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ABSTRACT 

A full-scale seven-story reinforced concrete building section/slice was tested on the NEES shake table 

at the University of California San Diego during the period of October 2005 to January 2006. Three 

output-only system identification methods were used to extract the modal parameters (natural frequencies, 

damping ratios, and mode shapes) of the test structure at different damage states. In this study, the 

performance of these system identification methods is investigated in two cases: (Case I) when these 

methods are applied to the measured dynamic response of the structure, and (Case II) when these methods 

are applied to the dynamic response of the structure simulated using a three-dimensional nonlinear finite 

element model thereof. In both cases, the uncertainty/variability of the identified modal parameters due to 

the variability of several input factors is quantified through analysis-of-variance (ANOVA). In addition to 

ANOVA, meta-models are used for effect screening in Case II (based on the simulated data) which also 

capture the effects of linear interactions of the input factors. The four input factors considered in Case I 

are: amplitude of input excitation, spatial density of measurements, length of response data used for 

system identification, and model order used in the parametric system identification methods. In the 

second case of uncertainty analysis, in addition to these four input factors, measurement noise is also 

considered. The results show that for all three methods considered, amplitude of excitation is the most 

significant factor explaining the variability of the identified modal parameters, especially the natural 

frequencies.  
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1.  Introduction 

In recent years, structural health monitoring has gained increased interest and attention from the civil 

engineering community as a potential tool to identify damage at its earliest possible stage and to estimate 

the remaining useful life of structures (damage prognosis). Vibration-based damage identification 

procedures involve conducting repeated vibration surveys on the structure during its lifetime. Changes in 

identified dynamic characteristics such as modal parameters of structures are being used extensively for 

the purpose of condition assessment and damage identification of structures. Extensive literature reviews 

on damage identification methods based on changes in dynamic properties are provided in [1-4]. 

Operational modal analysis (OMA) has been used as a technology for estimating modal parameters of 

structures using output-only data, i.e., without the knowledge of input excitation [5, 6]. For civil 

structures, this technology is more suitable than experimental modal analysis (based on input-output data) 

[7] because: (1) it is usually very difficult if not impossible to measure the input excitations such as wind 

and traffic under operational conditions, and (2) it is expensive to perform dynamic experiments on in-situ 

structures using dynamic excitation equipment (e.g., shakers, actuators) allowing measurement of the 

excitation [8]. It should be noted that the success of vibration-based damage identification methods 

depends strongly on the completeness and accuracy of the identified modal parameters [9]. This study 

investigates systematically, based on a shear wall testbed structure, the variability of modal parameters 

identified using three output-only system identification methods due to the uncertainty/variability of 

several input factors. These input sources of variability include choices made in (i) the design of the 

dynamic tests or experiments, (ii) the data collection, and (iii) the data processing/analysis.   

A full-scale, 7-story reinforced concrete (RC) shear wall building slice was tested on the NEES shake 

table at the University of California San Diego (UCSD-NEES shake table) during the period of October 

2005 to January 2006. The shake table base excitation tests were designed to damage the building 

progressively through historical earthquake ground motions on the shake table. At various levels of 

damage, several low amplitude white noise base excitations were applied, through the shake table, to the 

building that responded as a quasi-linear system with modal parameters depending on the level of 

structural damage. Three output-only system identification methods, namely (1) Natural Excitation 

Technique combined with the Eigensystem Realization Algorithm (NExT-ERA) [10, 11], (2) Data-driven 

Stochastic Subspace Identification (SSI-Data) [12], and (3) Enhanced Frequency Domain Decomposition 

(EFDD) [13], were used to estimate the modal parameters (natural frequencies, damping ratios and mode 

shapes) of the building at its undamaged (baseline) and various damage states [14]. The variability in the 

system identification results was observed to be significant, which motivated the uncertainty analysis of 

system identification results presented in this paper. Furthermore, in an earlier study [9], the authors 
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performed an uncertainty analysis of the damage identification results obtained from a finite element (FE) 

model updating strategy applied to dynamic data simulated from a nonlinear FE model of the seven-story 

building structure considered here. One of the input factors of that study consisted of the level of 

uncertainty of the (identified) modal parameters at the undamaged and various damage states of the 

structure, which was found to play a significant role in the uncertainty of the damage identification 

results.  

This study examines the performance of the above mentioned system identification methods as 

applied to the measured dynamic response of the building (Case I) and the dynamic response of the 

building simulated using a nonlinear FE model thereof (Case II). The variability of the modal parameters 

identified at various states of the structure due to variation of four input factors is analyzed. The simulated 

dynamic response of the building used in Case II was generated using a three-dimensional nonlinear finite 

element model of the building developed in the structural analysis software framework OpenSees [15]. A 

full factorial design of experiments is used in each case, thus considering all possible combinations of the 

input factors. Analysis-of-variance (ANOVA) [16, 17] is employed to quantify the variability of the 

identified modal parameters due to variation of the input factors. In addition to ANOVA, meta-models 

[18, 19] are used for effect screening in Case II (based on the simulated dynamic response data). The 

meta-models considered also include the effects of linear interactions of the input factors.  

