
The Equivariant de RhamTheorem in
Equivariant Cohomology

a thesis submitted
by

ZachHimes

in partial fulfillment of the requirements
for the degree of
Master of Science
in the subject of
Mathematics

Tufts University
Medford, Massachusetts

May 2015

Thesis advisor: LoringW. Tu



Thesis advisor: LoringW. Tu Zach Himes

The Equivariant de RhamTheorem in Equivariant
Cohomology

Abstract

Equivariant cohomology is a cohomology theory for a topological spaceM

with a continuous group actionG. Twomodels for equivariant cohomology are

the Borel model and the Cartan model. LetM be a manifold. In cohomology, a

theorem known as the de Rham theorem states that singular cohomology with real

coefficientsH∗(M;R) and de Rham cohomologyH∗
DR(M) are isomorphic rings.

The equivariant de Rham theorem states that whenM is a manifold andG is a

compact, connected Lie group acting smoothly onM, the equivariant

cohomology ofM in both models is the same. Henri Cartan proved the

equivariant de Rham theorem in [5]. In this Master’s thesis, we describe both

models of equivariant cohomolgy and provide an alternate proof as outlined in

[7] of the equivariant de Rham theorem in the case thatM has a finite good cover.
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1
TheBorelModel

In this section, we define the Borel model of equivariant cohomology of a
G-spaceM and compute the equivariant cohomology of a point and a
homogeneous spaceM = G/H . For proofs of the theory behind the Borel
model, we refer the reader to [4, Ch. 1]

A left action of a topological groupG acting on a topological spaceM is a
continuous map

G×M→ M (1.1)

(g, x) 7→ g · x (1.2)

such that for all x ∈ M and g, h ∈ G,
(i) 1 · x = x, where 1 is the identity element inG,
(ii) (gh) · x = g · (h · x).
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A right action is defined analogously. Every left action can be turned into a
right action and vice versa via g · x = x · g−1. We say thatM is a left G-space or a
right G-space depending on whetherG acts on the left or on the right. By a
construction due toMilnor [10], for any topological groupG , there exists a
contractible space EG on whichG acts freely (we can assume thatG acts on the
right). We can construct a new leftG-space EG×M , where the left action is the
diagonal action:

for (e, x) ∈ EG×M, g ∈ G, g · (e, x) = (e · g−1, g · x) .

SinceG acts freely on EG , the diagonal action ofG on EG×M is free. In
addition, EG×M is clearly homotopically equivalent toM . SinceG acts freely
on EG×M , we can define the homotopy quotient ofM byG to be:

MG = EG×G M := (EG×M)/G .

The Borel model of equivariant cohomology defines the equivariant cohomology
H∗

G(M) of theG-spaceM to be the singular cohomology of its homotopy
quotientH∗(MG). Cohomology can be taken with any coefficients, but we will
denoteH∗() to be singular cohomology with real coefficients. It turns out that
the homotopy quotient is well defined up toG-homotopy equivalence and so the
Borel model of equivariant cohomology is a well-defined topological invariant of
G-spaces.

1.1 The space EG

Before we can compute the equivariant cohomology of a point and a
homogeneous space, we need to construct an equivalent description of the
contractible space EG on whichG acts freely. The theory ofG-bundles provides
such a description.

Let X and Y be rightG-spaces. A map f : X→ Y is said to beG-equivariant if
for all x ∈ X and for all g ∈ G, f(x · g) = f(x) · g . Let f0, f1 : X→ Y be two
G-equivariant maps of leftG-spaces. If I denotes the unit interval [0, 1] , thenG
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acts on X× I by g · (x, t) = (g · x, t) . A G-homotopy from f0 to f1 is a
G-equivaraint map F : X× I→ Y such that F(x, 0) = f0(x) and F(x, 1) = f1(x).

If such aG-homotopy exists from f0 to f1 , we say that f0 and f1 are
G-homotopic. Let f : X→ Y be aG-equivariant map. A G-homotopy inverse of
f : X→ Y is aG-equivariant map h : X→ Y such that are h ◦ f and f ◦ h are
G-homotopic to⊮X and⊮Y respectively. AG-equivariant map f : X→ Y is a
G-homotopy equivalence if it has aG-homotopy inverse. In this case, X and Y are
said to beG-homotopy equivalent or have the sameG-homotopy type. A
G-bundle or principal G-bundle over a topological space B is a fiber bundle
π : P→ Bwith fiberG and a local trivialization {U, φU} , such that:
(i)G acts freely on P , and
(ii) each fiber-preserving homeomorphism φU : π−1(U)→ U× G is

G-equivariant.
Note that the base space B can be identified with the orbit space P/G . When P

is weakly contractible, theG-bundle π : P→ B is said to be a universalG-bundle
(recall from homotopy theory that a spaceX is said to beweakly contractible if all
of its homotopy groups πk(X) are trivial). The usual notation for a universal
G-bundle is EG→ BG or π : EG→ BG. The space EG is called the total space
and the space BG is called the base space or a classifying space forG.

From a construction due toMilnor, every topological groupG has a
well-defined universalG-bundle. Specifically, suppose that E→ B and E′ → B′

are universalG-bundles over CW complexes B and B′ respectively. Then B and B′

are homotopy equivalent and E and E′ areG-homotopy equivalent. Thus, the
universal bundle of a topological group is unique up toG-homotopy. In addition,
we can assume that the universal bundle EG→ BG admits the following
decomposition: BG = ∪nBGn is a CW-complex, EG = ∪nEGn, and EGn → BGn

is a principalG-bundle (for more details, see [1, Sec. 1.1] and [4, Ch. 7]).

Example 1.1. TheUniversal Bundle of G = S1 :

Let g = eiθ . The groupG = S1 acts onCn by rotations as follows:

g · (z1, ..., zn) = (g · z1, ..., g · zn) = (eiθ · z1, ..., eiθ · zn) , where zi ∈ C.
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Note that this action preserves norms. Therefore,G also acts on the unit sphere
S2n−1 inCn . The following argument shows that the action on S2n−1 is free.
Suppose that g · z = z for some g ∈ G , where z ∈ C∗ . Then

0 = g · z− z = g · z− 1 · z = (g− 1) · z.

Since z ̸= 0 , g = 1 .
We have that S1 ⊂ S3 ⊂ S5 ⊂ ... andG acts freely on S2n−1 for all n .

Therefore,G acts freely on the space S∞ = ∪∞
n=1S2n−1 . We now will show that

S∞ is weakly contractible.
Let α ∈ πk(S∞) . By definition, α is a continuous map α : Sk → S∞ . Since α is

continuous and Sk is compact, the image α(Sk) is compact. Thus, α(Sk) lies inside
Sn for some n so we can think of α as being a continuous map from Sk to Sn.
Without loss of generality, we can assume that k < n. Since πk(Sn) = 0 for
k < n, αmust be null-homotopic. Thus, πk(S∞) = 0 for all k .

We can take ES1 to be S∞ . The quotient of S2n−1 by the above action of S1 is
the complex projective spaceCPn−1 . Therefore, the classifying space BS1 forG
is:

BS1 = ∪∞
n=1(S2n−1/S1) = ∪∞

n=0CPn = CP∞ .

So S∞ → CP∞ is a universal bundle for S1 .

1.2 Computationsofequivariantcohomology intheBorel

model

Now that we have formally defined the Borel model of equivariant cohomology,
we can compute the equivariant cohomology of a point and a homogeneous
space under this model. Let EG→ BG be a universal bundle of the compact,
connected Lie groupG .

Example 1.2. The equivariant cohomology of a point:

LetM = {pt} . Any group acts trivially onM so the homotopy quotient is:
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MG = EG×G M ≃ EG/G ≃ BG .

