%, 33.5%]), 30.0% (95% CI = [24.7%, 35.3%]), and 31.7% (95% CI = [26.4%, 

37.1%]) for 0-item, 1-item, 2-item, 4-item, 8-item, and 16-item retention intervals, respectively. 

Frequencies of judgments made in trials where 50% was not the correct answer across different 

retention intervals and confidence ratings are presented in Table 24. A two-way nonparametric 

analysis of the frequency of 50% judgments indicates that these judgments are statistically 

dependent on confidence rating and retention interval ( χ 2 (10) = 75.45,  p < .0001). 
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Table 24. Frequency of Inaccurate Responses Indicating Probability Judgments of 50% Stratified 

by Confidence Rating and Retention Interval 

Confidence Rating 

Retention Interval 1 2 3 Total 

0 6 20 22 48 

1 16 31 24 71 

2 19 24 39 82 

4 21 39 22 82 

8 37 36 14 87 

16 57 25 10 92 

Total 156 175 131 462 

χ 2 (10) = 75.45,  p < .0001
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Conclusions 

 Risky weighting: Experiments 1 and 2 

Using logarithmic derivatives of similar functions is a productive way of finding 

substantial differences between data-fitting functions with similar functional forms. Both 

experiments that examined risky weighting showed that fitting empirical 2Dη(p)data revealed 

substantial differences between candidate functions. The results of Experiments 1 and 2 indicated 

that the risky weighting function for negative gambles is quite similar to the risky weighting 

function for positive gambles. The logarithmic derivative of the risky weighting function for both 

positive and negative gambles again was shown empirically to follow a DVI pattern, indicating 

the relatively sharp decline in the rate of change of the risky weighting function for small 

probabilities and the relatively sharp increase in the rate of change of the function for large 

probabilities. This pattern is consistent with the inverse s-shaped functional that results from 

overweighting small probabilities and underweighting large probabilities. Empirically estimated 

2Dη(pr )values for negative gambles were somewhat smaller in the domain of small 

probabilities [.05, .15] than for positive gambles, indicating that individuals do not overweight 

small probabilities when faced with losing gambles as much as they do when faced with winning 

gambles. Otherwise, risky weighting is similar in both types of gambles, as demonstrated by 

2Dη(pr )values, the relative performance of candidate risky weighting functions in fitting those 

values, and the fact that for all candidate models there were no significant differences in 

parameterization between the two gambles except for the difference in the a parameter for the 

Exponential Odds model.  
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For both positive and negative gambles, the power class of models can be dismissed on 

the basis of their theoretical logarithmic derivative profiles. The Goldstein-Einhorn and the Wu-

Gonzalez models (and all models subsumed by either model) were again shown to have the same 

2Dη(pr )  profile as the observed data, but also were again shown to systematically misfit the 

observed data over multiple domains for both positive and negative gambles.  

 The Prelec function and the Exponential Odds model were the best performing for both 

positive and negative gambles. Neither function led to systematic fitting errors for positive 

gambles. The Prelec model systematically underestimated 2Dη(pr )values in the low probability 

range for negative gambles, while the Exponential Odds model showed no such pattern in any 

range of reference probabilities. 

 However, a Bayes Factor analysis performed on the data from Experiment 2 shows that 

the Prelec model is many times more likely given the observed data for both positive and 

negative gambles. The discrepancy is likely due to the additional free parameter in the 

Exponential Odds model and stands to reason: given similar data, the more parsimonious model 

is favored by statistical model selection techniques, and the Bayes Factor builds in a heavy 

penalty for extra parameterization. Thus, both models may be suited to describe risky weighting 

but trade off between accuracy and complexity. 

 

 Probability judgments in riskless environments: Experiments 3, 4a, and 4b 

 In Experiments 3, 4a, and 4b, participants made generally accurate judgments of 

probability when risk was not involved and probabilistic information was presented all at one 

time in an easily understandable manner. The results of Experiment 3 suggest that there are no 
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general cognitive difficulties in understanding probabilities and that individuals can make 

accurate judgments following delays given limited mnemonic interference.  