2.  Test Specimen, Instrumentation and Dynamic Experiments 

The test structure represented a section/slice of a full-scale seven story reinforced concrete wall 

building and consisted of a main wall or web wall, a back wall or flange wall perpendicular to the main 

wall providing transversal stability, concrete slabs at floor levels except at the base, a post-tensioned 

auxiliary column providing torsional stability, and four gravity columns transferring the floor slabs 

weights to the shake table. Slotted slab connections located between the web and flange walls at floor 

levels allow the transfer of in-plane diaphragm forces while minimizing the moment transfer between the 

web and flange walls. Figure 1 shows the test structure mounted on the shake table. More details about 

the test structure can be found in [20]. Mechanical and dynamic characteristics of the shake table and its 

controller are available in [21].   

The test structure was instrumented with a dense array of strain gages, accelerometers, linear variable 

displacement transducers (LVDTs), and potentiometers from which data were simultaneously sampled 

using a nine-node distributed data acquisition system. In this study, data from 28 longitudinal acceleration 

channels - three located at each floor level and one at mid-height of the web wall at each story - were used 

for identifying the effective modal parameters at different undamaged and damaged states of the test 
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structure. The acceleration responses were measured at a rate of 240Hz resulting in a Nyquist frequency 

of 120Hz, which is higher than the frequencies of interest in this study (< 25Hz). More details about the 

instrumentation layout are available in [14]. 

 

Figure 1. Test structure 

A sequence of 68 dynamic tests was applied to the test structure including ambient vibration tests, 

forced vibration tests (white noise and seismic base excitations), and free vibration tests. The building 

was damaged progressively through four historical earthquake ground motions, and the modal parameters 

of the building at various damage states were identified using different system identification methods and 

different test data. As already mentioned, the observed variability in the system identification results 

motivated the authors to perform an uncertainty analysis. The uncertainty analysis study presented in this 

paper is based on the measured data from an ambient vibration test and two banded white noise (0.25-

25Hz) base excitation tests with root mean square (RMS) amplitudes of 0.03g and 0.05g, all performed 

after the application of the first earthquake and before the building was exposed to the second earthquake. 

The maximum length of measured data for each of the three tests is 3 minutes. The first earthquake 
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ground motion applied to the building was the longitudinal component of the 1971 San Fernando 

earthquake at the Van Nuys station (Mw = 6.6). 

In addition to the uncertainty analysis based on the experimentally measured data, another case of 

analysis is performed based on the FE simulated response of the building obtained from a calibrated 

nonlinear FE model thereof. This numerical study allows investigating the effect of added measurement 

noise as another input factor and also comparing the system identification results with the “exact” 

eigenvalues of the damaged FE model of the structure after application of the gravity loads.  

3.  Finite Element Response Simulation 

A three dimensional nonlinear finite element model of the structure was developed using the software 

framework OpenSees for advanced modeling and simulation of structural and/or geotechnical systems 

with applications in earthquake engineering [15]. The FE model is composed of 509 nodes, 233 beam-

column elements and 315 linear elastic shell elements. Both the web (in the East-West direction) and 

flange (in the North-South) walls are modeled as force-based nonlinear beam-column elements with fiber 

cross-sections and with the Euler-Bernoulli kinematic assumption (i.e., beam/column cross-sections 

remain plane and perpendicular to the centroidal axis in the deformed configuration). These elements 

allow the spread of plasticity along the height of the walls. Recent years have seen great advances in the 

nonlinear analysis of frame structures. Advances were led by the development and implementation of 

force-based elements, which are superior to classical displacement-based elements in tracing material 

nonlinearities such as those encountered in reinforced concrete beams and columns [22, 23]. 

Displacement-based beam-column elements are based on the interpolation of the displacement fields 

along the element (typically cubic Hermitian polynomials for the transverse displacement, which are 

exact only for linear elastic prismatic beam-column).  This interpolation becomes an approximation when 

the element is not prismatic and/or the material is nonlinear. Therefore, for nonlinear analysis, 

displacement-based beam-column elements provide only an approximate solution, the accuracy of which 

can be improved by increasing the number of elements used to model each beam/column of the structure. 

Force-based elements are based on the interpolation of the internal force fields along the element, which 

is exact (i.e., satisfies equilibrium exactly). This interpolation is exact whether the element is prismatic or 

not, linear or nonlinear. Therefore, the formulation of the force-based element is exact irrespective of the 

variation of the beam cross-section properties over its length and the state of the material (linear, 

nonlinear). The fiber cross-sections are defined from the cross-sectional geometry, longitudinal 

reinforcement bars, and material properties of the walls. For each story, the web wall is discretized into 

four elements, and four Gauss-Lobatto integration points are used along the length of each element. 

