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Abstract

In arithmetic statistics, counting number fields is a particularly interesting topic

with a long history. Most of the results in the field have focused on counting num-

ber fields by discriminant to work towards some long standing conjectures. More

recently, there have been results counting by number fields by a different invariant,

the conductor. One argument that has been put forth in favor of the conductor is

that results obtained by this method might tend to be nicer in a probabilistic sense.

In this thesis, we will present work using both methods. We will present joint

work that uses the discriminant to compare counts of D4 and S4 quartic number

field extensions to show that there is an infinite family of number fields with more

D4 extensions than S4 extensions. Using the conductor, we will show how some

algebraic structure of D4 can be utilized to realize a secondary term when counting

D4 number fields. We will also generalize this result and use it to count D4 ≀ H

extensions by conductor, where H is some transitive subgroup of Sn for some n.

With this result, we show that counting number fields by conductor may not always

give a “nice” result.
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Chapter 1

Introduction

In the field of number theory lies the alcove of arithmetic statistics. Inside that

alcove, there is sizable corner dedicated to counting number fields. An outstanding

question in this area is a folklore conjecture (usually attributed to Linnik) we state

below.

Conjecture (possibly Linnik) Let k be a number field, and let Nk,n(X) denote

the number of degree n extensions L/k with relative discriminant bounded by X.

Then,

Nk,n(X) ∼ ck,nX,

where ck,n is a constant that depends both on k and n.

Note that when k = Q, we may drop the k in the subscript.

Starting with k = Q, Davenport and Heilbronn [15] proved the conjecture for

n = 2 and 3, a combination of Cohen, Diaz y Diaz, and Olivier [12] and Bhargava [2]

proved n = 4, and Bhargava [3] proved the conjecture for n = 5. The case n = 6 is not

yet solved.

The n = 4 case is of particular interest because it demonstrates the relationship

between this problem and the Galois group of a specific extension L/k. If L/k is not

Galois (as is often the case), we mean the Galois group of the normal closure of L/k

regarded as a permutation group on the embeddings of L in k̄ for some fixed k̄. (You

know, what everyone means when they say “Galois group.”) For n = 4, Cohen, Diaz

y Diaz, and Olivier proved the conjecture for D4 extensions, and Bhargava proved

it for S4 extensions. Together, their work shows that about 83% of quartic number

fields have Galois group S4 and 17% have Galois group D4. In fact n = 4 is the first

example where where Sn extensions are not 100% of the degree n number fields! But

for n = 5, Sn number fields once again make up 100% of degree n number fields.
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If we instead look at the Galois group of a random degree n polynomial, Hilbert’s

Irreducibility Theorem implies that it will cut out an Sn extension 100% of the time.

Given this, we might expect Sn extensions to dominate any other possible Galois

groups of a degree n number field. In Chapter 2, we present published joint work

with Daniel Keliher [18] that shows that when we consider all possible quadratic

number fields k, then 100% of those number fields have more D4 quartic extensions

L/k than S4 ones. More precisely, we show

Theorem (F—Keliher, 2021) For ϵ > 0 sufficiently small, asymptotically 100%

of quadratic number fields F ordered by discriminant (denoted DF ) have

lim
X→∞

NF,4(X;D4)

NF,4(X;S4)
≫ϵ (log ∣DF ∣)

log 2−ϵ,

where Nk,n(X;G) represents the number of degree n extensions of k with Galois

group G and relative discriminant bounded by X.

Besides the cases already discussed above there are many other interesting results

towards proving Linnik’s conjecture. One approach has been to tackle the problem

head on. To date, the best known results are due to Bhargava, Shankar, and Wang [6]

and Lemke Oliver and Thorne [27]. Both of these works establish upper bounds on

Nk,n(X) that are ≫n X.

The second approach, as we’ve discussed a bit already, is to count degree n

extensions of k with some Galois group G that is a transitive subgroup of Sn. Much

of the work in this line has been to towards proving Malle’s Conjecture [23]. Malle’s

conjecture is particularly interesting because it goes further than Linnik’s conjecture

and gives explicit asymptotics for every finite group G, given knowledge about the

permutation representation of the group.

Conjecture (Malle) Let G ≠ 1 be a transitive subgroup of Sn and let k be a number

field. Then, there exists a constant ck,G > 0 such that

Nk,n(X;G) ∼ ck,GX
a(G)
(logX)b(k,G)−1,
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where a(G) and b(G) are explicity defined in terms of properties of k and G.

While there are known counterexamples to Malle’s conjecture as it was originally

stated, it is still thought to be generally true and there are many results in addition

to what we’ve already cited in relation to Linnik’s conjecture [8,15,21,32,36]. Out of

these, we take some time to highlight work of Klüners as it provides some motivation

for the work presented in Chapter 4. In [21], he generalized the results of Cohen,

Diaz y Diaz, and Olivier in some respects and showed that for any number field k

transitive subgroup H of Sn such that there are not too many F /k extensions with

Galois group H, then 100% of quadratic extensions L/F have C2 ≀H as their Galois

group over k and that there are cX of them when bounded by relative discriminant.

Up until this point I’ve given the impression that we are only interested in count-

ing number fields by their discriminant. The discriminant is a natural choice of in-

variant to use for counting as it is defined the same for any number field regardless

of its Galois group, but any invariant will do. In [35], Wood discusses using either

the conductor of a number field or the product of all ramified primes as alternative

invariants to the discriminant. While counting number fields by these different in-

variants does not directly address either conjecture, they are interesting questions in

their own right.

The existence of other possible methods for counting number fields raises a ques-

tion that is maybe more philosophical than mathematical, but is nonetheless impor-

tant to consider. Is there one invariant that is “better” than any other for ordering

number fields? Wood [34] asks if perhaps the conductor is the better choice by giv-

ing an argument based on probabilities. To evaluate this, we will need to define the

conductor. We promise that this will happen soon (down below in Section 1.2 if you

want to verify our truthfulness).

To illustrate Wood’s argument, we will consider the example of counting quadratic

extensions over Q. In this case, the discriminant and conductor of any quadratic ex-

tension are identical, so we can ignore the distinction. Every quadratic extension

of Q can be written as Q(
√
d), for some squarefree integer d. Therefore, counting
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quadratic extensions of Q can be done by counting squarefree integers. This yields

N2(X) ∼
1

ζ(2)
X,

where ζ(s) is the Riemann zeta function.

Now, for any rational prime p and L/Q quadratic, p either splits, ramifies, or is

inert in L. That is, the ideal generated by p in the ring of integers of L factors as

p1p2,p
2, or (p), respectively. For this prime p, you could ask with what probability

does p split in a random quadratic number field? To answer this you look at

lim
X→∞

N2(X;p splits)
N2(X)

and hope that the limit converges. It does, and the limit is p
2(p+1) . We will call this

the probability that p splits and denote it as P(p splits).

You might next take a finite set of your favorite primes and ask what the prob-

ability is that each of the primes does something specific in a random quadratic

extension. Perhaps you want 3 to split, 5 to be inert, and 7 to ramify. On top of

that you hope that the probabilities of the conditions on the individual primes is

independent, or

P(3 splits,5 is inert,7 ramifies) = P(3 splits)P(5 is inert)P(7 ramifies).

This also turns out to be true for any finite set S of primes and it is the heart

of Wood’s line of questioning. For any abelian group G, she showed that counting

G-extensions by conductor will yield an Euler product, but counting by discriminant

might not. For a non-abelian example, we can turn back to D4. The result obtained

in [12] counting D4 fields by discriminant turns out not to have a representation

as an Euler product as shown in [33]. However, counting D4 quartic extensions by

conductor does yield such a product. This product is now known thanks to the work

of Altuğ, Shankar, Varma, and Wilson [1].

Theorem (Altuğ—Shankar—Varma—Wilson, 2021) Let NC
4 (X;D4) represent
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the number of quartic D4 number fields over Q with conductor bounded by X. Then,

NC
4 (X;D4) ∼

3

8
∏
p

(1 −
1

p2
−

2

p3
+

2

p4
)X logX.

We are agnostic as to whether a result with or without an Euler product or

independent probabilities makes one counting method better or worse than another.

However, this will not prevent us from engaging with the question. Wood has already

eloquently stated the case for the conductor, so we will add a brief argument for the

discriminant.

For any two distinct transitive subgroups G and G′ of Sn, counting by discrim-

inant allows us compare their counts directly as we do with D4 and S4. We could,

of course, still compare counts of G and G′ when using the conductor. However, the

results might be misleading. In the case of counting D4 and S4 extensions by con-

ductor, the former dominates the latter completely as there are cD4X logX many D4

number fields and cS4X many S4 number fields with conductor bounded by X. This

is largely an accident as the conductor of an S4 number field is also its discriminant

and the conductor of a D4 field is smaller than its discriminant by enough to beef

up the asymptotic.

Our hope is that the complete thesis will present two different perspectives on

the question of counting methods. We start off with the discriminant and use it to

compare the counts of D4 and S4 extensions in Chapter 2. We then pivot to the

conductor for the rest of the thesis. In Chapter 3, we build on [1] and obtain a

secondary term and power saving error term when counting D4 number fields.

Theorem Let NC
4 (X;D4) denote the number of quartic D4 extensions, L, with

conductor CL ≤X. Then,

NC
4 (X;D4) =

3

8
⋅∏

p

(1 −
1

p2
−

2

p3
+

2

p4
) ⋅X logX

+
⎛

⎝

3

8
⋅
⎛

⎝
1 −

7 log 2

20
− 2∑

p

log p

p2 + 2p + 2

⎞

⎠
⋅∏

p

(1 −
1

p2
−

2

p3
+

2

p4
) + c
⎞

⎠
⋅X

+Oϵ(X
11/12+ϵ

)
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where c is explicit, but we will leave its definition for Chapter 3.

Lastly, in Chapter 4, we will prove the general case of counting D4 extensions

by conductor over any number field k. For this, we do show that that counting D4

quartic extensions by conductor yields a nice result in the probabilistic sense. We

then use this result to count D4 ≀H extensions by conductor, where H is the Galois

group of some extension F /k and L/F is a quartic D4 extension. Though we do give

some reason to speculate in the D4 ≀H case that counting extensions by conductor

will not always have a product as our result, like Klüners’, is given by a sum. But

don’t take my word for it; see below.

Theorem Let k be a number field NC
k,4n(X;D4 ≀ H) denote the number of degree

4n extensions L/k with Galois group D4 ≀H and conductor CL/k ≤ X. Assume that

Nk,n(X;H) is non-zero and bounded by Ok,ϵ(X
1+ϵ). Then,

NC
k,4n(X;D4≀H) ∼X logX ∑

[F ∶k]=n
Gal(F /k)≅H

3r1 (Res
s=1

ζF (s))
2

22r1+3r2+1D2
F /k

∏
p⊂OF

(1 −
1

Np2
−

2

Np3
+

2

Np4
) ,

where r1 and r2 represent the number of real and complex embeddings of F , respec-

tively.

Before we dive into any of this though, we will establish much of the common no-

tation that will be used throughout this thesis and fulfill our promise about defining

the “conductor” of a number field.

1.1 Notation

• k is a number field

• kv is the localization of k at the place v

• L/k is a finite extension of fields (either global or local)

• Ok is the ring of integers of a field k (either global or local)
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• I(K) is the group of fractional ideals of k

• Cl(k) is the ideal class group of k

• Clm(k) is the ray class group of k with modulus m

• Cl(k)[n] is the subgroup of n-torsion elements of Cl(k)

• hn(k) is the cardinality of the n-torsion subgroup of the class group. If the

subscript is dropped, it is the class number.

• NL/ka is the ideal norm map. Dropping the subscript indicates that k = Q and

Na = ∣OL/a∣.

• NL/k(α) is the element norm map. Dropping the subscript indicates that k = Q

• dL/k is the relative discriminant ideal of L/k

• DL/k is NdL/k

• DL is the absolute discriminant of L/Q

• CL/k is the conductor of L/k. CL is equivalent to CL/Q

1.2 Defining the Conductor

Before we can count any number field extensions by something we’re calling the

“conductor”, we first need to define it (and a few other things along the way).

Let L/k be an extension of number fields with Galois group G. A representation

of a finite group G is a homomorphism ρ ∶ G→ GLn(C), and the character χ of ρ is

Tr(ρ(g)).

If we can associate a representation ρ of G (or possibly multiple representations)

to the extension L/k, then the conductor of L/k is defined to be the Artin conductor

of ρ (or the lcm of the Artin conductors).

To make any sense of this we will need to define the Artin conductor of ρ and then

describe how one can associate an extension with representations. The definition of
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the Artin conductor is quite cumbersome and we won’t really use it to calculate the

conductor of the representation we’re interested in, but it is worth writing down for

completeness. For more information see [26, Section VII.11].

For a Galois extension M/k and a prime p ⊂ Ok with P ∣ p in OM , we define the

i-th ramification groups at p to be Gi = {σ ∈ G ∣ vP(σx − x) ≥ i + 1} where x is any

element of OLP
such that OLP

= OKp[x]. Also, for any ramification group Gi, let

χ(Gi) =
1
gi
∑σ∈Gi

χ(σ), where gi = ∣Gi∣.

The local Artin conductor of ρ with character χ at p is fp(χ) = p
f(χ,p) with

f(χ,p) =∑
i≥0

gi
g0
(χ(1) − χ(Gi)).

Finally, the Artin conductor of ρ with character χ is

f(χ) = ∏
p∤∞

fp(χ).

Next, to associate a representation with L/k we will start with the subgroup

H ≤ G such that L is the fixed field of H. Let 1H be the character of the trivial

representation of H. We will induce this character from H to G and denote this by

1
G
H (when referring back to the corresponding fields, we might also write this as 1kL).

We know that 1GH decomposes into a linear combination of irreducible characters of

G. If {χ1, . . . , χn} is the set of irreducible characters in this linear combination, then

we define the conductor of L/k to be

CL/k = ∣Ok/lcm(f(χ1), . . . , f(χn))∣.

If we were to look at the Artin conductor of 1GH directly, we get f(1GH) = dL/k

by a corollary in [26]. If L/k is Galois, then 1
G
H is the character of the regular

representation for G and we get

f(1GH) = dL/k =∏
χ

f(χ)χ(1),
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where the product ranges over all of the irreducible characters of G. This is known as

the Conductor-Discriminant Formula and is often used to access the Artin conductor

without calculating the local Artin conductors defined above.

We’ll use a quartic D4 extension L/k as an example for finding the conductor.

L has a unique quadratic subextension K. With HL and HK representing the

subgroups corresponding to L and K respectively,

1
D4
HL
= (1

HK
HL
)
D4

= (1HK
+ χ)D4

= 1
D4
HK
+ χD4 ,

Above, χ is the character of the sign representation of HK/HL, which becomes

the unique 2-dimensional representation of D4 when it is induced from HK to D4.

Given that Nf(1D4
HK
) = DK/k and DL/k = D

2
K/kDL/K , then Nf(χD4) = DK/kDL/k.

Since f(1D4
HK
) ∣ f(χD4), then DK/kDL/k is also the conductor of L/k. At this point we

note that in [1], the authors define the conductor of a D4 quartic extension of Q to be

the Artin conductor of χD4 and don’t also consider the conductor of 1D4
Hk
. However,

our definitions coincide after considering the lcm of these Artin conductors.

Now our earlier promise should be satisfied, and we can proceed to the main

body of the thesis.
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Chapter 2

Comparing D4 and S4 Extensions

As mentioned earlier, Hilbert’s Irreducibility Theorem implies that the Galois group

of the splitting field of a “random” degree n polynomial over Q will be Sn 100% of

the time. We might guess that picking a random degree n extension of Q will exhibit

the same behavior. However, for n = 4, we have the first case where this is not true.

Work of Bhargava [2] and Cohen, Diaz y Diaz, and Olivier [12] shows that only

about 83% of quartic extensions of Q have Galois group S4, with the remaining 17%

having Galois group D4 and 0% having Galois groups C4, V4, or A4. In our work,

which is also published here [18], we investigate this disparity for quartic extensions

of an arbitrary number field F . In particular, we ask what proportion of quartic

extensions of F are S4 and what proportion are D4.

Our first result shows that, when F is quadratic, there are typically many more

D4 than S4 extensions. To make this precise, let NF,n(X;G) = #{K/F ∶ ∣DK/F ∣ <

X, [K ∶ F ] = n,Gal(K̃/F ) = G}.

Theorem 2.0.1 For ϵ > 0, asymptotically 100% of quadratic number fields F ordered

by discriminant have

lim
X→∞

NF,4(X;D4)

NF,4(X;S4)
≫ (log ∣DF ∣)

log 2−ϵ.

In particular, we have:

Corollary 2.0.2 100% of quadratic number fields F have arbitrarily many more D4

quartic extensions than S4 quartic extensions.

In practice, one can find quadratic number fields with small discriminant where

D4 quartic extensions vastly outnumber S4 quartic extensions. For example, more

than 90% of quartic extensions of Q(
√
−210) and more than 99% of quartic exten-

sions of Q(
√
−510510) are D4 quartic extensions. We give a general lower bound on
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the ratio for quadratic number fields in Theorem 2.3.1.

For general number fields we prove the following conditional statement. Let ClF

be the the ideal class group of a number field F and let h2(F ) be the number of

elements of ClF with order dividing 2. Then we have the following:

Theorem 2.0.3 Assume GRH and let F be a degree d number field over Q. Then,

lim
X→∞

NF,4(X;D4)

NF,4(X;S4)
≫d

h2(F ) − 1

(log log ∣DF ∣)
d
.

The assumption of GRH is used for a lower bound on the residue of Dedekind zeta

functions. In the course of proving Theorem 2.0.1, we prove that a weaker, but still

sufficient bound holds for a positive proportion of quadratic Dirichlet L-functions in

a restricted family. In particular, we show:

Theorem 2.0.4 For 100% of fundamental discriminants D and for ϵ, δ > 0, a pro-

portion 1 − δ of quadratic characters χ (mod ∣D∣) have

L(1, χ) ≥ exp (−c(log log ∣D∣)1−
log 2
2
+ϵ
) ,

where c depends on δ.