In Experiment 4a, it was shown that individuals have no inherent difficulty in 

understanding probabilities in multidimensional probabilities. Conjunction-type problems have 

typically been presented in the past as word problems that elicit the use of heuristics (e.g., 

Fiedler, 1988; Kahneman & Tversky, 1981; Gigerenzer, 1994; Tentori, Bonini, & Osherson, 

2004). When multidimensional probabilistic information is presented in such a manner that 

heuristics do not come into play, as in the paradigm created for Experiment 4a, individuals do 

not exhibit fallacious reasoning. Rather, judgments made about multidimensional probabilities 

tend to be veridical.  

In Experiment 4b, such judgments were examined in the case that they were made 

immediately and in cases where they were made subject to mnemonic decay. Delayed judgments 

of conjunction probabilities were shown to be slightly less accurate than judgments of marginal 

probabilities, and a pattern of overestimation of low probabilities and underestimation of high 

probabilities began to emerge. However, there are features of remembered riskless judgment that 

may be driving this type of inaccuracy. First, individuals tended to default to a rational guessing 

strategy that fit either type of probability. Participants tended to guess 50% in the marginal case 

and 25% in the conjunction case, indicating a basic understanding and application of the 

Kolmogorov axioms. This that supports an argument that absent the ability to apply social 

stereotypes, individuals are rational in the judgments they provide even when they are 

inaccurate. Second, there are floor and ceiling effects that are inherent in making guesses across 

the domain of possible probability values: for example, it is impossible to either underestimate 

an objective probability of .05 or to overestimate an objective probability of .95 by more than 
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.05. The experimental manipulation of increasing memory lag indicates that the pattern of errors 

is a result of uncertainty, as the magnitude of error tends to increase as delay increases. A Bayes 

Factor analysis of these data showed that a simple linear model – which can naturally model data 

that are largely populated by ignorance prior guesses by simply becoming more horizontal with a 

decreasing slope parameter – was decisively superior to the Prelec model, which accurately 

models distortions of objective probability in risky choice. 

 As mentioned earlier, the third explanation for the conjunction fallacy in 

multidimensional reasoning posits that classical probability theory is insufficient to describe 

cognition in situations where information is considered incompatible (as is apparently the case 

with feminist bank tellers). This recently developed framework (e.g., Busemeyer, Pothos, 

Franco, & Trueblood, 2011) instead uses quantum probability (von Neumann, 1932) to model 

the choices made in such situations. Quantum probability uses a geometric representation of an 

event. Features of a problem are represented as vectors in a space defined by the number of 

determined features. The amplitude of each vector represents the degree of belief that an 

individual has regarding the feature represented by that vector. Two events are considered 

compatible if they can be represented using the same vector structure, for example, the idea of 

Linda as a bank teller and of Linda earning a high salary. In this case, the predictions of quantum 

models behave in the same way as Markov models based on classical probability. Two events are 

considered incompatible when they cannot be compared using the same vector spaces, for 

example, the idea of Linda as a feminist and of Linda as a bank teller. The order in which 

incompatible propositions are considered is key to the framework: the event presented or 

considered first establishes a vector space that is then rotated to evaluate the second event. This 

operation is intransitive, allowing for a conjunction probability evaluated as lesser than a 
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marginal probability in the context of a second event where it would not be in the context of the 

first. The similarity between conjunction reasoning and quantum behavior is a matter of 

mathematical similarity: even proponents of quantum models (e.g., Busemeyer et al, 2011) note 

that, although the framework has had success in predicting reasoning behavior, there is currently 

no evidence to suggest a biological analogue to the behavior of subatomic particles. However, in 

light of the present research and the high degree of accuracy shown by individuals, it is unclear 

whether the quantum model describes conjunction reasoning broadly.  

In Experiment 4a and Experiment 4b, there were no differences between conjunction 

judgments and marginal judgments that could not be explained by differences in perceived base 

rates in guessing situations, i.e., long memory lag conditions. Conjunction errors occur when 

individuals have preexisting ideas about the stimuli, but not in conjunction-type problems where 

the information is novel and clearly visible. If reasoning is sound as the present research 

suggests, then the responses made to word problems such as the Linda Problem may not be true 

expressions of probabilistic reasoning. Rather, as suggested by Kahneman and Tversky (1983) in 

the original paper on the topic, these are judgments of representativeness. Thus, what is being 

modeled is more akin to a similarity judgment than to a probability judgment. 

