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ABSTRACT

Equivariant cohomology is a cohomology theory for a topological space M
with a continuous group action G. Two models for equivariant cohomology are
the Borel model and the Cartan model. Let M be a manifold. In cohomology, a
theorem known as the de Rham theorem states that singular cohomology with real
coefficients H*(M; R) and de Rham cohomology Hj, (M) are isomorphic rings.
The equivariant de Rham theorem states that when M is a manifold and Gis a
compact, connected Lie group acting smoothly on M, the equivariant
cohomology of M in both models is the same. Henri Cartan proved the
equivariant de Rham theorem in [5]. In this Master’s thesis, we describe both
models of equivariant cohomolgy and provide an alternate proof as outlined in

[7] of the equivariant de Rham theorem in the case that M has a finite good cover.
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The Borel Model

In this section, we define the Borel model of equivariant cohomology of a
G-space M and compute the equivariant cohomology of a point and a
homogeneous space M = G/H . For proofs of the theory behind the Borel
model, we refer the reader to [4, Ch. 1]

A left action of a topological group G acting on a topological space M is a

continuous map

GXM—-M (1.1)
(g,%) —>g-x (1.2)

such that forallx € Mandg, h € G,

(i) 1 - x = x, where 1 is the identity element in G,

(ii) (gh) - x =g+ (h-x).



A right action is defined analogously. Every left action can be turned into a
right action and vice versaviag - x = x - g '. We say that M is a left G-space or a
right G-space depending on whether G acts on the left or on the right. By a
construction due to Milnor [10], for any topological group G, there exists a
contractible space EG on which G acts freely (we can assume that G acts on the
right). We can construct a new left G-space EG X M, where the left action is the

diagonal action:
for (e,x) € EG X M,g € G,g- (e,x) = (e ~g_1,g'x)-

Since G acts freely on EG, the diagonal action of G on EG X M is free. In
addition, EG X M is clearly homotopically equivalent to M . Since G acts freely
on EG X M, we can define the homotopy quotient of M by G to be:

Mg = EG xg M := (EG x M)/G.

The Borel model of equivariant cohomology defines the equivariant cohomology
H (M) of the G-space M to be the singular cohomology of its homotopy
quotient H*(Mg). Cohomology can be taken with any coefficients, but we will
denote H*() to be singular cohomology with real coefficients. It turns out that
the homotopy quotient is well defined up to G-homotopy equivalence and so the
Borel model of equivariant cohomology is a well-defined topological invariant of

G-spaces.

1.1 THESPACE EG

Before we can compute the equivariant cohomology of a point and a
homogeneous space, we need to construct an equivalent description of the
contractible space EG on which G acts freely. The theory of G-bundles provides
such a description.

Let X and Y be right G-spaces. Amap f : X — Yis said to be G-equivariant if
forallx € Xandforallg € G,f(x - g) = f(x) - g. Letfy,f1 : X — Ybetwo
G-equivariant maps of left G-spaces. If I denotes the unit interval [0, 1], then G



actsonX X Ibyg- (x,t) = (g- «,t) . A G-homotopy from f; to f; isa
G-equivaraint map F : X X I — Ysuch that F(x, 0) = fy(x) and F(x, 1) = f1(x).

If such a G-homotopy exists from fj to f; , we say that fy and f; are
G-homotopic. Let f : X — Y be a G-equivariant map. A G-homotopy inverse of
f: X — Yisa G-equivariant map h : X — Ysuch thatare h o fand fo hare
G-homotopic to ¥y and ¥y respectively. A G-equivariant map f: X — Yisa
G-homotopy equivalence if it has a G-homotopy inverse. In this case, X and Y are
said to be G-homotopy equivalent or have the same G-homotopy type. A
G-bundle or principal G-bundle over a topological space B is a fiber bundle
7 : P — Bwith fiber G and alocal trivialization {U, ¢} , such that:

(i) G acts freely on P, and

(ii) each fiber-preserving homeomorphism ¢, : 77 *(U) — U x Gis
G-equivariant.

Note that the base space B can be identified with the orbit space P/G . When P
is weakly contractible, the G-bundle = : P — Bis said to be a universal G-bundle
(recall from homotopy theory that a space X is said to be weakly contractible if all
of its homotopy groups 7. (X) are trivial). The usual notation for a universal
G-bundleis EG — BG or « : EG — BG. The space EG is called the total space
and the space BG is called the base space or a classifying space for G.

From a construction due to Milnor, every topological group G has a
well-defined universal G-bundle. Specifically, suppose that E — Band E' — B’
are universal G-bundles over CW complexes B and B’ respectively. Then B and B’
are homotopy equivalent and E and E are G-homotopy equivalent. Thus, the
universal bundle of a topological group is unique up to G-homotopy. In addition,
we can assume that the universal bundle EG — BG admits the following
decomposition: BG = U,BG, isa CW-complex, EG = U,EG,, and EG,, — BG,
is a principal G-bundle (for more details, see [1, Sec. 1.1] and [4, Ch. 7]).

Example 1.1. The Universal Bundle of G = S :
Let g = €. The group G = S' acts on C" by rotations as follows:

g (z1,.,2,) = (g 21,0 8 20) = (69 - 21, ..., €% - 2,), where z; € C.



Note that this action preserves norms. Therefore, G also acts on the unit sphere

Sanl

$?~1in C". The following argument shows that the action on is free.

Suppose that g - z = zfor some g € G, where z € C*. Then
O=g-z—z=g-z—1l-z=(g—1) =z

Sincez #0,g=1.

We have that ' C 83 C §° C ... and G acts freely on $**~! for all n.
Therefore, G acts freely on the space S = U §?"~1 . We now will show that
§°° is weakly contractible.

Leta € 7.(S°) . By definition, a is a continuous map a : S* — $°°. Since a is
continuous and S¥ is compact, the image a(S¥) is compact. Thus, a(S) lies inside
S" for some 1 so we can think of a as being a continuous map from S* to S".
Without loss of generality, we can assume that k < n. Since 7 (S") = 0 for
k < n,a must be null-homotopic. Thus, 7;(S>°) = 0 forall k.

We can take ES' to be $°° . The quotient of S~ ! by the above action of S' is
the complex projective space CP" ! . Therefore, the classifying space BS' for G

is:
BS! = f,il(SZ"*l/Sl) = U2, ,CP" = Cp~e.

S0 §* — CP™ is a universal bundle for S' .

1.2 COMPUTATIONS OF EQUIVARIANT COHOMOLOGY IN THE BOREL

MODEL

Now that we have formally defined the Borel model of equivariant cohomology,
we can compute the equivariant cohomology of a point and a homogeneous
space under this model. Let EG — BG be a universal bundle of the compact,

connected Lie group G .
Example 1.2. The equivariant cohomology of a point:

Let M = {pt} . Any group acts trivially on M so the homotopy quotient is:



M = EG XgM ~ EG/G ~ BG.
Thus, the equivariant cohomology H; (M) of M under the group G is
Hi (M) = H (Mg) = H*(BG).