Granville and Soundararajan in [19] study the distribution of L(1, ηD), where

ηD is the primitive real character with modulus ∣D∣, as D ranges over fundamental

discriminants with ∣D∣ ≤ x. Since we need to restrict our attention to the typical

behavior of L(1, χ) for the much smaller family of quadratic characters of a fixed

modulus ∣D∣, their results do not port over directly to this setting.

In the next section we will show how to use field counting results of Bhargava,

Shankar and Wang and of Cohen, Diaz y Diaz and Olivier [7, 12] to prove Theorem

2.0.3. In the following section, we consider the family of quadratic Dirichlet L-

functions and prove Theorem 2.0.4. In Section 4, we complete the proof of Theorem

2.0.1, and in Section 5, we provide some examples.
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2.1 Field Counting and Proof Strategy

For an extension of number fields L/F , let (r1, r2) denote the signature of F , DF

the absolute discriminant of F , and DL/F the norm of the relative discriminant of

L/F . Note that DL = DL/FD
[L∶F ]
F . As above, ClF denotes the ideal class group of

F and ClF [2] the elements of ClF with order dividing 2.

Bhargava, Shankar, and Wang [7] give asymptotic formulas forNF,n(X;Sn) when

n = 2,3,4 or 5. In the n = 4 case they prove:

Theorem 2.1.1 (Bhargava, Shankar, Wang) If F is a number field with r1 real

embeddings and r2 complex embeddings, then

NF,4(X;S4) ∼X
1

2
Res
s=1

ζF (s) (
10

4!
)
r1

(
1

4!
)
r2

∏
p

(1 +
1

Np2
−

1

Np3
−

1

Np4
) , (2.1)

where the product runs over prime ideals of F .

It follows that limX→∞
1
XNF,4(X;S4) ≍ Res

s=1
ζF (s). Thus, it is bounds on the residue

of ζF (s) that we’ll need to control this term. For D4, we recall work of Cohen, Diaz

y Diaz, and Olivier [12] that gives an asymptotic formula for NF,4(X;D4).

Theorem 2.1.2 (Cohen, Diaz y Diaz, Olivier) If F is a number field with r2

complex embeddings, then

NF,4(X;D4) ∼X ∑
[L∶F ]=2

1

2r2+1D2
L/F

ζL(2)
Res
s=1

ζL(s), (2.2)

where the sum runs over quadratic extensions of F .

From these we obtain upper bounds onNF,4(X;S4) and lower bounds onNF,4(X;D4)

so as to bound their ratio from below.

Restricting the summation in (2.2) to be over only those quadratic extensions L

of F that are unramified, i.e. L such that DL/F = 1, yields,

lim
X→∞

NF,4(X;D4)

X
≫d ∑

[L∶F ]=2
DL/F =1

Res
s=1

ζL(s). (2.3)
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If K is a number field of degree d over Q of discriminant DK , then under GRH we

have (see e.g. [10]),

1

log log ∣DK ∣
≪ Res

s=1
ζK(s)≪ (log log ∣DK ∣)

d−1. (2.4)

Applying this bound to (2.1) gives an asymptotic upper bound for NF,4(X;S4)

and likewise applying it to (2.3) gives a lower bound for NF,4(X;D4). In particular,

conditional on GRH,

lim
X→∞

NF,4(X;S4)

X
≪ (log log ∣DF ∣)

d−1 and lim
X→∞

NF,4(X;D4)

X
≫ ∑
[L∶F ]=2
DL/F =1

1

log log ∣DL∣

(2.5)

For a number field F , it follows from class field theory that there are h2(F ) − 1

quadratic extensions L/F such that DL/F = 1. Using this fact and the estimates

(2.5) we bound the ratioNF,4(X;D4)/NF,4(X;S4). We immediately obtain Theorem

2.0.3. Note that for number fields F with odd class number, the lower bound given

by the theorem is 0. However, you could obtain a similar lower bound by instead

summing over quadratic extensions L/F with DL/F up to some bound.

If we specialize Theorem 2.0.3 to quadratic number fields F and note that h2(F ) =

2ω(DF )−m, where m = 1 or 2 and ω(n) is the number of distinct prime divisors of n,

we obtain the following:

Corollary 2.1.3 Assume GRH and let F be any quadratic number field. Then,

lim
X→∞

NF,4(X;D4)

NF,4(X;S4)
≫

2ω(DF )

(log log ∣DF ∣)
2
.

Even when h(F ) is odd, the lower bound from the corollary still holds because

the sum on the right hand side of (2.5) can be expanded to include extensions L/F

that ramify only at primes dividing 2.

The rest of the chapter is essentially concerned with removing the GRH assump-

tion from Corollary 2.1.3. To do this we will restrict our attention to the case where

F is a quadratic number field, and prove bounds analogous to (2.4) unconditionally
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for a positive proportion of the necessary L-functions. Theorem 2.0.1 will follow

from such bounds.

2.2 Typical behavior of L(1, χ)

We begin with a lemma that isolates the L-functions of interest.

Lemma 2.2.1 Let F be a quadratic number field and L/F be an unramified quadratic

extension. Then there are nonprincipal quadratic Dirichlet characters χ1 and χ2 such

that χ1χ2 = χF and for which

ζL(s) = ζ(s)L(s,χF )L(s,χ1)L(s,χ2),

where χF = (
DF

⋅
) .

Proof: Let F be a quadratic number field. We know from [29] that every unramified

quadratic extension L/F is Galois and has Galois group V4. Looking at the irreducible

characters of V4 in the context of L/F /Q, we see that one character must be χF and

the other two non-trivial characters (χ1 and χ2, say) must have the desired property.◻

When we put this in the context of the ratio NF,4(X;D4)/NF,4(X;S4), we

see that each such unramified quadratic extension L of F has Res
s=1

ζF (s) dividing

Res
s=1

ζL(s), leaving behind

Res
s=1

ζL(s)

Res
s=1

ζF (s)
= L(1, χ1)L(1, χ2). (2.6)

Therefore, in order to remove the GRH assumption and prove Theorem 2.0.1, it

suffices to prove Theorem 2.0.4.

Rather than bound L(1, χ) directly, we’ll consider logL(1, χ) instead. We will

find its second moment and then use a discrete analogue of Chebyshev’s inequality

to obtain the desired result.
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2.2.1 The Second Moment of logL(1, χ)

Recall from [14, Chapter 20] that at most one nonprincipal real character χ (mod D)

exists such that L(s,χ) has a real zero β with β > 1 − c/ logD for some absolute

constant c. If such a character exists, we say it has an exceptional zero. We will use

this in the following key lemma.

Lemma 2.2.2 For a fixed modulus D, let χ0 denote the principal character and

define

V = {χ (mod D) ∣ χ ≠ χ0, χ
2 = χ0, χ does not have an exceptional zero}. Then

1

#V
∑
χ∈V

(logL(1, χ))2 = O ((log logD)(logωY (D) + log logY ) +
(log logD)2

2ωY (D)
) ,

for any Y <D and where ωY (D) =#{p ≤ Y ∶ p ∣D}.

To prove the lemma, we need the following result of Brun and Titchmarsh [24,

Theorem 2].

Theorem 2.2.3 (Brun-Titchmarsh) Let a and q be coprime integers, π(z; q, a)

be the number of primes less that z that are congruent to a (mod q), and let x ≥ 0

and y > q be real numbers. Then

π(x + y; q, a) − π(x; q, a) ≤
2y

φ(q) log y/q
.

Proof (Lemma 2.2.2): Recall that for a character χ (mod D),

logL(1, χ) =∑
p

χ(p)

p
+∑

p

∞

∑
k=2

χ(p)k

kpk
.

The double sum on the right is absolutely convergent and bounded above and below

by absolute constants. So we need only focus on the left-hand sum. Because the

left-hand sum is not absolutely convergent, we will split the sum at some threshold

T into

∑
p<T

χ(p)

p
+ ∑

p≥T

χ(p)

p
.
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From [14, Chapter 20], if χ does not have an exceptional zero, a choice of T =

DlogD/(4c21) for some absolute constant c1, yields

∑
p≥T

χ(p)

p
= O (

1

exp(c2
√
logT ) logT

) ,

where c2 is an absolute constant. This makes

logL(1, χ) = ∑
p<T

χ(p)

p
+O(1). (2.7)

If we assume the set of all Dirichlet characters modulo D does not contain an

exceptional zero and we use (2.7), then

1

#V
∑
χ∈V

(logL(1, χ))2 =
1

#V
∑
χ∈V

⎛

⎝
∑
p

χ(p)

p
+∑

p

∞

∑
k=2

χ(p)k

kpk
⎞

⎠

2

=
1

#V
∑
χ∈V

⎛

⎝
∑
p<T

χ(p)

p
+O(1)

⎞

⎠

2

=
1

#V
∑
χ∈V

⎛

⎝
∑

p,q<T

χ(pq)

pq
+O(1)∑

p<T

χ(p)

p
+O(1)

⎞

⎠
.

The cross term we can bound trivially as O(log logT ), so the object of our focus

will be the leading term as we sum over the characters in our family. For the leading

term, we include the principal character in the outer sum, apply orthogonality and

then subtract off the contribution from the principal character. After summing over

χ, this yields a main term of

∑
p<T

1

p
∑
q<T

pq ≡◻ (D)

1

q
−

1

#V + 1
∑

p,q<T

1

pq
. (2.8)

Given that #V + 1 = 2ω(D), the right-hand term of (2.8) is on the order of

(log logT )2/2ω(D). Since our goal is to show the second moment is small, we need to

calculate an upper bound for the left-hand term of (2.8). For the analysis, we will
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break up the left-hand sum of (2.8) according to an auxiliary parameter E <D,

∑
p<T

1

p
∑
q<T

pq ≡◻ (D)

1

q
= ∑

p<T

1

p

⎛

⎝
∑
q<2E

pq ≡◻ (D)

1

q
+ ∑

2E≤q<2D
pq ≡◻ (D)

1

q
+ ∑

2D≤q<T
pq ≡◻ (D)

1

q

⎞

⎠
. (2.9)

We will a make a convenient choice of E later. For now, we will establish an

upper bound on the rightmost sum over primes 2D ≤ q < T in (2.9). Note that given

a fixed prime p, there are exactly
ϕ(D)

2ω(D)
congruence classes a ∈ (Z/DZ)× such that

pa is a square modulo D. Hence,

∑
2D≤q<T
pq≡◻(D)

1

q
= ∑

a∈(Z/DZ)×
pa≡◻(D)

∑
2D≤q<T
q≡a(D)

1

q
. (2.10)

Using partial summation, the inner sum of (2.10) is

∑
2D≤q<T
q≡a(D)

1

q
= ∫

T

2D

1

t
d(π(t;a,D))

=
π(t;a,D)

t
∣
T

2D
+ ∫

T

2D

π(t;a,D)

t2
dt.

We apply Theorem 2.2.3 to bound from above π(t;a,D) when t >D.

π(t;a,D)

t
∣
T

2D
+ ∫

T

2D

π(t;a,D)

t2
dt ≤

2

ϕ(D)
(

1

log(T /D)
−

2

log 2
) +

2

ϕ(D)
∫

T

2D

1

t log(t/D)
dt

=
2

ϕ(D)
(log log(T /D) − log log 2 +

1

log(T /D)
−

2

log 2
) .

Note that the bound we obtained above by using Theorem 2.2.3 doesn’t depend

on a, so we may use the same bound for every relevant congruence class. This means

the double sum (2.10) can be bounded by

∑
a∈(Z/DZ)×
pa≡◻(D)

∑
2D≤q<T
q≡a(D)

1

q
≤

1

2ω(D)−1
(log log(T /D) − log log 2 +

1

log(T /D)
−

2

log 2
) .

Overall, this term is of order O (
log logD

2ω(D)
) .

Because Theorem 2.2.3 does not apply when t ≤D, we need to handle the range
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2E ≤ q < 2D differently. Note that if E ∣D, then

∑
R≤q<S
q≡a(D)

1

q
≤ ∑

R≤q<S
q≡a(E)

1

q
,

for any choice of 1 ≤ R < S.

We will take E to be a sufficiently small divisor of D. Take Y ≤D, let ωY (D) =

#{p ∣D ∶ p ≤ Y }, and define

E = ∏
p≤Y
p∣D

p.

We can now use Theorem 2.2.3 with E as the modulus to obtain

∑
2E≤q<2D
pq ≡◻ (D)

1

q
≤ ∑

2E≤q<2D
pq ≡◻ (E)

1

q
≤

1

2ωY (D)−1
(log log(2D/E) − log log 2 +

2

log(2D/E)
−

2

log 2
)

where ωY (D) is the number of distinct prime divisors of D that are less than or

equal to Y . Overall this is of order O (
log logD

2ωY (D)
) .

Finally, for the range q < 2E, we will use the trivial bound on the sum of reciprocal

primes,

∑
q<2E

pq ≡◻ (D)

1

q
≤ ∑

q<2E

1

q
= log log 2E +O(1).

Given that E is the product of primes that are at most Y , then

log log 2E ≤ log log(2Y ωY (D))

= log(log 2 + ωY (D) logY )

= O(logωY (D) + log logY ).

Now, because

∑
p<T

1

p
= log logT +O(1) = O(log logD)
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and
(log logD)2

2ωY (D)
≫
(log logD)2

2ω(D)
, then our whole sum is

O ((log logD)(logωY (D) + log logY ) +
(log logD)2

2ωY (D)
) . (2.11)

This completes the proof of the lemma if the family of characters does not contain

an exceptional zero. If the complete family of characters modulo D does admit

an exceptional zero, then we also need to subtract off the contribution from the

exceptional character χ′. Then (2.8) becomes

∑
p<T

1

p
∑
q<T

pq ≡◻ (D)

1

q
−

1

#V + 2
∑

p,q<T

1

pq
−

1

#V + 2
∑

p,q<T

χ′(pq)

pq
.

The term coming from the exceptional character is O (
(log logD)2

2ω(D)
) and does not

change the rest of the analysis. ◻

Now that we know the order of the second moment for the family of quadratic

Dirichlet L-functions, we want to use this to give a workable lower bound on L(1, χ)

for most quadratic χ in V . This result is the following corollary.

Corollary 2.2.4 For a modulus D, any Y ≤ D, and a choice of k ≥ 1 a proportion

at least 1 − 1/k2 of non-exceptional quadratic characters χ modulo D have

L(1, χ) ≥ (logD)
−kc

√
logωY (D)+log logY

log logD
+ 1

2ωY (D) ,

where c is an absolute constant.

Proof: Let k ≥ 1 and σ2 be any value such that

1

#V
∑
χ∈V

(logL(1, χ))2 ≤ σ2.

We bound #{χ ∈ V ∶ ∣ logL(1, χ)∣ ≥ kσ}.

#{χ ∈ V ∶ ∣ logL(1, χ)∣ ≥ kσ} = ∑
χ∈V

∣ logL(1,χ)∣≥kσ

1 ≤ ∑
χ∈V

(logL(1, χ))2

k2σ2
≤
#V

k2
.
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The result follows from this argument and Lemma 2.2.2. ◻

2.2.2 Typical Behavior of ωY

From (2.11), the order of the second moment depends on the size of ωY (D). We will

apply Chebyshev’s inequality to give workable bounds on ωY (D). Because we will

make frequent use of Chebyshev’s inequality, we state it here for convenience.

Theorem 2.2.5 (Chebyshev’s Inequality) Let V be a finite set with cardinality

N and let f ∶V → C. If f has mean and variance respectively given by

µ =
1

N
∑
v∈V

f(v) and σ2 =
1

N
∑
v∈V

(f(v) − µ)2,

then, for any k,

#{v ∈ V ∣ ∣f(v) − µ∣ ≥ kσ} ≤
N

k2
.

To use this, we will need to understand the mean and variance of ωY (D) for

most D.

Let N(X) be the number of fundamental discriminants (both positive and neg-

ative) less than X. It is known that N(X)c2X where c2 = 1/ζ2.

Lemma 2.2.6 (Mean of ωY (n)) Let Y ≤ X1−δ for some δ > 0. For fundamental

discriminants D such that ∣D∣ ≤X,

1

N(X)
∑
♭

∣D∣≤X

ωY (D) = ∑
p≤Y

1

p + 1
+O (

Y 1/2

X1/2−ϵ
) .

Proof: We have

1

N(X)
∑
♭

D≤X

ωY (D) =
1

N(X)
∑
♭

∣D∣≤X

∑
p∣D
p≤Y

1

=
1

N(X)
∑
p≤Y

∑
♭

p∣D
∣D∣≤X

1

=
1

c2X
∑
p≤Y

(c2
X

p + 1
+O (X1/2+ϵp−1/2))
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= ∑
p≤Y

(
1

p + 1
+O(X−1/2+ϵp−1/2))

= ∑
p≤Y

1

p + 1
+O (

Y 1/2

X1/2−ϵ
) ,

where the third equality is an immediate consequence of Theorem 2.1 of [22] in the

degree 2 case, for example. ◻

Lemma 2.2.7 (Variance of ωY (n)) Let Y ≤ X1/2−δ for some δ > 0 and µ =

∑p≤Y
1

p+1 . Then

1

N(X)
∑
♭

∣D∣<X

(ωY (D) − µ)
2
= ∑

p≤Y

1

p + 1
(1 −

1

p + 1
) +O (

Y

X1/2−ϵ
) .