 

 Riskless probability judgments in continuous recall: Experiments 5a and 5b 

Continuous recall paradigms provided powerful mnemonic interference. As retention 

interval increased, so did errors in estimation and incorrect guesses of the ignorance prior. As 

found elsewhere, low probabilities tended to be overestimated and high probabilities tended to be 

underestimated. This tendency increased with retention interval. However, the results from 
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Experiment 5a indicate that the linear model is still far more likely given the observed data to be 

the superior model between that and the Prelec risky weighting function.  

Participants in Experiment 5b generally gave confidence ratings that matched the 

accuracy of their probability judgments. When participants chose the lowest confidence rating, 

indicating that they believed their responses to be guesses, their responses were less accurate and 

more likely to align with the ignorance prior on trials in which the ignorance prior was not the 

correct answer. In four of the six retention intervals, median probability judgments accompanied 

by low confidence ratings did not correlate with presented objective probabilities. By contrast, 

high-confidence judgments were well-correlated with presented objective probabilities and had 

significantly fewer incorrect ignorance-prior guesses. Thus, it may be that what appears to be 

systematic overestimation of small probabilities and underestimation of large probabilities in 

riskless choice may actually be the product of a mixture of well-informed judgments and low-

confidence guesses. Studies that have found systematic overweighting and underweighting in 

probability judgments based on frequencies in riskless situations may have relied on those 

guessing situations for their conclusions. The present research showed that there is actually a 

mixture present in probability judgments between accurate assessment when information is 

available and relatively easy to process and guesses when information is unavailable. 

 General discussion: risk and judgment 

 In sum, the results of the experiments in this program of study provide evidence for 

different domains of probability judgment. In the field of judgment and decision-making, it has 

long been assumed that the probability and the utility involved in a choice are exogenous 

variables. However, the evidence here present indicates that the presence of utility alters the 

perception of probability. Within the two experiments in this program that involve risky choice, 
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there were small differences in the risky weighting function depending on whether gambles 

involved potential gain or potential loss. In the experiments that do not involve risky choice, it is 

clear that a simple linear model is a superior predictor of probability judgments than is a model 

that performs extremely well in predicting perceived probability under conditions of risk and 

uncertainty.  

While both risky choice and riskless probability judgment elicit overestimation of small 

probabilities and underestimation of large probabilities, they do so to different degrees and for 

different reasons. In risky situations, the weighting function is influenced by the utility of the 

outcome: players of the lottery are not drawn by failure to assess odds but by the appeal of the 

jackpot. When risk is not involved, the overestimation-underestimation pattern appears to be 

driven by uncertainty. Accuracy in those judgments is high when judgment is immediate and/or 

when an individual expresses certainty. When there is a delay between presentation and 

judgment and when an individual indicates that she is uncertain, the mistakes tend towards 

spontaneous guessing strategies, which push judgments towards the center of the domain and, in 

turn, amplify the pattern of overestimation and underestimation.  

 When examining risky choice, it is difficult to measure risk or utility without assuming 

that the two are independent. In this program, Experiment 1 and Experiment 2 featured a 

paradigm that allowed for analyses of the risky weighting function that did not stipulate utility 

functions, but in doing so did not endeavor to provide information about the utility function. To 

assume that risky weighting and utility are separate terms in models of choice behavior may still 

be useful to glean information about how both attitudes influence decision-making. However, it 

is clear from the results of this set of experiments that probability judgments are different when 
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the stakes of a choice are changed, and even more different when the stakes are removed 

altogether.  

 The fact that probability judgments are not distorted in situations where risk is not 

involved and the judgments are relatively easy to make actually helps explain the shape of the 

risky weighting function and why that shape is reverse-s-shaped for both positive and negative 

gambles. Butler (2004) considered binary mixed gambles of the form  

U(G) = α0ω1(p)γ 0 f (V1) − β0ω 2 (1− p)δ 0h(V2 ) , where α0 and β0 were positive scaling parameters 

associated with the risky weighting function for positive and negative gambles, respectively, and  

γ0 and δ0 were positive scaling parameters associated with the utility function for positive and 

negative gambles, respectively. All four of these parameters are assumed in Generic Utility 

Theory (8, 1998; 1992). Butler showed, contra generic utility theory, that the ratio λ of α0 γ0 and 

