
Distributed Optimization Algorithms in
Large-Scale Directed Networks

by

Chenguang Xi

A dissertation submitted

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Department of Electrical and Computer Engineering

Tufts University

Advisor: Professor Usman Ahmed Khan

February 2017

Copyright c© February 2017, Chenguang Xi
All Rights Reserved

Dedicated to my love, Yuan

i

Abstract

In the interconnected world of today, distributed computation and opti-

mization over large-scale multi-agents networks are ubiquitous. The appli-

cations can be found in various fields ranging from machine learning, signal

processing, to computational finance. The increasing interest in distributed

optimization is further motivated by the emergence of big data application.

In one aspect, large datasets push centralized computation to the limit and

the need for distributed algorithms arises quite naturally. On a similar note,

transmitting the data collected in a distributed manner to a center is either

too costly or violates privacy. In this thesis, we aim to solve the distributed

optimization problem over multi-agent networks, where each agent has local

private information and objective functions. The goal is to have agents collab-

orate with each other to optimize the sum of these local objective functions.

Existing algorithms mostly deal with the corresponding problems under the

assumption that the underlying multi-agent network is strongly-connected and

undirected, i.e., if agent i sends information to agent j, then agent j also sends

information to agent i. The contribution of this work lies in the relaxation of

such assumptions on the network topology. In particular, we assume the com-

munication between the agents is described by a directed graph. We mainly

propose four algorithms, Directed-Distributed Subgradient Descent (D-DSD),

ii

Directed-Distributed Projection Subgradient (D-DPS), DEXTRA, and ADD-

OPT. D-DSD and D-DPS focus on the case when the objective functions are

convex, but not necessarily differentiable. Both of the proposed algorithms

achieve convergence rates of O(ln k√
k

), where k is the number of iterations. D-

DPS is the generalization of D-DSD from unconstrained cases to constrained

cases. When the objective functions are relaxed to be smooth, i.e., they are

convex as well as differentiable, we propose DEXTRA and ADD-OPT that

accelerate the convergence to a linear rate O(τ k) for 0 < τ < 1. Moreover,

ADD-OPT supports a wider and more realistic range of step-sizes than DEX-

TRA. All four algorithms achieves the best known rate of convergence for this

class of problems under the appropriate assumptions.

iii

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Preliminaries and Notations 4
1.3 Related Literature . 9
1.4 Contributions . 15
1.5 Outline . 18
1.6 Summary . 19

2 Model and Previous Work 20
2.1 Problem Formulation . 20
2.2 Distributed Gradient Descent 21
2.3 EXTRA . 24
2.4 Gradient-Push . 26
2.5 Summary . 29

3 D-DSD for Nonsmooth Convex Optimization 30
3.1 Motivation . 31
3.2 Algorithm and Assumptions 34
3.3 Convergence Analysis . 38
3.4 Numerical Experiment . 47
3.5 Conclusions and Future Work 51

4 D-DPS for Constrained Nonsmooth Convex Optimization 53
4.1 Problem, Assumptions, and Algorithm 54
4.2 Convergence Analysis . 58
4.3 Numerical Results . 70

iv

4.4 Conclusions . 74

5 DEXTRA for Smooth Convex Optimization 75
5.1 Algorithm . 76
5.2 Assumptions and Main Results 81
5.3 Auxiliary Relations . 93
5.4 Convergence Analysis . 97
5.5 Numerical Experiments . 109
5.6 Conclusions . 114

6 ADD-OPT for Smooth Convex Optimization 116
6.1 Motivation . 117
6.2 ADD-OPT Development . 118
6.3 Assumptions and Main Result 126
6.4 Auxiliary Relations . 135
6.5 Convergence Analysis . 137
6.6 Numerical Experiments . 141
6.7 Conclusions . 145