Proof: To calculate the variance, we need to evaluate

1

N(X)
∑
♭

∣D∣<X

(ωY (D) − µ)
2. (2.12)

Expanding and distributing the sum over admissible D, this quantity is equal to

1

N(X)
∑
♭

∣D∣<X

⎛
⎜
⎜
⎜
⎝

∑
p<Y
p∣D

1

⎞
⎟
⎟
⎟
⎠

2

−
2µ

N(X)
∑
♭

∣D∣<X

ωY (D) + µ
2. (2.13)

We’ll address the two sums in (2.13) individually. Note that sums are taken over

primes and that the notation is consistent with that in [22]. The leftmost term of

(2.13) give us that

1

N(X)
∑
♭

∣D∣<X

⎛
⎜
⎜
⎜
⎝

∑
p<Y
p∣D

1

⎞
⎟
⎟
⎟
⎠

2

=
1

N(X)
∑
♭

∣D∣<X

⎛
⎜
⎜
⎜
⎝

∑
p,q<Y
p,q∣D

1

⎞
⎟
⎟
⎟
⎠

=
1

N(X)
∑

p,q<Y

∑
♭

∣D∣<X
p,q∣D

1

=
1

N(X)
∑

p=q<Y

∑
♭

∣D∣<X
p∣D

1 +
1

N(X)
∑

p,q<Y
p≠q

∑
♭

∣D∣<X
p,q∣D

1
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= ∑
p≤Y

1

p + 1
+ ∑

p,q<Y
p≠q

(
1

(p + 1)(q + 1)
+O(X−1/2+ϵ(pq)−1/2))

= ∑
p≤Y

1

p + 1
+ ∑

p,q<Y
p≠q

1

(p + 1)(q + 1)
+O (

Y

X1/2−ϵ
) . (2.14)

Where the last line follows from Theorem 2.1 of [22]. Now we address the second

term of (2.13). It gives us that

2µ

N(X)
∑
♭

∣D∣<X

ωY (D) = 2
⎛

⎝
∑
p≤Y

1

p + 1

⎞

⎠

⎛

⎝
∑
q≤Y

[
1

q + 1
+O (X−1/2+ϵq−1/2)]

⎞

⎠

= 2
⎛

⎝
∑

p,q≤Y

1

(p + 1)(q + 1)
+O (

Y 1/2 log logY

X1/2−ϵ
)
⎞

⎠
. (2.15)

Substituting (2.14) and (2.15) into (2.13) and expanding µ2, we find

1

N(X)
∑
♭

∣D∣<X

(ωY (D) − µ)
2
= ∑

p≤Y

1

p + 1
− ∑

p≤Y

1

(p + 1)2
+O (

Y

X1/2−ϵ
) . ◻

Now that we have some basic statistical facts about ωY (D), we can use Chebyshev’s

inequality to give a bound for ωY (D) for most D. For our purposes, we will take

Y = logX, which will give us mean and variance log log logX +O(1).

Theorem 2.2.8 Let Y = logX. For all ϵ > 0, all but O (
X

(log log logX)1−ϵ
) fun-

damental discriminants D with ∣D∣ < X are such that ωY (D) ≥ log log logX −

O ((log log logX)1−ϵ).

Proof: Use Chebyshev’s inequality with Lemmas 2.2.6 and 2.2.7 taking k = (log log logX)1/2−ϵ.◻

Applying Theorem 2.2.8 to (2.11) gives us that for 100% of fundamental discrim-

inants D, the second moment of the family of quadratic characters modulo ∣D∣ is

O ((log log ∣D∣)2−log 2+ϵ) . Using this we can now prove Theorem 2.0.4.

Proof (Theorem 2.0.4): Let ϵ, δ > 0 and let D be a fundamental discriminant such

that ∣ωY (D) − log log log ∣D∣∣ is O ((log log log ∣D∣)1−ϵ) . By Theorem 2.2.8, 100% of

fundamental disciriminants have this property.
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Lemma 2.2.2 above shows that the second moment of the quadratic characters

modulo ∣D∣ is at most O ((log log ∣D∣)2−log 2+ϵ) , when we take Y = logD. Choosing

k = δ−1/2 in Corollary 2.2.4, the result follows. ◻

2.3 Proof of Main Theorem

We are now ready to address ourselves to the proof of Theorem 2.0.1. The main

idea is to use Theorem 2.0.4 to control the residues of the residues of Dedekind

ζ-functions appearing in the D4 and S4 estimates in (2.5).

Proof (Theorem 2.0.1.): Let F = Q(
√
d), with d squarefree, be a quadratic number

field. Let W be the set quadratic extensions L/F where L = Q(
√
d1,
√
d2) and

d1d2 = d. Note that these extensions are such that ζL(s) factors in such a way as to

give us (2.6), and so

lim
X→∞

NF,4(X,D4)

NF,4(X,S4)
≫ ∑

L∈W
[L∶F ]=2

Ress=1ζL(s)
Ress=1ζF (s)

. (2.16)

This will be our starting point. First we’ll estimate the residue term by combining

(2.6) with Theorem 2.0.4 to see that for 100% quadratic extensions F and sufficiently

small ϵ and δ, and a constant c, a proportion 1−δ
2 of L ∈W satisfy,

Res
s=1

ζL(s)

Res
s=1

ζF (s)
≫δ exp(−c(log log ∣DF ∣)

1− log 2
2
+ϵ
)(log log ∣DF ∣)

−2,

the log log ∣DF ∣ appearing on the right above being a correction factor created when

we pass from quadratic characters modulo ∣DF ∣ to the L-functions of the the corre-

sponding quadratic number fields.

For any F , #W = 2ω(d). From Section 2.3 of [25] and Theorem 2.2.8 we have that

100% of quadratic fields F = Q(
√
d) are such that #W = 2ω(d) ≫ (log ∣DF ∣)

log 2−ϵ′

for any ϵ′ > 0.
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So for 100% of quadratic fields F , we conclude that

lim
X→∞

NF,4(X,D4)

NF,4(X,S4)
≫δ (log ∣DF ∣)

log 2−ϵ′ exp(−(log log ∣DF ∣)
1− log 2

2
+ϵ
)(log log ∣DF ∣)

−2.

(2.17)

The statement of Theorem 2.0.1 follows. ◻

It is worth remarking that we have invoked two different 100% results above.

The first is that 100% of quadratic number fields are such the bounds on ωY (DF )

are met (in order to get the bound on residues). The other is that 100% of quadratic

number fields are such that the right condition on ω(DF ) is met (in order to get

a suitable bound on 2ω(DF )). In the worst case, the exceptional sets for each of

these results are distinct, but their proportion still goes to zero as our bound X on

admissible DF grows.

Applying the same reasoning from the proof for Theorem 2.0.1, but without

using Theorem 2.2.8, gives the following lower bound on the ratio for any quadratic

number field F.

Theorem 2.3.1 Let F be a quadratic number field and fix Y ≤ ∣DF ∣, then there is

some constant c such that

lim
X→∞

NF,4(X;D4)

NF,4(X;S4)
≫

h2(F )

(log log ∣DF ∣)
2(log ∣DF ∣)

c

√
logωY (DF )+log logY

log log ∣DF ∣
+ 1

2ωY (DF )

.

For a choice of quadratic number field F , the above expression shows that if you

can pick Y sufficiently small such that ωY (DF ) is sufficiently large, there will be a

bias in favor of D4 quartic extensions of F . Further, if ωY (DF ) is very large, one

should expect that h2(F ) is large as well. For example, if we have ωY (DF ) is of size
log ∣DF ∣

log log ∣DF ∣
then h2(F ) is at least of size ∣DF ∣

log 2/ log log ∣DF ∣.

2.4 Examples

Now that we’ve shown that most quadratic number fields have more D4 quartic ex-

tensions than S4, a couple of natural problems to address are constructing an explicit
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family of quadratic number fields with arbitrarily more D4 than S4 extensions, and

finding the first quadratic number field with more D4 than S4 extensions.

For the first question, consider the family of number fields obtained by taking

F = Q(
√
±d) where d =∏p≤y p, as we take y →∞. For this family,

ω(DF ) =
log ∣DF ∣

log log ∣DF ∣
(1 +O(1/ log log ∣DF ∣)),

which immediately gives that h2(F ) is about exp (
log 2 log ∣DF ∣
log log ∣DF ∣

) . Because ω(DF ) is

larger than average in this case, we can show that fields in this family have arbitrarily

more D4 than S4 extensions without appealing to Theorem 2.0.4. Instead we can

use a lower bound on L(1, χ) given by Theorem 11.4 in [25] which is only conditional

on χ not having an exceptional zero.

In fact, because the formulae from [7,12] are explicit, we can effectively approx-

imate the constants limX→∞
NF,4(X;D4)

X
and limX→∞

NF,4(X;S4)

X
, using either

Sage or Magma. In Table 2.1, we see that in our family of fields the percentage of

D4 extensions quickly exceeds the percentage of S4 extensions.

Using the same code, we can also answer the question of which quadratic number

field is the “first” one with more D4 extensions than S4 extensions. Again, we assume

F = Q(
√
±d), but now d runs over square-free numbers rather than only the product

of all primes up to y as above. If we order by ∣d∣, then we see that about 56% of

quartic extensions of Q(
√
−10) are D4. See Table 2.2.
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±d S4 Constant D4 Constant D4 Percentage
2 0.06125 0.00255 3.99445
-2 0.02868 0.00242 7.77024
6 0.09898 0.03626 26.81255
-6 0.03389 0.03049 47.35530
30 0.12119 0.20786 63.16992
-30 0.02911 0.11788 80.19609
210 0.11894 0.68112 85.13409
-210 0.02161 0.26399 92.43194
2310 0.13033 1.95228 93.74184
-2310 0.02662 0.75727 96.60405
30030 0.08761 3.14195 97.28722
-30030 0.02961 1.81818 98.39736
510510 0.11305 8.63748 98.70812
-510510 0.02499 3.27599 99.24306

Table 2.1: D4 percentage for ascending product of primes

±d S4 Constant D4 Constant D4 Percentage
-1 0.01916 0.00080 4.00075
2 0.06125 0.00241 3.77973
-2 0.02868 0.00235 7.55794
3 0.07729 0.02138 21.66628
-3 0.01480 0.00015 1.01581
5 0.04181 0.00041 0.97732
-5 0.03783 0.02618 40.90038
6 0.09898 0.03602 26.68166
-6 0.03389 0.03025 47.16238
7 0.11253 0.03552 23.99301
-7 0.02954 0.00051 1.68833
10 0.12577 0.07665 37.86747
-10 0.02468 0.03141 55.99729

Table 2.2: D4 percentage for ascending squarefree numbers
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Chapter 3

Counting D4 Extensions by Conductor

For a quartic field L whose normal closureM/Q has Galois groupD4, Altuğ, Shankar,

Varma, and Wilson [1] define the conductor of L (which we denote as CL) to be the

Artin conductor of the irreducible 2-dimensional Galois representation

ρM ∶ Gal(Q/Q)→ GL2(C)

that factors through Gal(M/Q) ≅D4.

Using additional algebraic structure coming from an outer automorphism of D4,

they proved that if NC
4 (X;D4) denotes the number of isomorphism classes of D4

quartic fields with conductor bounded by X, then

NC
4 (X;D4) =

3

8
⋅∏

p

(1 −
1

p2
−

2

p3
+

2

p4
) ⋅X logX +O(X log logX).

In this chapter, which is also in preprint form [17], we build on their result using

an analogue of the Dirichlet hyperbola method that relies on the same algebraic

structure and yields a secondary term. When counting number fields by discriminant,

there are only a few cases for non-abelian extensions where a secondary term is

proved to exist. For S3 cubic fields, both Bhargava, Shankar, and Tsimerman [5]

and Taniguchi and Thorne [30] proved a conjecture about a secondary term in the

asymptotic formula. Wang [31] proved a similar result for S3 ×A extensions where

A is an odd abelian group with minimal prime divisor greater than 5. Our result is

below.

Theorem 3.0.1 Let NC
4 (X;D4) denote the number of isomorphism classes [L ∶ Q]

where L is a quartic D4 extension with conductor CL ≤X. Then,

NC
4 (X;D4) =

3

8
⋅∏

p

(1 −
1

p2
−

2

p3
+

2

p4
) ⋅X logX
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+
⎛

⎝

3

8
⋅
⎛

⎝
1 −

7 log 2

20
− 2∑

p

log p

p2 + 2p + 2

⎞

⎠
⋅∏

p

(1 −
1

p2
−

2

p3
+

2

p4
) + c
⎞

⎠
⋅X

+Oϵ(X
11/12+ϵ

)

where c is given by (3.5).

In addition to their main theorem, [1] also proved asymptotics for D4 quartic

fields with certain local specifications. They define Σ = (Σv)v to be a collection of

local specifications if for each place v of Q, Σv contains pairs (Lv,Kv) consisting of

a degree 4 étale alebra Lv of Qv and a quadratic subalgebra Kv. Like them, we will

define the conductor to be

C(Lp,Kp) = Disc(Lp)/Disc(Kp).

We will call a collection Σ acceptable if for all but finitely many places v, the set

Σv contains all pairs (Lv,Kv). L(Σ) will denote all D4 quartic fields L such that

L⊗Qv ∈ Σv for all v, and NC
4 (X;D4;Σ) the number of isomorphism classes in L(Σ)

whose conductor is bounded by X. To simplify notation, we will let

µ(Σ∞) = ∑
(L∞,K∞)∈Σ∞

1

∣Aut(L∞,K∞)∣
, and µ(Σp) = ∑

(Lp,Kp)∈Σp

1

∣Aut(Lp,Kp)∣C(Lp,Kp)
,

where ∞ is the sole infinite place of Q and p is a prime, and ∣Aut(Lv,Kv)∣ is the

number of automorphisms of Lv that send Kv to itself.

In [1], quartic D4 fields L are defined to have central inertia at odd primes p

under certain conditions. This happens locally when C(Lp,Kp) = p
2 but Kp is not

ramified at p. We will use µ(Σp2) to denote a sum over pairs (Lp,Kp) having central

inertia that is constructed similarly to the sum for µ(Σp). As one might imagine,

the case for p = 2 is more complicated. We will investigate this later, but for the

moment we will use µ(Σ22), µ(Σ24), and µ(Σ26) without explanation. With that,

we have the following theorem.

Theorem 3.0.2 If Σ = (Σv)v is an acceptable collection of local specifications and
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m is the product of the primes p for which Σp does not contain every pair (Lp,Kp).

When m≪X1/4,

NC
4 (X;D4;Σ) =

1

2
X ⋅
⎛

⎝
logX + 1 − 2∑

p≠2

log p ⋅ µ(Σp2)

µ(Σp)
− 2 log 2

µ(Σ22) + 2µ(Σ24) + 3µ(Σ26)

µ(Σ2)

⎞

⎠
⋅

µ(Σ∞) ⋅∏
p

((1 −
1

p
)
2

µ(Σp)) +XcΣ +Oϵ(X
11/12+ϵm1/3+ϵ

),

where cΣ is a non-multiplicative constant given in (3.20).

In order to prove Theorem 3.0.2, we need to count quadratic extensions of some

number field k with a set of local specifications for each place of k. For a number field

k we define Σk = (Σk,v)v to be a collection of local specifications over k if for each

place v of k, Σk,v contains quadratic étale alegbras Kv over kv. Similar to before, we

will call Σk acceptable if Σk,v contains all quadratic étale algebras Kv except for at

possibly finitely many places. Let K(Σk) denote all quadratic extensions K/k such

that K ⊗k kv ∈ Σk,v and Φk,2(Σk;C2, s) denote the Dirichlet series

Φk,2(Σk;C2, s) = ∑
K∈K(Σk)

1

Ds
K/k

,

where DK/k is the norm of the relative discriminant ideal of K/k.

Later on in the chapter, we will write down a different formula for this Dirichlet

series that will be derived similarly to the method of proving Theorem 1.1 from

[12]. The formula will give rise to the theorem below. To make the statement less

cumbersome, we categorize some possibilities for incomplete Σk,p at odd primes p.

We will call Σk,p comprehensively ramified if it contains both étale algebras that are

ramified and no unramified étale algebras. We will call Σk,p selectively ramified if it

contains one ramified étale algebra and no unramified étale algebras. Similarly, we

will call Σk,p comprehensively unramified if it contains both unramified étale algebras

and selectively unramified if it contains only one of them.

Theorem 3.0.3 Let k be a number field, Σk be an acceptable collection of local

specifications for k. Let r1 (resp. u1) be the product of odd primes p for which Σk,p is
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comprehensively ramified (resp. comprehensively unramified), and let r2 (resp. u2)

be the product of odd primes for which Σk,p is selectively ramified (resp. selectively

unramified). Then, if Nk,2(X;C2;Σk) denotes the number of quadratic extensions

K/k such that K ∈ K(Σk) with the norm of the relative discriminant bounded by X,

Nk,2(X;C2;Σk) =X
Res
s=1

ζk(s)

ζk(2)
∏
σv ∣∞

⎛

⎝
∑

Kv∈Σk,v

1

∣Aut(Kv/kv)∣

⎞

⎠
∏
p

⎛

⎝
(1 +

1

Np
)
−1

∑
Kp∈Σk,p

1

∣Aut(Kp/kp)∣DKp/kp

⎞

⎠

+On,ϵ

⎛
⎜
⎝
#Clm(k)[2]

X
n+2
n+4
+ϵ∣Dk∣

1
n+4
+ϵNuϵ1Nu

1
n+4
+ϵ

2

Nr
n+2
n+4
−ϵ

1 Nr
n+1
n+4
−ϵ

2

⎞
⎟
⎠
,

where n = [k ∶ Q], ∣Aut(Kv/kv)∣ denotes the number of automorphisms of Kv which

fix kv, and m = m∞r2u2∏p∣2 p
2e(p∣2) with m∞ as the product of real infinite embeddings

σv such that Σk,v is not complete at v and e(p∣p) is the ramification index for p over

p.

3.1 Setup

As stated earlier, we will use the Dirichlet hyperbola method to derive Theorem

3.0.1. Recall that for the number of divisors function τ(n) = ∑a∣n 1, the hyperbola

method gives us

∑
n≤X

τ(n) = ∑
a≤X1/2

∑
b≤X/a

1 + ∑
b≤X1/2

∑
a≤X/b

1 − ∑
a≤X1/2

∑
b≤X1/2

1.