β0 δ0 changes with respect to the degree of favorability (the probability associated with the more 

desirable outcome) of the gamble. The λ parameter was larger for more favorable positive 

gambles and smaller for more favorable negative gambles. Based on the results of the current 

study from experiments where risk was not involved, it is reasonable to conclude that the scaling 

parameters for the risky weighting function are unnecessary: pure probability judgment is 

accurate, thus, α0 = β0 = 1. This in turn implies that λ is strictly a function of γ0 and δ0. For 

favorable gambles – with a high probability of a desirable outcome – large λ values imply large 

tradeoffs in value relative to changes in probability judgments. Since probability and value are 

directly related there are also large tradeoffs in risky weighting at large probabilities, with this 

acceleration accounting for the concave-upward curvature of the weighting function in that 

region. Likewise, the tradeoffs become smaller as favorability decreases and the deceleration 

accounts for the concave-downward shape of the risky weighting function in the small 
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probability region. For negative gambles, more favorable gambles are associated with smaller 

probabilities of loss outcomes. Butler found that the λ value was smaller for more favorable 

gambles, again indicating smaller shifts in the risky weighting function as the probability 

approached 0 and thus a concave-down shape. For less favorable gambles, λ was higher, so the 

shifts in the risky weighting function again accelerate as probability approaches 1. Therefore, not 

only do we see the systematic pattern of overestimating small probabilities and underestimating 

large probabilities in cases of risky choice, we see it precisely because risky choices have stakes 

involved in the form of gains and losses of value.  

 The results of the experiments discussed in this paper indicate that individuals can 

accurately assess the probability of an event when given a diagrammatic representation of that 

event, even when that diagram is presented very briefly. Individuals can also retain the 

information about a problem involving probability after a delay and performing distracting tasks. 

When those delays are relatively long or there are many intervening tasks, individuals tend to 

guess in predictable ways. This pattern of responses changes systematically when probabilities 

represent chances of gains or risks of losses. In the case of potential gain or of potential loss, 

individuals tend to overweight small probabilities and underweight large probabilities. Taken 

together, it appears that the pattern of overweighting and underweighting is a result of attitudes 

towards risk but not of a lack of understanding of probability itself. 
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 Appendix 
 
 

Table A1. Parameters for candidate risky weighting functions that minimize squared errors about observed values of 2Dη(pr )  for 

each participant in Experiment 1. 
 

 Candidate function 
 Exponential Odds Prelec Wu-Gonzalez Goldstein-Einhorn 

Participant a 2Ds b a 2Ds a s 2D a s 2D 

1 0.09 21.45 0.39 0.30 21.36 0.03 1.00 204.16 0.99 4.41 4.15 
2 0.11 23.68 0.52 0.39 21.92 0.09 0.92 86.21 0.99 0.08 5.70 
3 0.08 27.92 0.80 0.40 22.52 0.15 0.99 52.71 0.99 0.15 7.83 
4 0.08 47.20 0.69 0.36 41.39 0.08 0.96 167.60 0.99 0.12 11.92 
5 0.12 15.97 0.65 0.44 14.30 0.14 0.87 39.66 0.99 0.11 4.33 
6 0.11 60.87 0.11 0.45 32.94 0.67 3.86 20.78 0.41 -0.15 6.55 
7 0.14 54.59 0.11 0.59 28.26 0.20 0.75 76.58 0.40 1.72 45.02 
8 0.06 67.37 0.06 0.38 22.86 0.01 0.82 816.93 0.83 0.21 6.24 
9 0.12 13.71 0.54 0.41 12.83 0.01 0.76 474.60 0.99 0.16 4.01 

10 0.18 15.81 0.89 0.67 12.54 0.01 0.35 743.09 0.99 0.38 6.33 

 

Table A2. Parameters for candidate risky weighting functions that minimize squared errors about observed values of 2Dη(pr )  in 

positive gambles for each participant in Experiment 2. 
 