The rank of a compact Lie group G is the dimension of a maximal torus T'in G.
Let T = S' X ... X S! be a maximal torus of G of rank . The Weyl group W of T
in Gis

W := No(T)/T,

where Ng(T) is the normalizer of the torus T . For a compact, connected Lie
group, it is known that the Weyl group is a finite reflection group.
Byalemmain [11,P. 189], the cohomology of BG is the subring of

W-invariants:
H* (BG) = H* (BT)W.

Note that if EG — BG and EG' — BG' are universal bundles of CW complexes
for two topological groups G and G respectively, then EG x EG' — BG x BG'

is a universal bundle of CW complexes for G x G . Therefore,

H*(BT) = H*(B(S" x ... x §')) = H*(BS" x ... x BS")
= H*(BS') ® ... ® H*(BS") (bytheKunnethformula)

(CP®) ® ... ® H'(CP™).

A spectral sequence argument shows that the cohomology of CP™ is R]y]

where u is a polynomial of degree 2. Therefore,
H:(pt) = H'(BG) = H*(BT)" ~ (R[uy] @ ... @ R[u,)" = Rluy, ..., u,)" = S{t")",

where t" is the dual space to the Lie algebra t" of the torus T and S(t") is the
algebra of symmetric polynomials on t". Finally, the Chevalley restriction
theorem [6, P. 200] states that the restriction of a maximal subalgebra t C g gives

rise to an isomorphism of algebras



S(g¥)¢ — S(tV)™.

Thus, Hg(pt) = S(g¥)°.
Remark: The group G acts on the algebra of symmetric polynomials S(g") by
the adjoint representation. So S(g")¢ consists of polynomials invariant under the

adjoint representation.
Example 1.3. The equivariant cohomology of a homogeneous space:

Let H be a closed subgroup of G. The group G acts on the homogeneous space
M = G/H by left multiplication: for g € G and for aH in G/H, the group action
of Gon G/Hisg- aH = gaH.

To describe the homotopy quotient of a homogeneous space, we mention
some relationships between principal G-bundles and subgroups H of G (for

proofs of these results, see [4, sec. 4 and 8]).

Proposition 1.4. Let 7w : P — B be a principal G-bundle and H a subgroup of G .
Let G act on G/H by left multiplication. Then there is a bundle isomorphism

P x¢ (G/H) = P/H
over B.

Proposition 1.5. Let H be a closed subgroup of the Lie group G. If x : P — Bisa
principal G-bundle, then the projection P — P/H is a principal H-bundle. As a
corollary, if EG — BG is a universal G-bundle, then EG — EG/H is a universal
H-bundle.

By proposition 1.4, the homotopy quotient M;; of the homogeneous space
G/His
Mg = EG x¢ (G/H) ~ EG/H.
By proposition 1.5, the bundle EG — EG/H is a universal H-bundle. Since

EH — BH is a universal H-bundle, EG/H is homotopic to the base space BH .

Therefore, the equivariant cohomology of a homogeneous space M = G/H is



H(G/H) = H*(Mg) = H*(EG/H) = H*(BH).

Suppose that H is connected. Let S C H a maximal torus of H and let Wy denote
the Weyl group of S in H. By repeating the argument used for computing the
cohomology H*(BG), we have that

H*(BH) ~ S(s")"# ~ §(h¥)H.

Now suppose that H is a closed subgroup of G and let Hj, be the connected
component of H containing the identity elementine € G. Forg € G, let

¢, : G — G be the conjugation map. Since Hy is connected, ¢,(Hj) is connected
in G. Since e € ¢,(Hy) and ¢,(Hp) is connected for allg € G. This argument
shows that Hy is a normal subgroup of H. Since G is compact, H and Hj are
closed, the group R := H/H is a finite group. In addition, the covering space
BH, — BH is a finitely-sheeted covering space and R acts on this covering space.

By a proposition in [9, Prop. 3G.1], the cohomology H*(BH) is
H*(BH) = (H"(BHo))" = (S(ho)™)"

(since Hy is a closed and connected subgroup of G). Since
h = T.H ~ T,Hy = b,, (S(h,)™ )R is isomorphic to (S(h)™)~.

To compute (S(h)H0)%, it suffices to prove the following lemma.

Lemma 1.6. Suppose that a group H acts on a set X and H is a normal subgroup of
H. Let R = H/H, and let X" denote the set of elements in X invariant under this
H-action, i.e. X" := {x € X|h - x = x,Vh € H}. Then

XH = (xHo)R
Proof. Letx € X™. Thenh - x = xforallh € Hand sox € X™. But every
h € Hhas the form h = r - h for some hg € Hyand r € R. Since x € X,
x=h-x=(r-hg)-x=r-(hg-x) =r-xforallr € R. Hence,x € (X)X,
Conversely, let x € (X0)® and consider h € H. Since h = r - h( for some
ho € Hyandr € Rh-x = (r-hg)-x=r-(hy-x) =r-x = x (since
x € (X"0)R). Hence, x € X" ]

As a consequence of this lemma, we have that H*(BH) = (S(h)"0)* = S(h)=.



The Cartan Model

In this section, we summarize the Cartan model of equivariant cohomology and
compute the equivariant cohomology of a homogeneous space. For more details
about the Cartan model, see [4, 8]. Recall that a representation of a group G on a
vector space Vis a homomorphism p : G — GL(V). We can think of a
representation p as an action of G on Vand write g - v for p(g)(v). When Gisa
Lie group, we require the homomorphism to be smooth. The dual

representation of the representation p : G — GL(V) is the map
p’ 1 G — GL(VY)
defined by
P (g)(a)(v) = alp(g™")(v)) or (g~ a)(v) = alg™" - v),
fora € V¥ andv € V (it is necessary to take the inverse of g so that p” will be a

group homomorphism). Suppressing v € V, we can write the dual representation

10



as

p’(g)(a) = (aop)(g™") =pg")"(a)

We can therefore think of the dual representation p" as an action of G on V¥ and
write g - a for p(g™1)¥(a).

For each g € G, the differential at the identity of the conjugation map
¢ := lore1: G — Gisalinear isomorphism ¢, : g — g,ie. ¢, €GL(g).
The map Ad : G —GL(g) defined by Ad(g) = c,« is a representation called the
adjoint representation of the Lie group G. The dual representation of the adjoint
representation of a Lie group, Ad" : G —GL(g"), is called the coadjoint

representation:

(g- ) (X) = ((Ad" g)a)(X)
= a((Adg™)(X)) = (Adg™")"a(X).

Let Xi, ..., X, be a basis for the Lie algebra g and let 6, ..., 0, be the
corresponding dual basis for g”. From the dual space g", we construct the
algebra of symmetric polynomials S(g" ). The symmetric algebra S(g") is
generated by the set of polynomials u, ..., u, and is dual to the basis g", i.e.
u;(X;) = 0;(X;) = §;. Bach u; has degree 2. Since the coadjoint representation
defines an action of G on g", the coadjoint representation induces an action on
S(g"). In addition, the coadjoint representation induces an action on the exterior

algebra A(g") by the pullback map: forw € A*(g¥)andg € G

g-w=(Ad"g)w=(Adg !)*w.