Thus, the equivariant cohomologyH∗
G(M) ofM under the groupG is

H∗
G(M) = H∗(MG) = H∗(BG) .

The rank of a compact Lie groupG is the dimension of a maximal torus T inG.
Let T = S1 × ...× S1 be a maximal torus ofG of rank n . TheWeyl groupW of T
inG is

W := NG(T)/T,

whereNG(T) is the normalizer of the torus T . For a compact, connected Lie
group, it is known that theWeyl group is a finite reflection group.

By a lemma in [11, P. 189], the cohomology of BG is the subring of
W-invariants:

H∗(BG) = H∗(BT)W.

Note that if EG→ BG and EG′ → BG′ are universal bundles of CW complexes
for two topological groupsG andG′ respectively, then EG× EG′ → BG× BG′

is a universal bundle of CW complexes forG× G′ . Therefore,

H∗(BT) = H∗(B(S1 × ...× S1)) = H∗(BS1 × ...× BS1)

= H∗(BS1)⊗ ...⊗ H∗(BS1)(bytheKunnethformula)

= H∗(CP∞)⊗ ...⊗ H∗(CP∞).

A spectral sequence argument shows that the cohomology ofCP∞ isR[u] ,
where u is a polynomial of degree 2. Therefore,

H∗
G(pt) = H∗(BG) = H∗(BT)W ≃ (R[u1]⊗ ...⊗ R[un])W = R[u1, ..., un]W = S(t∨)W,

where t∨ is the dual space to the Lie algebra t∨ of the torus T and S(t∨) is the
algebra of symmetric polynomials on t∨. Finally, the Chevalley restriction
theorem [6, P. 200] states that the restriction of a maximal subalgebra t ⊂ g gives
rise to an isomorphism of algebras
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S(g∨)G → S(t∨)W.

Thus,HG(pt) = S(g∨)G.
Remark: The groupG acts on the algebra of symmetric polynomials S(g∨) by

the adjoint representation. So S(g∨)G consists of polynomials invariant under the
adjoint representation.

Example 1.3. The equivariant cohomology of a homogeneous space:

LetH be a closed subgroup ofG. The groupG acts on the homogeneous space
M = G/H by left multiplication: for g ∈ G and for aH inG/H , the group action
ofG onG/H is g · aH = gaH.

To describe the homotopy quotient of a homogeneous space, we mention
some relationships between principalG-bundles and subgroupsH ofG (for
proofs of these results, see [4, sec. 4 and 8]).

Proposition 1.4. Let π : P→ B be a principal G-bundle and H a subgroup of G .
Let G act on G/H by left multiplication. Then there is a bundle isomorphism

P×G (G/H) ∼−→ P/H

over B.

Proposition 1.5. Let H be a closed subgroup of the Lie group G. If π : P→ B is a
principal G-bundle, then the projection P→ P/H is a principal H-bundle. As a
corollary, if EG→ BG is a universal G-bundle, then EG→ EG/H is a universal
H-bundle.

By proposition 1.4, the homotopy quotientMG of the homogeneous space
G/H is

MG = EG×G (G/H) ≃ EG/H.

By proposition 1.5, the bundle EG→ EG/H is a universalH-bundle. Since
EH→ BH is a universalH-bundle, EG/H is homotopic to the base space BH .
Therefore, the equivariant cohomology of a homogeneous spaceM = G/H is

8



H∗
G(G/H) = H∗(MG) = H∗(EG/H) = H∗(BH) .

Suppose thatH is connected. Let S ⊂ H a maximal torus ofH and letWH denote
theWeyl group of S inH. By repeating the argument used for computing the
cohomologyH∗(BG), we have that

H∗(BH) ≃ S(s∨)WH ≃ S(h∨)H.

Now suppose thatH is a closed subgroup ofG and letH0 be the connected
component ofH containing the identity element in e ∈ G. For g ∈ G, let
cg : G→ G be the conjugation map. SinceH0 is connected, cg(H0) is connected
inG. Since e ∈ cg(H0) and cg(H0) is connected for all g ∈ G. This argument
shows thatH0 is a normal subgroup ofH. SinceG is compact,H andH0 are
closed, the group R := H/H0 is a finite group. In addition, the covering space
BH0 → BH is a finitely-sheeted covering space and R acts on this covering space.
By a proposition in [9, Prop. 3G.1], the cohomologyH∗(BH) is

H∗(BH) ≃ (H∗(BH0))
R ≃ (S(h0)H0)R

(sinceH0 is a closed and connected subgroup ofG). Since
h = TeH ≃ TeH0 = h0, (S(h0)H0)R is isomorphic to (S(h)H0)R.

To compute (S(h)H0)R, it suffices to prove the following lemma.

Lemma 1.6. Suppose that a group H acts on a set X and H0 is a normal subgroup of
H. Let R = H/H0 and let XH denote the set of elements in X invariant under this
H-action, i.e. XH := {x ∈ X|h · x = x,∀h ∈ H}. Then

XH = (XH0)R

Proof. Let x ∈ XH. Then h · x = x for all h ∈ H and so x ∈ XH0 . But every
h ∈ H has the form h = r · h0 for some h0 ∈ H0 and r ∈ R. Since x ∈ XH,
x = h · x = (r · h0) · x = r · (h0 · x) = r · x for all r ∈ R. Hence, x ∈ (XH0)R.
Conversely, let x ∈ (XH0)R and consider h ∈ H. Since h = r · h0 for some
h0 ∈ H0 and r ∈ R, h · x = (r · h0) · x = r · (h0 · x) = r · x = x (since
x ∈ (XH0)R). Hence, x ∈ XH.

As a consequence of this lemma, we have thatH∗(BH) = (S(h)H0)R = S(h)H.
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2
TheCartanModel

In this section, we summarize the Cartan model of equivariant cohomology and
compute the equivariant cohomology of a homogeneous space. For more details
about the Cartan model, see [4, 8]. Recall that a representation of a groupG on a
vector space V is a homomorphism ρ : G→ GL(V). We can think of a
representation ρ as an action ofG on V and write g · v for ρ(g)(v). WhenG is a
Lie group, we require the homomorphism to be smooth. The dual
representation of the representation ρ : G→ GL(V) is the map

ρ∨ : G→ GL(V∨)

defined by

ρ∨(g)(α)(v) = α(ρ(g−1)(v)) or (g · α)(v) = α(g−1 · v),

for α ∈ V∨ and v ∈ V (it is necessary to take the inverse of g so that ρ∨ will be a
group homomorphism). Suppressing v ∈ V, we can write the dual representation
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as

ρ∨(g)(α) = (α ◦ ρ)(g−1) = ρ(g−1)∨(α).

We can therefore think of the dual representation ρ∨ as an action ofG on V∨ and
write g · α for ρ(g−1)∨(α).

For each g ∈ G, the differential at the identity of the conjugation map
cg := lg ◦ rg−1 : G→ G is a linear isomorphism cg∗ : g→ g, i.e. cg∗ ∈GL(g).
Themap Ad : G→GL(g) defined by Ad(g) = cg∗ is a representation called the
adjoint representation of the Lie groupG. The dual representation of the adjoint
representation of a Lie group, Ad∨ : G→GL(g∨), is called the coadjoint
representation:

(g · α)(X) = ((Ad∨ g)α)(X)

= α((Ad g−1)(X)) = (Ad g−1)∗α(X).