 Candidate function 
 Exponential Odds Prelec Wu-Gonzalez Goldstein-Einhorn 
Participant a 2Ds b a 2Ds a s 2D a s 2D 

1 0.18 17.93 0.99 0.70 13.58 0.01 0.29 835.25 0.99 0.46 7.08 
2 0.12 20.35 0.52 0.41 18.97 0.01 0.76 701.39 0.99 0.12 5.40 
3 0.05 150.54 0.74 0.34 118.44 0.92 27.04 39.04 0.99 0.01 29.24 
4 0.16 18.75 0.27 0.48 16.56 0.70 4.05 10.34 0.31 0.43 17.55 
5 0.06 120.46 0.19 0.21 109.61 0.01 1.15 2359.89 0.99 0.13 13.35 
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6 0.06 15.70 0.71 0.33 13.44 0.23 1.40 17.63 0.99 0.11 3.95 
7 0.12 18.15 0.41 0.38 17.51 0.01 0.81 610.90 0.99 0.08 4.13 
8 0.13 13.42 0.3 0.40 12.20 0.48 2.17 9.35 0.99 0.03 2.58 
9 0.07 15.89 0.8 0.39 12.52 0.01 0.81 432.96 0.99 0.17 4.48 
10 0.02 138.52 0.23 0.02 878.25 0.56 5.81 39.57 0.01 -0.96 36.28 

 

Table A3. Parameters for candidate risky weighting functions that minimize squared errors about observed values of 2Dη(pr )  in 

negative gambles for each participant in Experiment 2. 
 

 Candidate function 
 Exponential Odds Prelec Wu-Gonzalez Goldstein-Einhorn 
Participant a 2Ds b a 2Ds a s 2D a s 2D 

1 0.18 15.99 0.94 0.67 12.82 0.01 0.35 757.92 0.99 0.38 6.05 
2 0.06 30.81 0.41 0.21 35.48 0.01 1.18 756.77 0.99 0.03 5.82 
3 0.04 144.46 0.99 0.45 82.67 0.62 2.71 48.41 0.99 0.03 5.82 
4 0.10 22.58 0.30 0.32 21.15 0.01 0.94 644.72 0.99 0.05 4.20 
5 0.07 121.94 0.40 0.24 132.05 0.01 1.11 3144.78 0.99 -0.10 10.74 
6 0.04 16.22 0.71 0.27 14.81 0.01 1.08 377.34 0.99 0.09 3.76 
7 0.02 145.17 0.03 0.20 33.37 0.01 1.13 712.07 0.07 25.71 1398.32 
8 0.03 68.53 0.04 0.23 19.82 0.01 1.07 470.65 0.04 60.20 3646.41 
9 0.07 16.85 0.70 0.34 14.81 0.01 0.92 460.19 0.99 0.21 4.73 
10 0.01 98.27 0.53 0.13 135.70 0.86 23.18 21.60 0.99 -0.10 8.88 

 
 
Table A4. Probability judgments for individual participants in Experiment 4b. 
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Participant                                    

1 15 10 10 10 15 10 10 50 15 50 10 40 25 20 50 50 40 5 50 25 40 5 40 50 60 60 75 85 70 90 80 75 60 10 80 

2 15 15 15 10 20 10 25 30 25 10 20 20 40 30 28 40 50 20 50 40 70 65 40 20 70 76 40 70 80 70 25 80 75 50 90 

3 5 60 10 10 15 80 50 35 25 70 30 10 60 20 30 40 15 50 25 40 50 80 65 10 40 75 25 90 15 94 20 95 94 95 65 

4 10 80 2 20 80 10 30 40 15 25 30 30 70 10 70 15 10 50 60 30 2 10 10 80 50 40 15 10 10 2 30 10 80 80 80 

5 40 10 40 60 10 70 50 10 20 20 20 15 40 15 30 40 20 10 50 30 65 60 70 82 40 70 90 1 60 85 80 60 90 65 80 

6 8 5 10 10 10 5 11 20 10 10 5 20 90 40 20 10 50 20 10 30 50 5 60 10 50 10 80 90 20 85 80 60 10 85 10 

7 10 20 20 90 30 30 10 30 50 20 90 20 40 20 50 40 40 70 40 70 70 80 50 70 50 10 70 80 80 70 70 90 90 80 90 

8 20 5 2 8 4 7 25 20 20 15 35 10 40 13 30 55 20 50 30 53 65 33 55 85 60 20 75 90 80 90 90 90 94 93 88 