11



2.1 THE CARTAN COMPLEX

Let M be a G-space for a connected Lie group G. Each g € G inducesa
diffeomorphism under left multiplication by g:

Iy : M — M,
p—8-p

The group G acts linearly on the de Rham complex Q(M) of M by the pullback of

forms:
gw= l;,lw.

Note thatforg,h € Gandw € Q(M),g- (h- w) = (gh) - w. We say that a form
@ on M s left-invariant if [;w = wforallg € G.

We now construct a subcomplex of S(g") ® Q(M) called the Cartan complex.
Anelementa € S(g") ® Q(M) is a finite sum

a:=Y uw,whereu = u}l..u"and w; € Q(M),

i.e. aisa polynomialin uy, ..., u, with coefficients in Q(M). An element a of the
complex can be interpreted as a polynomial function on g with values in Q(M) as
follows: definea : g — Q(M) by

a(X) = 2w (X)wr = w (X)" - - - uy(X)"wy € Q(M).

We say that a function g : g — Q(M) is polynomial if p = a for some
a € S(g¥) ® Q(M).

Since G acts linearly on S(g") by the induced action of the coadjoint
representation and on (M) by the pullback l;,l , G acts linearly on
S(g¥) © Q(M) by

gra=g (W)= (g ) (g )

12



Anelementa € S(g") ® Q(M) is said to be G-invariant if the corresponding
polynomial map a : g — Q(M) is G-equivariant: forallg € Gand X € g,

a(g-X) = a((Adg)X) = [ (a(X)) = g - (a(X)).
The Cartan complex is defined to be the subcomplex
Qa(M) = (S(g") ® Q(M))¢ C S(g") ® Q(M)

consisting of elements of S(g") ® Q(M) that are G-invariant.
There is a differential operator dg on Q¢ (M) called the Cartan differential
defined as follows: fora € Qg(M)and X € g

(dga)(X) := d(a(X)) — x(a(X)),

where d is the exterior derivative and 15 denotes interior multiplication by X, the
fundamental vector field X on M associated to X € g. The Cartan differential is
nilsquare, i.e. d% = 0.

The Cartan model of equivariant cohomology of a G-space M is defined to be
the cohomology of the differential complex: H*{Qs(M), dg }. Using the Cartan
model, we will soon compute the equivariant cohomology of a point and a

homogeneous space.

2.2 THE CARTAN COMPLEX OF A HOMOGENEOUS SPACE

Let H be a closed, connected subgroup of a compact, connected Lie group G. Let
g and b be the Lie algebras of G and H respectively. The Cartan complex of the

homogeneous space G/H is
Q6(G/H) = (S(g") ® Q(G/H))“.

We will show that the Cartan complex is isomorphic to another complex and
compute the cohomology of the new complex in the next section. To construct

this isomorphic complex, we first will show that the exterior algebra Q*(G/H)®

13



of left-invariant forms on the homogeneous space G/H is isomorphic to a
subcomplex of the exterior algebra Q*(G)® of left-invariant forms on G.

Let H be a closed subgroup of a Lie group G. A k-form w on G is said to be
Ad(H)-invariant if

h-w, = (Ad o, = (Adh™")"e, = o, € \(g")

forallh € H. A k-form w on G annihilates ty if w,(v1, ..., v;) = 0 and some v; is
in h. Suppose that w and 7 are two Ad(H)-invariant, left-invariant forms on G
that annihilate H of degrees k and I respectively. Since the wedge product
commutes with the pullback, the wedge product w A tisa (k + 1) left-invariant
and Ad(H)-invariant form. In addition, the wedge product w A 7 is a form that
annihilates b from the very definition of the wedge product. Specifically, let

Vi, ..., Vipr € gwithv; € b forsomei =1, ..., k + L. By definition of the wedge
product,

1
WA T(V1, e vn) = 1 > (s810)@(vo(1), s Va@)T(o(es1)s s Votin)

SN

1
=l Z (sgn )0 (since w and 7 are Ad(H)-invariant)

oESK1

=0.

Finally, since the exterior derivative commutes with the pullback, dw is an
Ad(H)-invariant, left-invariant forms on G that annihilate H. Therefore, we have
shown that the set of left-invariant, Ad(H)-invariant forms that annihilate b is a

subalgebra of the exterior algebra A(g").

Theorem 2.1. : Let w : G — G/H be the natural projection map. The pullback map

7 : Q(G/H) — Q(G) (2.1)

w T (2.2)
gives rise to the following one-to-one correspondence:

14



{left-invariant k-forms on G/H} <> {left-invariant Ad(H)-invariant k-forms on G
that annihilate b }.

Proof. (=) Let w be a left-invariant k-form on G/H. We have the following

commutative diagram:

lg
G G
T T
G/H G/H
I

where ; is left-multiplication by the left coset gH, i.e. L(aH) = g - aH = gaH.
For convenience, we will sometimes write [; as ;.
(7*w is left-invariant:) Since 7w o I, = l; o m, the pullback maps also commute:

(woly)* = (I o m)*. Therefore,

P(ra) = (x0 )" (@)
= (hon)'w=n"Lw

= 7" w (since w is left-invariant).
(7*w is Ad(H)-invariant on G:) Leth € H.

(Adh)' 7w = (I, or1)"7"w
=ra(lr'w) =rar'w

= n*w (since # = w o r;,-1 on G/H).
(7*w annihilates h:) Let vy, ..., v;, ..., v € gwithv; € b.

(@) (V1 ooy iy ooy V) = @op(TaV1,y oy TV oy V)

= w(mev1y ..y 0,y mevy) =0

15



(if r : G — G/H is the projection of G/H, then the induced map 7. : g — g/b
sends b to o).

(<) Conversely, let € Q*(G) be a left-invariant Ad(H)-invariant k-form on
G that annihilates . We want to construct a left-invariant k-form @ on G/H such
that 7*w = #. Since 7 is a left-invariant form on G, it is generated by a k-form
n, € A*(g") on the Lie algebra g. Since 7 annihilates b, clearly 7, also annihilates
b. Similarly, 5, is Ad(H)-invariant since 7 is Ad(H)-invariant. Thus, the k-form
n,: 9 X ..x g — Rinducesak-formn, € A*(g/h)" in the sense that
0,01, o v) = ng(meve, o mav) = 7 (v, oy ve) for vy, v € @
Therefore, we define w,;; on G/H to be Ny and for a € G, we define w, to be
L wen.

We need to show that this construction of the form w € Q(G/H) is
independent of our choice of coset representatives, i.e. if aH = bH, then
wan = wpy. Suppose that aH = bH. Then ab™' € H. Letc = ab™ .

By the commutative diagram, 7*[’w.y = I’ 7" w.y.

Let r, denote right multiplication by ¢ € G on G/H. Since 7 0 r;-1 = 7 for all
h € H,r_yx* = x*. Thus,

mrwy =L wy
Adc)'n*w.n = (Adc)*y,
=1, (since 5, is Ad(H)-invariant)

== ﬂ*weH-

Since the pullback map 7™ is injective, [’y w .,y = w,y. Finally,
lfa)eH = l:b_l W.H — lZ_llZweH = W¢H-.
Thus,
Pwn = Lwe.