Let X1, ...,Xn be a basis for the Lie algebra g and let θ1, ..., θn be the
corresponding dual basis for g∨. From the dual space g∨, we construct the
algebra of symmetric polynomials S(g∨). The symmetric algebra S(g∨) is
generated by the set of polynomials u1, ..., un and is dual to the basis g∨, i.e.
ui(Xj) = θi(Xj) = δij. Each ui has degree 2. Since the coadjoint representation
defines an action ofG on g∨, the coadjoint representation induces an action on
S(g∨). In addition, the coadjoint representation induces an action on the exterior
algebra∧(g∨) by the pullback map: for ω ∈ ∧k(g∨) and g ∈ G

g · ω = (Ad∨ g)ω = (Ad g−1)∗ω.
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2.1 The Cartan complex

LetM be aG-space for a connected Lie groupG. Each g ∈ G induces a
diffeomorphism under left multiplication by g:

lg : M→ M,

p 7→ g · p.

The groupG acts linearly on the de Rham complexΩ(M) ofM by the pullback of
forms:

g · ω = l∗g−1ω.

Note that for g, h ∈ G and ω ∈ Ω(M), g · (h · ω) = (gh) · ω. We say that a form
ω onM is left-invariant if l∗gω = ω for all g ∈ G.

We now construct a subcomplex of S(g∨)⊗Ω(M) called the Cartan complex.
An element α ∈ S(g∨)⊗Ω(M) is a finite sum

α :=
∑

uIωI, where uI = ui11 ...uinn and ωI ∈ Ω(M),

i.e. α is a polynomial in u1, ..., un with coefficients inΩ(M). An element α of the
complex can be interpreted as a polynomial function on gwith values inΩ(M) as
follows: define ᾱ : g→ Ω(M) by

ᾱ(X) =
∑

uI(X)ωI =
∑

u1(X)i1 · · · un(X)inωI ∈ Ω(M).

We say that a function β : g→ Ω(M) is polynomial if β = ᾱ for some
α ∈ S(g∨)⊗Ω(M).
SinceG acts linearly on S(g∨) by the induced action of the coadjoint

representation and onΩ(M) by the pullback l∗g−1 ,G acts linearly on
S(g∨)⊗Ω(M) by

g · α = g · (uI ⊗ ω) = (g · uI)⊗ (g · ω).
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An element α ∈ S(g∨)⊗Ω(M) is said to beG-invariant if the corresponding
polynomial map ᾱ : g→ Ω(M) isG-equivariant: for all g ∈ G and X ∈ g,

ᾱ(g · X) = ᾱ((Ad g)X) = l∗g−1(ᾱ(X)) = g · (ᾱ(X)).

The Cartan complex is defined to be the subcomplex

ΩG(M) := (S(g∨)⊗Ω(M))G ⊆ S(g∨)⊗Ω(M)

consisting of elements of S(g∨)⊗Ω(M) that areG-invariant.
There is a differential operator dG onΩG(M) called the Cartan differential

defined as follows: for α ∈ ΩG(M) and X ∈ g

(dGα)(X) := d(α(X))− ιX̄(α(X)),

where d is the exterior derivative and ιX̄ denotes interior multiplication by X̄, the
fundamental vector field X̄ onM associated to X ∈ g. The Cartan differential is
nilsquare, i.e. d2G = 0.

The Cartan model of equivariant cohomology of aG-spaceM is defined to be
the cohomology of the differential complex: H∗{ΩG(M), dG}. Using the Cartan
model, we will soon compute the equivariant cohomology of a point and a
homogeneous space.

2.2 The Cartan complex of a homogeneous space

LetH be a closed, connected subgroup of a compact, connected Lie groupG. Let
g and h be the Lie algebras ofG andH respectively. The Cartan complex of the
homogeneous spaceG/H is

ΩG(G/H) = (S(g∨)⊗Ω(G/H))G.

We will show that the Cartan complex is isomorphic to another complex and
compute the cohomology of the new complex in the next section. To construct
this isomorphic complex, we first will show that the exterior algebraΩ∗(G/H)G
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of left-invariant forms on the homogeneous spaceG/H is isomorphic to a
subcomplex of the exterior algebraΩ∗(G)G of left-invariant forms onG.

LetH be a closed subgroup of a Lie groupG. A k-form ω onG is said to be
Ad(H)-invariant if

h · ωe = (Ad∨ h)ωe = (Ad h−1)∗ωe = ωe ∈ ∧k(g∨)

for all h ∈ H. A k-form ω onG annihilates h if ωe(v1, ..., vk) = 0 and some vi is
in h. Suppose that ω and τ are two Ad(H)-invariant, left-invariant forms onG
that annihilateH of degrees k and l respectively. Since the wedge product
commutes with the pullback, the wedge product ω ∧ τ is a (k+ l) left-invariant
and Ad(H)-invariant form. In addition, the wedge product ω ∧ τ is a form that
annihilates h from the very definition of the wedge product. Specifically, let
v1, ..., vk+l ∈ gwith vi ∈ h for some i = 1, ..., k+ l. By definition of the wedge
product,

ω ∧ τ(v1, ..., vk+l) =
1

k!l!

∑
σ∈Sk+l

(sgn σ)ω(vσ(1), ..., vσ(k))τ(vσ(k+1), ..., vσ(k+l))

=
1

k!l!

∑
σ∈Sk+l

(sgn σ)0 (since ω and τ are Ad(H)-invariant)

= 0.

Finally, since the exterior derivative commutes with the pullback, dω is an
Ad(H)-invariant, left-invariant forms onG that annihilateH. Therefore, we have
shown that the set of left-invariant, Ad(H)-invariant forms that annihilate h is a
subalgebra of the exterior algebra∧(g∨).

Theorem2.1. : Let π : G→ G/H be the natural projection map. The pullback map

π∗ : Ω(G/H)→ Ω(G) (2.1)

ω 7→ π∗ω (2.2)

gives rise to the following one-to-one correspondence:
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{left-invariant k-forms on G/H}↔ {left-invariant Ad(H)-invariant k-forms on G
that annihilate h}.

Proof. (⇒ ) Let ω be a left-invariant k-form onG/H. We have the following
commutative diagram:

G G

G/H G/H

π

lg

l̄g

π

where l̄g is left-multiplication by the left coset gH, i.e. l̄g(aH) = g · aH = gaH.
For convenience, we will sometimes write l̄g as lg.

(π∗ω is left-invariant:) Since π ◦ lg = l̄g ◦ π, the pullback maps also commute:
(π ◦ lg)∗ = (l̄g ◦ π)∗. Therefore,

l∗g (π
∗ω) = (π ◦ lg)∗(ω)

= (l̄g ◦ π)∗ω = π∗l∗ḡω

= π∗ω (since ω is left-invariant).

(π∗ω is Ad(H)-invariant on G:) Let h ∈ H.

(Adh)∗π∗ω = (lh ◦ rh−1)∗π∗ω

= r∗h−1(l∗hπ
∗ω) = r∗h−1π∗ω

= π∗ω (since π = π ◦ rh−1 onG/H).

(π∗ω annihilates h:) Let v1, ..., vi, ..., vk ∈ gwith vi ∈ h.

(π∗ω)e(v1, ..., vi, ..., vk) = ωeH(π∗v1, ..., π∗vi, ..., π∗vk)

= ωeH(π∗v1, ..., 0, ..., π∗vk) = 0
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(if π : G→ G/H is the projection ofG/H, then the induced map π∗ : g→ g/h

sends h to 0).
(⇐) Conversely, let η ∈ Ωk(G) be a left-invariant Ad(H)-invariant k-form on

G that annihilates h. We want to construct a left-invariant k-form ω onG/H such
that π∗ω = η. Since η is a left-invariant form onG, it is generated by a k-form
ηe ∈ ∧k(g∨) on the Lie algebra g. Since η annihilates h, clearly ηe also annihilates
h. Similarly, ηe is Ad(H)-invariant since η is Ad(H)-invariant. Thus, the k-form
ηe : g× ...× g→ R induces a k-form η0 ∈ ∧k(g/h)∨ in the sense that
ηe(v1, ..., vk) = η0(π∗v1, ..., π∗vk) = π∗η0(v1, ..., vk) for v1, ..., vk ∈ g.
Therefore, we define ωeH onG/H to be η0, and for a ∈ G, we define ωaH to be
l∗ā−1ωeH.