9 20 5 15 10 10 80 20 40 50 80 15 30 60 30 25 20 25 65 50 10 50 1 5 80 47 75 90 40 45 94 79 30 80 75 75 

10 2 4 2 6 10 29 25 10 22 47 38 11 44 32 48 48 49 23 48 45 57 57 58 2 66 60 20 65 83 88 60 88 88 52 96 

11 50 20 20 15 50 50 20 50 20 50 20 25 40 30 60 50 30 20 50 50 50 60 40 50 40 20 25 80 80 75 50 60 90 70 90 

12 30 2 30 30 20 10 50 15 30 80 10 40 20 20 5 60 40 50 30 40 10 45 80 80 60 80 98 70 80 70 98 80 95 20 70 

13 10 5 10 5 70 30 10 75 20 15 20 40 50 10 15 20 80 40 20 25 10 20 75 75 50 75 30 50 80 80 20 75 85 75 90 

14 30 75 40 40 10 5 30 50 20 30 5 20 20 10 10 60 50 15 20 50 20 40 90 90 30 90 85 90 90 10 85 90 95 75 95 

15 25 2 2 10 10 60 5 40 25 2 3 10 60 40 20 25 25 40 50 60 60 50 75 50 80 75 50 5 25 95 95 75 90 90 95 

16 50 35 5 68 7 8 33 35 50 5 5 45 75 15 50 66 25 33 50 57 65 10 25 60 50 85 14 90 83 30 75 80 95 

17 10 10 5 20 5 20 30 30 30 30 10 20 30 40 20 80 30 50 30 50 70 50 85 60 40 80 70 90 85 80 60 90 90 90 95 

18 5 20 20 10 15 10 20 20 25 20 40 15 25 20 10 25 25 25 50 40 65 20 75 65 50 60 70 85 75 85 80 85 75 75 85 

19 20 5 10 10 20 10 20 20 25 60 15 25 45 40 30 35 45 50 50 40 55 50 40 50 60 65 60 80 80 80 65 80 90 90 95 

20 8 4 8 14 22 14 18 27 3 40 28 32 37 38 42 30 46 52 46 34 38 8 8 64 48 64 84 58 90 2 88 82 82 86 84 

21 2 4 10 5 10 25 40 20 10 40 15 40 40 50 25 45 70 50 70 60 40 70 40 60 75 20 90 90 70 55 90 90 90 95 95 

22 7 2 8 10 20 5 25 30 25 20 20 50 30 30 30 25 30 50 50 40 60 50 60 80 80 70 75 90 80 60 90 80 90 70 95 

23 30 2 50 30 6 60 45 40 20 10 50 5 24 40 50 15 20 30 60 20 15 30 50 30 20 20 45 80 40 5 80 75 30 35 40 

24 15 10 14 5 10 15 30 25 45 35 30 30 25 20 20 30 45 10 40 65 65 25 85 85 85 75 90 85 85 95 85 60 90 10 90 

25 4 8 4 12 8 14 28 40 20 20 12 16 4 20 24 20 34 52 44 24 40 80 18 70 45 72 76 72 76 88 82 76 88 80 92 

26 20 2 5 4 30 6 10 3 0 30 20 5 12 10 10 10 20 20 40 15 20 20 20 20 12 4 4 30 45 15 4 40 3 15 50 

27 30 5 35 20 15 25 25 25 50 15 30 25 40 40 75 60 50 50 50 45 50 50 25 60 50 60 70 60 80 80 80 60 85 80 95 

28 5 5 5 10 80 10 50 25 25 30 25 10 50 30 35 40 50 50 25 40 40 50 40 50 80 50 45 72 75 15 80 80 90 90 70 

29 4 10 10 5 15 30 9 15 15 5 12 10 15 5 25 15 30 60 85 60 40 85 30 80 12 75 65 80 60 70 78 70 85 85 95 

30 5 10 2 5 10 5 25 10 25 60 10 20 35 15 20 20 25 50 50 30 60 30 30 20 75 10 40 90 90 90 45 95 90 80 90 
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31 5 5 5 5 5 95 50 20 50 1 50 25 95 40 10 25 25 10 25 30 50 10 60 5 33 50 5 95 75 95 5 75 99 90 99 