In addition, since 7 is left-invariant, w must also be left-invariant. Finally, we need

to show that 7 = 7" w. But this follows from the fact that y, = 7w,y and both 7

16



and 7*w are left-invariant. O]

Now that we have established a one-to-one correspondence between
left-invariant k-forms on G/H and left-invariant Ad(H)-invariant k-forms on G
that annihilate b, we can construct a complex isomorphic to the Cartan complex
Q¢(G/H).

The Cartan complex Qg (G/H) is (S(g") ® Q(G/H))C. Recall that another
way of defining this complex is that it is the set of G-equivariant polynomial

maps: foralla € Q*(G/H),g € G,and X € g,

a((Adg)X) = I (a(X)).

This condition can be rewritten as

a(X) = k-1 (a((Adg™)X)).
Consider the complex S(g") ® A(g/h)". As in our discussion of the Cartan
complex, an element f € S(g¥) ® A(g/h)" is a finite sum

a:= Y uwy,whereu = uil...u;" anw; € A(g/h)".

We can interpret an element of this complex as a polynomial functions on g with
valuesin A(g/h)". Anelementa € S(g") ® A(g/h)" is said to be
Ad(H)-invariant if the corresponding polynomial map f : g — A(g/h)" is
Ad(H)-equivariant: forall X € gand h € H,

B(h- X) = B(Ad(H)X)
= (Adh)"(B(X)) = (Ad" h™)(B(X)) = k™" - B(X).
Let (S(g¥) ® A(g/bh)")H denote the subalgebra of forms in S(g¥) @ A(g/h)"
that are Ad(H)-invariant. For simplicity, we will write Axgp(g/b)" to mean

(S(g¥) ® A(g/h)")". We now will show that the Cartan complex is isomorphic

to the complex
Naan(9/h)" = (S(g") ® A(g/h)*)".

17



One way of describing this new complex Aaqu(g/ h)V is that it is equal to the set
of Ad(H)-equivariant polynomial maps a : g — A(g/h)".

Theorem 2.2. The Cartan complex Qs(G/H) = (S(g") ® Q(G/H))% is
isomorphic to the complex A aau(g/H)" = (S(g") ® A(g/b)¥)H.

Proof. Consider the maps

¢ : Qc(G/H) = Aaan(g/h)"
a(X) = a(X) == a(X)u

and

Vv : Aaan(9/h)" — Qe(G/H)
B(X)ars — B(X) :=I-1B((Ada 1)X).

The motivation behind the map v is that it should send an element  to a
G-equivariant polynoimial map since an element a € S(g¥) ® Q(G/H) is
G-invariant if forall X € gandforallg € G,

a(X) = I 1 (a((Adg")X)) = g-a(g™ ).
It suffices to show that forall X € g,a € G,a € Q¢(G/H),and p € A(g/h)",
P¥(a(X) = a(X) and yo(B(X)) = B(X).

Before proving that oy = 1 5,,,.(s/p)v and ¥@ = L, (g/m), we first need to
show that a(X) is an Ad(H)-invariant form in Axg(g/h)". Then we need to
show that v is a well-defined map. Since a G-equivariant polynomial satisfies
a((Adg)X) = I (a(X)) and B is a left-invariant and Ad(H)-invariant form, we
can immediately see that f(X) = I*_1B((Ada')X) = B(X) is a G-equivariant
polynomial, i.e. 8 is a form in the Cartan complex.

(ais Ad(H)-invariant:) Leth € H, X € g. Then

a((Adh)X) = a((Adh)X).x = (l;-1a(X)).q (since a is G-equivariant)

= (h-1,a(X))en = (G-1a(X))en
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(since a(X) isaformon G/Hand r, = 1/ on G/Hso a(X) = rja(X))

— Ad(h )" (a(X)ar) = (AdKY)" (a(20))
— (Ad" ) (@(x)).

(v is well-defined:) Let B € Aaan(g/h)" and X € g/b. Consider
B(X)arr, B(X)sr € A(g/h) and suppose that aH = bH. Letc = ab™' € H. To
prove that v is well-defined, it suffices to show that

V(BX)ar) = L ((Ad 1B (X) = B((Ad0)X) = B(X).

But by definition, a form (X) in Q(G/H) is G-equivariant if forall g € G,
Ig (B((Adg)X)) = B(X). So ¥(B(X).z) = B(X) and the map ¥ is well-defined.
Note that we also have shown that ¢ = 1o (g/n).

(o¥ = Lnuuto/nyv eV (B(X)an) = o(I;-1 (Ada™1)B)(X))
=I-1((Ada™")B)(X)en = ((Ada™")B)(X)an
= B(X) . (since B(X),p is Ad(H)-invariant, by theorem 2.1).

]

2.3 THE COHOMOLOGY OF THE COMPLEX Aap(g/h)"

The Cartan complex has a Cartan differential d and the Cartan model of
equivariant cohomology states that H;(M) = H*{Q¢(M), dg}. By theorem 2.2,
the Cartan complex Qg (G/H) of the homogeneous space G/H is isomorphic to
Aaan(g/h)". Therefore, our strategy for computing the equivariant cohomology
of the homogeneous space G/H is to construct the differential operator ;lG in
Aaan(g/h)Y corresponding to the Cartan differential dg (i.e. construct the
differential operator that makes the diagram below commute) and compute the

cohomology of the differential complex { Axau(g/h)", dg}.
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Q¢(G/H) Naan(8/D)"

dG LN‘ZG

Qb (G/H) —— ALh(a/b)”

So to describe the differential operator dg, it suffices to determine what the
Cartan differential does on generators for Qs(G/H) = (S(g") ® Q(G/H))C.
Let Xy, ..., X, be a basis for g with X, ..., X; a basis for g/h and X411, ..., X, a
basis for . Let 01, ..., 0, be the dual basis of X1, ..., X, for g and let uy, ..., u, be
generators for the algebra of symmetric polynomials S(g") such that the
polynomials uy, ..., u, are dual to X1, ..., X,,, i.e. ;(X;) = 0;(X;) = §;. Asan
R-algebra, the Cartan complex Q(G/H) is generated by
{u; ® 1,1 ® w(G/H) : w € Q(G/H)}. Therefore, we just have to compute
do(u; ® 1) and dg(1 ® w).

Recall that for X € g,a € Q¢(G/H), (dga)(X) = d(a(X)) — x(a(X)),
where X is the fundamental vector field on G/H associated to X. Therefore,

(Ao © 1)) (X)) = d((1 © 1)(X;)) — 15 (s © 1) (X))
(1 ® 1)(X) = w(X) - 1 = 8.

Therefore,

(do(1 ® w))(X)) = d(1(Xj)w) — 15, (1(X))w)

=dw — Ix, 0.

Let us now consider the complex Ay (g/h)" = (S(g"¥) @ A(g/h)")H. This
complex is generated by {u; ® 1,1 ® 6, ..., 1 ® 60;} (since X, ..., X is a basis
for g/b). For notational convenience, we will occaisonally drop the tensor

product so that 0; = 1 ® 0; and u; = u; ® 1. Let w; be the left-invariant form on
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Q(G/H) corresponding to 6; (the form w; is obtained simply by the pullback of
left-multiplication) so that ¢(w;) = (w;).y = ;.