Though quartic D4 fields are not as easy to count as the number of divisors of an

integer, there are two pieces from [1] that will allow us to use a similar construction.

The first is Theorem 5.3, which counts the number of quartic D4 fields L up to

conductor X with the discriminant of its quadratic subfield K bounded above by

Xβ for 0 < β < 2/3. We will use β = 1/2 as suggested by the example above. Because

the conductor CL of a quartic D4 field L/Q is

CL = ∣DK ∣ ⋅DL/K
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whereK is the quadratic subfield of L, we can extend the metaphor from the example

above to count these fields. In the first double sum, counting a up toX1/2 will instead

be counting quadratic fields K/Q with ∣DK ∣ < X
1/2 and counting b up to X/a will

be counting quadratic extensions L/K with DL/K <X/∣DK ∣.

However, it’s not obvious how to replicate the second double sum from the exam-

ple and first count b and then a. This is where we need the second piece from [1]. Let

M denote the Galois closure of L/Q. Then, the second observation is that there is an

outer automorphism ϕ ∈ Aut(Gal(M/Q)) such that the fixed field of ϕ(Gal(M/L))

is not isomorphic to L but has the same conductor as L. They denote this field

as ϕ(L). Moreover, their Proposition 2.6 implies that if ∣DK ∣ > C
1/2
L then if ϕ(K)

is the quadratic subfield of ϕ(L), ∣Dϕ(K)∣ < C
1/2
L . This means that our equivalent

of counting b ≤ X1/2 will be again to count quadratic fields K/Q with discriminant

bounded by X1/2. However, because we are counting isomorphism classes of quartic

D4 fields, we will end up multiplying our result by 1/2 to account for pairs of fields

L/K and L′/K that are both quartic D4 fields over Q and are non-isomorphic over

K, but are isomorphic over Q.

To complete the metaphor, we need an equivalent of the third double sum. In the

original problem, this counts the pairs (a, b) which were counted by both the first

and second double sums. However, Proposition 2.6 actually implies a little more.

It shows that DL/K = ∣Dϕ(K)∣d
22n for some squarefree, odd integer d and some

integer n. The number d is, in fact, the product of primes p at which L has central

inertia. We will also show later on that n must be a non-negative even integer.

For convenience, we will say q = 2id. Thus, in our problem, we have to be careful

how we set up this count because the relationship DL/K = ∣Dϕ(K)∣q
2 complicates

which pairs (K,L) get counted multiple times. We will accomplish this by fixing

q < X1/4 and considering the quartic fields L/Q such that DL/K/∣Dϕ(K)∣ is exactly

q2 and then summing over all possible q. [1] refers to DL/K/∣Dϕ(K)∣ as J(L), which

we will also use here. For a specific pair (K,L), this leads us to two possibilities.

If ∣DK ∣ < X
1/2/q2, then the pair will be double counted if DL/K < X

1/2q2. But if

X1/2/q2 ≤ ∣DK ∣ <X
1/2, then the pair is double counted if DL/K <X/∣DK ∣.
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With this, we have finished our analogy to the original Dirichlet hyperbola

method. So, the sum we want to analyze which counts quartic D4 fields by con-

ductor is

∑
[K ∶Q]=2
∣DK ∣<X

1/2

∑
[L∶K]=2

DL/K<X/∣DK ∣

1−
1

2
∑

q<X1/4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
[K ∶Q]=2

∣DK ∣<X
1/2/q2

∑
[L∶K]=2

DL/K<X
1/2q2

J(L)=q2

1 + ∑
[K ∶Q]=2

X1/2/q2≤∣DK ∣<X
1/2

∑
[L∶K]=2

DL/K<X/∣DK ∣

J(L)=q2

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.1)

In Section 3, we will prove the relationship J(L) = q2 more generally and discuss

the possibilities for the valuation of q at 2. In Section 4, we will prove a theorem

similar to Theorem 1.1 from [12] which will give us Theorem 3.0.3 for counting

quadratic extensions K/k with local specifications. Finally, in Section 5, we will

prove Theorems 3.0.1 and 3.0.2.

3.2 The Flipped Field

Going forward, for a quartic D4 field L/Q with quadratic subfield K, we will call

ϕ(K) the flipped field. If we let, L1 be a D4 field over Q and M be its normal closure,

then in the subfield diagram below, K2 is the flipped field with ϕ(L1) = L2. L
′
1 and

L′2 are the conjugate fields of L1 and L2, respectively.

M

L1 L′1 L L′2 L2

K1 K K2

Q

The authors of [1] prove that the p-part of J(L1) = DL1/K1
/DK2 (or Jp(L1)) is

either p2 or 1 for odd primes p by examining the table of possible decomposition

and inertia subgroups of D4 for p and showing that Jp(L1) = p
2 under a certain

condition. We will prove this from a different perspective in the lemma below which
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will also allow us to show that J2(L1) is a square.

Lemma 3.2.1 Let k be a number field and L1/k be a quartic D4 extension of k. If

K1 is the quadratic subfield of L1 and K2 is the flipped field of L1, then there exists

an element α ∈K1 such that L1 =K1(
√
α) and K2 = k(

√
NK1/k(α)).

Proof: Because L1/k is quartic with Galois closure D4, we know that L = k(θ)

for some θ with minimal polynomial f(x) = x4 + Ax2 + B ∈ k[x] from Theorem

4.1 of [13]. Examining the proof of the theorem, we see that K1 = k(θ
2) with

θ2 = (−A ±
√
A2 − 4B)/2 and A2 − 4B ≠ ◻ ∈ k. Without loss of generality, we can

take α = (−A +
√
A2 − 4B)/2 and L = K(

√
α). We let β̄ = (−A −

√
A2 − 4B)/2. So,

the complete set of roots for f(x) = {±
√
α,±
√
β̄}.

Now, from Theorem 1.2 and the proof of Theorem 3.14 in [13], we know that

disc f is not a square in k and K2 = k(
√

discf). But discf = ∏i<j(ri − rj)
2 where

ri are the roots of f(x). For convenience, lets say r1 =
√
α, r2 = −r1, r3 =

√
β̄, and

r4 = −r3. Then, this product is

discf = 16r21(r1 − r3)
4
(r1 + r3)

4r23

= 16r21r
2
3 ((r1 − r3)(r1 + r3))

4

= 16 ⋅NK1/k(α) ⋅ (r
2
1 − r

2
3)

4.

But (r21 − r
2
3)

4 = (A2 − 4B)2, which is a square in k. Thus, K2 ≅ k(
√
NK1/k(α)). ◻

With this lemma, we can make the more general claim:

Lemma 3.2.2 Let k be a number field and L1/k be a quartic D4 extension of k. If

K1 is the quadratic subfield of L1 and K2 is the flipped field of L1, then NK1/kdL1/K1
=

dK2/kq
2 for some integral ideal q of Ok.

Proof: To prove this statement, we will use the work of Cohen, Diaz y Diaz, and

Olivier [12]. Their Proposition 3.4 states that if L1 = K1(
√
α) as in Lemma 3.2.1,

then dL1/K1
= 4a/c2 where a is the largest squarefree ideal dividing αOK and c is the

largest ideal dividing 2 such that (a, c) = 1 and x2 ≡ α (mod ∗c2) has a solution. Here,
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x ≡ y (mod ∗a) has the standard meaning from class field theory that vp(x−y) ≥ vp(a)

for every p dividing a.

For any odd prime p of Ok, Proposition 3.4 and Lemma 3.2.1 together imply

vp(NK1/kdL1/K1
) ≡ vp(dK2/k) mod 2 and vp(NK1/kdL1/K1

) ≥ vp(dK2/k). So, we need

to consider the behavior at primes dividing 2.

As implied by the proof of Proposition 3.4 in [12], for any p ∣ 2, vp(dK2/k) is odd if

any only if p divides the squarefree part of NK1/k(α). So, we have vp(NK1/kdL1/K1
) ≡

vp(dK2/k) mod 2. Moreover, if vp(dK2/k) is odd, we also have vp(NK1/kdL1/K1
) ≥

vp(dK2/k) because vp(NK1/kdL1/K1
) = 2e(P∣p)e(p∣2) + 1 for some prime P lying over

p in OK1 and vp(dK2/k) = 2e(p∣2) + 1.

Assume vp(dK2/k) is even. By Proposition 3.4, we know that vp(dK2/k) = 2(e−m)

where e = e(p ∣ 2) and 0 ≤ m ≤ e such that NK1/k(α) is a square mod p2m but not

mod p2(m+1) (except if m = e in which case p does not ramify in K2). To show that

vp(NK1/kdL1/K1
) ≥ vp(dK2/k), it will be enough to show that for any α ∈ K1 and

Ok-ideal c if NK1/k(α) is not a square mod c, then α is not a square mod cOK1 . We

will do this by proving the contrapositive.

Assume x2 ≡ α (mod ∗cOK1), so α = x2+c for some c ∈ cOK1 . Now, because K1/k

is quadratic, then K1 = k(
√
β) for some β ∈ k×∖k×2 and x = x1+x2

√
β, c = c1+c2

√
β

for some x1, x2, c1, c2 ∈ k. Thus

NK1/k(α) = NK1/k(x
2
+ c)

= (x21 + x
2
2β + c1)

2
− (2x1x2 + c2)

2β

= NK1/k(x
2
) +NK1/k(c) + 2(x

2
1 + x

2
2β)c1 − 4x1x2c2β

= NK1/k(x
2
) +NK1/k(c) +TrK1/k(x̄

2c)

≡ NK1/k(x
2
) (mod ∗c).

For the last two lines x̄ = x1 −x2
√
β and we have TrK1/k(x̄

2c) ∈ c because x̄2c ∈ cOK1

and K1/k is Galois. ◻

Now, we can see that when k = Q, the possible values for J2(L1) are of the form
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22i for i = 0,1,2,3. But, we still don’t have a way to count quartic D4 fields where

J2(L1) = 2
2i. For this we will need to think locally.

3.2.1 Local Fields and the Flipped Field

Let L/Q and L′/Q be non-isomorphic quartic D4 fields such that L and L′ have

the same local conditions at 2. Ideally, we would have J2(L) = J2(L′), but since

J(L) = DL/K/Dϕ(K), this would require that ϕ(K) and ϕ(K ′) have the same local

conditions at 2. Fortunately, this is implied by the following lemma.

Lemma 3.2.3 Let k be a number field, p be a prime ideal of Ok, and L/k and L′/k

be two non-isomorphic D4 quartic extensions such that L ⊗k kp ≅ L′ ⊗k kp. Then,

ϕ(K)⊗k kp ≅ ϕ(K
′)⊗k kp.

Before proving the lemma, let’s consider a simpler case. If we have two quadratic

extensionsK = k(
√
α) andK ′ = k(

√
α′) and some prime ideal p of Ok, thenK⊗kkp ≅

K ′⊗k kp if and only if α and α′ are in the same class of k×p /k×2p . We will use this idea

in the proof.

Proof: If K and K ′ are the quadratic subfields of L and L′, respectively, then we

know that

K ⊗k kp ≅K
′
⊗k kp ≅ ∏

P⊂OK
P∣p

KP.

Assume L = K(
√
β) and L′ = K ′(

√
β′) for some β ∈ K and β′ ∈ K ′. Let ΦK ,ΦK′

be the isomorphisms from K ⊗k kp and K ′ ⊗k kp to ∏KP, and ΦK,P,ΦK′,P be the

restriction maps to KP. Then, because L ⊗k kp ≅ L′ ⊗k kp, we must have for each

P that ΦK,P(β) = ΦK′,P(β
′)a2 for some a ∈ KP. So ΦK(β) = ΦK′(β)

′ā2 for some

ā ∈∏KP. Thus NK⊗kkp/kp(β) = NK′⊗kkp/kp(β
′)b2 for some b ∈ kp. ◻

With this lemma, we know that J2(L) = J2(L′) whenever L and L′ share the

same local conditions at 2 Thus, we can compute the weights

µ(Σ22i) = ∑
(L2,K2)

J2(L)=2
2i

1

∣Aut(L2,K2)∣C(L2,K2)
.
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To get the correct values for each µ(Σ22i) later on we will use some tables com-

puted using code found at https://github.com/friedrichsenm/d4_by_conductor. These

tables are organized by the congruence conditions on DK corresponding to different

isomorphism classes for degree 2 étlae algebras over Q2. Though there are 8 differ-

ent isomorphism classes to consider, we found that these can be reduced to 4 cases.

Tables 3.3 and 3.4 are computed by adding together the results for all isomorphism

classes of K/Q that reduce to the same congruence conditions on DK .

Also, as J2(L) can be found by taking v2(DL/K)−v2(Dϕ(K)), the entries of each

table are organized by the different possibilities for v2(DL/K) and v2(Dϕ(K)). So,

each entry is the weight given by

∑
∗

(L2,K2)
v2(DL/K)=i

v2(Dϕ(K))=j

1

∣Aut(L2,K2)∣C(L2,K2)
,

where the ∑∗ indicates that the sum is over a fixed congruence condition on DK .

v2(Dϕ(K)) =0 2 3

v2(DL/K) =0 1/2 0 0

2 0 1/4 0

3 0 0 1/4

4 1/32 0 0

5 0 0 1/16

6 1/64 1/64 0

Table 3.1: Weights of v2(DL/K) vs v2(Dϕ(K)) when DK ≡ 1 mod 8

v2(Dϕ(K)) =0 2

v2(DL/K) =0 1/2 0

4 1/32 1/16

6 1/64 1/64

Table 3.2: Weights of v2(DL/K) vs v2(Dϕ(K)) when DK ≡ 5 mod 8

https://github.com/friedrichsenm/d4_by_conductor
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v2(Dϕ(K)) =0 3

v2(DL/K) =0 1/4 0

2 1/16 0

4 1/32 0

5 0 1/32

Table 3.3: Weights of v2(DL/K) vs v2(Dϕ(K)) when DK ≡ 4 mod 8

v2(Dϕ(K)) =0 2 3

v2(DL/K) =0 1/4 0 0

2 1/16 0 0

4 0 1/32 0

5 0 0 1/32

Table 3.4: Weights of v2(DL/K) vs v2(Dϕ(K)) when DK ≡ 0 mod 8

3.3 Counting Quadratic Fields with Local Conditions

As alluded to earlier on, we need to prove that the weights calculated using the mass

formula match with weights when counting global fields L/K that match the local

conditions. To do this we will prove a theorem in the vein of Theorem 1.1 from [12]

that will allow us to single out specific local conditions at 2 we wish to include.

Similar to [12], we let

Φk,2(C2, s) = ∑
[K ∶k]=2

1

Ds
K/k

.

Then, we have the following theorem.

Theorem 3.3.1 Let k be a number field, n be the maximal squarefree ideal divisor

of 2 and m = ∏p∣2 p
2e(p∣2)+1. For each p ∣ 2, select a uniformizer πp ∈ Ok such that

πp ≡ 1 (mod ∗q) for every q ∣ 2 where p ≠ q. Then, the Dirichlet series Φk,2(C2, s) is

Φk,2(C2, s) = −1+
1

2g+i(k)ζk(2s)
∏
p∣2

(1 −Np−2s)
−1
∑
c∣n

∑
β̄∈Ok,m/O

2
k,m

D2(πcβ)
−s

∑
χ∈Cl2m(k)

χ(π−1c β−1c)Lk(s,χ),



39

where g is the number of prime ideals in Ok dividing 2, Ok,m = (Ok/m)
×, D2(x) =

∏p∣2Dkp(
√
x)/kp , and πc =∏p∣c πp, and β is a lift of β̄ to Ok,m.

In order to prove the theorem, we will use many of the same objects as in [12].

We will recall some of their definitions here:

• An element u ∈ k× is a virtual unit if there exists an ideal q such that uOk = q
2.

It is clear that the set of virtual units V (k) is a group.

• We will call the quotient group S(k) = V (k)/k×2 the Selmer group of k.

• Let m = m0m∞ be a modulus of k. The ray Selmer group modulo m is the

subgroup Sm(k) of S(k) of elements ū such that for some lift u of ū coprime to

m0 there exists a solution to x2 ≡ u (mod ∗m0) and for each real infinite prime

σ ∣ m∞ we have σ(u) > 0.

Note that this last definition is different from the one in [12] and we will want

to reprove some results using this modified definiton. First, a modified version of

Lemma 3.5 from [12]:

Lemma 3.3.2 Let m = m0m∞ be a modulus of k, and let a be an integral ideal

coprime to m0 such that there exists an ideal q also coprime to m0 with aq2 = α0Ok.

The following two conditions are equivalent.

1. There exists an element ū of S(k) such that, for any lift u of ū coprime to m0,

the congruence x2 ≡ α0u (mod ∗m0) has a solution and σ(α0u) > 0 for every

σ ∣ m∞.

2. The class of a is a square in the ray class group Clm(k).

Proof: The proof will largely follow the proof of Lemma 3.5 in [12] with a few changes.

Assume (1). Then x2 = α0uβ with β ≡ 1 (mod ∗m) and σ(β) > 0 for every σ ∣ m∞.

The rest of this direction of the proof is the same as in the cited proof.

Now, assume (2). The only part of this direction of the proof that is different is

noting that σ(β′) > 0 for every σ ∣ m∞ and that because α0u = β
′ , then σ(α0u) > 0

for every σ ∣ m∞. ◻
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Next an equivalent of Lemma 3.7 from the same paper.

Lemma 3.3.3 Let m be a modulus as before and for notational simplicity, let Ok,m =

(Ok/m0)
× × {±1}∣m∞∣. Then, the following sequence is exact.

1Ð→ Sm(k)Ð→ S(k)Ð→ Ok,m/O
2
k,m Ð→ Clm(k)/Clm(k)

2
Ð→ Cl(k)/Cl(k)2 Ð→ 1.

Proof: The proof for this lemma is the same except to note that the element β used

in the proof will also be positive for every σ ∣ m∞. ◻

We will also be concerned with the cardinality of Sm(k). But, there is not much

for us to prove here. Like in [12],

∣Sm(k)∣ =
2ru(k)+1+r2(Clm(k))

∣Ok,m/O
2
k,m∣

,

where ru(k) is the rank of the unit group of k and r2(Clm(k)) is the 2-rank of the

ray class group of k with modulus m.