32 10 20 2 5 30 70 30 15 25 40 10 10 70 15 60 80 30 50 65 45 75 65 85 65 45 60 55 95 85 90 55 95 80 95 90 

33 10 10 5 25 15 10 40 20 25 45 20 20 30 25 50 70 20 50 50 45 70 45 1 75 75 60 80 90 75 40 82 80 95 90 80 

34 10 15 50 15 15 15 25 10 15 40 45 50 25 30 75 15 30 25 15 50 50 30 15 50 90 50 80 50 70 25 80 90 10 75 75 

35 2 1 3 2 5 20 25 25 25 40 50 25 50 40 50 40 30 50 50 50 80 50 50 60 75 50 25 80 80 80 25 80 25 60 80 

36 5 1 2 5 20 80 25 50 50 35 40 15 75 0 20 60 30 50 50 25 70 1 85 80 68 35 90 90 85 95 92 30 95 75 99 

37 10 10 50 10 5 10 25 15 40 10 20 20 20 15 30 30 30 70 40 35 75 40 70 80 70 80 80 30 95 90 90 90 95 90 90 

38 5 10 10 20 10 20 40 80 25 20 10 30 30 30 50 60 40 50 40 10 70 40 50 10 40 80 70 80 80 80 90 90 80 70 90 

39 25 80 5 1 10 10 30 60 35 30 20 7 30 20 10 90 28 20 60 25 60 95 39 60 50 70 85 95 80 90 90 60 70 20 97 

40 5 5 15 5 20 25 20 30 10 10 45 20 45 40 30 40 15 25 60 30 85 70 60 40 35 40 95 95 80 90 90 85 95 95 85 

41 10 5 10 25 30 20 30 30 10 20 50 50 20 40 50 40 50 50 50 40 80 50 25 50 70 40 80 75 80 50 85 80 90 80 80 

42 25 1 5 2 3 1 25 85 25 5 25 20 40 6 10 60 1 20 50 5 50 4 85 5 50 50 95 85 10 50 95 5 98 90 95 

43 30 10 20 20 20 20 20 50 50 50 25 50 70 20 40 70 50 50 50 40 60 75 40 70 75 85 80 75 70 80 70 80 80 50 5 

44 15 2 5 17 10 19 25 50 30 25 37 20 35 25 50 45 30 25 30 30 40 45 45 75 50 65 75 20 70 85 80 80 89 90 35 

45 5 5 10 5 10 20 30 15 25 75 5 5 40 40 10 75 30 60 50 60 70 75 75 70 75 60 10 90 75 90 90 90 90 90 90 

46 5 5 3 35 4 2 55 10 67 2 5 23 60 25 40 40 15 45 50 50 75 2 76 75 78 90 90 90 90 80 96 87 96 90 95 

47 40 5 10 3 75 5 25 20 25 10 10 30 10 10 50 30 50 50 50 40 25 75 45 70 50 60 70 70 75 75 80 90 85 75 60 

48 10 10 5 10 7 5 15 25 20 55 15 20 45 35 15 45 45 20 35 25 40 10 75 40 75 65 80 70 25 85 70 60 85 35 15 

49 10 10 5 40 95 5 20 15 25 10 15 30 20 20 20 25 15 50 50 30 60 70 40 30 70 70 80 90 90 85 90 80 90 80 85 

50 25 3 20 20 30 50 25 30 40 30 20 30 40 30 30 20 40 50 30 40 60 70 75 75 50 40 90 80 95 98 95 95 60 90 80 

51 6 8 9 4 15 5 10 10 25 60 35 25 50 20 30 60 50 40 40 40 45 60 70 80 75 75 80 90 20 80 85 90 95 95 85 

52 2 3 3 3 5 6 25 8 25 20 55 30 50 2 14 60 15 20 50 35 70 2 60 85 60 45 75 65 80 97 90 85 95 65 90 

53 5 5 8 10 20 35 40 15 25 60 5 30 30 35 25 50 70 60 25 45 45 20 60 3 70 95 70 94 10 2 85 75 80 90 70 

54 15 20 15 50 70 10 30 40 25 50 20 50 25 30 50 25 40 60 50 30 55 70 25 60 60 75 70 90 50 75 80 50 25 95 90 