((dg 0 @)(u; ® 1))(X;) = ((p 0 dg)(u; ® 1))(X;)
¢(0) = 0.

((do)(1® 0:))(X;) = (deog)(1® w;))(X;) = ((p o de)(1 ® wi))(X;)
¢(dw; — tjgjw,') = (d(l(Xj)wi) - l&(l()@)wi))eH
= (dwi)en — (t)-(].w,-)gH = do; — §;.

Therefore,

dG(1®91)=1®d91—u1®1

We now provide an alternate algebraic description of the complex Axqu(g/h)"”
by introducing the Koszul complex. By describing Aaqu(g/h)" in terms of a

Koszul complex, we obtain a simpler description of the differential operator de.

2.4 THEKoszuL COMPLEX

Let Vbe an n-dimensional vector space. Let A(V") be the exterior algebra of V¥,
and let S(V") be the algebra of symmetric polynomials. All of the elements of the
symmetric algebra S(V") are even. The Koszul algebra K(V) of V is the tensor
product S(V¥) @ A(VY). Suppose that uy, ..., u, generate S(V") and that

01, ..., 0, generate A(V"). Thenu; ® 1 and 1 ® 6, generate the Koszul algebra.
Note that #; ® 1 has degree 2 and 1 ® 6, has degree 1. The Koszul operator dy is

the anti-derivation defined on the generators by:

dK(Mi ® 1) = 0,
dK(l ® 9,) = U; ® 1

and extended to K(V) as an antiderivation. Since d2 = 0 on the generators, it

follows that d2 = (0 forall a € K(V). The Koszul complex of V is the Koszul
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algebra K(V) of V with the Koszul operator di. The cohomology of the Koszul

complex is acyclic, i.e.

R forn=20
H"(K(V)) B { 0 forn >0

We can describe the complex { Aaar(g/h)", EZG} in terms of a Koszul
complex. Let us decompose g into h¥ and g/ " such that the decomposition is
Ad(H)-invariant. We have that ¥ = h¥ @ g/h” and S(g¥) = S(h") @ S(g/h)".
Therefore, we can decompose A (g/h)" as follows:

Aaan(8/0)" = (S(g¥) @ A(g/)")" = (S(h") @ S(g/h)" ® A(g/h)")".
Note that S(g/h)" ® A(g/h)" is the Koszul algebra K(g/h) of g/b. Let dx be
the extension of the Koszul operator di on S(g/h)" ® A(g/h)" to

S(g¥) @ A(g/b)" = (S(b") @ S(g/h)” © A(g/b)")"

by setting ZiK(ui ® 1 ® 1) to be zero. Then we have that ;iG =1®d-— EiK (or,

more simply, d — d) since

d((u; ® 1)(X))) = (di(w; ® 1))(X;) =0 -0

and

d((1® 60)(X)) — (de(1 ® 6,))(X;) = db, — &
= (Zic(l ® 60,))(X;).

2.5 THE COHOMOLOGY OF Aap (g/h)"

We have a differential complex { Aaar(g/h)", EZG} and by the previous section,
this differential complex is the same as the differential complex
{(s(h¥) ® K(g/h))¥, d — dx}. We now show that d¢; is Ad(H)-equivariant. Asa

consequence, we have that
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H{(S(h") ® K(g/h))", dc} = (H{S(b") @ K(a/b), dc})"
Lemma 2.3. The differential operator d on Aaari(g/h)" is Ad(H)-equivariant.

Proof. To prove that dgis Ad (H)-equivariant it suffices to show that d and dy are
Ad(H)-equivariant maps on the generators #; ® 1 and 1 ® 6; of Axau(g/h)". Let
heHandX € hand X € g.

(dis Ad(H)-equivariant on 1 ® 6;:)

d((Ad" h)(1 ® 6,)(X)) = d((Adh™")"(1 ® 6))(X))
=d((1®6)((Adh 1)X)) = d(1((Adh 1)X)6,) = db;

and
(AdY h)d((1® 6,)(X)) = (Ad" h)do; = (Ad h)*do..

Since 0;isin A(g/h)", 6; corresponds to a left-invariant form on G/H. Therefore,
by theorem 2.1, 6; also corresponds to a left-invariant Ad(H)-invariant form on G

that annihilates ). Since 6; is Ad(H)-invariant, d6; is Ad(H)-invariant. Thus,
d((Ad" h)(1 ®6,)(X)) = (AdY h)d((1 ® 6,)(X)) = db..

(d is Ad(H)-equivariant on 1 ® 6;:)

di((Ad" h)(1 ® 6)(X)) = dx(1((AdR™)X)6,) = w,
(AdY h)dk((1 ® 6,)(X)) = (AdY h)u,.

Recall that the Cartan complex Q¢ (G/H) is (S(g") ® Q(G/H))® where G acts
on S(g") by the coadjoint representation. Therefore, by definition, a polynomial
u' ® lisin Q¢(G/H) if u is invariant under the coadjoint representation. Since
u; is invariant in the Cartan complex, u; must also be invariant in Axq(g/h)".
In addition, since

die(; ®1) =d(u;®1) =0

dg is clearly equivariant on ; ® 1. Thus, dg is Ad(H)-equivariant. O
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We now compute the cohomology of the complex {S(g") ® A(g/h)", ;ic} bya
spectral sequence argument and by treating S(h") ® K(g/h) as a double

complex. Let

Eg’q _ { Sp/z(bv) ®Ki(g/h) if pis even
0 ifpisodd
where K%(g/h) = @y—2:+;S'(g/h)" ® N(g/h)". This construction reflects the
fact that S(g") consists only of elements of even degree, so S (h") is 0 for p odd.
We equip the complex Ei? with the extended Koszul differential dx.

Since the Koszul complex K(g/) is acyclic with respect to the Koszul
differential d, Ef? = S¥(g¥) ® K(g/b) is acyclic with respect to the extended
Koszul differential cNiK. Therefore, we have that the cohomology of E, with respect
to the extended Koszul differential :iK is:

s2(hY) @ R ifpiseveng = 0

Epﬁq ::HEp’q’;j —
1 (Eo”, di) { 0 ifg > O orpis odd.

Note that the cohomology of the double complex is concentrated along the
bottom row. In addition, since the tensor productis over R, #(h") ® R is
isomorphic to SP(h").

LetE; = ®F)1 = @E?p V=g () and equip E; with the exterior derivative

d. Since d sends every element in S(g") to 0,

SPI2(hY) forpevenand g = 0

0 otherwise.

By = H(EY, d) = {

So Ey = @, ;B ~ @;‘;OE?’O = S(h"). Inductively, ifd, = d; = d and
E, = H(E,_4,d,) forr > 2, we have:

P4 __ P __
B == .