Before proving Theorem 3.3.1, we will discuss the differences between our proof

and the proof of Theorem 1.1 in [12]. Lemma 3.3 from [12] shows that quadratic

extensions of any number field k are in bijection with pairs (a, ū) where a is an

integral, squarefree ideal with certain other conditions and ū is a class in the S(k).

To construct Φk,2(C2, s), they sum over integral, squarefree ideals a with the ap-

propriate conditions then sum over classes of S(k) to pick up all pairs (a, ū). To

handle ramification at 2, they look at all c ∣ 2 and use the subgroup Sc2(k) to deter-

mine how many classes in S(k) correspond to extensions with relative discriminant

dK,k = 4a/c
2.

In our proof we will construct the Dirichlet series by using the pairs (a, ū).

However, because we are concerned with every class of k×p /k×2p for every p ∣ 2, we will

handle ramification differently. As such, we will use a different modulus m to set

up our subgroup Sm(k). Because every element of kp can be written as πiu where

π is the uniformizer, i ∈ Z, and u ∈ Okp , then we see that k×p /k×2p ≅ {±1} ×O×kp/O
×2
kp
.

Moreover, for any p ∣ 2, O×kp/O
×2
kp
≅ (Ok/p

2e(p∣2)+1)×/(Ok/p
2e(p∣2)+1)×2. Thus the
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modulus we want is m = ∏p∣2 p
2e(p∣2)+1 and the complete set of local conditions can

be represented globally by {(πc, β̄) ∣ πc =∏p∣c πp, β̄ ∈ Ok,m/O
2
k,m}, where c is an ideal

dividing n as in the statement of Theorem 3.3.1. With this in mind, we are ready to

prove the theorem.

Proof (Theorem 3.3.1): Cohen, Diaz y Diaz, and Olivier start their proof of Theorem

1.1 with a sum over all squarefree a ⊂ Ok such that there exists q ⊂ Ok where aq2 is

principal. Because we will be manually handling cases where πc ≠ 1 we will instead

start with a sum over c ∣ n, where n = ∏p∣2 p and require that there exist a q ⊂ Ok

such that caq2 is principal and (a,2) = 1 So, we start with

Φk,2(C2, s) = −1 +∑
c∣n

∑
a ◻-free

∃q,caq2=α0Ok
(a,2)=1

Na−sS(α0,a, c)

with

S(α0,a, c) = ∑
ū∈S(k)

D2(α0u)
−s.

Since we want to count by the classes of k×p /k×2p , we use the correspondence between

α0u and (πc, β̄) and rewrite the above sum as

S(α0,a, c) = ∑
β̄∈Ok,m/O

2
k,m

D2(πcβ)
−sf(β̄,a, c)

where β is some lift of β̄ to Ok,m and

f(β̄,a, c) = ∑
ū∈S(k)

π−1c α0u=β̄

1.

We use π−1c α0u = β̄ to mean that the class of π−1c α0u in Ok,m/O
2
k,m is β̄. This

is equivalent to there being a solution to x2 ≡ π−1c β−1α0u (mod ∗m). With Lemma

3.3.2, this is the same as saying π−1c β−1ca is a square in Clm(k). Now, Lemma 3.10

from [12] says that f(β̄,a, c) = 0 if π−1c β−1ca is not a square in Clm(k) and ∣Sm(k)∣ if

it is. Theorem 2.36 from [11] implies that ∣Ok,m/O
2
k,m∣ =∏p∣2 2 ⋅Np2(e∣p). Adding this
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in to the cardinality of Sm(k), we get

∣Sm(k)∣ =
2ru(k)+1+r2(Clm(k))

∏p∣2(2 ⋅Npe(p∣2))

=
2ru(k)+1+r2(Clm(k))

2g+[k∶Q]

=
2r2(Clm(k))

2g+i(k)
.

Like in [12] we will use orthogonality and sum over the quadratic characters of

Clm(k) to pick out the ideals that are squares of classes. So we have

Φk,2(C2, s) = −1 +∑
c∣n

∑
a ◻-free

∃q,caq2=α0Ok
(a,2)=1

S(α0,a, c)

Nas

= −1 +∑
c∣n

∑
β̄∈Ok,m/O

2
k,m

∣Sm(k)∣

D2(πcβ̄)s
1

2r2(Clm(k))
∑
χ
∑

a ◻-free
(a,2)=1

χ(π−1c β−1ca)

Nas

= −1 +
1

2g+i(k)
∑
c∣n

∑
β̄∈Ok,m/O

2
k,m

1

D2(πcβ̄)s
∑
χ

χ(π−1c β−1c) ∑
a ◻-free
(a,2)=1

χ(a)

Nas
.

At this point, the next few steps are identical to the end of the proof for Theorem

1.1 in [12] with

∑
a ◻-free
(a,2)=1

χ(a)

Nas
=

Lk(s,χ)

ζk(2s)∏p∣2(1 −Np−2s)
,

thus proving the theorem. ◻

If we letNk,C2(X) stand for the number of quadratic extensionsK/k withDK/k ≤

X, then one may use contour integration on our Dirichlet series from Theorem 3.3.1

to get the same result as their Corollary 1.2. To limit the count to only quadratic

fieldsK/k with a specific local condition at 2, simply limit the sum to the set of (πc β̄)

in question. But, we can be more general than this and consider local specifications

for other places of k.

Recalling our definition for an acceptable collection of local specifications Σk, let

S(Σk) = {v ∣ 2}∪{v s.t. Σk,v doesn’t contain every degree 2 étale algebra of kv}. We
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assume that Σk,v contains every degree 2 étale algebra when v is a complex infinite

place as there is only one. This set contains all of the places with local information

we need to write out Φk,2(Σk;C2, s) with full detail. Each Kv ∈ Σk,v corresponds

to a class of (Okv/(πv))/(Okv/(πv))
2 for finite places and σv(x) > 0 or < 0 where

Kv = kv(
√
x) for the real infinite places. Using the weak approximation theorem,

this extends to a set B containing elements of the form (π, β̄) where π is a product

(potentially empty) of uniformizers πv ∈ kv for finite v ∈ S(Σk) and β̄ ∈ Ok,m/O
2
k,m

for a modulus m with m0 =∏p∣2 p
2e+1
∏ v odd

v∈S(Σk)
pv and m∞ =∏ v real

v∈S(Σk)
σv. We require

that each πp be 1 (mod ∗q) for every other q ∣ m0 and σv(πp) > 0 for every σv ∣ m∞.

We will write these elements as tuples (πc, β̄) ∈ B where c is some squarefree ideal

divisor of m0 and πc is defined as it was earlier.

Theorem 3.3.4 Let k be a number field, Σk be an acceptable collection of local

specifications for k, and B be the corresponding set of global conditions for K ∈

K(Σk). Let m = m0m∞ be the corresponding modulus. Then,

Φk,2(Σk;C2, s) = −δ(1,1̄)∈B +
1

2∣S(Σk)∣+i(k)ζk(2s)
∏
p∣m0

(1 −Np−2s)
−1
⋅

∑
(πc,β̄)∈B

Dm0(πcβ)
−s
∑
χ

χ(π−1c β−1c)Lk(s,χ),

where Dm0(x) =∏p∣m0
Dkp(

√
x)/kp and δ(1,1̄)∈B is 1 if (1, 1̄) ∈ B and 0 otherwise.

Proof: The proof is almost identical to that of Theorem 3.3.1 save for few details.

When choosing the lift β of β̄, for each σv ∣ m∞, we must require that σv(β) be either

greater than or less than 0 depending on if the corresponding Kv ∈ Σk,v is R2 or C,

respectively. Also we now need to evaluate the cardinality of Ok,m/O
2
k,m for a general

modulus m. For this, we note that for any odd prime p, O×kp/O
×2
kp
≅ (Ok/p)

×/(Ok/p)
×2

and ∣(Ok/p)
×/(Ok/p)

×2∣ = 2. Also, for any real infinite place v, ∣O×kv/O
×2
kv
∣ = 2. ◻

We now have everything we need to prove Theorem 3.0.3.

Proof: To prove the theorem, we will apply Perron’s formula on Φk,2(Σk;C2, s) as

given by Theorem 3.3.4 as this will give us Nk,2(X;C2;Σk). Let Σk be an acceptable
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collection of local specifications for k. We take the modulus m to be defined as in

the statement of Theorem 3.0.3.

We can exclude r1 (resp. u1) from the modulus m and the set B because we don’t

need to pick a subset of the classes in O×k,r1O
×2
k,r1

(resp. O×k,u1O
×2
k,u1

). To count these

extensions we modify the sum over integral, squarefree ideals to be

1

Nr21
∑

a ◻-free
(a,m0r1)=1

χ(a)

Na2
.

This way, we are using a character χ from Clm(k) but we can modify the Euler

products for Lk(s,χ) and ζk(2s) such that they exclude primes dividing r1. A similar

change to the sum can be made for the primes dividing u1.

Now, note that all of the L-functions in the sum over quadratic characters of the

ray class group are holomorphic on the entire complex plane with the exception of

the trivial character, which has a pole at s = 1. So, Φk,2(Σk;C2, s) only has a pole

at s = 1 for Re(s) > 1/2.

Using the standard convexity bounds on Hecke characters (e.g. [20, p. 142]), we

get that

Nk,2(C2,Σk,X) = Res
s=1

Φk,2(Σk;C2, s)X+On,ϵ

⎛
⎜
⎝
#Clm(k)[2]

X
n+2
n+4
+ϵ∣DK ∣

1
n+4
+ϵNuϵ1Nu

1
n+4
+ϵ

2

r
n+2
n+4
−ϵ

1 r
n+1
n+4
−ϵ

1

⎞
⎟
⎠
.

Here, our modifications to the sum for r1 and u1 give a better error estimate because

they are unaffected by the modulus of χ in the convexity bound.

Examining the residue of the Dirichlet function, we see that

Res
s=1

Φk,2(Σk;C2, s) =
Res
s=1

Lk(s,χ0)

2∣S(Σk)∣+i(k)ζk(2)
∏
p∣r1

(1 +Np)−1∏
p∣u1

(1 +
1

Np
)
−1

∏
p∣m0

(1 −Np−2)
−1

∑
(πc,β̄)∈B

1

Dm0(πcβ)

=

Res
s=1

ζk(s)

2∣S(Σk)∣+i(k)ζk(2)
∏
p∣r1

(1 +Np)−1 ∏
p∣m0u1

(1 +
1

Np
)
−1

∑
(πc,β̄)∈B

1

Dm0(πcβ̄)

=

Res
s=1

ζk(s)

2∣S(Σk)∣+i(k)ζk(2)
∏
σv ∣∞

⎛

⎝
∑

Kv∈Σk,v

1
⎞

⎠
∏
p∣m0

⎛

⎝
(1 +

1

Np
)
−1

∑
Kp∈Σk,p

1

DKp/kp

⎞

⎠
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=

Res
s=1

ζk(s)

ζk(2)
∏
σv ∣∞

⎛

⎝
∑

Kv∈Σk,v

1

∣Aut(Kv/kv)∣

⎞

⎠
∏
p

⎛

⎝
(1 +

1

Np
)
−1

∑
Kp∈Σk,p

1

∣Aut(Kp/kp)∣DKp/kp

⎞

⎠
.

We are able to extend the product to all finite primes by noting that

(1 +
1

Np
)
−1

∑
Kp∈Σk,p

1

∣Aut(Kp/kp)∣DKp/kp

= 1

whenever Σk,p contains every degree 2 étale algebra of kp. ◻

We now have all the tools we need and can move on to the proof of the main

theorem.

3.4 Proving Theorems 3.0.1 and 3.0.2

We will first prove the main theorem and then present an outline for proving Theorem

3.0.2, as it is very similar. We will prove Theorem 3.0.1 by considering the different

pieces of (3.1) separately beginning with the double sum

∑
[K ∶Q]=2
∣DK ∣<X

1/2

∑
[L∶K]=2

DL/K<X/∣DK ∣

1.

We cannot simply use Theorem 5.3 from [1] as the error term is too large for our

purposes. The key for us will be to prove our own version of Theorem 2 from [1].

Lemma 3.4.1 For any X ≥ 1,

∑
[K ∶Q]=2
0<DK<X

1

∣DK ∣
⋅
L(1,K/Q)
L(2,K/Q)

= (logX+1)
ζ(2)

2
∏
p

(1 −
1

p2
−

2

p3
+

2

p4
)+c++Oϵ(X

−5/18+ϵ
);

∑
[K ∶Q]=2
−X<DK<0

1

∣DK ∣
⋅
L(1,K/Q)
L(2,K/Q)

= (logX+1)
ζ(2)

2
∏
p

(1 −
1

p2
−

2

p3
+

2

p4
)+c−+Oϵ(X

−5/18+ϵ
),

for some constants c+ and c−.

The proof of this lemma follows a similar outline to Theorem 2 of [1]. Where
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they approximate L(1,K/Q) using a finite sum, we will use a smooth approximation

instead.

Lemma 3.4.2 Let L(s,K/Q) be the Dirichlet L-function attached to the quadratic

extension K/Q. For any N > 1,

L(1,K/Q) = ∑
n≥1

χK(n)e
−n/N

n
+Oϵ

⎛

⎝

D
1/6+ϵ
K

N1/2

⎞

⎠
,

where χK is the Kronecker character for K/Q.

Proof: Using an inverse Mellin transform similar to Perron’s formula, we have that

for any c > 0

∑
n≥1

χK(n)e
−n/N

n
=

1

2πi
∫
(c)
L(s + 1,K/Q)N sΓ(s)ds

= L(1,K/Q) +
1

2πi
∫
(−1/2)

L(s + 1,K/Q)N sΓ(s)ds,

where ∫(c) indicates the contour integral from c − i∞ to c + i∞ and ∫(−1/2) indicates

a contour integral where part of the contour is pushed to R(s) = −1/2. The lemma

follows from the subconvexity bound L(1/2+ it,K/Q)≪ϵ (DK(1+ t))
1/6+ϵ of Petrow

and Young [28]. ◻

Next, we look at sums over χK(n) as K varies and see that the largest contribu-

tions come from n being square.

Lemma 3.4.3 For any integer n ≥ 1 and number X ≥ 1, if n is not a square,

∑
[K ∶Q]=2

X<DK<2X

χK(n)≪X1/2n1/4+ϵ,

and

∑
[K ∶Q]=2

X<DK<2X

χK(n) =
X

2ζ(2)
∏
p∣n

p

p + 1
+O(X1/2nϵ)

if n is a square.
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Proof: When n is not a square, we rewrite χK(n) as (DK

n
) use the inclusion-exclusion

principle so we can sum over squarefree integers. Thus our sum is

∑

a<
√
2X

µ(a) ∑
X
a2
<d< 2X

a2

(
a2d

n
) .

We now split the sum over a into two parts using an auxillarly parameter T . We will

treat the first part with Polya-Vinogradov and the second with a trivial estimate.

∑

a<
√
2X

µ(a) ∑
X
a2
<d< 2X

a2

(
a2d

n
) = ∑

a<T

µ(a) ∑
X
a2
<d< 2X

a2

(
a2d

n
) + ∑

T≤a<
√
2X

µ(a) ∑
X
a2
<d< 2X

a2

(
a2d

n
)

= ∑
a<T

O(n1/2+ϵ) + ∑

T≤a<
√
2X

O(X/a2)

= O(Tn1/2+ϵ +X/T ).

Choosing T =X1/2/n1/4 yields the first part of the lemma.

When n is a square, the result follows from Theorem 3.0.3 but using results from

counting squarefree integers to obtain the error term. See [25, Lemma 2.17] for a

reference. ◻

We then combine these lemmas to analyze the sum of L(1,K/Q)
L(2,K/Q) for DK in the

range X to 2X.

Lemma 3.4.4 For any X ≥ 1,

∑
[K ∶Q]=2

X<DK<2X

L(1,K/Q)
L(2,K/Q)

=
1

2ζ(2)
X∏

p

(1 +
1

(p + 1)2
) +Oϵ(X

13/18+ϵ
).

Proof: We start be rewriting 1/L(2,K/Q) as the Dirichlet series

∑
m≥1

µ(m)χK(m)

m2
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and combining this with Lemma 3.4.2. For N >X1/3, we see that

L(1,K/Q)
L(2,K/Q)

= ∑
m≥1
∑
n≥1

µ(m)χK(mn)e
−n/N

m2n
+Oϵ

⎛

⎝

D
1/6+ϵ
K

N1/2

⎞

⎠
.

Therefore, summing DK in the range X to 2X gives

∑
[K ∶Q]=2

X<DK<2X

L(1,K/Q)
L(2,K/Q)

= ∑
m≥1
∑
n≥1

µ(m)e−n/N

m2n
∑

[K ∶Q]=2
X<DK<2X

χK(mn) +Oϵ (
X7/6+ϵ

N1/2
) .

By Lemma 3.4.3, the inner sum is negligible unless mn is a square. Because m must

also be squarefree, this can only happen when m is the squarefree part of n. If we

let ψ(n) be the multiplicative function such that ψ(pk) = p/(p+1), we can eliminate

the sum over m because

∑
m≥1
∑
n≥1

µ(m)e−n/N

m2n
∑

[K ∶Q]=2
X<DK<2X

χK(mn) =
X

2ζ(2)
∑
n≥1

µ(m)ψ(n)e−n/N

m2n
+O(X1/2+ϵN1/4+ϵ

).

We can simplify this even further.

X

2ζ(2)
∑
n≥1

µ(m)ψ(n)e−n/N

m2n
+O(X1/2+ϵN1/4+ϵ

) =
X

2ζ(2)
∑
n≥1

µ(m)ψ(n)

m2n
+O(X/N +X1/2+ϵN1/4+ϵ

)

=
X

2ζ(2)
∏
p

(1 +
1

(p + 1)2
) +O(X/N +X1/2+ϵN1/4+ϵ

).