We need to show that this construction of the form ω ∈ Ω(G/H) is
independent of our choice of coset representatives, i.e. if aH = bH, then
ωaH = ωbH. Suppose that aH = bH. Then ab−1 ∈ H. Let c = ab−1.

By the commutative diagram, π∗l∗c ωeH = l∗c π∗ωeH.
Let rg denote right multiplication by g ∈ G onG/H. Since π ◦ rh−1 = π for all

h ∈ H, r∗c−1π∗ = π∗. Thus,

l∗c π
∗ωeH = l∗c r

∗
c−1π∗ωeH

Adc)∗π∗ωeH = (Ad c)∗ηe
= ηe (since ηe is Ad(H)-invariant)

= π∗ωeH.

Since the pullback map π∗ is injective, l∗cHωeH = ωeH. Finally,

l∗c ωeH = l∗ab−1ωeH = l∗b−1 l∗aωeH = ωeH.

Thus,

l∗aωeH = l∗bωeH.

In addition, since η is left-invariant, ωmust also be left-invariant. Finally, we need
to show that η = π∗ω. But this follows from the fact that ηe = π∗ωeH and both η
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and π∗ω are left-invariant.

Now that we have established a one-to-one correspondence between
left-invariant k-forms onG/H and left-invariant Ad(H)-invariant k-forms onG
that annihilate h, we can construct a complex isomorphic to the Cartan complex
ΩG(G/H).
The Cartan complexΩG(G/H) is (S(g∨)⊗Ω(G/H))G. Recall that another

way of defining this complex is that it is the set ofG-equivariant polynomial
maps: for all α ∈ Ω∗(G/H), g ∈ G, and X ∈ g,

α((Ad g)X) = l∗g−1(α(X)).

This condition can be rewritten as

α(X) = l∗g−1(α((Ad g−1)X)).

Consider the complex S(g∨)⊗ ∧(g/h)∨. As in our discussion of the Cartan
complex, an element β ∈ S(g∨)⊗ ∧(g/h)∨ is a finite sum

α :=
∑

uIωI, where uI = ui11 ...uinn an ωI ∈ ∧(g/h)∨.

We can interpret an element of this complex as a polynomial functions on gwith
values in∧(g/h)∨. An element α ∈ S(g∨)⊗ ∧(g/h)∨ is said to be
Ad(H)-invariant if the corresponding polynomial map β : g→ ∧(g/h)∨ is
Ad(H)-equivariant: for all X ∈ g and h ∈ H,

β(h · X) = β(Ad(H)X)

= (Ad h)∗(β(X)) = (Ad∨ h−1)(β(X)) = h−1 · β(X).

Let (S(g∨)⊗ ∧(g/h)∨)H denote the subalgebra of forms in S(g∨)⊗ ∧(g/h)∨

that are Ad(H)-invariant. For simplicity, we will write∧AdH(g/h)
∨ to mean

(S(g∨)⊗ ∧(g/h)∨)H. We now will show that the Cartan complex is isomorphic
to the complex

∧AdH(g/h)
∨ := (S(g∨)⊗ ∧(g/h)∨)H.
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One way of describing this new complex∧AdH(g/h)
∨ is that it is equal to the set

of Ad(H)-equivariant polynomial maps α : g→ ∧(g/h)∨.

Theorem 2.2. TheCartan complexΩG(G/H) = (S(g∨)⊗Ω(G/H))G is
isomorphic to the complex∧AdH(g/h)

∨ = (S(g∨)⊗ ∧(g/h)∨)H.

Proof. Consider the maps

φ : ΩG(G/H)→ ∧AdH(g/h)
∨

α(X) 7→ α̃(X) := α(X)eH

and

ψ : ∧AdH(g/h)
∨ → ΩG(G/H)

β(X)aH 7→ β̄(X) := l∗a−1β((Ad a−1)X).

Themotivation behind the map ψ is that it should send an element β to a
G-equivariant polynoimial map since an element α ∈ S(g∨)⊗Ω(G/H) is
G-invariant if for all X ∈ g and for all g ∈ G,

α(X) = l∗g−1(α((Ad g−1)X)) = g · α(g−1 · x).

It suffices to show that for all X ∈ g, a ∈ G, α ∈ ΩG(G/H), and β ∈ ∧(g/h)∨,
φψ(α(X)) = α(X) and ψφ(β(X)) = β(X).

Before proving that φψ = 1∧AdH(g/h)∨ and ψφ = 1ΩG(G/H), we first need to
show that α̃(X) is an Ad(H)-invariant form in∧AdH(g/h)

∨. Then we need to
show that ψ is a well-defined map. Since aG-equivariant polynomial satisfies
α((Ad g)X) = l∗g−1(α(X)) and β is a left-invariant and Ad(H)-invariant form, we
can immediately see that β̄(X) = l∗a−1β((Ad a−1)X) = β(X) is aG-equivariant
polynomial, i.e. β̄ is a form in the Cartan complex.

(α̃ is Ad(H)-invariant:) Let h ∈ H, X ∈ g. Then

α̃((Ad h)X) = α((Ad h)X)eH = (l∗h−1α(X))eH (since α isG-equivariant)

= (l∗h−1r∗hα(X))eH = (c∗h−1α(X))eH

18



(since α(X) is a form onG/H and rh = 1G/H onG/H so α(X) = r∗hα(X))

= Ad(h−1)∗(α(X)eH) = (Ad h−1)∗(α̃(X))

= (Ad∨ h)(α̃(X)).

(ψ is well-defined:) Let β ∈ ∧AdH(g/h)
∨ and X ∈ g/h. Consider

β(X)aH, β(X)bH ∈ ∧(g/h)∨ and suppose that aH = bH. Let c = ab−1 ∈ H. To
prove that ψ is well-defined, it suffices to show that

ψ(β(X)cH) = l∗c−1((Ad c−1)β)(X) = l∗e β((Ad c)X) = β(X).

But by definition, a form β(X) inΩ(G/H) isG-equivariant if for all g ∈ G,
l∗g (β((Ad g)X)) = β(X). So ψ(β(X)cH) = β(X) and the map ψ is well-defined.
Note that we also have shown that ψφ = 1Ω(G/H).

( φψ = 1∧AdH(g/h)∨ :)φψ(β(X)aH) = φ(l∗a−1((Ad a−1)β)(X))

= l∗a−1((Ad a−1)β)(X)eH = ((Ad a−1)β)(X)aH

= β(X)aH (since β(X)aH is Ad(H)-invariant, by theorem 2.1).

2.3 The Cohomology of the Complex∧AdH(g/h)
∨

TheCartan complex has a Cartan differential dG and the Cartan model of
equivariant cohomology states thatH∗

G(M) = H∗{ΩG(M), dG}. By theorem 2.2,
the Cartan complexΩG(G/H) of the homogeneous spaceG/H is isomorphic to
∧AdH(g/h)

∨. Therefore, our strategy for computing the equivariant cohomology
of the homogeneous spaceG/H is to construct the differential operator d̃G in
∧AdH(g/h)

∨ corresponding to the Cartan differential dG (i.e. construct the
differential operator that makes the diagram below commute) and compute the
cohomology of the differential complex {∧AdH(g/h)

∨, d̃G}.
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Ωk
G(G/H) ∧k

AdH(g/h)
∨

Ωk+1
G (G/H) ∧k+1

AdH(g/h)
∨

dG

φ

φ

d̃G

So to describe the differential operator d̃G, it suffices to determine what the
Cartan differential does on generators forΩG(G/H) = (S(g∨)⊗Ω(G/H))G.
Let X1, ...,Xn be a basis for gwith X1, ...,Xk a basis for g/h and Xk+1, ...,Xn a
basis for h. Let θ1, ..., θn be the dual basis of X1, ...,Xn for g∨ and let u1, ..., un be
generators for the algebra of symmetric polynomials S(g∨) such that the
polynomials u1, ..., un are dual to X1, ...,Xn, i.e. ui(Xj) = θi(Xj) = δij. As an
R-algebra, the Cartan complexΩG(G/H) is generated by
{ui ⊗ 1, 1⊗ ω(G/H) : ω ∈ Ω(G/H)}. Therefore, we just have to compute
dG(ui ⊗ 1) and dG(1⊗ ω).