The stationary value of E}'? is denoted E2Z.
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From the theory of spectral sequences, the associated graded complex

GHY (Aaar(g/h)Y) of the total cohomology is given by

GHgg(/\AdH(g/b)v> = O2prq=n (Aaan(g/h)")

$"2(hV)  forneven

2‘En/2,0 /\ v =
% (Aaan(g/bh)") 0 forn odd

(for a proof, see [3, Thm. 14.14]). In addition, since the complex Aaqu(g/h)" is

a vector space, we have a vector space isomorphism:

H§Z(AAaH(9/fJ)V) = GH%Z(/\AdH(g/b)V) ~ §"(h")
(see [3, Rem. 14.17]). In the next subsection, we will show that there is a ring
homomorphism from the Cartan model to the Borel model. Since a ring
homomorphism and a vector space isomorphism between two algebras is an

algebra isomorphism, the two models of equivariant cohomology are isomorphic

as algebras:
H*(Qs(G/H),dg) — H*(EG x¢ G/H) ~ S(h")H.

Note also that when H = G, we have the equivariant cohomology of a point

under the Cartan model:

§°(h")" = $*(g")",
which is the same as the equivariant cohomology of a point under the Borel
model. Therefore, we have shown that the Borel and Cartan models compute the

same equivariant cohomology of M when M is a homogeneous space and when

M s a point.
2.6 A RingG HoMOMORPHISM FROM THE CARTAN MODEL TO THE

BOREL MODEL

To construct the ring homomorphism from the Cartan model to the Borel

model, we will describe a third model of equivariant cohomology called the Weil
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model that is isomorphic to the Cartan model and construct a ring
homomorphism from the Weil model to the Borel model (for more details on the
Weil model, see [8, Ch. 4]). The Weil algebra W(G) of a Lie group G with Lie
algebra g is the Koszul algebra of g

W(G) == S(g") @ A(g").

Suppose that X, ..., X, is a basis for the Lie algebra g. If uy, ..., u, is the dual
basis for S(g) and 04, ..., 6, is the dual basis for /A (g"), then u; := u; ® 1 and

0, := 1 ® 0; generate the Weil algebra. Since [X;, X; is in g, there exist constants

cs. such that
X, X = D X

We can construct the exterior derivative d on the Weil algebra by defining d on

generators and extending it to W(G) as an antiderivation:
L —
d9,- = U; — 5 Z C;kejek
du; = c;kujek.

For X € g, we define the contraction with X on the Weil algebra to be the

following map: set
ix8; = 0:(X), ixuj = 0,
and extend it to W(G) as an antiderivation of degree -1. The Lie derivative Ly is
Lx = 1ixd + dix.

An element a of the Weil model W(G) is said to be basic if ixa = 0 and Lxa = 0
forall X € g. The set W(G)y,s of basic elements of W(G) form a subalgebra of the
Weil algebra. The set W(G )y, is also closed under the exterior derivative d. Thus,
W(G )pas is @ subcomplex of W(G).

For a G-space M, the de Rham complex (M) is equipped with the exterior

derivative d and interior multiplication ix := ix, where X is the fundamental
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vector field on M associated to X € g. The complex W(G) ® Q(M) isa
differential graded algebra with antiderivations d and 1x for X € g. A basic
element in W(G) ® Q(M) is defined in the same way as for the Weil algebra
W(G). The set (W(G) @ Q(M))p, of basic elements of W(G) ® Q(M) is closed
under the exterior derivative d. The Weil model of equivariant cohomology
defines the equivariant cohomology of a G-space M to be the cohomology of the
basic complex {(W(G) @ Q(M))pas, d}-

Remark: The intuition behind the Weil model of equivariant cohomology is
that the Weil algebra W(G) should serve as an algebraic model for the total space
EG of a universal G-bundle. For a principal G-bundle 7 : P — M, a differential
form w on P is said to be basic if it is the pullback of a form on M (for more
details, see [4, Sec. 14]). A form w € Q(P) is basic if and only if ixw = 0 and
Lxa = 0forall X € g (for a proof, see 4, Prop. 14.12]). Since
7. : TyP — Ty, M is surjective for any p € P, the pullback map
7" 1 Q(M) — Q(P) is injective. Thus, there is a one-to-one correspondence

between the forms on M and the basic forms on P. The isomorphism
7L QF (M) = (Pas

induces an isomorphism in cohomology
H (M) = H{Q"(P)pys }-

There is an isomorphism between the Cartan model and the Weil model of
equivariant cohomology called the Mathai-Quillen isomorphsim (for a proof,
see [8, Ch. 4]). Therefore, it suffices to construct a homomorphism between the
Weil model and the Borel model of equivariant cohomology. Recall that
EG = U,EG,, BG = U,BG,, and that EG, — BG, is a principal G-bundle.

There is a connection form w on EG,; it is a g-valued 1-form on EG,,, i.e.
w = z wiX,'.

The connection form w on EG, gives rise to a curvature form Q on EG,:
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Q =dw+ 3w, .

The algebra homomorphism

P W(G) — Q*(EGn) (2.3)
0 — o' (2.4)
W QY (2.5)

is a well-defined homomorphism that commutes with the exterior derivative d
and the contraction ix for any X € g (for a proof, see [4, Sec. 18.5]). Since the
homomorphism ¢ commutes with d and iy, it also commutes with the Lie

derivative Ly = ixd + dix. Therefore, ¢ induces a ring homomorphism
9 W(G)pas = Q" (EG,)bes = Q*(BG,)
of basic complexes (this induced homomorphism is called the Chern-Weil
homomorphism). The Chern-Weil homomorphism can be naturally extended
from a ring homomorphism W(G)p,s — Q*(EG, )b to another ring
homomorphism W(G)pes @ Q(M) — Q(EG, )pes @ Q(M). Therefore, in
cohomology, we have the following ring homomorphism (H;(M) denotes the
equivariant cohomology in the Cartan model):
H(M) =~ H*(W(G) @ Q(M))uss) — H*((Q(EG,) © QM) )b )-

By the Kiinneth formula and the remark on the previous page,

H*((Q*(EG,) @ Q(M))pss) = H(Q*(EG, X M)p,) = H*((EG, X M)/G).
Let M, denote the homotopy quotient (EG, X M)/G. Note that since
EG = U,EG,, Mg = U,M,. We have shown that there is a ring homomorphism
from the Cartan model of equivariant cohomology to H*(M,,) for all n.
Therefore, there is a ring homomorphism

H (M) — lim H* (M,).

Since H*(M,,) is the real singular cohomology of M, @ H*(M,) ~ H*(Mg) [9,
Prop. 3F.5]. Thus, there is a ring homomorphism from the Cartan model to the

Borel model.
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The Equivariant de Rham Theorem

3.1 PROPERTIES OF G-ORBITS

In this secton, we study some properites of G-orbits on a G-space M. We show
that when G is compact, every G-orbit is a regular submanifold of M. The
compactness condition on G produces two other results about G-spaces that have
analogues in the theory of manifolds:

1) Every G-orbit has a G-invariant tubular neighborhood.

2) Every G-space has an invariant good cover.

These results have the following analogues in the theory of manifolds:

1) Every regular submanifold of a manifold has a tubular neighborhood.

2) Every manifold has a good cover.