Figure 2 shows the discretization of the web wall using force-based fiber-section nonlinear beam column 
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elements, the fiber discretization of the wall cross-section, and the uni-axial constitutive laws adopted for 

the concrete (unconfined and confined) and steel material/fibers. Figure 2(a) shows the first-story web 

wall discretization into four elements with four Gauss-Lobatto integration points each. At the first story, 

the fiber cross-section of the web wall (with two layers of reinforcing steel at both ends of the walls) 

contains the following sub-regions as shown in Figure 2(b): one region at each end (East and West) of the 

wall containing confined concrete; one region near the West end also containing confined concrete but 

with a lesser level of confinement; and the cover and central regions containing unconfined concrete. As 

shown in the plot, a total of 16 #5 (i.e., with nominal diameter of 5/8 inch or almost 16 mm) and 13 #4 

(i.e., with nominal diameter of 4/8 of an inch or almost 13mm) reinforcing steel bars are used in the 

longitudinal (vertical) direction, while #4 bars spaced at 203 mm (8 inch) on center are used for the 

transverse (horizontal) reinforcement. From the second to the top story, the entire cross-sections of both 

the web and flange walls (each with a single central layer of reinforcing steel) are modeled with 

unconfined concrete material. The uni-axial stress-strain constitutive laws for unconfined and confined 

concrete fibers (with two different levels of confinement) and the steel fibers (rebars) are illustrated in 

Figure 2(c). All the longitudinal reinforcing steel bars are discretized at the locations specified on the 

construction drawings. The OpenSees material type Concrete04 is used to model both the unconfined 

(cover) and confined concrete regions of the wall cross-sections. This uni-axial concrete material 

constitutive model is based on the modified Kent-Park model to represent the concrete compressive 

stress-strain curve, enhanced by using the pre- and post-peak curves proposed by Popovics in 1973 [15]. 

The unloading and reloading stress-strain characteristics are based on the work of Karsan and Jirsa [24]. 

Tensile capacity and softening are also specified for the concrete material models used in the FE model. 

The properties of the confined concrete fibers are determined according to Mander’s model [15]. The 

deformed mild steel reinforcement is modeled using the OpenSees Steel02 material model corresponding 

to the Menegotto-Pinto model which is able to reproduce the Bauschinger effect [25]. The fiber section 

properly accounts for the nonlinear material coupling between the axial and bending behaviors, and the 

assumed linear-elastic shear force-deformation behavior is aggregated at the section level in a materially 

uncoupled way. Shear behavior is coupled to the bending behavior only at the element level through 

equilibrium. For more details about the underlying theory of the FE and material models used, the 

interested reader is referred to the OpenSees User’s Manual [15].  

The gravity columns, braces and post-tensioned column are assumed to remain linear elastic during 

the analyses, so they are modeled as linear elastic elements. For the same reason, the slabs are also 

modeled as linear elastic shell elements. The slotted slab connections between the two walls are modeled 

using shell elements with reduced thickness. All tributary masses and corresponding gravity loads are 

applied to the nodes at floor levels. Rayleigh damping is assigned to the model by matching a damping 
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ratio of 2.5% at the frequencies 2Hz and 10Hz, which is consistent with the results of previous system 

identification studies performed on this structure [14]. During each dynamic response analysis, the gravity 

loads are first applied to the model quasi-statically followed by the rigid-base excitation, which is applied 

dynamically. As base excitation, three base acceleration time histories are generated as Gaussian banded 

white noise processes (between 0.25Hz and 30Hz) with root mean square accelerations of 0.03g, 0.06g 

and 0.09g, respectively, where g denotes the acceleration of gravity. The implicit Newmark integration 

procedure with a time-step of 1/120 second (sec) is used as time integration scheme. The longitudinal 

acceleration response histories are recorded at the 28 nodes corresponding to the sensor locations on the 

test structure (i.e., three accelerometers at each floor level and one at mid-height of the web wall at each 

story).  

 

Figure 2. Wall modeling using forced-based fiber-section nonlinear beam-column elements: (a) web wall 
discretization at the first story, (b) sub-regions of the wall cross-section with different levels of 

confinement of the concrete (no confinement: white, moderate confinement: light grey, and high 
confinement: dark grey background), and (c) uni-axial constitutive laws for unconfined and confined 

concrete and steel reinforcement 
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The first three longitudinal mode shapes together with their corresponding natural frequencies and 

damping ratios are shown in Figure 3. These mode shapes and natural frequencies were computed based 

on the tangent stiffness matrix (after application of the gravity loads) and are in good agreement with 

those identified experimentally from the ambient vibration data of the undamaged test structure (see Table 

1). It is worth noting that the higher natural frequency of the first mode in Case II corresponds to the FE 

model with uncracked concrete properties, while its counterpart from Case I was identified from the 

specimen with cracked concrete condition. The nonlinear FE model of the test structure was validated by 

comparing the simulated acceleration and displacement response time histories with their experimental 

counterparts for the same seismic input motions reproduced on the shake table. The FE predicted peak 

roof displacements closely match the corresponding experimental results for the four historical earthquake 

ground motions used in the shake table tests.   

f1 = 2.12 Hz 

1 = 2.4% 

f2 = 10.48 Hz 

2 = 2.6% 

f3 = 24.15 Hz 

3 = 5.2% 

Figure 3. First three longitudinal mode shapes of FE model of test structure based on uncracked concrete 
properties 

4. Description of Input Factors Studied and Design of Experiments 

The objective of this study is to analyze and quantify the variability of the modal parameters obtained 

using three output-only system identification methods due to the variability of the following input factors: 

(1) excitation amplitude (A), (2) spatial density of the sensors (S), (3) length of structural response 

records used for system identification (L), (4) model order used in the parametric system identification 

methods (NExT-ERA and SSI-Data) (O), and (5) level of measurement noise (N) which could only be 

considered in the numerical study (Case II). Selection of these factors is based on previous experience of 

the authors in system identification of large-scale civil structures [14, 26-28]. The input factors are 

described in more details in the following subsections. 
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Table 1. Statistics of the identified modal parameters (COV = coefficient-of-variation) 