Recall that for X ∈ g, α ∈ ΩG(G/H), (dGα)(X) = d(α(X))− ιX̄(α(X)),
where X̄ is the fundamental vector field onG/H associated to X. Therefore,

(dG(ui ⊗ 1))(Xj) = d((ui ⊗ 1)(Xj))− ιX̄j((ui ⊗ 1)(Xj))

(ui ⊗ 1)(Xj) = ui(Xj) · 1 = δij.

Therefore,

(dG(ui ⊗ 1))(Xj) = 0.

(dG(1⊗ ω))(Xj) = d(1(Xj)ω)− ιX̄j(1(Xj)ω)

= dω− ιX̄jω.

Let us now consider the complex∧H(g/h)
∨ = (S(g∨)⊗ ∧(g/h)∨)H. This

complex is generated by {ui ⊗ 1, 1⊗ θ1, ..., 1⊗ θk} (since X1, ...,Xk is a basis
for g/h). For notational convenience, we will occaisonally drop the tensor
product so that θi = 1⊗ θi and ui = ui ⊗ 1. Let ωi be the left-invariant form on
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Ω(G/H) corresponding to θi (the form ωi is obtained simply by the pullback of
left-multiplication) so that φ(ωi) = (ωi)eH = θi.

((d̃G ◦ φ)(ui ⊗ 1))(Xj) = ((φ ◦ dG)(ui ⊗ 1))(Xj)

= φ(0) = 0.

((d̃G)(1⊗ θi))(Xj) = ((d̃G ◦ φ)(1⊗ ωi))(Xj) = ((φ ◦ dG)(1⊗ ωi))(Xj)

= φ(dωi − ιX̄jωi) = (d(1(Xj)ωi)− ιX̄j(1(Xj)ωi))eH

= (dωi)eH − (ιX̄jωi)eH = dθi − δij.

Therefore,

d̃G(1⊗ θi) = 1⊗ dθi − ui ⊗ 1.

We now provide an alternate algebraic description of the complex∧AdH(g/h)
∨

by introducing the Koszul complex. By describing∧AdH(g/h)
∨ in terms of a

Koszul complex, we obtain a simpler description of the differential operator d̃G.

2.4 The Koszul Complex

Let V be an n-dimensional vector space. Let∧(V∨) be the exterior algebra of V∨,
and let S(V∨) be the algebra of symmetric polynomials. All of the elements of the
symmetric algebra S(V∨) are even. TheKoszul algebra K(V) of V is the tensor
product S(V∨)⊗ ∧(V∨). Suppose that u1, ..., un generate S(V∨) and that
θ1, ..., θn generate∧(V∨). Then ui ⊗ 1 and 1⊗ θi generate the Koszul algebra.
Note that ui ⊗ 1 has degree 2 and 1⊗ θi has degree 1. TheKoszul operator dK is
the anti-derivation defined on the generators by:

dK(ui ⊗ 1) = 0,
dK(1⊗ θi) = ui ⊗ 1

and extended to K(V) as an antiderivation. Since d2K = 0 on the generators, it
follows that d2K = 0 for all α ∈ K(V). TheKoszul complex of V is the Koszul
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algebra K(V) of Vwith the Koszul operator dK. The cohomology of the Koszul
complex is acyclic, i.e.

Hn(K(V)) =

{
R for n = 0

0 for n > 0.

We can describe the complex {∧AdH(g/h)
∨, d̃G} in terms of a Koszul

complex. Let us decompose g∨ into h∨ and g/h∨ such that the decomposition is
Ad(H)-invariant. We have that g∨ = h∨⊕g/h∨ and S(g∨) = S(h∨)⊗ S(g/h)∨.
Therefore, we can decompose∧AdH(g/h)

∨ as follows:
∧AdH(g/h)

∨ = (S(g∨)⊗ ∧(g/h)∨)H = (S(h∨)⊗ S(g/h)∨ ⊗ ∧(g/h)∨)H.
Note that S(g/h)∨ ⊗∧(g/h)∨ is the Koszul algebraK(g/h) of g/h. Let d̃K be

the extension of the Koszul operator dK on S(g/h)∨ ⊗ ∧(g/h)∨ to

S(g∨)⊗ ∧(g/h)∨ = (S(h∨)⊗ S(g/h)∨ ⊗ ∧(g/h)∨)H

by setting d̃K(ui ⊗ 1⊗ 1) to be zero. Then we have that d̃G = 1⊗ d− d̃K (or,
more simply, d− d̃K) since

d((ui ⊗ 1)(Xj))− (d̃K(ui ⊗ 1))(Xj) = 0− 0

= (d̃G(ui ⊗ 1))(Xj)

and

d((1⊗ θi)(Xj))− (d̃K(1⊗ θi))(Xj) = dθi − δij

= (d̃G(1⊗ θi))(Xj).

2.5 The Cohomology of∧AdH(g/h)
∨

We have a differential complex {∧AdH(g/h)
∨, d̃G} and by the previous section,

this differential complex is the same as the differential complex
{(S(h∨)⊗ K(g/h))H, d− d̃K}. We now show that d̃G isAd(H)-equivariant. As a
consequence, we have that
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H∗{(S(h∨)⊗ K(g/h))H, d̃G} = (H∗{S(h∨)⊗ K(g/h), d̃G})H

Lemma 2.3. The differential operator d̃G on∧AdH(g/h)
∨ is Ad(H)-equivariant.

Proof. To prove that d̃G is Ad(H)-equivariant it suffices to show that d and d̃K are
Ad(H)-equivariant maps on the generators ui⊗ 1 and 1⊗ θi of∧AdH(g/h)

∨. Let
h ∈ H and X ∈ h and X ∈ g.
(d is Ad(H)-equivariant on 1⊗ θi:)

d((Ad∨ h)(1⊗ θi)(X)) = d((Ad h−1)∗(1⊗ θi)(X))

= d((1⊗ θi)((Ad h−1)X)) = d(1((Ad h−1)X)θi) = dθi

and

(Ad∨ h)d((1⊗ θi)(X)) = (Ad∨ h)dθi = (Ad h)∗dθi.

Since θi is in∧(g/h)∨, θi corresponds to a left-invariant form onG/H. Therefore,
by theorem 2.1, θi also corresponds to a left-invariant Ad(H)-invariant form onG
that annihilates h. Since θi is Ad(H)-invariant, dθi is Ad(H)-invariant. Thus,

d((Ad∨ h)(1⊗ θi)(X)) = (Ad∨ h)d((1⊗ θi)(X)) = dθi.

(d̃K is Ad(H)-equivariant on 1⊗ θi:)

d̃K((Ad∨ h)(1⊗ θi)(X)) = d̃K(1((Ad h−1)X)θi) = ui

(Ad∨ h)d̃K((1⊗ θi)(X)) = (Ad∨ h)ui.