(An open cover 4l = {U,} of a manifold M of dimension  is called a good

cover if all nonempty finite intersections U,, N - - - N U, are diffeomorphic to
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R". A manifold which has a finite good cover is said to be of finite type). Finally,
the existence of an invariant good cover allows us to prove the equivariant de
Rham theorem when G is a compact, connected Lie group and M is a G-space of
finite type.

Let M be aleft G-space, where G is a Lie group. A subset A of M is said to be
G-invariant if [,(A) C Aforallg € G. Forx € M, let G - x denote the G-orbit of

x:
G-x={y€Mly=g-xforsomeg € G}.
Let G, denote the stabilizer of x:
G, ={g€ Glg-x=x}.
Lemma 3.1. Forx € M, G, is a closed subgroup of G.

Proof. Suppose that {g; } is a sequence in G, such that gy — g.
Since gr € G, g - ¥ = « for all k. Therefore,

& X = (hmk—>oo gk) X = limk_wo (gk . x) = x.

]

By the orbit-stabilizer theorem, G - x >~ G/G,. Since G, is a closed subgroup of
G, G - x is a submanifold of G [13]. When G is compact, G/ G, is a regular
submanifold of G. We will soon prove that G/ G, is also a regular submanifold of
M by introducing fundamental vector fields.

Every Lie group G has an exponential map exp: g — G defined on its Lie
algebra g. Each element Y € g generates a curve e~ :=exp(—tY) in G, where

is a real variable. We define the fundamental vector field Y associated to Y by

Y, = dit|t:0e*” -xforx € M.

We have the following theorem about the zeros of fundamental vector fields (for

a proof of this theorem and the corollary that immediately follow, see [4,

Prop. 2.4]):
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Theorem. Suppose a Lie group G acts smoothly on a manifold M. For any element
A in the Lie algebra g of a Lie group G, a point p € M is a zero of the fundamental
vector field A on M if and only if p is a fixed point of the action of the one-parameter
subgroup {e* € G|t € R} in G on M.

Corollary: For A € g, the fundamental vector field A vanishes at p if and only if A
is in the Lie algebra of the stabilizer G,,.

If we fixx € M, the orbit map

fi:G—>M (3.1)
g g-x (3.2)

is a smooth map whose image is the orbit G - x. Its differential at the identity is

the linear map

(f)se: 8 — T.M
that sends Y € g to its fundamental vector field Y.

Proposition 3.2. Forx € M, the orbitmap f, : G/G, — M is an injective
immersion. Furthermore, when G is compact, the orbit G - x is a regular submanifold
of M.

Proof. Let H = G/G,. It suffices to show that the map

fi it H—>M (3.3)

gr>g-x (3-4)

is a injective immersion and that when G is compact, the map is also a proper
map. The map f, is injective because H acts freely on x. Since H acts freely on x, H
also acts freely for every y € H - x. This is a consequence of the fact that if

y = g xforsomeg € H, then G,., = gi1 G,g. So if the stabilizer H, of x is
trivial, then H, is trivial too. To show that f, is an immersion, we need to compute

the kernel of the differential map
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(fo)eg : TeH — TouM.

It suffices to consider the kernel when g = ¢, since ker 7, ; = I, (ker 7, ). By the
previous corollary, for A € b, if the fundamental vector field A vanishes at g - «,
then A is in the Lie algebra of the stabilizer H,.,. But since the stabilizer H,., is
trivial, A = 0. Therefore, f, is an injective immersion.

Suppose that G is compact. Recall thatamap f : X — Yis proper if for every
compact set V C Y, its preimage f (V) is compact in X. Since any continuous
map from a compact space to a Hausdorff space is proper, the map f, : H — Mis
proper.

By a theorem in manifolds, if a manifold N is compact, then an injective
immersion f : N — M is an embedding and the image f(N) is a regular
submanifold of M [12, Th. 11.13 and Ex. 11.5]. Thus, if G is compact,

f.(G/G,) = G - xis a regular submanifold of M. ]

3.2 THE TANGENT SPACE OF A G-ORBIT

Suppose that a compact Lie group G acts on a manifold M on the left (in this
section, G is always assumed to be compact). By proposition 3.2, every G-orbit is
a regular submanifold of M. Let x € M. Then since G - x is a regular submanifold
of M, for eachp € G - «, the tangent space T,(G - x) of G - x is well defined.

Therefore, the tangent space T, M can be decomposed into a direct sum:
T,M = T,(G - x) ® N,,

where N, is the quotient vector space T,M/T,(G - x). Note that ify is in the orbit
G - x, then N, and N, are isomorphic vector spaces.

For g € G,, the map

‘M— M (3.5)
yr gy (3.6)

lg

fixes the orbit G - x set-wise. The differential map
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(I)s : TM — TguM = T,M

is an isomorphism that sends the tangent space of the orbit into itself. Thus, the
differential map also induces a linear map from N, to itself. This argument shows

that to each x € M is associated a group homomorphism
G, — GL(N,),

i.e. we have a linear representation of the stabilizer G, on N,. As aresult, the
stabilizer G, acts on G X N, by left multiplication on G and by the linear
representation on Nj.

In general, if His a closed subgroup of the Lie group G and if V'is a vector
space with an H-linear action (that is, every element h € H induces a linear map

on V), then there is a free action of Hon G X V:

h- (gv V) = (ghilv h- V)'

We can obtain a quotient space G Xz V by declaring (g, v) and (go, v9) to be
equivalent if there existsan h € Hsuch thath - (g, v) = (go, vo) (the notation
g, v] will denote the equivalence calss of (g,v) in G Xy V).

From this construction, G Xy Vis a vector bundle on G/H with fiber V. The
vector bundle G X ;; V' has a well-defined G-action:

8o - [8:v] = [gog: v]-
We can treat G/H as the zero section of the vector bundle G Xy V, i.e.
G/H = {[g.0]|ge G} C G xux V.

Taking H to be G, and V to be N,, we have constructed a vector bundle G X, N,
with fiber N, and whose base space is G - x = G/G,. The following theorem
states that the orbit map f, can be extended to some neighborhood of the zero
section G/G, (for an outline of the proof, see [2, Thm. 1.2.1]):

Theorem 3.3. (“The slice theorem”): Suppose a compact Lie group G acts on a

manifold M. Then there exists a G-equivariant diffeomorphism from a G-invariant
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open neighborhood of the zero section in G X, N, to a G-invariant open
neighborhood of G - x in M, which sends the zero section G/ G, to the orbit G - x by the
orbit map f,.

By the slice theorem, every G-orbit in M has a G-invariant tubular
neighborhood. For each x € M, let U, denote such a G-invariant tubular
neighborhood of G - «.

Proposition 3.4. The open cover I = {U, }cp is an invariant good cover, i.c.
any nonempty finite intersection of elements of L is a G-invariant tubular

neighborhood of some G-orbit.

Proof. It suffices to prove this result for the intersection of two elements in the
open cover . Let U, and U, be elements in {[ and suppose that

U,y = U,NU, # J. Let z € U,,. Since the tubular neighborhood U, is
G-invariant, g - z € U, forallg € G. Similarly,g- z € U, forallg € G, so

G - z C U,,. Since our choice of z € U, , was arbitrary, forall z € U,

gz € U,,. Thus, U, is a G-invariant tubular neighborhood of any G-orbit

contained in U,,,. L]

3.3 THE EQUIVARIANT DE RHAM THEOREM

We are now able to prove the equivariant de Rham theorem for the case that M is

a manifold of finite type.