55 44 25 33 12 55 55 30 56 25 12 16 45 67 55 44 33 66 37 45 25 66 70 35 66 45 45 84 75 70 67 89 35 85 65 65 

56 5 5 5 5 10 15 15 15 25 30 15 30 55 25 25 65 20 45 50 25 60 65 25 70 55 70 80 80 20 85 85 80 85 85 85 

57 30 10 20 40 20 10 30 60 50 30 40 40 60 30 30 50 40 20 50 40 60 20 60 70 70 60 60 70 80 50 40 70 70 70 30 

58 40 20 5 5 75 5 20 20 30 50 25 10 50 20 45 40 30 10 45 30 50 5 50 75 40 50 80 60 45 90 50 60 90 50 5 

59 5 5 10 15 60 15 25 25 15 30 30 25 60 45 55 55 35 50 50 40 70 75 15 30 50 55 75 45 75 80 80 80 85 80 95 

60 33 2 15 8 40 6 25 20 25 10 16 25 36 30 50 25 30 50 50 40 50 66 25 20 40 50 10 80 70 90 85 80 4 80 95 

61 30 1 1 5 2 50 5 60 30 5 10 5 90 5 5 60 20 5 30 20 75 5 95 90 30 60 80 95 90 98 90 90 95 90 98 
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62 2 2 4 2 20 15 28 10 40 50 50 18 35 10 60 39 40 24 20 30 60 2 25 60 20 10 92 80 60 92 96 80 94 90 98 

63 5 2 4 5 7 3 10 10 35 60 5 50 40 50 50 30 30 50 30 30 50 50 40 50 30 80 40 85 85 80 20 90 80 80 95 

64 20 12 30 10 20 10 30 40 30 55 70 30 50 30 40 70 20 65 40 35 50 80 40 70 40 45 15 75 38 29 80 75 85 75 80 

65 4 6 8 3 10 8 20 24 34 5 16 20 15 15 40 8 15 25 24 30 70 6 60 80 55 70 82 80 50 78 78 75 85 70 95 

66 17 10 10 30 15 30 50 29 50 50 30 40 50 30 50 50 35 50 50 40 80 50 80 80 70 80 90 90 80 90 80 90 90 95 95 

67 20 20 60 10 90 20 50 10 10 90 60 20 20 40 20 10 30 50 80 60 70 40 80 40 80 40 10 80 60 40 20 20 90 70 90 

68 20 10 30 50 20 80 40 50 30 30 20 30 20 20 30 60 40 50 70 30 60 50 70 50 40 50 70 80 40 80 80 40 90 60 80 

69 4 2 4 2 8 5 7 7 12 4 9 5 9 4 9 16 6 7 9 16 9 2 7 20 10 14 20 20 20 20 28 7 20 20 24 

70 15 2 50 10 15 75 5 20 25 60 5 55 40 40 40 45 48 45 50 45 20 50 5 60 60 55 5 60 50 70 80 70 85 85 40 

71 5 80 5 10 20 10 20 20 25 50 10 20 40 40 30 40 30 10 50 40 40 50 40 10 40 50 60 40 50 5 70 60 90 60 5 

72 2 5 10 2 10 5 25 30 20 2 25 35 40 4 40 40 40 45 50 25 65 50 75 80 30 50 80 85 80 90 85 85 90 80 95 

73 25 5 10 50 10 5 25 50 25 10 10 15 50 10 15 40 50 25 50 50 75 10 85 80 75 90 90 90 90 90 85 90 95 85 90 

74 12 10 18 10 12 10 15 60 40 25 25 20 60 20 50 70 15 20 25 15 25 60 60 50 60 50 80 80 65 60 80 55 90 90 70 

75 2 2 5 5 10 5 40 15 5 5 15 10 10 5 50 75 5 40 10 5 80 25 70 95 85 85 90 80 90 95 95 85 95 90 85 

76 25 3 3 2 5 15 10 15 25 25 5 10 65 5 25 20 10 30 25 20 85 5 25 89 35 75 91 95 75 85 96 80 93 69 96 

77 44 4 5 50 10 2 10 35 25 40 5 25 50 5 90 68 15 80 45 15 85 65 90 95 65 10 95 99 90 95 95 90 95 70 95 



Running Head: Risky Weighting Functions and Logarithmic Derivatives 

 152

 