  Case I Case II 

  Mean COV [%] Exact Mean COV [%]

Natural Freq. 
 [Hz] 

Mode 1 1.67 12.0 2.12 1.94 9.8 

Mode 2 11.16 3.8 10.48 10.01 4.4 

Mode 3 - - 24.15 21.33 3.1 

Damping Ratio 
[%] 

Mode 1 4.9 71.4 2.4 5.2 59.6 

Mode 2 4.2 71.4 2.6 2.6 65.4 

Mode 3 - - 5.2 3.2 59.4 

MAC 

Mode 1 0.95 8.4 1 0.96 17.7 

Mode 2 0.89 12.4 1 0.99 5.1 

Mode 3 - - 1 0.93 11.8 

 

4.1. Excitation Amplitude 

The three system identification methods considered in this study provide estimates of the modal 

parameters of a linear structure. These methods are based on linear system theory. In the case that they are 

applied to nonlinear response measurements, the modal parameter estimates are to be interpreted as 

equivalent or effective linear modal parameters. Reinforced concrete structures are highly nonlinear, with 

nonlinearities staring at low amplitude excitation. The level of structural response nonlinearity is directly 

related to the amplitude of the input excitation. To study the performance of these system identification 

methods as applied to nonlinear structural data, the response of the building is considered at three levels 

of input excitation. In Case I (based on measured experimental data), the three levels of excitation are: (1) 

ambient excitation, (2) 0.03g RMS banded (between 0.25Hz and 25Hz) white noise base excitation, and 

(3) 0.05g RMS banded white noise base excitation. The three levels of input excitation in Case II (based 

on FE simulated data) are 0.03g, 0.06g, and 0.09g RMS banded (between 0.25Hz and 30Hz) white noise 

base excitation. Figure 4 plots the coherence function between the base input excitation (i.e., table 

acceleration) and the roof acceleration response for both cases of measured and simulated data and for 

different levels of white noise base excitation. The coherence function could not be computed for the 

ambient vibration test data in Case I since the input excitation is unknown and therefore unmeasured. 

From this figure, it can be seen that the response nonlinearity increases with increasing level of base 

excitation. This is consistent with the (simulated) moment-curvature hysteretic response at the base of the 

web wall in which the plastic curvature increases significantly as the RMS of the white noise base 

acceleration increases from 0.03g to 0.09g. In Figure 4, it is also observed that at the same amplitude of 
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base excitation (0.03g RMS), nonlinearity in the measured (experimental) response is larger than that in 

the simulated response. This can be due to more noise in the test data and/or other sources of nonlinearity 

in the test data such as rattling of loose connections from the slackness between the nut and the threaded 

rod in gravity columns (1.5mm of slackness) when they go from compression to tension or vice versa, and 

the slack at both ends of the steel braces connecting the post-tensioned column to the floor slabs. Figure 5 

shows the roof acceleration response time histories and their power spectral densities for the two base 

excitations (0.03g and 0.05g RMS) in Case 1. It is observed that the peak of the power spectral density 

decreases as the excitation amplitude increases. This indicates that the first natural frequency decreases 

with increasing excitation amplitude due to system nonlinearity (softening). 

 

Figure 4. Coherence functions between base input (table acceleration) and roof acceleration response for 

Cases I and II and different levels of base excitation 

4.2. Spatial Density of Sensors 

An instrumentation array of 28 uni-axial acceleration channels is used during the shake table tests to 

measure the response of the structure in the base excitation direction (East-West). The same array of 

acceleration response histories is simulated using the nonlinear FE model of the structure in OpenSees. 

This array of 28 acceleration channels consists of three channels on each floor slab (at the north end, in 

the middle, and at the south end) and one channel on the web wall at mid-height of each story. To study 
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the performance of the system identification methods as a function of the spatial density of the sensor 

array (i.e., number of sensors), three different subsets of the 28 sensor array are considered. The 

configuration of accelerometers in each of these three subsets is: (1) seven accelerometers on the web 

wall at floor levels (i.e., top of each story wall), (2) fourteen accelerometers on the web wall at floor 

levels and mid-height of each story, and (3) full array of twenty eight accelerometers.     

 

Figure 5. Roof acceleration responses and their power spectral densities for  

0.03g RMS (left) and 0.05g RMS (right) white noise base excitations 

4.3. Length of Structural Response Records Used for System Identification 

Three different lengths of measured or simulated structural dynamic response data are considered in 

each of the two cases, namely: (1) 30 sec, (2) 60 sec, and (3) 180 sec. It should be noted that in many 

practical applications of OMA, longer durations of structural ambient vibration response (up to 1,000 

times the fundamental period) are used in the identification process to ensure that an adequate level of 

estimation accuracy is achieved. However, this study focuses on a wide range of system identification 

cases, including some extreme cases where the OMA methods are challenged, i.e., when the available 

data is short and/or data is nonlinear such as in the case of small or moderate amplitude earthquakes. This 

input factor and its levels are selected based on the authors’ previous experience and the available 

experimental data. 