Recall that the Cartan complexΩG(G/H) is (S(g∨)⊗Ω(G/H))G whereG acts
on S(g∨) by the coadjoint representation. Therefore, by definition, a polynomial
uI ⊗ 1 is inΩG(G/H) if uI is invariant under the coadjoint representation. Since
ui is invariant in the Cartan complex, ui must also be invariant in∧AdH(g/h)

∨.
In addition, since

d̃K(ui ⊗ 1) = d(ui ⊗ 1) = 0

d̃G is clearly equivariant on ui ⊗ 1. Thus, d̃G is Ad(H)-equivariant.
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We now compute the cohomology of the complex {S(g∨)⊗ ∧(g/h)∨, d̃G} by a
spectral sequence argument and by treating S(h∨)⊗ K(g/h) as a double
complex. Let

Ep,q
0 =

{
Sp/2(h∨)⊗ Kq(g/h) if p is even
0 if p is odd

where Kq(g/h) = ⊕q=2i+jSi(g/h)∨ ⊗ ∧j(g/h)∨. This construction reflects the
fact that S(g∨) consists only of elements of even degree, so Sp(h∨) is 0 for p odd.
We equip the complex Ep,q

0 with the extended Koszul differential d̃K.
Since the Koszul complex K(g/h) is acyclic with respect to the Koszul

differential dK, E
p,q
0 = Sp(g∨)⊗ K(g/h) is acyclic with respect to the extended

Koszul differential d̃K. Therefore, we have that the cohomology of E0 with respect
to the extended Koszul differential d̃K is:

Ep,q
1 := H(Ep,q

0 , d̃K) =

{
Sp/2(h∨)⊗ R if p is even q = 0

0 if q > 0 or p is odd.

Note that the cohomology of the double complex is concentrated along the
bottom row. In addition, since the tensor product is overR, Sp(h∨)⊗ R is
isomorphic to Sp(h∨).

Let E1 = ⊕Ep,q
1 = ⊕E2p,0

1 = Sp(h∨) and equip E1 with the exterior derivative
d. Since d sends every element in S(g∨) to 0,

Ep,q
2 := H(Ep,q

1 , d) =

{
Sp/2(h∨) for p even and q = 0

0 otherwise.

So E2 = ⊕p,qE
p,q
2 ≃ ⊕∞

p=0E
2p,0
2 = S(h∨). Inductively, if dr = d1 = d and

Er = H(Er−1, dr) for r ≥ 2, we have:

Ep,q
1 = Ep,q

2 = ...

The stationary value of Ep,q
1 is denoted Ep,q

∞ .
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From the theory of spectral sequences, the associated graded complex
GHn

d̃C
(∧AdH(g/h)

∨) of the total cohomology is given by

GHn
d̃G
(∧AdH(g/h)

∨) = ⊕2p+q=nE
p,q
∞ (∧AdH(g/h)

∨)

≃ En/2,0
∞ (∧AdH(g/h)

∨) =

{
Sn/2(h∨) for n even
0 for n odd

(for a proof, see [3,Thm. 14.14]). In addition, since the complex∧AdH(g/h)
∨ is

a vector space, we have a vector space isomorphism:

H2n
d̃G
(∧AdH(g/h)

∨) ≃ GH2n
d̃G
(∧AdH(g/h)

∨) ≃ Sn(h∨)

(see [3, Rem. 14.17]). In the next subsection, we will show that there is a ring
homomorphism from the Cartan model to the Borel model. Since a ring
homomorphism and a vector space isomorphism between two algebras is an
algebra isomorphism, the two models of equivariant cohomology are isomorphic
as algebras:

H∗(ΩG(G/H), dG)→ H∗(EG×G G/H) ≃ S(h∨)H.

Note also that whenH = G, we have the equivariant cohomology of a point
under the Cartan model:

S∗(h∨)H = S∗(g∨)G,

which is the same as the equivariant cohomology of a point under the Borel
model. Therefore, we have shown that the Borel and Cartan models compute the
same equivariant cohomology ofMwhenM is a homogeneous space and when
M is a point.

2.6 A Ring Homomorphism from the Cartan model to the

Borel model

To construct the ring homomorphism from the Cartan model to the Borel
model, we will describe a third model of equivariant cohomology called theWeil
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model that is isomorphic to the Cartan model and construct a ring
homomorphism from theWeil model to the Borel model (for more details on the
Weil model, see [8, Ch. 4]). TheWeil algebraW(G) of a Lie groupGwith Lie
algebra g is the Koszul algebra of g∨:

W(G) := S(g∨)⊗ ∧(g∨).

Suppose that X1, ...,Xn is a basis for the Lie algebra g. If u1, ..., un is the dual
basis for S(g) and θ1, ..., θn is the dual basis for

∧
(g∨), then ui := ui ⊗ 1 and

θj := 1⊗ θj generate theWeil algebra. Since [Xi,Xj] is in g, there exist constants
ckij such that

[Xi,Xj] =
∑

k c
k
ijXk.

We can construct the exterior derivative d on theWeil algebra by defining d on
generators and extending it toW(G) as an antiderivation:

dθi = ui − 1
2

∑
cijkθjθk

dui =
∑

cijkujθk.

For X ∈ g, we define the contractionwith X on theWeil algebra to be the
following map: set

ιXθi = θi(X), ιXuj = 0,

and extend it toW(G) as an antiderivation of degree -1. The Lie derivativeLX is

LX = ιXd+ dιX.

An element α of theWeil modelW(G) is said to be basic if ιXα = 0 andLXα = 0

for allX ∈ g. The setW(G)bas of basic elements ofW(G) form a subalgebra of the
Weil algebra. The setW(G)bas is also closed under the exterior derivative d. Thus,
W(G)bas is a subcomplex ofW(G).

For aG-spaceM, the de Rham complexΩ(M) is equipped with the exterior
derivative d and interior multiplication ιX := ιX̄, where X̄ is the fundamental
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vector field onM associated to X ∈ g. The complexW(G)⊗Ω(M) is a
differential graded algebra with antiderivations d and ιX for X ∈ g. A basic
element inW(G)⊗Ω(M) is defined in the same way as for theWeil algebra
W(G). The set (W(G)⊗Ω(M))bas of basic elements ofW(G)⊗Ω(M) is closed
under the exterior derivative d. TheWeil model of equivariant cohomology
defines the equivariant cohomology of aG-spaceM to be the cohomology of the
basic complex {(W(G)⊗Ω(M))bas, d}.

Remark: The intuition behind theWeil model of equivariant cohomology is
that theWeil algebraW(G) should serve as an algebraic model for the total space
EG of a universalG-bundle. For a principalG-bundle π : P→ M, a differential
form ω on P is said to be basic if it is the pullback of a form onM (for more
details, see [4, Sec. 14]). A form ω ∈ Ω(P) is basic if and only if ιXω = 0 and
LXα = 0 for all X ∈ g (for a proof, see [4, Prop. 14.12]). Since
π∗ : TpP→ Tπ(p)M is surjective for any p ∈ P, the pullback map
π∗ : Ω(M)→ Ω(P) is injective. Thus, there is a one-to-one correspondence
between the forms onM and the basic forms on P. The isomorphism

π∗ : Ω∗(M)
∼−→ (P)bas

induces an isomorphism in cohomology

H∗(M)
∼−→ H∗{Ω∗(P)bas}.

There is an isomorphism between the Cartan model and theWeil model of
equivariant cohomology called theMathai-Quillen isomorphsim (for a proof,
see [8, Ch. 4]). Therefore, it suffices to construct a homomorphism between the
Weil model and the Borel model of equivariant cohomology. Recall that
EG = ∪nEGn, BG = ∪nBGn, and that EGn → BGn is a principalG-bundle.
There is a connection form ω on EGn; it is a g-valued 1-form on EGn, i.e.

ω =
∑

ωiXi.

The connection form ω on EGn gives rise to a curvature formΩ on EGn:
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Ω = dω + 1
2
[ω, ω].