Though the penultimate sum does not initially look like it should yield an Euler

product of this form, analyzing it shows that there are geometric sub-series that,

when combined, lead to the final product. Now, to optimize both error terms, we

choose N =X8/9. ◻

We can now prove Lemma 3.4.1 by using the above lemmas and partial summation.

Proof (Lemma 3.4.1): Let S+(X) denote ∑ [K ∶Q]=2
0<DK<X

L(1,K/Q)
L(2,K/Q) . Then

∑
[K ∶Q]=2
0<DK<X

1

∣DK ∣
⋅
L(1,K/Q)
L(2,K/Q)

=
S+(t)

t
∣
X

1−
+ ∫

X

1−

S+(t)

t2
dt
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=
1

2ζ(2)
∏
p

(1 +
1

(p + 1)2
)(logX + 1) + ∫

X

1−

E+(t)

t2
dt +Oϵ(X

−5/18+ϵ
)

=
1

2ζ(2)
log(X)∏

p

(1 +
1

(p + 1)2
) + ∫

∞

1−

E+(t)

t2
dt +Oϵ(X

−5/18+ϵ
).

Above, E+(X) = S+(X) − 1
2ζ(2)X∏p (1 +

1
(p+1)2

) with ∫
X
1−

E+(t)
t2

dt = ∫
∞
1−

E+(t)
t2

dt −

∫
∞
X

E+(t)
t2

dt. This is justified because E(X) = O(X13/18+ϵ), so the integral ∫
∞
1−

E+(t)
t2

dt

converges. With this, we define

c+ = ∫
∞

1−

E+(t)

t2
dt. (3.2)

Defining S−(X) and E−(X) similarly, we also define

c− = ∫
∞

1−

E−(t)

t2
dt. (3.3)

◻

At this point, note that

1

ζ(2)
∏
p

(1 +
1

(p + 1)2
) = ζ(2)∏

p

(1 −
1

p2
−

2

p3
+

2

p4
) .

We can now use Theorem 3.0.3 on the inner sum and Lemma 3.4.1 on the outer

sum to get

∑
[K ∶Q]=2
∣DK ∣<X

1/2

∑
[L∶K]=2

DL/K<X/∣DK ∣

1 =X (
1

2
logX + 1)

3

4
∏
p

(1 −
1

p2
−

2

p3
+

2

p4
)+cX+Oϵ(X

11/12+ϵ
),

(3.4)

where

c = c+ +
1

2
c−. (3.5)
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3.4.1 The Second Sum

We will now turn our attention to the second sum from (3.1), namely

∑
q<X1/4

∑
[K ∶Q]=2

∣DK ∣<X
1/2/q2

∑
[L∶K]=2

DL/K<X
1/2q2

J(L)=q2

1.

Now that we can count quadratic extensions L/K with J2(L) = 22i for some

i = 0,1,2, or 3, we will expand q to get J(L) = 22id2. So, our second sum is now

∑

q=2id<X1/4

d odd, ◻-free
i∈{0,1,2,3}

∑
[K ∶Q]=2

∣DK ∣<X
1/2/q2

∑
[L∶K]=2

DL/K<X
1/2q2

J(L)=q2

1. (3.6)

For the odd part of J(L), we will require that (DK , d) = 1, and for J2(L), we will

require that DK fall into specific congruence classes mod 8 corresponding to Tables

3.1-3.4. To limits ourselves to extensions L/K such that the odd part of J(L) is

exactly d2, we will use the inclusion/exclusion principle. Thus, the innermost sum

of (3.6) becomes

∑
[L∶K]=2

DL/K<X
1/2q2

J(L)=q2

1 = ∑

e<X1/4

(e,∣DK ∣2d)=1

µ(e) ∑
[L∶K]=2

DL/K<X
1/2q2

d2e2∣DL/K

J2(L)=2
2i

1. (3.7)

Before we apply Theorem 3.0.3, we construct an acceptable collection of local condi-

tions Σ for which Σ2 only contains pairs (L2,K2) where J2(L) = 22i and Σp contains

pairs (Lp,Kp) for all p ∣ de such that Jp(L) = p2. Σ can be restricted to an acceptable

collection ΣK of local conditions for K. As we vary K later on in the argument, we

will pick up every pair (Lp,Kp) ∈ Σp for each p ∣ 2de. Now, we apply the theorem on

ΣK and get
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X1/2 q2L(1,K/Q)
2i(K)ζ(2)L(2,K/Q) ∏p∣2de

⎛

⎝
(1 +

1

Np
)
−1

∑
Lp∈ΣK,p

1

∣Aut(Lp/Kp)∣DLp/Kp

⎞

⎠
+Oϵ (

X1/3+ϵqϵ∣DK ∣
1/6+ϵ

e4/3+ϵ
) .

We will pull everything but the product over primes dividing e in front of our

sum over e. For those remaining primes, because ΣK,p contains only the Lp that

ramify we see that

∏
p∣e

(1 +
1

Np
)
−1

∑
Lp∈ΣK,p

1

∣Aut(Lp/Kp)∣DLp/Kp

=∏
p∣e

1

m(p)
, (3.8)

where m(p) = 1/(1+p)2 if p splits in K and 1/(1+p2) if p is inert in K. So, the sum

over e is

∑

e<X1/4

(e,∣DK ∣2d)=1

⎛

⎝
µ(e)∏

p∣e

1

m(p)
+Oϵ (

X1/3+ϵqϵ∣DK ∣
1/6+ϵ

e4/3+ϵ
)
⎞

⎠
= ∏

p∤DK2d

(1 −
1

m(p)
) +Oϵ(X

1/3+ϵqϵ∣DK ∣
1/6+ϵ
).

Before we turn to the sum over K, we will deal with some of the constants we

have accrued. First, we let

µ(ΣK,22i) =∏
p∣2

∑
Lp∈ΣK,p

1

∣Aut(Lp/Kp)∣DLp/Kp

.

Additionaly, we see that if pull out p = 2 from the Euler product for L(1,K/Q)
L(2,K/Q) we get

(
1 − χK(p)/p

2

1 − χK(p)/p
)∏

p∣2

(1 +
1

Np
)
−1

= (1 +
1

p
)
−1

(3.9)

regardless of if 2 splits, is inert, or ramifies in K.

Similarly, we also consider the factors of L(1,K/Q)
L(2,K/Q) at odd primes p. For the primes

dividing d, we can use (3.8) and get

(
1

m(p)
)(

1 − χK(p)/p
2

1 − χK(p)/p
) =

1

p(p + 1)
. (3.10)
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For the remaining primes not dividing DK ,

(1 −
1

m(p)
)(

1 − χK(p)/p
2

1 − χK(p)/p
) = 1 +

χK(p)

p + 1
. (3.11)

Applying all of this, the sum over K is

X1/2 2q2

3ζ(2)
∏
p∣d

1

p(p + 1)
∑

[K ∶Q]=2
∣DK ∣<X

1/2/q2

(DK ,d)=1
K2∈ΣQ,22i

µ(ΣK,22i)

2i(K)
∏
p∤2d

(1 +
χK(p)

p + 1
) +Oϵ (

X11/12+ϵ

q7/3−ϵ
) ,

(3.12)

where ΣQ,22i is an acceptable set of local conditions over Q that is complete at every

odd prime and at p = 2 contains only quadratic extensions K that are quadratic

subfields for quartic fields L with J2(L) = 22i.

To analyze the sum, we first rewrite the Euler product as the sum

∑
[K ∶Q]=2

∣DK ∣<X
1/2/q2

(DK ,d)=1
K2∈ΣQ,22i

µ(ΣK,22i)

2i(K)
∑
n≥1

(n,2d)=1
n ◻-free

χK(n)

f(n)
, (3.13)

where f(n) =∏p∣n(p+1). In a series of lemmas, we will consider how to estimate the

inner sum of (3.13) and swap the order of summation to arrive at our conclusion. We

again use the inverse Mellin transfrom from Lemma 3.4.2. To do this, we consider

the following function.

F (s,χK) = ∑
n≥1
(n,d)=1

µ2(n)χK(n)ψ(n)

ns
,

where ψ(n) =∏p∣n
p

p+1 . Note that F (1, χK) is equivalent to the inner sum of (3.13).

Lemma 3.4.5 Let F (s,χK) be the function given above. Then for any N > 1,

F (1, χK) = ∑
n≥1
(n,d)=1
n ◻-free

χK(n)e
−n/N

f(n)
+Oϵ (

∣DK ∣
1/6+ϵ

N1/2
) .
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Proof: If we note that

F (s,χK) =∏
p∤d

(1 +
χK(p)

ps−1(p + 1)
)

= L(s,χK)∏
p∣d

(1 +
χK(p)

ps
)∏
p∤d

(1 −
χK(p)

ps(p + 1)
−

1

p2s−1(p + 1)
) ,

and the rightmost product is absolutely convergent for R(s + 1) > −1/2, then the

proof for this lemma is almost identical to Lemma 3.4.2. ◻

In addition to this, we also need two more lemmas also very similar to Lemmas

3.4.3 and 3.4.4. In the lemmas below, because µ(ΣK,22i) depends on the class that

K2 corresponds to in Q2/Q×22 , we sum over K such that DK ≡ a mod 8 rather than

K2 ∈ ΣQ,22i , where the value of a corresponds to the congruence conditions from

Tables 3.1-3.4. Then, when we use the lemmas to analyze (3.13), we will combine

the separate congruence conditions to get the sum over K2 ∈ ΣQ,22i .

Lemma 3.4.6 For any squarefree integers n, d ≥ 1 with (n, d) = 1,X ≥ 1, and a ∈

{0,1,4,5} we have

∑
[K ∶Q]=2

X<DK<2X
(DK ,d)=1

DK≡a mod 8

χK(n)≪ϵ X
1/2+ϵ
(nd)1/4+ϵ

if n ≠ 1, and

∑
[K ∶Q]=2

X<DK<2X
(DK ,d)=1

DK≡a mod 8

χK(n) =X
µ(ΣQ,22i,a)

3ζ(2)
∏
p∣d

p

p + 1
+Oϵ(X

1/2dϵ)

if n = 1, where

µ(ΣQ,22i,a) = ∑
K2∈ΣQ,22i

DK≡a mod 8

1

∣Aut(K2/Q2)∣DK2/Q2

.

Proof: The proof for this is nearly identical to Lemma 3.4.3 except that we consider
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χK(n) as a character with conductor nd. ◻

Lastly, the clone of Lemma 3.4.4.

Lemma 3.4.7 For any X ≥ 1, we have

∑
[K ∶Q]=2

X<DK<2X
(DK ,d)=1

DK≡a mod 8

∑
n≥1

(n,2d)=1
n ◻-free

χK(n)

f(n)
=X

µ(ΣQ,22i,a)

3ζ(2)
∏
p∣d

p

p + 1
+Oϵ(X

13/18+ϵd1/4+ϵ).

Proof: The proof for this lemma is actually simpler than that of Lemma 3.4.4 because

the sum over χK(n) only has a significant contribution when n = 1 as opposed to

whenever n is a square. ◻

Turning our attention back to (3.13), we apply Lemma 3.4.7 by summing diadi-

cally to obtain

X1/2µ(ΣQ,22i,a)

2ζ(2)q2
∏
p∣d

p

p + 1
+Oϵ (

X13/36+ϵ

q43/36−ϵ
) .

Now we sum over a and expand the definitions for µ(ΣQ,22i , a) and µ(ΣK,22i), which

yields

∑
a∈{0,1,4,5}

µ(ΣQ,22i,a)µ(ΣK,22i) =
⎛
⎜
⎝
∑

K2∈ΣQ,22i

1

∣Aut(K2/Q2)∣DK2/Q2

⎛

⎝
∏
p∣2

∑
Lp∈ΣK,p

1

∣Aut(Lp/Kp)∣DLp/Kp

⎞

⎠

⎞
⎟
⎠

= ∑
(L2,K2)∈Σ

J2(L)=2
2i

1

∣Aut(L2,K2)∣C(L2,K2)
. (3.14)

We will denote this by as µ(Σ22i) Bringing this back into (3.12), we get

X
µ(Σ22i)

3ζ(2)2
∏
p∣d

1

(p + 1)2
+Oϵ (

X11/12+ϵ

q7/3−ϵ
) .

Summing over q, we get

X
1

3
⋅
9

16
(

3

∑
i=0

µ(Σ22i))∏
p≠2

(1 −
1

p2
−

2

p3
+

2

p4
) +Oϵ(X

11/12+ϵ
).
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Lastly, we note the sum ∑µ(Σ22i) is simply

∑
(L2,K2)

1

∣Aut(L2,K2)∣C(L2,K2)
.

Moreover, Theorem 3 of [1] implies,

(1 −
1

p
)
2

∑
(Lp,Kp)

1

∣Aut(L2,K2)∣C(L2,K2)
= (1 −

1

p2
−

2

p3
+

2

p4
) .

Thus, our second sum comes to

X
3

4
∏
p

(1 −
1

p2
−

2

p3
+

2

p4
) +Oϵ(X

11/12+ϵ
). (3.15)

3.4.2 The Third Sum

Our treatment of the third sum of (3.1) will look very similar to the second sum.

We begin in the same way by summing over valid values for q and get

∑

q=2id<X1/4

d odd, ◻-free
i∈{0,1,2,3}

∑
[K ∶Q]=2

X1/2/q2≤∣DK ∣<X
1/2

∑
[L∶K]=2

DL/K<X/∣DK ∣

J(L)=q2

1. (3.16)

We treat the inner most sum identically by using the inclusion/exclusion principle

to count only the quartic fields L with J(L) = q2. We also use (3.9 – 3.11) with the

end result

X
2

3ζ(2)
∏
p∣d

1

p(p + 1)
∑

[K ∶Q]=2
X1/2/q2≤∣DK ∣<X

1/2

(DK ,d)=1
K2∈ΣQ,22i

µ(ΣK,22i)

2i(K)∣DK ∣
∑
n≥1

(n,2d)=1
n ◻-free

χK(n)

f(n)
+Oϵ (

X11/12+ϵ

q4/3−ϵ
) .

(3.17)

We will again sum over congruence conditions mod 8 as we did to analyze (3.13)



56
and also use partial summation. We define

A(x) = ∑
[K ∶Q]=2
0<DK<X
(DK ,d)=1

DK≡a mod 8

∑
n≥1

(n,2d)=1
n ◻-free

χK(n)

f(n)
.

Then, considering first the sum over real quadratic fields K

∑
[K ∶Q]=2

X1/2/q2≤DK<X
1/2

(DK ,d)=1
DK≡a mod 8

1

DK

∞

∑
n=1

(n,2d)=1
n ◻-free

χK(n)

f(n)
=
A(t)

t
∣
X1/2

X1/2/q2
+ ∫

X1/2

X1/2/q2

A(t)

t2
dt

=
µ(ΣQ,22i,a) log(q

2)

3ζ(2)
∏
p∣d

p

p + 1
+Oϵ (

q29/36+ϵ

X5/36−ϵ
) .

As before, we extend the sum over the different congruence conditions and imag-

inary quadratic fields and bring this back into (3.17) to get

X
1

3ζ(2)2
∑

q=2id<X1/4

d odd, ◻-free
i∈{0,1,2,3}

µ(Σ22i) log(q
2
)∏
p∣d

1

(p + 1)2
+Oϵ(X

11/12+ϵ
). (3.18)

If we replace q with 2id, we can split log(q2) and consider the sum in two parts.

First, we have

∑

q=2id<X1/4

d odd, ◻-free
i∈{0,1,2,3}

µ(Σ22i) log(d
2
)∏
p∣d

1

(p + 1)2
= 5 ∑

d odd, ◻-free
log d∏

p∣d

1

(p + 1)2
+Oϵ(X

−1/4+ϵ
).

We can rewrite this as a sum over odd primes p and get

5 ∑
d odd, ◻-free

log d∏
p∣d

1

(p + 1)2
= 5∑

p≠2

log p

(p + 1)2
∏
r≠p,2

(1 +
1

(r + 1)2
)

=
9

4
∏
p

(1 +
1

(p + 1)2
)
⎛

⎝
−
log 2

5
+ 2∑

p

log p

p2 + 2p + 2

⎞

⎠
.
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The third sum is

2 log 2 ∑

q=2id<X1/4

d odd, ◻-free
i∈{0,1,2,3}

i ⋅ µ(Σ22i)∏
p∣d

1

(p + 1)2
=
9 log 2

5
∏
p

(1 +
1

(p + 1)2
)(

3

∑
i=1

i ⋅ µ(Σ22i)) +O(X
−1/4
).

Using Tables 3.1-3.4, we compute ∑ i ⋅ µ(Σ22i) = 11/16 and put everything back

into (3.18).

X
3

4

⎛

⎝

7 log 2

20
+ 2∑

p

log p

p2 + 2p + 2

⎞

⎠
∏
p

(1 −
1

p2
−

2

p3
+

2

p4
) +Oϵ(X

11/12+ϵ
). (3.19)

The main theorem now follows from putting (3.4), (3.15), and (3.19) in the sum

(3.1).

3.4.3 A Modified Argument for Theorem 3.0.2

To prove Theorem 3.0.2, one can follow the same outline as the main theorem by

tackling each sum in (3.1) separately. Let Σ = (Σv)v be an acceptable collection

of local specifications and let m be the product of primes p such that Σp doesn’t

contain every pair (Lp,Kp). If we again restrict Σ to ΣK , then Theorem 3.0.3 gives

∑
[L∶K]=2
L∈K(ΣK)

DL/K≤X/∣DK ∣

=X
L(1,K/Q)

∣DK ∣L(2,K/Q)
⋅µ(ΣK,∞)∏

p∣m

⎛

⎝
∏
p∣p

Np

1 +Np

⎞

⎠
⋅µ(ΣK,p)+Oϵ(X

2/3+ϵ
∣DK ∣

−1/2+ϵm1/3+ϵ
),

where

µ(ΣK,∞) = ∏
σv ∣∞

∑
Lv∈ΣK,v

1

∣Aut(Lv/Kv)∣
, and µ(ΣK,p) =∏

p∣p

∑
Lp∈ΣK,p

1

∣Aut(Lp/Kp)∣DLp/Kp

.