4.4. Model Order 

When using parametric linear system identification methods for obtaining equivalent modal 
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stiffness matrix, they vary as the latter changes during the response history. Therefore, the Frequency 

Response Functions (FRF) estimated from the data will not have narrow resonant peaks at the equivalent 

modal frequencies even in the case of noise-free data. With increasing order of the equivalent linear 

system, a larger number of modes are used to fit the cluster of peaks around each vibration mode, which 

results in variability in the identified natural frequencies and especially damping ratios. In this study, to 

investigate the effect of model order on the identified damping ratios, two model orders of 12 (fitting the 

data with maximum of 6 physical modes) and 24 (fitting the data with maximum of 12 physical modes) 

are considered. The model orders of 12 and 24 are selected such that the vibration modes of interest are 

stabilized in the stabilization diagram even for the most challenging identification cases. The vibration 

modes of interest are the first two longitudinal modes in Case I and the first three longitudinal modes in 

Case II and are selected using the Modal Assurance Criterion (MAC) metric [29]. Identified modes are 

selected to have the largest MAC value with the corresponding exact mode shape in Case II or the most 

accurately identified mode shape in Case I (A = ambient vibration; S = 28 acceleration channels; L = 180 

sec). It is worth noting that even when using a stabilization diagram for order selection, the modal 

parameter estimates depend on the selected model order, especially when the underlying system to be 

identified is nonlinear.   

4.5. Measurement Noise 

This input factor could be considered only in Case II of uncertainty analysis (based on simulated 

data). In this case, the measurement/sensor noise is modeled as zero-mean Gaussian white noise processes 

that are added to all channels of simulated acceleration response data. This type of measurement noise is 

commonly used to approximate unmodeled parasitic high frequency dynamics in addition to actual sensor 

noise [30, 31]. The noise level is defined as the ratio of the RMS of the noise process to the RMS of the 

noise-free acceleration response process at each channel. This ratio is kept constant at all channels for a 

given noise level. Two levels of measurement noise, namely 5%, and 20%, are considered here to study 

the effect of this input factor on the variability of the identified modal parameters. The noise processes 

added to all acceleration channels are assumed statistically independent. Due to the random characteristics 

of the added noise, for each combination of the five input factors investigated (excitation amplitude, 

spatial density of sensors, data length, model order, and noise level), a set of 100 system identification 

runs is performed based on a set of random (i.e., statistically independent) realizations of the Gaussian 

white noise vector process used to model the measurement noise at all acceleration response channels. 

Variability of the mean and standard deviation of the identified modal parameters for these 100 

identification trials is investigated as a function of the input factors.  
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Table 2 reports the input factors and their levels for the two cases of uncertainty analysis. A full 

factorial design of experiment is used in this study, resulting in a total of 3 3 3 2 54     and 

3 3 2 3 2 100 10,800       (a set of 100 identification runs are considered for each combination of 

input factors) identification runs for Cases I and II, respectively, and for each of the two parametric 

identification methods (NExT-ERA and SSI-Data). For the nonparametric method (EFDD), model order 

is not an input factor, therefore 3 3 3 27    and 3 3 3 2 100 5,400      identification runs are 

performed for Cases I and II, respectively. A design of experiments is an organized approach for setting 

up physical or numerical experiments. A common experimental design is a full factorial design that 

considers all possible combinations of the input factors at all levels. This design of experiments requires a 

large number of runs, but it minimizes aliasing when used for the ANOVA [16]. The 27,135 system 

identification runs in this study were performed in Matlab. 

Table 2. Description of input factors studied and their levels considered 

Factor Description 
Levels 

Case I Case II 

A Excitation amplitude 3 levels (AV, 0.03, 0.05g) 3 levels (0.03, 0.06, 0.09g)

S Spatial density of sensors 3 levels (7, 14, 28) 3 levels (7, 14, 28) 

N Noise level N/A 2 levels (5, 20%) 

L Length of measured data 3 levels (30, 60, 180sec) 3 levels (30, 60, 180sec) 

O Model order 2 levels (12, 24) 2 levels (12, 24) 

5.  System Identification 

Three output-only (i.e., no information about the input excitation is used) system identification 

methods were used to identify the modal parameters of the test structure based on its measured or 

simulated response data. These methods are: (1) NExT-ERA, (2) SSI-Data, and (3) EFDD. The measured 

acceleration responses were sampled at 240Hz, while the acceleration responses simulated from the FE 

model were decimated at 120Hz. In both cases, the Nyquist frequency (120Hz or 60Hz) is much higher 

than the modal frequencies of interest in this study (below 25Hz). Before applying the above mentioned 

system identification methods to the measured and simulated data, all the absolute acceleration response 

time histories were band-pass filtered (0.5-25Hz in Case I and 0.5-30Hz in Case II) using a high order 

(1024) Finite Impulse Response (FIR) filter. Furthermore, the absolute horizontal acceleration 

measurements from the white noise base excitation tests were converted to relative acceleration by 

subtracting the base/input acceleration. It is noteworthy that these three methods are based on the 



14 
 

assumption that the input excitation is a broadband (ideally white noise) signal. Therefore, violation of 

this assumption will result in some additional modal parameter estimation errors.   

A key issue in the application of NExT-ERA is the selection of the reference channel in order to 

avoid missing modes in the identification process due to the proximity of the reference channel to a modal 

node. It is worth noting that multiple reference channels can also be used in the application of NExT-

ERA. Use of multi-reference channels versus a single-reference channel usually improves the system 

identification results in the application of automated and continuous operational modal analysis. 