The algebra homomorphism

φ : W(G)→ Ω∗(EGn) (2.3)

θi 7→ ωi (2.4)

uj 7→ Ωj (2.5)

is a well-defined homomorphism that commutes with the exterior derivative d
and the contraction ιX for any X ∈ g (for a proof, see [4, Sec. 18.5]). Since the
homomorphism φ commutes with d and ιX, it also commutes with the Lie
derivativeLX = ιXd+ dιX. Therefore, φ induces a ring homomorphism

φ̄ : W(G)bas → Ω∗(EGn)bas = Ω∗(BGn)

of basic complexes (this induced homomorphism is called the Chern-Weil
homomorphism). The Chern-Weil homomorphism can be naturally extended
from a ring homomorphismW(G)bas → Ω∗(EGn)bas to another ring
homomorphismW(G)bas ⊗Ω(M)→ Ω(EGn)bas ⊗Ω(M). Therefore, in
cohomology, we have the following ring homomorphism (H∗

G(M) denotes the
equivariant cohomology in the Cartan model):

H∗
G(M) ≃ H∗((W(G)⊗Ω(M))bas)→ H∗((Ω∗(EGn)⊗Ω(M))bas).

By the Künneth formula and the remark on the previous page,

H∗((Ω∗(EGn)⊗Ω(M))bas) = H∗(Ω∗(EGn ×M)bas) = H∗((EGn ×M)/G).

LetMn denote the homotopy quotient (EGn ×M)/G. Note that since
EG = ∪nEGn,MG = ∪nMn. We have shown that there is a ring homomorphism
from the Cartan model of equivariant cohomology toH∗(Mn) for all n.
Therefore, there is a ring homomorphism

H∗
G(M)→ lim←−H∗(Mn).

SinceH∗(Mn) is the real singular cohomology ofMn, lim←−H∗(Mn) ≃ H∗(MG) [9,
Prop. 3F.5]. Thus, there is a ring homomorphism from the Cartan model to the
Borel model.
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3
TheEquivariant de RhamTheorem

3.1 Properties of G-orbits

In this secton, we study some properites ofG-orbits on aG-spaceM. We show
that whenG is compact, everyG-orbit is a regular submanifold ofM. The
compactness condition onG produces two other results aboutG-spaces that have
analogues in the theory of manifolds:

1) EveryG-orbit has aG-invariant tubular neighborhood.
2) EveryG-space has an invariant good cover.
These results have the following analogues in the theory of manifolds:
1) Every regular submanifold of a manifold has a tubular neighborhood.
2) Every manifold has a good cover.
(An open coverU = {Uα} of a manifoldM of dimension n is called a good

cover if all nonempty finite intersectionsUα0 ∩ · · · ∩ Uαk are diffeomorphic to
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Rn. A manifold which has a finite good cover is said to be of finite type). Finally,
the existence of an invariant good cover allows us to prove the equivariant de
Rham theorem whenG is a compact, connected Lie group andM is aG-space of
finite type.

LetM be a leftG-space, whereG is a Lie group. A subset A ofM is said to be
G-invariant if lg(A) ⊂ A for all g ∈ G. For x ∈ M, letG · x denote theG-orbit of
x:

G · x = {y ∈ M|y = g · x for some g ∈ G}.

LetGx denote the stabilizer of x:

Gx = {g ∈ G|g · x = x}.

Lemma 3.1. For x ∈ M, Gx is a closed subgroup of G.

Proof. Suppose that {gk} is a sequence inGx such that gk → g.
Since gk ∈ Gx, gk · x = x for all k. Therefore,

g · x = (limk→∞ gk) · x = limk→∞(gk · x) = x.

By the orbit-stabilizer theorem,G · x ≃ G/Gx. SinceGx is a closed subgroup of
G,G · x is a submanifold ofG [13]. WhenG is compact,G/Gx is a regular
submanifold ofG. We will soon prove thatG/Gx is also a regular submanifold of
M by introducing fundamental vector fields.

Every Lie groupG has an exponential map exp: g→ G defined on its Lie
algebra g. Each element Y ∈ g generates a curve e−tY :=exp(−tY) inG, where t
is a real variable. We define the fundamental vector field Ȳ associated to Y by

Ȳx := d
dt |t=0e−tY · x for x ∈ M.

We have the following theorem about the zeros of fundamental vector fields (for
a proof of this theorem and the corollary that immediately follow, see [4,
Prop. 2.4]):
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Theorem. Suppose a Lie group G acts smoothly on a manifold M. For any element
A in the Lie algebra g of a Lie group G, a point p ∈ M is a zero of the fundamental
vector field Ā on M if and only if p is a fixed point of the action of the one-parameter
subgroup {etA ∈ G|t ∈ R} in G onM.

Corollary: For A ∈ g, the fundamental vector field Ā vanishes at p if and only if A
is in the Lie algebra of the stabilizer Gp.

If we fix x ∈ M, the orbit map

fx : G→ M (3.1)

g 7→ g · x (3.2)

is a smooth map whose image is the orbitG · x. Its differential at the identity is
the linear map

(fx)∗,e : g→ TxM

that sends Y ∈ g to its fundamental vector field Ȳx.

Proposition 3.2. For x ∈ M, the orbit map fx : G/Gx → M is an injective
immersion. Furthermore, when G is compact, the orbit G · x is a regular submanifold
of M.

Proof. LetH = G/Gx. It suffices to show that the map

fx : H→ M (3.3)

g 7→ g · x (3.4)

is a injective immersion and that whenG is compact, the map is also a proper
map. Themap fx is injective becauseH acts freely on x. SinceH acts freely on x,H
also acts freely for every y ∈ H · x. This is a consequence of the fact that if
y = g · x for some g ∈ H, thenGy·x = g−1Gxg. So if the stabilizerHx of x is
trivial, thenHy is trivial too. To show that fx is an immersion, we need to compute
the kernel of the differential map
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(fx)∗,g : TgH→ Tg·xM.

It suffices to consider the kernel when g = e, since ker π∗,g = lg∗(ker π∗,e). By the
previous corollary, for A ∈ h, if the fundamental vector field Ā vanishes at g · x,
then A is in the Lie algebra of the stabilizerHg·x. But since the stabilizerHg·x is
trivial, A = 0. Therefore, fx is an injective immersion.

Suppose thatG is compact. Recall that a map f : X→ Y is proper if for every
compact set V ⊆ Y, its preimage f−1(V) is compact in X. Since any continuous
map from a compact space to a Hausdorff space is proper, the map fx : H→ M is
proper.

By a theorem in manifolds, if a manifoldN is compact, then an injective
immersion f : N→ M is an embedding and the image f(N) is a regular
submanifold ofM [12,Th. 11.13 and Ex. 11.5]. Thus, ifG is compact,
fx(G/Gx) = G · x is a regular submanifold ofM.

3.2 The Tangent Space of aG-orbit

Suppose that a compact Lie groupG acts on a manifoldM on the left (in this
section,G is always assumed to be compact). By proposition 3.2, everyG-orbit is
a regular submanifold ofM. Let x ∈ M. Then sinceG · x is a regular submanifold
ofM, for each p ∈ G · x, the tangent space Tp(G · x) ofG · x is well defined.
Therefore, the tangent space TpM can be decomposed into a direct sum:

TpM = Tp(G · x)⊕ Nx,

whereNx is the quotient vector spaceTpM/Tp(G · x). Note that if y is in the orbit
G · x, thenNy andNx are isomorphic vector spaces.