Theorem 3.5. Suppose that a compact, connected Lie group G acts smoothly on a
manifold M of dimension n and of finite type. Then the equivariant cohomology of M
in the Borel model and the equivariant cohomology of M in the Cartan model are

isomorphic.

Proof. We have already examined the case when M = {pt}. By the previous
proposition, M admits an invariant good cover I = {U,, }.cu, where U, is an
invariant tubular neighborhood about some G-orbit in M. Since M is of finite

type, we can assume that {(is finite. Let H{, 5, (X) and H . (X) denote the
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equivariant cohomology in the Borel model and the Cartan model respectively of
a G-space X.

(Case 1: {1 = {U}) Suppose that ${ = {U} is an invariant good cover of M.
By definition, U is diffeomorphic to R". Equivariant cohomology is a
G-homotopy invariant of a G-space. Since R" is G-homotopy equivalent to a
point, the equivariant cohomology of M (in either model) is isomorphic to the
equivariant cohomology of a point and, as we showed earlier,

He o (p}) = i ({p1)).

(Case2: 4 = {Uy, ..., U, }) We prove this case by an induction argument on
the cardinality of an invariant good cover. We will now prove the theorem for the
case when 4l = {Ujp, U, } because this proof uses an argument that we can apply
in the more general case. Suppose that 4{ = {Up, U, } is an invariant good cover
for M, where U; is a G-invariant tubular neighborhood about the G-orbit G - x;.

In ordinary cohomology, the Mayer-Vietoris sequence
0— Q*(M) — Q*(U()) D Q*(Ul) — Q*(UO N Ul) —0

induces a long exact sequence in cohomology, also called a Mayer-Vietoris

sequence:

oo — H*(M) — H(Uy) ® H*(U;) —» H*(UyNUy) — H Y (M) — - - -
In equivariant cohomology (in either model), there is a Mayer-Vietoris sequence:
oo = HL (M) — H5(Up) @ HL(Uy) — H(Up N UL) — HEPH (M) — - - -

The G-invariant open sets Uy, U;, and Uy M U; are each G-homotopy equivalent
to some G-orbit in M. Since G is compact, every G-orbit G - xo is homeomorphic
to the homogeneous space G/ G,. Therefore, the equivariant cohomology of each
open set in either model is isomorphic to the equivariant cohomlogy of a
homogeneous space. We showed earlier that for any homogeneous space G/H,
the equivariant cohomology of G/H in Borel model and in the Cartan model are
isomorphic. Let a : Hg 5. (Up N U1) — Hg ¢,.(Up N Uy) and

B : H; 5o (Uo) © HE por(Ur) — HE coe(Uo) © HE ¢, (Un) be the isomorphisms
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between the two models. We have the following commutative diagram of exact

rows:

> Hl(c},Bor<U0) D HkG,Bor(Ul) g HI&,Bor(UO N Ul) g H’é,Bor(M) - HléTBlor(UO) D HI(C}TBlor<U1) g HIE}TBlor(UO N Ul) g

; \

e H]é,Car(UO) D Hl(c},Car(Ul) g H’é,Car(UO N Ul) g Hlé,Car(M) g HI(C;,Car(UO) ® HIéTClar(Ul) g ng,i»Clar(UO N Ul) g

a

a B

Since the maps a and f are isomorphisms, by the five lemma, the map in the
middle column y : Hlé,Bor(UO) uul;) — H]é,Car(UO U Uy) is an isomorphism as
well. Finally, we now proceed by induction on the cardinality of an invariant good
cover. Suppose H, 5. (M) and H;, ¢, (M) are isomorphic for any G-space M
having an invariant good cover with at most p open sets. Consider a G-space
having an invariant good cover 4 = {Uy, ..., U, } with p + 1 open sets. Now
(UpU...UU,_1) N U, has a good cover with p open sets, i.e.

{Uop, Uiy, ..., Up_1, }, where U;, = U; N U, By the induction hypothesis, the
equivariant cohomology in the Borel and Cartan models of Uy U ... U U,,_1, U,
and (Uy U ... U U,_1) N U, are all isomorphic. By the five lemma, the
equivariant cohomology in the Borel and Cartan models of Uy U ... U U, are also

isomorphic. This completes the induction. ]

36



References

[1] C.Allday and V. Puppe. Cohomological Methods in Transformation Groups.
Number Vol. 32 in Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1993.

[2] M. Audin. The Topology of Torus Actions on Symplectic Manifolds.
Birkhauser, Basel, 2004.

[3] R.Bottand L. W. Tu. Differential Forms in Algebraic Topology. Number Vol.
82 in Graduate Texts in Math. Springer-Verlag, New York-Berlin, 3rd
corrected printing edition, 2010.

[4] R.Bottand L. W. Tu. Elements of equivariant cohomology. To appear.

[s] H.Cartan. La transgression dans un groupe de lie et dans un espace fibré
principal. In G. T. Liége, editor, Colloque de Topologie (espaces fibrés) Tenu a
Bruxelles du s au 8 Juin 1950, pages 15—27, Paris, 1950. Centre Belge de
Recherches Mathematiques.

[6] V.Ginzburg, V. Guillemin, and Y. Karshon. Moment Maps, Cobordisms, and
Hamiltonian Group Actions. Number 98 in Mathematical Surveys and
Monographs. American Mathematical Society, 2002.

[7] V. Guillemin, E. Lerman, and S. Sternberg. Symplectic Fibrations and
Multiplicity Diagrams. Cambridge University Press, Cambridge, 1996.

[8] V. Guillemin and S. Sternberg. Supersymmetry and Equivariant de Rham
Theory. Springer, Berlin, 1999.

[9] A.Hatcher. Algebraic Topology. Cambridge University Press, Cambridge,

2010.

[10] J. Milnor. Construction of universal bundles: L, ii. Ann. Math., 63:272-284
and 430-436, 1956.

37



[11] L.W.Tu. Computing characteristic numbers using fixed points. In A
Celebration of the Mathematical Legacy of Raoul Bott, CRM Proceedings and
Lecture Notes, pages 185-206, Providence, RI, 2010. American
Mathematical Society.

[12] L.W.Tu. An Introduction to Manifolds. Universitext. Springer, New York,
2011.

[13] F.Warner. Foundations of Differentiable Manifolds and Lie Groups. Springer,
New York, 1983.

38



	The Borel Model
	The space EG
	Computations of equivariant cohomology in the Borel model

	The Cartan Model
	The Cartan complex
	The Cartan complex of a homogeneous space
	The Cohomology of the Complex Ad  H(g/h)
	The Koszul Complex
	The Cohomology of Ad H (g/h)
	A Ring Homomorphism from the Cartan model to the Borel model

	The Equivariant de Rham Theorem
	Properties of G-orbits
	The Tangent Space of a G-orbit
	The Equivariant de Rham Theorem

	References