However, with the understanding that adding a bad reference channel (close to a modal node) will pollute 

some of the estimated cross power spectral density functions, use of a smaller number of (even one) 

reference channels can provide more accurate system identification results. In this study, one reference 

channel provides accurate modal identification results and therefore there is no need to use multiple 

reference channels. The reference channel is selected based on the configuration of the sensor array 

considered in the identification. In the case of 7 or 14 channels, the sensor at the second floor on the web 

wall is selected as reference. In the case of 28 acceleration channels, one of the two channels on the 

second floor slabs is selected as reference. The response cross-correlation functions are estimated through 

inverse Fourier transformation of the corresponding cross-spectral density (CSD) functions. Estimation of 

the CSD functions is based on Welch-Bartlett’s method using three equal length Hanning windows with 

50 percent overlap. The estimated cross-correlation functions are then used to form Hankel matrices for 

applying ERA in the second stage of the identification process. In the implementation of SSI-Data, the 

filtered acceleration response data are used to form an output Hankel matrix including 25 block rows (30 

block rows when using a signal length of 180 seconds) with either 7, 14 or 28 rows in each block (equal 

to the number of acceleration channels considered). The number of block rows multiplied by the number 

of measurement channels indicates the maximum model order that can be realized. Increasing the number 

of block rows (or reducing the aspect ratio of the Hankel matrix) usually improves the system 

identification results until this number is large enough, i.e., the results converge. The number of block 

rows in this study is selected such that (1) the largest model order considered (O = 24) can be realized and 

(2) increasing this number will provide negligible improvement in the system identification results. Note 

that all of the measured data are used in the Hankel matrix, independently of the number of block rows 

selected. In the application of the EFDD method, the auto/cross-PSD functions are estimated based on 

Welch-Bartlett’s method using Hanning windows (2 to 6) of different sizes depending on the 

measurement length, with 50 percent of window overlap. The window lengths used in estimating the 

power/cross spectral density functions affect the frequency resolution and, to some extent, the accuracy of 

the identified modal parameters. In this study, effects of this source of variability on the modal 

identification results are not considered. The choice of window lengths was considered to provide a 
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reasonable frequency resolution for all identification cases. After estimating the auto/cross- power 

spectral density functions, the response PSD matrices at all discrete frequencies are each subjected to 

singular value decomposition. The modal parameters are then estimated as described in [13]. 

5.1. Identified Modal Parameters Based on Measured Data (Case I)  

As mentioned above, a full factorial design of experiment is considered in this study and therefore 

3 3 3 2 54     system identifications are performed using each of the NExT-ERA and SSI-Data 

methods, and 3 3 3 27    using the EFDD method based on the measured test data in Case I. Figure 6 

shows the spread of the identified modal parameters (natural frequencies, damping ratios, and MAC 

values between each identified mode shape and the corresponding mode shape identified using the 

following values of the input factors: A = ambient, S = same as the identified mode, L = 180 sec, O = 12) 

for the first two longitudinal modes and each of the three identification methods used. Statistics of the 

identified modal parameters are reported in Table 2. Figure 7 shows in box plots the distributions of the 

natural frequencies and damping ratios identified using all three methods for the each level of excitation 

amplitude. In these plots, the end of the boxes are the lower and upper quartiles of the data, i.e., 0.25
ja  and 

0.75
ja . The vertical lines in the boxes are the medians 0.5

ja , and the empty circles denote the mean values. 

The outside bars on the right of the boxes are the minimum of 0.75 0.75 0.251.5 ( )j j ja a a    and max
ja , and the 

outside bars on the left are the maximum of 0.25 0.75 0.251.5 ( )j j ja a a    and min
ja . The observations falling 

outside of these bars are shown with crosses. This figure shows the significant influence of the excitation 

amplitude on the distributions of the identified modal parameters, especially the first natural frequency. 

The identified natural frequency (mean and median values) of the first mode decreases significantly with 

increasing level of excitation amplitude. This is due to the fact that the length of the plastic hinge 

developed at the bottom of the web wall is approximately 1/10th of the total height of the wall. Therefore, 

most of the change in the curvature of the deflected shape occurs at the bottom of the wall (in the plastic 

hinge region) which affects the first mode more significantly than the higher modes. The raw results 

shown in Figures 6 and 7 and reported in Table 2, however, do neither contain nor quantify the 

contribution of each input factor or combination of input factors to the total variability of the identified 

modal parameters.    
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Figure 6. Identified modal parameters as a function of the input factors (Case I) 

 

Figure 7. Distributions of identified modal parameters in box plots for different amplitudes of excitation 

(Case I) 
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5.2. Identified Modal Parameters Based on FE Simulated Data (Case II)  

The spread of the modal parameters, identified based on simulated data in Case II, comes from 

varying the five input factors A, S, N, L, and O resulting in 3 3 2 3 2 108      combinations thereof 

for the parametric methods NExT-ERA and SSI-Data and the four input factors A, S, N, and L resulting 

in 3 3 2 3 54     combinations thereof for the non-parametric method EFDD. Figure 8 shows the 

spread of the statistical mean (for each ensemble of 100 identifications) of the identified modal 

parameters (natural frequencies, damping ratios, and MAC values between the identified mode shapes 

and their nominal counterparts computed from the FE model) for the first three longitudinal modes and 

each of the three identification methods used. Thus, each of the points in this figure corresponds to the 

mean over 100 identification trials with independent vector measurement noise realizations. Reducing the 

set of 100 modal identification results for each combination of the input factors to the statistical mean is a 

crude variance reduction technique that lowers the variability of the identified modal parameters due to 

the choice of the vector measurement noise process (i.e., seed number of the vector noise realization). 