For g ∈ Gx, the map

lg : M→ M (3.5)

y 7→ g · y (3.6)

fixes the orbitG · x set-wise. The differential map
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(lg)∗,x : TxM→ Tg·xM = TxM

is an isomorphism that sends the tangent space of the orbit into itself. Thus, the
differential map also induces a linear map fromNx to itself. This argument shows
that to each x ∈ M is associated a group homomorphism

Gx → GL(Nx),

i.e. we have a linear representation of the stabilizerGx onNx. As a result, the
stabilizerGx acts onG× Nx by left multiplication onG and by the linear
representation onNx.

In general, ifH is a closed subgroup of the Lie groupG and if V is a vector
space with anH-linear action (that is, every element h ∈ H induces a linear map
on V), then there is a free action ofH onG× V:

h · (g, v) = (gh−1, h · v).

We can obtain a quotient spaceG×H V by declaring (g, v) and (g0, v0) to be
equivalent if there exists an h ∈ H such that h · (g, v) = (g0, v0) (the notation
[g, v]will denote the equivalence calss of (g, v) inG×H V).

From this construction,G×H V is a vector bundle onG/Hwith fiber V. The
vector bundleG×H V has a well-definedG-action:

g0 · [g, v] = [g0g, v].

We can treatG/H as the zero section of the vector bundleG×H V, i.e.

G/H = {[g, 0]|g ∈ G} ⊆ G×H V.

TakingH to beGx and V to beNx, we have constructed a vector bundleG×Gx Nx

with fiberNx and whose base space isG · x = G/Gx. The following theorem
states that the orbit map fx can be extended to some neighborhood of the zero
sectionG/Gx (for an outline of the proof, see [2,Thm. 1.2.1]):

Theorem 3.3. (“The slice theorem”): Suppose a compact Lie group G acts on a
manifold M. Then there exists a G-equivariant diffeomorphism from a G-invariant
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open neighborhood of the zero section in G×Gx Nx to a G-invariant open
neighborhood of G · x inM, which sends the zero section G/Gx to the orbit G · x by the
orbit map fx.

By the slice theorem, everyG-orbit inM has aG-invariant tubular
neighborhood. For each x ∈ M, letUx denote such aG-invariant tubular
neighborhood ofG · x.

Proposition 3.4. The open coverU = {Ux}x∈M is an invariant good cover, i.e.
any nonempty finite intersection of elements ofU is a G-invariant tubular
neighborhood of some G-orbit.

Proof. It suffices to prove this result for the intersection of two elements in the
open coverU. LetUx andUy be elements inU and suppose that
Ux,y := Ux ∩ Uy ̸= ∅. Let z ∈ Ux,y. Since the tubular neighborhoodUx is
G-invariant, g · z ∈ Ux for all g ∈ G. Similarly, g · z ∈ Uy for all g ∈ G, so
G · z ⊆ Ux,y. Since our choice of z ∈ Ux,y was arbitrary, for all z ∈ Ux,y,
g · z ∈ Ux,y. Thus,Ux,y is aG-invariant tubular neighborhood of anyG-orbit
contained inUx,y.

3.3 The Equivariant de RhamTheorem

We are now able to prove the equivariant de Rham theorem for the case thatM is
a manifold of finite type.

Theorem 3.5. Suppose that a compact, connected Lie group G acts smoothly on a
manifold M of dimension n and of finite type. Then the equivariant cohomology of M
in the Borel model and the equivariant cohomology of M in the Cartan model are
isomorphic.

Proof. We have already examined the case whenM = {pt}. By the previous
proposition,M admits an invariant good coverU = {Uxi}xi∈M, whereUxi is an
invariant tubular neighborhood about someG-orbit inM. SinceM is of finite
type, we can assume thatU is finite. LetH∗

G,Bor(X) andH∗
G,Car(X) denote the
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equivariant cohomology in the Borel model and the Cartan model respectively of
aG-space X.

(Case 1: U = {U}) Suppose thatU = {U} is an invariant good cover ofM.
By definition,U is diffeomorphic toRn. Equivariant cohomology is a
G-homotopy invariant of aG-space. SinceRn isG-homotopy equivalent to a
point, the equivariant cohomology ofM (in either model) is isomorphic to the
equivariant cohomology of a point and, as we showed earlier,
H∗

G,Bor({pt}) ≃ H∗
G,Car({pt}).

(Case 2: U = {U0, ...,Up})We prove this case by an induction argument on
the cardinality of an invariant good cover. We will now prove the theorem for the
case whenU = {U0,U1} because this proof uses an argument that we can apply
in the more general case. Suppose thatU = {U0,U1} is an invariant good cover
forM, whereUi is aG-invariant tubular neighborhood about theG-orbitG · xi.
In ordinary cohomology, the Mayer-Vietoris sequence

0→ Ω∗(M)→ Ω∗(U0)⊕Ω∗(U1)→ Ω∗(U0 ∩ U1)→ 0

induces a long exact sequence in cohomology, also called aMayer-Vietoris
sequence:

· · · → H∗(M)→ H∗(U0)⊕ H∗(U1)→ H∗(U0 ∩ U1)→ H∗+1(M)→ · · ·.

In equivariant cohomology (in either model), there is a Mayer-Vietoris sequence:

· · · → H∗
G(M)→ H∗

G(U0)⊕ H∗
G(U1)→ H∗

G(U0 ∩ U1)→ H∗+1
G (M)→ · · ·.

TheG-invariant open setsU0,U1, andU0 ∩ U1 are eachG-homotopy equivalent
to someG-orbit inM. SinceG is compact, everyG-orbitG · x0 is homeomorphic
to the homogeneous spaceG/Gx. Therefore, the equivariant cohomology of each
open set in either model is isomorphic to the equivariant cohomlogy of a
homogeneous space. We showed earlier that for any homogeneous spaceG/H,
the equivariant cohomology ofG/H in Borel model and in the Cartan model are
isomorphic. Let α : H∗

G,Bor(U0 ∩ U1)→ H∗
G,Car(U0 ∩ U1) and

β : H∗
G,Bor(U0)⊕ H∗

G,Bor(U1)→ H∗
G,Car(U0)⊕ H∗

G,Car(U1) be the isomorphisms
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between the two models. We have the following commutative diagram of exact
rows:

... Hk
G,Bor(U0)⊕ Hk

G,Bor(U1) Hk
G,Bor(U0 ∩ U1) Hk

G,Bor(M) Hk+1
G,Bor(U0)⊕ Hk+1

G,Bor(U1) Hk+1
G,Bor(U0 ∩ U1) ...

... Hk
G,Car(U0)⊕ Hk

G,Car(U1) Hk
G,Car(U0 ∩ U1) Hk

G,Car(M) Hk
G,Car(U0)⊕ Hk+1

G,Car(U1) Hk+1
G,Car(U0 ∩ U1) ...

α β γ α β

Since the maps α and β are isomorphisms, by the five lemma, the map in the
middle column γ : Hk

G,Bor(U0) ∪ U1)→ Hk
G,Car(U0 ∪ U1) is an isomorphism as

well. Finally, we now proceed by induction on the cardinality of an invariant good
cover. SupposeH∗

G,Bor(M) andH∗
G,Car(M) are isomorphic for anyG-spaceM

having an invariant good cover with at most p open sets. Consider aG-space
having an invariant good coverU = {U0, ...,Up}with p+ 1 open sets. Now
(U1 ∪ ... ∪ Up−1) ∩ Up has a good cover with p open sets, i.e.
{U0,p,U1,p, ...,Up−1,p}, whereUi,p = Ui ∩ Up. By the induction hypothesis, the
equivariant cohomology in the Borel and Cartan models ofU0 ∪ ... ∪ Up−1,Up,
and (U0 ∪ ... ∪ Up−1) ∩ Up are all isomorphic. By the five lemma, the
equivariant cohomology in the Borel and Cartan models ofU0 ∪ ... ∪Up are also
isomorphic. This completes the induction.
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