The m1/3+ϵ is a worst case estimate in which every prime p dividing m were either

split or inert in K and p ∣ u1 for every p ∣ p in our application of Theorem 3.0.3.

At this point, we use (3.9) and note that we can pull these factors outside the
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sum over K as well as µ(ΣK,∞) and µ(ΣK,p) and have

X
µ(ΣK,∞)

ζ(2)
∏
p∣m

((1 +
1

p
)
−1

µ(ΣK,p)) ∑
[K ∶Q]=2
K∈K(ΣQ)

∣DK ∣≤X
1/2

1

∣DK ∣
∏
p∤m

(
1 − χK(p)/p

2

1 − χK(p)/p
)+Oϵ(X

11/12+ϵm1/3+ϵ
).

To finish the first sum, only slight modifications to Lemmas 3.4.1 and 3.4.4 are

needed. A modification worth mentioning is the one we need to define cΣ in the

theorem statement. In the modified Lemma 3.4.1 we would define

S±Σ(X) = ∑
[K ∶Q]=2
K∈K(ΣQ)
0<±DK<X

1

∣DK ∣
⋅
L(1,K/Q)
L(2,K/Q)

.

Then,

E±Σ(X) = S
±
Σ(X) −

1

2
X∏

p

⎛

⎝
(1 −

1

p
)
2

∑
(Lp,Kp)∈Σp

1

∣Aut(Lp,Kp)∣C(Lp,Kp)

⎞

⎠
.

With c±Σ defined analogously to c±, we have

cΣ = c
+
Σ +

1

2
c−Σ. (3.20)

Apart from this, we should also note that given an acceptable collection of local

specifications Σ that is not complete at some prime p, it is not clear that doubling

the first sum yields that correct result as the second iteration of the sum is meant to

count pairs (L,K) for which Dϕ(K) < X
1/2 and (ϕ(L), ϕ(K)) may not be in L(Σ).

But, the discussion in section 9.2 of [1] shows that µ(Σp) = µ(ϕ(Σp)) if we give

ϕ(Σp) the meaning you might expect.

For the remaining two sums, the same sorts of modifications can be made without

much change to the original arguments. Moreover, as each sum is only computed

once, we don’t need to worry about the equivalence of µ(Σp) and µ(ϕ(Σp)). However,

we will note that the constant 7 log 2
20 in the secondary term of Theorem 3.0.1 is

2 log 2
2µ(Σ24) + 3µ(Σ26)

µ(Σ2)
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and, thus, agrees with Theorem 3.0.2 when Σ2 contains all pairs (L2,K2).
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Chapter 4

Counting General D4 ≀H Extensions by

Conductor

In this final chapter, we establish a count of D4 ≀H 4n-extensions of k, where k is a

some number field and H is a transitive subgroup of Sn. In particular, we prove the

following theorem.

Theorem 4.0.1 Let k be a number field NC
k,4n(X;D4 ≀ H) denote the number of

degree 4n extensions L/k with Galois group D4 ≀H and conductor CL/k ≤X. Assume

that Nk,n(X;H) is non-zero and Ok,H,ϵ(X
1+ϵ). Then,

NC
k,4n(X;D4≀H) ∼X logX ∑

[F ∶k]=n
Gal(F /k)≅H

3r1 (Res
s=1

ζF (s))
2

22r1+3r2+1D2
F /k

∏
p⊂OF

(1 −
1

Np2
−

2

Np3
+

2

Np4
) ,

where r1 and r2 represent the number of real and complex embeddings of F , respec-

tively.

A natural comparison to this work is that of Klüners [21], which counts C2 ≀H 2n-

extensions by discriminant. In this, he generalizes the work of Cohen, Diaz y Diaz,

and Olivier [12] counting D4 quartic extensions (as D4 can be thought of as counting

C2 ≀C2 extensions). He goes further and shows that for any tower of number fields

L/F /k with L/F quadratic and F /k a degree n H extension that the “expected”

Galois group is C2 ≀H when ordered by discriminant. He does this by showing that

Nk,2n(X;C2 ≀H) ∼ ck,HX and that any other possible Galois group G of the tower

L/F /k has Nk,2n(X;G) = o(X). We will also show in proving Theorem 4.0.1, that

D4 ≀H is the expected Galois group of a tower L/K/F /k where both L/K and K/F

are quadratic extensions.

En route to establishing Theorem 4.0.1, we will briefly discuss the wreath product
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and give an algebraic reason why it might be considered the expected Galois group of

a tower of number fields. We will also use the definition of the conductor as laid out

in Section 1.2 to find the conductor of a D4 ≀H extension L/k. In doing this, we will

see how the conductor of D4 quartic extensions show up and will need to prove the

following theorem counting D4 quartic extensions by conductor over general number

fields.

Theorem 4.0.2 Let X > 1 and NC
k,4(X;D4) denote the number of D4 quartic ex-

tensions L of k with CL/k <X, we have

NC
k,4(X;D4) =X logX ⋅

3r1 (Res
s=1

ζk(s))
2

22r1+3r2+1
∏
p

(1 −
1

Np2
−

2

Np3
+

2

Np4
) +Xc

+X

⎛
⎜
⎜
⎜
⎝

3r1 (Res
s=1

ζk(s))
2

22r1+3r2+1
∏
p

(1 −
1

Np2
−

2

Np3
+

2

Np4
)

⎞
⎟
⎟
⎟
⎠

⋅
⎛

⎝
1 − 2∑

p∤2

logNpµ(Σp2)

µ(Σp)
− 2∑

p∣2

logNp

µ(Σp)

2ep+1

∑
i=1

iµ(Σp2i)
⎞

⎠

+Oϵ,n(h2(k)
2X

4n+7
4n+8

+ϵ
∣Dk∣

1
n+2
+ϵ
+ h2(k)X

4n+21
4n+24

+ϵ
∣Dk∣

3
2n+12

+ϵ
),

with some constraints on the size of Dk with respect to X implied by the error term

and c defined in (4.4).

Once all of the above is taken care of, we will be able to prove Theorem 4.0.1.

4.1 Wreath Products and Number Field Towers

In this brief section, we hope to argue why one might expect a wreath product as the

Galois group of a tower of number fields from an algebraic standpoint as opposed to

an analytical one. To answer this, we will discuss how the wreath product naturally

shows up as the Galois group of an extension and then give some explanation for

why it might be the “expected” one.

First, we define the wreath product. Let G and H be subgroups of Sn and Sm,

respectively. The wreath product G ≀ H is the semidirect product Gm ⋊ H ≤ Snm
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where H acts on the m copies of G as given by its representation as a subgroup of

Sm. There are other equivalent ways of defining the wreath product. For a more

detailed treatment see [9, Section 2.1].

If we have some number field k and a degree n extension L/k, we know that

Gal(L/k) is a transitive subgroup of Sn. But, what if there is some intermediate

field L/F /k with [F ∶ k] = d, [L ∶ F ] = e and n = de? Then, Gal(L/k) ≤ Se ≀ Sd.

In fact, if we know Gal(F /k) and Gal(L/F ), we can be more specific and say that

Gal(L/k) ≤ Gal(L/F ) ≀Gal(F /k) [16].

But why might we expect Gal(L/F ) ≀Gal(F /k) to be the Galois group of L/k as

opposed to one of its subgroups? Of course, we can’t be precise about this without

proving a result like Klüners’ (which we will do!). However, consider this heuristic

argument. Assume that we have some fixed H extension F /k with some element α

such that F = k(α). If we then take a random G extension L/F generated by some

β (or L = F (β)), we would likely expect there to be little similarity between α and β

other than that the minimal polynomial, of which β is a root, might have coefficients

in terms of α. Extending this argument to the full Galois group Gal(L/k), we would

expect an automorphism σ to permute the conjugates of F (i.e. k(σ(α)) without

affecting how the conjugates of L are permuted. Thus, without any constraints given

by relationships between α and β, the Galois group should have maximal freedom

to permute things, which gives the group Gal(L/F ) ≀Gal(F /k).

Now that we have laid some groundwork for why wreath products as Galois

groups are natural objects of study, we move on to our specific case and define its

conductor.

4.2 The Conductor of a D4 ≀H Extension

Let L/F /k be a tower of number fields with L/F a quartic D4 extension and F /k

a degree n H extension. For the purpose of this section, we will assume that

Gal(L/k) ≅ D4 ≀ H. To find the conductor CL/k, we will step away from think-

ing of the Galois group as D4 ≀H for a second and instead think of it as C2 ≀ (C2 ≀H)
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for reasons that will become clear momentarily. Note that this is permissible since

there is a quadratic extension K/F in between L and F and the wreath product is

associative.

Like our treatment of the D4 conductor in Section 1.2, we start with 1HL
and

induce this to HK . As before

1
HK
HL
= 1HK

+ χ,

where χ is the sign representation of HK/HL. Like with D4, we know that we know

that the Artin conductor of 1D4≀H
HK

is dK/k, so the Artin conductor of χD4≀H must

be dK/kdL/K . If χD4≀H is irreducible, then CL/k is DK/kDL/k as it is when L/k is a

quartic D4 extension. Fortunately, the representations of wreath products are well

studied and the following theorem from [9] will aid us in showing that χD4≀H is indeed

irreducible. In our attempt to reproduce the theorem below, we will elide some of

the constructions for concision.

Theorem (2.5.1 of [9]) Let G be a transitive subgroup of Sn for some finite n.

Let θ ∈ Cn
2 and χθ be the corresponding representation in Ĉn

2 . For each θ, let Gθ

represent the stabilizer of θ under the action of G and let χ̃θ be the extension of χθ

to C2 ≀Gθ. Now for a fixed θ, let η be an irreducible representation of Gθ and let η

be the inflation of η to C2 ≀Gθ.

If Θ is a system of representatives for the orbits of G on Cn
2 , then every irreducible

representation of C2 ≀G is of the form

(χ̃θ ⊗ η)
C2≀G,

where θ ∈ Θ and η ∈ Gθ.

To see how this theorem helps us, we need to consider what HL and HK actually

are as subgroups of C2≀(C2≀H).We know thatHL is the stabilizer of some embedding

of L in k̄. Thus HL is C2n−1
2 ⋊StabH(1) and HK (being the unique group of index 2

over HL) is C2n
2 ⋊StabH(1), or C2 ≀StabH(1). The sign representation χ of HK/HL,

which is defined by χ(g) = 1 if g ∈ HL and −1 if g ∈ HK ∖HL, can be seen as an
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extension of an irreducible representation of Cn
2 . Moreover, StabH(1) is precisely its

stabilizer. Now, if we take η to be the lift of the trivial representation of StabH(1),

we get that χD4≀H is irreducible by the above theorem.

We’ve now shown that CL/k = DK/kDL/K . But, given the presence of the inter-

mediate field F between K and k, we get

CL/k =D
2
F /kDK/FDL/K . (4.1)

This should also be recognizable as D2
F /k multiplied by the conductor of quartic D4

extensions L/F. We will make use of this and end up counting D4 ≀H extensions L/k

by counting D4 extensions L/F on top of H extensions F /k. As such, we must begin

a discussion of general D4 extensions of a number fields before we can attempt our

count of D4 ≀H extensions.

4.3 General D4 Extensions

For this section, let k be a degree n number field and let L/k be a quartic D4

extension.

Before we can begin counting D4 quartic extensions of k by conductor, we need

to address an important point about the counting method. The general method for

counting D4 extensions either by conductor or by discriminant is to count quadratic

extensions of the base field k and then to count all quadratic extensions of each

quadratic extension. The implied assumption here is that the overwhelming majority

of fields counted this way will have Galois group D4 as opposed to any other Galois

group you could get by doing this (either C4 or V4). For counting by conductor,

this was addressed explicitly by a lemma [1]. The original lemma was written in

the context of counting D4 extensions of Q, but the proof is valid even in the more

general setting, so we simply restate the lemma with minor changes to address the

more general setting.
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Lemma (4.4 of [1]) Let β > 1 be fixed. The number of Galois quartic exten-

sions L/k with CL/k < X and DK/k < X
β, where K is a quadratic subfield of L

is Oϵ(D
ϵ
kX
(1+β)/2+ϵ).

We note that in [1], they define CL/Q to be DKDL/K for every quartic number

field tower L/K/Q regardless of the Galois group of L.

With this technical point now accounted for, we now take another detour to

discuss counting general D4 extensions with respect to local conditions. Similar to

Chapter 3, we will be able to prove a local version of Theorem 4.0.2. We use the

same terminology and let Σ represent an acceptable collection of local conditions for

pairs (L,K) over k and let ΣK represent an acceptable collection of local conditions

for quadratic extensions L/K.

Theorem 4.3.1 Let X > 1 and Σ be an acceptable collection of local specifications.

If m is the product of Np for primes p of k such that Σp does not contain every pair

(Lp,Kp), then

NC
k,4(X;D4;Σ) =

1

2
X
⎛

⎝
logX + 1 − 2∑

p∤2

logNpµ(Σp2)

µ(Σp)
− 2∑

p∣2

logNp

µ(Σp)

2ep+1

∑
i=1

iµ(Σp2i)
⎞

⎠
⋅

(Res
s=1

ζk(s))
2

∏
v∣∞

µ(Σv) ⋅∏
p

((1 −
1

Np
)
2

µ(Σp)) + cΣX

+Oe,n(h2(k)
2X

4n+7
4n+8

+ϵ
(m∣Dk∣)

1
n+2
+ϵ
+ h2(k)X

4n+21
4n+24

+ϵ
(m∣Dk∣)

3
2n+12

+ϵ
),

where cΣ is a non-multiplicative constant given in (4.12).

We note that the part of the error involving m is essentially a worst case estimate

for when the error is as large as possible. This happens when the primes dividing m

are selectively unramified (to use the terminology we established earlier). In the case

where L and/or K are either selectively or comprehensively ramified at the primes

dividing m, a better error can be obtained manually by following the proof of the

theorem.

Without any more gilding the lily, we proceed with proving Theorem 4.0.2. We

use the same approach as in Chapter 3 and use the hyperbola method to establish



66
the count. To streamline the argument we handle the second and third sums together

as much as possible. The argument will look very similar to the previous chapter,

but we feel the argument bears repeating so that the reader can more easily verify

the work (especially the error terms).

4.3.1 The First Sum

Recall from Chapter 3 that the first sum in question is simply a double count of

quadratic K/k and quadratic L/K. In our context this will be

∑
[K ∶k]=2

DK/k<X
1/2

∑
[L∶K]=2

DL/K<X/DK/k

1. (4.2)

Using Theorem 3.0.3, the inner sum is

X
Res
s=1

ζk(s)

ζk(2)
∑

[K ∶k]=2

DK/k<X
1/2

L(1,K/k)

DK/k2r2(K)L(2,K/k)
+Oϵ,n (h2(k)

2X
4n+7
4n+8

+ϵ
∣Dk∣

1
n+2
+ϵ
) .

(4.3)

The dependence on the class group of k in the error above is due to the bound

h2(K) ≪ϵ h2(k)
2Dϵ

K . If we know k satisfies the ℓ-torsion conjecture for ℓ = 2, then

the dependence on h2(k)2 in the error term goes away.

Now, if the signature of k is (r1, r2), then the possibilities for r2(K) are 2r2, . . . , r1+

2r2. Therefore, we would like a way of handling the sum of

∑
[K ∶k]=2
DK/k<X

r2(K)=2r2+j

L(1,K/k)

L(2,K/k)
,

where 0 ≤ j ≤ r1. To do this, we will use a series of lemmas similar to the previous

chapter.

Lemma 4.3.2 Let k be a number field and let K/k be a quadratic extension. For

T > 1,

L(1,K/k) = ∑
n⊂Ok

χK(n)e
−Nn/T

Nn
+Oϵ,n

⎛
⎜
⎝

∣Dk∣
1/4+ϵD

1/4+ϵ
K/k

T 1/2

⎞
⎟
⎠
.
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Proof: We follow the same approach as for Lemma 3.4.2. The only difference is that

we use the standard convexity bound for Hecke characters as opposed to the best

known subconvextiy bound for Dirichlet characters. ◻

Lemma 4.3.3 Let k be a number field of degree n over Q with signature (r1, r2),

n ⊂ Ok, 0 ≤ j ≤ r1, and X > 1. If n is not a square ideal, then

∑
[K ∶k]=2
DK/k<X

r2(K)=2r2+j

χK(n)≪ϵ,n h2(k)X
n+2
n+4
+ϵ
∣Dk∣

1
n+4
+ϵNn

1
n+4
+ϵ.

If n is a square, then

∑
[K ∶k]=2
DK/k<X

r2(K)=2r2+j

χK(n) =X
(
r1
j
)Res
s=1

ζk(s)

2r1+r2ζk(2)
∏
p∣n

Np

Np + 1
+Oϵ,n (h2(k)X

n+2
n+4
+ϵ
∣Dk∣

1
n+4
+ϵNnϵ) .

Proof: For both cases we will rely on Theorem 3.0.3. Recall that for a prime ideal

p ⊂ Ok, the character χK(p) is 1 if p splits in K, −1 if its is inert in K, or 0 if it is

ramified in K. We can extend this multiplicatively to any integral ideal n ⊂ Ok.

For the first case, we construct two sets of local conditions for every prime p ∣ n.

The first such that χK(n) = 1 and the second such that it is −1. The main terms

will cancel out leaving only the error term.