Table 1 reports the mean, standard deviation, minimum and maximum values of the statistical mean (over 

the 100 realizations) of the identified modal parameters. Figure 9 shows in box plots the distributions of 

the statistical mean (over the 100 realizations) of the identified (using all three method) modal parameters 

with the mean and median values (shown as an empty circle and vertical bar inside the box, respectively). 

From this figure, it is observed again that the excitation amplitude has a significant effect on the identified 

modal parameters. In general, with increasing level of excitation amplitude, it is found that the identified 

natural frequencies (mean and median values thereof) decrease, while the identified damping ratios (mean 

and median values thereof) increase, especially for the first vibration mode.   

6.  Uncertainty Quantification 

In this section, first the analysis of variance (ANOVA) is employed to partition the observed (total) 

variability of the modal parameters identified using NExT-ERA, SSI-Data, or EFDD based on the 

measured test data (Case I) into components attributable to the sources of variability consisting here of the 

four input factors (i.e., excitation amplitude, spatial density of sensors, length of measured response, and 

model order for parametric methods NExT-ERA and SSI-Data). The second part of this section focuses 

on partitioning the observed (total) variability in the modal parameters identified based on the FE 

simulated response of the building (Case II) into contributions of the five input factors considered in this 

case (same as for Case I plus level of measurement noise). In the last part of this section, meta-modeling 

is used for effect screening of the system identification results obtained in Case II. 
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Figure 8. Statistical mean (over 100 vector measurement noise realizations) of identified modal 

parameters as a function of the input factors (Case II) 

 

Figure 9. Distributions of statistical mean (over 100 vector measurement noise realizations) of identified modal 

parameters in box plots for different amplitudes of excitation (Case II) 
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6.1. Analysis of Variance Based on Measured Data (Case I) 

To investigate the contribution of each input factor (while varying in its considered range) to the total 

variability of the identified modal parameters in Case I, ANOVA is performed and the obtained results 

are discussed. The theoretical basis of ANOVA is that the variance of output features (identified modal 

parameters) can be divided into correlation coefficients or partial variances, each representing the effect 

of an individual input factor to the total variance, independently from the others. The correlation 

coefficients are estimated by the R2 values. To compute the R2 values, the input factors x of the model y = 

M(x) are partitioned in two subsets x f  (single input factor taken as fixed or known) and xv (remaining 

input factors assumed variable or unknown) where y denotes an output feature (identified modal 

parameter herein). The relative importance of input factor x f  is measured by the difference 

2 2(y) (y | )fx   where 2 (y)  = unconditional variance of y , 2 (y | x )f  = conditional variance of 

y  for x f  fixed. The R2 statistic is estimated as: 

2 2
2

2

(y) (y | x )
R

(y)
f


 

  
  (1) 

and represents the relative contribution of the input factor x f  to the total (unconditional) variance of the 

output feature, 2 (y) . The statistic 2R  is bounded between 0 and 1, i.e., 20 R 1  . A large value of 

2R  indicates that the variability of the corresponding input factor controls the variability of the output 

feature y . 

In this case, ANOVA is applied to 54 sets of modal parameters identified using NExT-ERA and SSI-

Data and 27 sets of modal parameters identified using EFDD. The number of sets of identified modal 

parameters correspond to all the possible combinations of the four input factors based on a full factorial 

design of experiment. Figure 10 shows the R2 values for the modal parameters of the first two 

longitudinal vibration modes (see Figure 3) identified using NExT-ERA, SSI-Data, and EFDD 

corresponding to the four input factors A, S, L, and O. The R2 values are scaled such that their sum over 

all input factors equates 100%. From Figure 10, it is observed that: (1) factor A has the most significant 

influence in the variability of the modal parameters identified using all three methods, especially for the 

first mode natural frequency; (2) input factor L is the second most influential input factor for the first 

mode damping ratio identified using NExT-ERA and EFDD, while input factors S and O are more 

influential than L for this modal parameter identified using SSI-Data; and (3) MAC values of the first 

mode shape are most sensitive to input factors S and A.  



20 
 

Figure 10. R2 values of identified modal parameters due to variability of input factors  

A, S, L, and O (Case I) 

6.2. Analysis of Variance Based on FE Simulated Data (Case II) 

In this section, ANOVA is applied to 108 data sets (54 when using EFDD) of output features (mean 

and standard deviation of identified modal parameters for each ensemble of 100 identification trials with 

statistically independent vector measurement noise realizations) using a full-factorial design where the 

input factors are varied in the design space for each of the three system identification methods. Figure 11 

shows the R2 values (corresponding to the input factors A, S, N, L, and O) of the mean of each of the 

modal parameters of the first three longitudinal vibration modes identified using NExT-ERA, SSI-Data, 

and EFDD, respectively. Here also, the R2 values of each output feature are scaled such that their sum 

over all input factors equates 100%. From this figure, it is observed that: (1) the variability of the mean 

value of the identified modal parameters (especially the natural frequencies) is in general most sensitive 

to input factor A for all three methods which is consistent with the results obtained in Case I; and (2) 

input factors S and N have the least effect on the mean values of the modal parameters identified using 