For the second case, we can simply count all extensions K/k where K is unram-

ified at all the primes dividing n since χK(n) is always 1. The (r1j )/2
r1+r2 appears

because for each real embedding of k, we must prescribe how it behaves in K and

there are exactly (r1j ) ways for there to be exactly j real embeddings of k to ramify

in K. ◻

Lemma 4.3.4 For a number field k of degree n over Q with signature (r1, r2), let

0 ≤ j ≤ r1 and X > 1. Then

∑
[K ∶k]=2
DK/k<X

r2(K)=2r2+j

L(1,K/k)

L(2,K/k)
=

(
r1
j
)Res
s=1

ζk(s)

2r1+r2ζk(2)
X∏

p

(1 +
1

(Np + 1)2
)+Oϵ,n (h2(k)X

2n+9
2n+12

+ϵ
∣Dk∣

3
2n+12

+ϵ
) .
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Proof: The proof for this lemma exactly follows that of Lemma 3.4.2 but now using

Lemmas 4.3.2 and 4.3.3. ◻

Lemma 4.3.5 For a number field k of degree n over Q with signature (r1, r2), let

0 ≤ j ≤ r1 and X > 1. Then

∑
[K ∶k]=2
DK/k<X

1

2r2(K)DK/k

⋅
L(1,K/k)

L(2,K/k)
= Res

s=1
ζk(s) ⋅

3r1

22r1+3r2
⋅ ζk(2)(logX + 1)∏

p

(1 −
1

Np2
−

2

Np3
+

2

Np4
)

+ c +Oϵ,n (h2(k)X
−3

2n+12
+ϵ
∣Dk∣

3
2n+12

+ϵ
) ,

where c is given by (4.4).

Proof: We will prove the lemma by using partial summation on the results from

Lemma 4.3.4 and summing over all possible j.

We define

Sj(X) = ∑
[K ∶k]=2
DK/k<X

r2(K)=2r2+j

L(1,K/k)

L(2,K/k)
.

Using partial summation as in the proof of Lemma 3.4.1, we get

∑
[K ∶k]=2
DK/k<X

r2(K)=2r2+j

1

DK/k

⋅
L(1,K/k)

L(2,K/k)
=

(
r1
j
)Res
s=1

ζk(s)

2r1+r2ζk(2)
∏
p

(1 +
1

(Np + 1)2
)(logX + 1)

+ ∫

∞

1−

Ej(t)

t2
dt +Oϵ,n(h2(k)X

−3
2n+12

+ϵ
∣Dk∣

3
2n+12

+ϵ
),

where Ej(X) = Sj(X) −
(r1

j
)Res
s=1

ζk(s)

2r1+r2ζk(2)
∏p (1 +

1
(Np+1)2

) . Now we can define

cj = ∫
∞

1−

Ej(t)

t2
dt.

When we sum over j and weight each result by 1
22r2+j

, we obtain the lemma with

c defined as

c =
r1

∑
j=0

1

22r2+j
cj . (4.4)

◻
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We now use Lemma 4.3.5 on (4.3) and find the first sum to be

X (
1

2
logX + 1) ⋅

3r1 (Res
s=1

ζk(s))
2

22r1+3r2
∏
p

(1 −
1

Np2
−

2

Np3
+

2

Np4
)

+ cX +Oϵ,n (h2(k)
2X

4n+7
4n+8

+ϵ
∣Dk∣

1
n+2
+ϵ
+ h2(k)X

4n+21
4n+24

+ϵ
∣Dk∣

3
2n+12

+ϵ
) . (4.5)

4.3.2 The Second and Third Sums

Recall from Chapter 3 that for a quartic number field L, the value J(L) was used to

refer to the difference between the relative discriminant of L/K and the discriminant

of the flipped field ϕ(K). In this case, J(L) = q2 for some integer q. Before diving

straight into the remaining sums, we need a brief discussion on what q is in the

general number field case. If L/K/k is a quartic D4 extension and ϕ(K) is the

flipped field, then NK/kdL/K = dϕ(K)/kq
2 for some integral ideal of Ok by Lemma

3.2.2. The odd part of q will be squarefree, but the even part might not be.

If p ⊂ Ok divides 2 and ep is the ramification index of p over 2, the maximal power

of p that could show up in an admissible q is p2ep+1. This is implied by Proposition

3.4 of [12] and can be seen by considering the case where p is inert in K and ramifies

in L with the maximum possible power of p dividing dL/K .

With that in mind, the second and third sums are

∑
q<X1/4

∑
[K ∶k]=2

DK/k<X
1/2/Nq2

∑
[L∶K]=2

DL/K<X
1/2Nq2

J(L)=q2

1, (4.6)

and

, ∑
q<X1/2

∑
[K ∶k]=2

X1/2/Nq2≤DK/k<X
1/2

∑
[L∶K]=2

DL/K<X/DK/k

J(L)=q2

1 (4.7)

where the sums over q < Y indicate a sum over admissible ideals q ⊂ Ok which have

norm less than Y , and J(L) denotes the ideal q2 in the relationship NK/kdL/K =

dϕ(K)/kq
2.
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In both (4.6) and (4.7), the innermost sum will be treated exactly as in Chapter

3 by using inclusion/exclusion to get the count of L/K with J(L) = q2. In our case,

the innermost sum will become

∑
[L∶K]=2
DL/K<Y

J(L)=q2

1 = ∑

b<Y 1/2/Nq
(b,2adK/k)

µ(b) ∑
[L∶K]=2
DL/K<Y

a2b2∣dL/K
J2(L)=c

2

1,

where a and c are the odd and even parts of q, respectively, and J2(L) is the even

part of q2. Following the same analytical method, this is

Y
µ(ΣK,c2)Res

s=1
ζk(s)

2r2(K)ζk(2)
∏
p∣2

(1 +
1

Np
)
−1

∏
p∣a

(
1

Np(Np + 1)
) ∏
p∤2a

(1 +
χK(p)

Np + 1
)

+Oϵ,n (h2(k)
2Y

n+1
n+2
+ϵ
∣Dk∣

1
n+2
+ϵD

1
2n+4

+ϵ

K/k
Na−

2n+2
n+2
+ϵ
+ Y 1/2Nq−1∣Dk∣

ϵDϵ
K/k) , (4.8)

where χK is the Hecke character defining K/k, ΣK,c2 is a set of local conditions at

all primes dividing 2 in K such that for any L/K we have J2(L) = c2. Then

µ(ΣK,c2) = ∏
P∣2

P⊂OK

∑
LP∈ΣK,P

1

∣Aut(LP/KP)∣DLP/KP

. (4.9)

We note that all products over primes save for (4.9) are over primes in k as opposed

to K.

We will now resolve the error term in (4.8) as it is cumbersome to keep around. If

we analyze the error in the sum over K and then over q for both cases (Y =X1/2Nq2

and Y =X/DK/k), the error simplifies to Oϵ,n (h2(k)
2X

4n+7
4n+8

+ϵ∣Dk∣
1

n+2
+ϵ) .

To continue on, we will rewrite the Euler product over primes not dividing 2a as

the sum

∑
n ◻-free
(n,2a)=1

χK(p)

f(n)
,

where f(n) is the multiplicative function defined by f(p) = (1+Np). To analyze this,

we will need slight tweaks to Lemmas 4.3.2 – 4.3.4. We will skip the equivalents of



71
Lemmas 3.4.5 and 3.4.6 and reproduce the equivalent of Lemma 3.4.7 without proof

as the techniques are exactly the same.

Lemma 4.3.6 For any X ≥ 1 and 0 ≤ j ≤ r1, we have

∑
∗

[K ∶k]=2
DK/k<X

(Dk,a)=1
r2(K)=2r2+j

∑
n ◻-free
(n,2a)=1

χK(n)

f(n)
=X
(
r1
j
)µ(Σ∗k,c2)Ress=1

ζk(s)

2r1+r2ζk(2)
∏
p∣2a

(1 +
1

Np
)
−1

+Oϵ,n (h2(k)X
2n+9
2n+12

+ϵ
∣Dk∣

3
2n+12

+ϵNa
1

n+4
+ϵ
) ,

where ∑∗ indicates the sum over K fixes a particular equivalence class of Kp for each

p ∣ 2 in k and Σ∗k,c2 is the restriction of the local conditions to this case.

For the second sum, we can simply use Lemma 4.3.6 to complete the sum over

K as the sum over L didn’t use DK/k in its bounds. When we sum over all possible

j and restrictions of the local conditions at 2, this yields

X
3r1µ(Σc2) (Res

s=1
ζk(s))

2

22r1+3r2ζk(2)2
∏
p∣2

(1 +
1

Np
)
−2

∏
p∣a

(
1

(Np + 1)2
)

+Oϵ,n (h2(k)X
4n+21
4n+24

+ϵ
∣Dk∣

3
2n+12

+ϵNa−
2n+9
n+6
+ 1

n+4
+ϵ
) .

We then get the final result for the second sum after summing over admissible q.

X
3r1 (Res

s=1
ζk(s))

2

22r1+3r2
∏
p

(1 −
1

Np2
−

2

N23
+

2

Np4
)

+Oϵ,n (h2(k)
2X

4n+7
4n+8

+ϵ
∣Dk∣

1
n+2
+ϵ
+ h2(k)X

4n+21
4n+24

+ϵ
∣Dk∣

3
2n+12

+ϵ
) . (4.10)

Now we turn our attention back to the third sum. For this, we will have to

use partial summation with Lemma 4.3.6 in the same way that we proved Lemma

4.3.5. When we do this and also take into account all possible restrictions of local

conditions and 0 ≤ j ≤ r1 in the sum over K, we get
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X
3r1µ(Σc2) (Res

s=1
ζk(s))

2

22r1+3r2ζk(2)2
⋅ logNq2 ⋅∏

p∣2

(1 +
1

Np
)
−2

∏
p∣a

(
1

(Np + 1)2
)

+Oϵ,n (h2(k)X
4n+21
4n+24

+ϵ
∣Dk∣

3
2n+12

+ϵNa−
2n+9
n+6
+ϵ
) .

Because log is additive, we will analyze this in the context of the sum over

admissible q by writing q in terms of its odd and even parts and handling them

separately. Using the same methods as in Chapter 3, this gives us

X
3r1 (Res

s=1
ζk(s))

2

22r1+3r2
⋅∏

p

(1 −
1

Np2
−

2

N23
+

2

Np4
) ⋅

⎛

⎝
2∑
p∤2

logNpµ(Σp2)

µ(Σp)
+ 2∑

p∣2

logNp

µ(Σp)

2ep+1

∑
i=1

iµ(Σp2i)
⎞

⎠
. (4.11)

In the above equation µ(Σpj) is the weight from the set of local conditions on L/K/k

such that Jp(L) = pj and µ(Σp) is the weight from the full set of local conditions at

that prime.

Theorem 4.0.2 is now proved by combining (4.5), (4.10), and (4.11) with the

correct weights.

4.3.3 A Note on the Local D4 Theorem

Proving Theorem 4.3.1, which also takes into account local conditions, will look a

lot like the general case without using any restrictive set of local conditions, so we

will not repeat the proof. We will, however, remark on the masses coming from the

infinite places of k and define cΣ from the theorem statement.

Addressing first the infinite places, note that the constant 3r1

22r1+3r2
from Theorem

4.0.2 is replaced by ∏v∣∞ µ(Σv) in Theorem 4.3.1. If the collection Σ is complete at

v then µ(Σv) is 3/4 if v is real and 1/8 if v is imaginary. As with any place (finite

or infinite) where Σ is incomplete µ(Σv) would need to be computed manually.

To wrap up cΣ will be defined along the lines of the discussion in Section 3.4.3.
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This will yield

cΣ =
r1

∑
j=0

1

22r2+j
cj,Σ. (4.12)

4.4 D4 ≀H Extensions

We can now finally turn our attention to proving Theorem 4.0.1. In this section k

is now a degree d number field, F is a degree n H extension of k, and L is a quartic

D4 extension of F . Given (4.1), the following sum to gives us the result

∑
[F ∶k]=n

Gal(F /k)≅H
DF /k<X

1/2

∑
[L∶F ]=4

Gal(L/F )≅D4

CL/F <X/D
2
F /k

1. (4.13)

If we start on the obvious track of using Theorem 4.0.2 to analyze the innermost

sum, we get the desired main term and use the class group results of [4] to get the

error term Oϵ,dn (X
1− 4

dn(4dn+8)
+ϵ
∣Dk∣

n−1/d+ n
dn+2

+ϵ +X
4n+21
4n+24

+ϵ∣Dk∣
n
2
− 1

2d
+ 3n

2dn+12
+ϵ) coming

from the relationship ∣DF ∣ = ∣Dk∣
nDF /k. The terms relating to Dk in the error term

look rather alarming, but k is fixed and as X tends towards infinity, the dependence

on Dk will not matter significantly. Note that the assumption that Nk,n(X;H) is

Ok,H,ϵ(X
1+ϵ) is important here. Without it, we cannot guarantee that either the

sum over F /k converges or that the error term above is accurate. If we know that

the ℓ-torsion conjecture holds for ℓ = 2 in our H extensions, then the bound on

Nk,n(X;H) can be relaxed quite a bit more.

We are not yet finished though. As before, we must also show that any number

field tower L/F /k counted this way with G = Gal(L/k) /≅ D4 ≀H is o(X logX). To

do this we will use a lemma from [21].

Lemma (5 of [21]) Let G ≤ Sn be a transitive group containing a transposition.

Then:

1. All transpositions are conjugated in G.

2. G = Se ≀H for some 1 ≠ e, emidn and H ≤ Sn/e transitive.
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Klüners uses this lemma to show that any number field tower L/F /k where L/F

is quadratic has Galois group C2 ≀H whenever the Galois group can be shown to

have a transposition and where H = Gal(F /k). We will use it in a similar way to

show that the number field tower L/F /k with L/F a quartic D4 extension has Galois

group Gal(L/k) =D4 ≀H under the right set of conditions.

Lemma 4.4.1 Let k be a number field with F /k a degree n extension with Galois

group H and L/F a quartic D4 extension. Let K denote the unique quadratic subfield

of L. Assume there exists a rational prime p such that:

1. p splits completely in F into p1, . . . ,pdn

2. Exactly one pi in F is inert in K and the rest split completely

3. The pi that is inert in K is unramified in L

4. Of the remaining pj , j ≠ i in F that split completey in K, exactly one of the

conjugates in K ramifies in L and the rest are unramified

Then Gal(L/k) ≅D4 ≀H.

Proof: Assume the hypothesis of the lemma. Because both 1 and 2 are true, the

Frobenius element corresponding to p in Gal(K/k) transposes a pair of embeddings

of K because exactly one conjugate of p in K has inertial degree 2 and ramification

index 1, while the rest have inertial degree and ramification index 1. Thus, Lemma

5 of [21] shows that Gal(K/k) ≅ C2 ≀H.

Now, with 3 and 4 also being true, the inertia group for p is generated by an

element that transposes a pair of embeddings of L because exactly one conjugate of

p is ramified in L with ramification index 2 and the rest are unramified. We again

use Lemma 5 of [21] and get that Gal(L/k) ≅ C2 ≀ (C2 ≀H). ◻

We should note that the conditions from Lemma 4.4.1 are not the only ones under

which Gal(L/k) will be D4 ≀H. Another set of local conditions that will produce

the same result is if you have two primes p and q that split completely in F . For

p, assume that one conjugate is inert in K, the rest split completely in K. The
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behavior of the conjugates of p in L can be unrestrained. For q, assume that it also

splits completely in K and that exactly on K conjugate is inert in L but the rest

split completely. A similar argument to the proof of the lemma also gives the desired

Galois group.

It is also not necessary that p be a rational prime that splits completely in F .

A prime p of k that splits completely in F will also work. We didn’t make this

more general argument because we will need that Np = p for the proof of the larger

theorem.

Proof (Theorem 4.0.1): Let k be a degree d number field and F be a degree n H

extension of k. Let S be a finite set of rational primes that split completely in F .

We know that we can find such a set by the Chebotarev Density Theorem.

We now need to find the count ofD4 quartic extensions of F that avoid conditions

2-4 in Lemma 4.4.1 at every prime in p ∈ S. This is most easily done by using

Theorem 4.3.1 to find the weight of one prime meeting all the conditions of Lemma

4.4.1 and subtract this from the weight of all D4 quartic extensions at p without any

restrictions.

Using

µ(Σp) = ∑
(Lp,Kp)∈Σp

1

∣Aut(Lp,Kp)∣C(Lp,Kp)

= ∑
(−,Kp)∈Σp

1

∣Aut(Kp/Fp)∣DKp/Fp

∏
P∣p

∑
(LP,Kp)∈Σp

1

∣Aut(LP/Kp)∣DLP/Kp

,

we get that the weight for a single prime p that meets all of the conditions of Lemma

4.4.1 is
2n(n − 1)

2n
1

p
. (4.14)

We are initially ignoring the degree d of k/Q as each of the d conjugates of p in k

has n conjugates in F and we can treat each of the d k-conjugates separately for

our purposes as each one must avoid the conditions of Lemma 4.4.1 for the Galois

group not to be D4 ≀H. The 2n(n− 1) in the denominator comes from the fact that

exactly one of the n conjugates of p in F is inert in K, and then exactly one of the



76

2(n − 1) completely split conjugates of p in K ramifies in L.

When we take (4.14) in the context of our full set of primes S, we get that the

contribution coming from these primes is

∏
p∈S

((1 −
1

p2
−

2

p3
+

2

p4
)
n

−
2n(n − 1)

2n
1

p
(1 −

1

p
)
2n

)

d

. (4.15)

As horrendous as this product may be to look at, the presence of the 1/p coming

from (4.14) is the key piece to focus on. Because there are infinitely many primes

that split completely in F , we can push the primes in the set out towards infinity.

As the set of all primes that split completely in F has positive density, this will make

(4.15) tend to 0 as the size of S tends towards infinity. This shows that the set of

towers L/F /k in our count with Galois group G /≅D4 ≀H is o(X logX).

Before we wrap up the proof though, we need to comment on the effect of the

set S on the error term in Theorem 4.3.1. In the worst case, the error has a positive

power for each prime p ∈ S, which will blow up as we send S towards infinity.

However, we can let X tend to infinity as we also increase the number of primes in

S. As long as X is sufficiently large, the error will be manageable. ◻
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