NExT-ERA and EFDD. Similarly, Figure 12 shows the R2 values of the input factors for the standard 

deviation (over the 100 identification trials) of the output features. By comparing the results in Figures 11 

and 12, it can be concluded that the level of measurement noise (N) is a significant source of variability 

for the standard deviations of the identified modal parameters (except for SSI-Data), which is not the case 

for the mean values of the identified modal parameters.  
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Figure 11. R2 values of statistical mean (over sets of 100 identification runs) of identified modal 

parameters due to variability of input factors A, S, N, L, and O (Case II) 

6.3. Meta Modeling Based on FE Simulated Data (Case II) 

Meta-models also known as surrogate models are black-box numerical models (i.e., have no physical 

characteristics of the system) that relate the output features and the input factors. Initially, the functional 

forms and coefficients of meta-models must be identified which is referred to training step. The meta-

model functions can include the input factors, their higher powers and their interactions. The absolute 

value of an input factor coefficient in a meta-model directly provides the influence of that input factor to 

the total variability of the output features. In order to have normalized coefficients of the input factors, the 

latter are scaled between -1 (corresponding to the lowest value) and +1 (corresponding to the highest 

value). The quality of a meta-model should be evaluated separately from the training step. In this study, 

the use of meta-models allows to further validate the effect screening results obtained from ANOVA. In 

this section, a polynomial model is fitted to the mean values of the identified modal parameters by 

including all input factors considered here and their linear interactions as 
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Figure 12. R2 values of standard deviation (over sets of 100 identification runs) of identified modal 

parameters due to variability of input factors A, S, N, L, and O (Case II) 

It should be noted that: (i) the identified natural frequencies and damping ratios are normalized by 

their nominal counterparts (computed from the FE model) so that the estimated  (regression) coefficients 

are all dimensionless and of the same order of magnitude for different output features; and (ii) the value 

of 0 corresponds to the mean value of the output feature. Figure 13 shows the absolute values of the 

regression) coefficients obtained by best fitting polynomials (based on least-squares) to the mean 

values (over sets of 100 identification trials) of the modal parameters. The results in Figure 13 show that: 

(1) the identified natural frequencies are most sensitive to input factor A (as already shown by ANOVA), 

and then factor L and linear interaction AL; (2) in general, the identified modal damping ratios and MAC 

values are more sensitive to input factors S, N, and O than the natural frequencies; and (3) the variability 

in the considered input factors has more influence on the identified modal parameters of the first vibration 

mode than on those of the higher modes, i.e., the identified parameters of the first mode are more 

sensitive to the input factors than those of the higher modes. The last observation is consistent with the 

coefficients of variation of the identified modal parameters reported in Table 1 for Case II.      
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Figure 13. Absolute values of regression coefficients of best-fitted polynomial to mean values (over sets 

of 100 identification runs) of identified modal parameters 

 

7.  Conclusions 

A full-scale, seven-story, RC shear wall building slice was tested on the NEES shake table at 

University of California San Diego during the period of October 2005 to January 2006. Three output-only 

system identification methods, namely (1) Natural Excitation Technique combined with the Eigensystem 
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Case II of the uncertainty analysis also includes the measurement noise (N) in addition to the four input 

factors considered in Case I.      

From the application of ANOVA to the system identification results based on the measured test data 

in Case I, it is observed that input factor A has the most significant influence on the variability of the 

modal parameters (especially the first mode natural frequency) identified using the three methods. In Case 

II of the uncertainty analysis, ANOVA is applied to the mean and standard deviation (over sets of 100 

identification runs to account for the randomness of the measurement noise) of the modal parameters 

identified from the FE simulated data and it is observed that the variability of the mean values of the 

identified modal parameters (especially the natural frequencies) is in general most sensitive to input factor 

A for all three methods, which is consistent with the results obtained in Case I. Input factors S and N have 

the least effect on the mean values of the modal parameters identified using NExT-ERA and EFDD. 

However, the level of measurement noise (N) contributes significantly (relative to other input factors) to 

the variability of the standard deviations of the identified modal parameters, which is not the case for the 

mean values of the identified modal parameters. Meta-models are also fitted to the identified modal 

parameters in Case II. Based on the relative amplitudes of the   (regression) coefficients of the meta-

models, it is found that the identified natural frequencies are most sensitive to input factor A (as already 

indicated by ANOVA), and then input factor L and linear interaction AL. It is also observed that, in 

general, the modal damping ratios and MAC values are more sensitive to input factors S, N, and O than 

the natural frequencies. The relative amplitudes of the  coefficients indicate that the considered input 

factors have more influence on the variability of the identified modal parameters of the first mode than on 

that of the higher modes.    

This investigation demonstrates that the level of accuracy/confidence in the system identification 

results depends not only on the estimation error of the identification methods used as well as 

measurement noise, but also on the design of experiments (e.g., amplitude of excitation, spatial density of 

sensors, length of response measurement data, model order). Therefore, dynamic tests/experiments should 

be designed so that the most influential input factors are set at optimum (or appropriate) levels to yield 

more accurate (or more meaningful) system identification results. 
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