7 Epilogue 147

Bibliography 151

v

List of Figures

3.1 Illustration of the message passing between agents by Eq. (3.8). . 35
3.2 Three examples of strongly-connected but non-balanced digraphs. 48
3.3 Plot of residuals for digraph Ga,Gb,Gc as D-DSD progresses. . . . 49
3.4 Plot of residuals for different ε as D-DSD progresses. 49
3.5 Sample paths of states, xki , and yki , on digraphs Ga with ε = 0.7. . 50
3.6 Comparison on convergence rate between different algorithms. . . 51

4.1 A strongly-connected but non-balanced directed graph. 71
4.2 D-DPS residuals at 10 agents. 72
4.3 Sample paths of states, ‖xki − zk‖, and ‖yki ‖, for all agents. 72
4.4 Convergence comparison between different algorithms. 73

5.1 Strongly-connected but non-balanced digraphs. 111
5.2 The calculated network parameters. 111
5.3 Convergence rate comparison between DEXTRA, GP, and D-DSD

in a least squares problem over directed graphs. 112
5.4 DEXTRA convergence w.r.t. different step-sizes. 113
5.5 DEXTRA convergence using the constant weighting strategy. . . . 115

6.1 A strongly-connected directed network. 142
6.2 Convergence rates between optimization methods for directed net-

works. 143
6.3 Comparison between ADD-OPT and DEXTRA in terms of step-

size ranges. 144
6.4 The range of ADD-OPT ’s step-size. 145

vi

List of Tables

1.1 Distributed optimization algorithms summary. 18

vii

Acknowledgments

I would like to express my deepest gratitude to my adviser, Professor Usman

Khan, for his guidance, support, encouragement and leadership through each

stage of my Ph.D career. It has been a great privilege to work with him and

to learn from him over the past four years. From him, I learn to be a qualified

researcher as well as a tolerant person. He has set a good example that will

have a lifetime influence on my attitude and behavior towards work and life.

Without him, I would never be where I am today.

Many thanks to my thesis committee members, Prof. Shuchin Aeron from

Electrical and Computer Engineering Department, Tufts University, Prof. Ja-

son Rife from Mechanical Engineering Department, Tufts University, and Prof.

Jose Bento from Computer Science Department, Boston College. I appreciate

all their useful suggestions and insightful comments to enhance the quality of

this work.

I am indebted to my wonderful colleges, Sam Safavi, Mohammadreza Doost-

mohammadian, Fakhteh Saadatniaki, for much joyful time together as well as

many useful discussions, suggestions and encouragements. Meanwhile, I want

to thank Liu Chao, Qiong Wu, Jincheng Pang, Tianyi Luo, Zhi Li, Tinghao

Liang, Liangwang Chi, Shuo Zhao, for being such great friends at Tufts.

I owe my deepest gratitude to my family. I am indebted to my parents,

viii

Bolong Xi and Yizhen Shen, ’s unreserved love and care. My wife Yuan Li has

shown unswerving support to me. Her encouragement helps me to overcome

the most challenging time of my life. I am very lucky to spend my life with

her.

1

Chapter 1

Introduction

1.1 Motivation

In the interconnected world of today, distributed computation, [1], and opti-

mization, [2], over large-scale multi-agent networks are ubiquitous. The in-

creasing interest in distributed algorithms is further motivated by the emer-

gence of big data applications, [3]. Large datasets push centralized computa-

tion to the limit. It is often impossible for a single processor to implement

any real-time algorithm due to the large data volumes. For example, in ma-

chine learning, large scales of training examples may prevent a problem from

being solved effectively on a single machine. In contrast, it is much more ef-

fective to use multiple processing processors, especially when the information

is naturally distributed. Thus, the need for distributed algorithms arises quite

CHAPTER 1. INTRODUCTION 2

naturally.

Besides the efficiency in computation, distributed algorithm outperforms

centralized methods in other aspects. It is usually the case that data are

collected in a distributed manner. Thus, to transmit the huge volume of raw

data to a center is costly. A preferable solution is to process the data locally,

and exchange the processed information between local processors. On the

other hand, local agents often need to reserve their private information. The

existence of any centralized processor may violate the privacy.

In view of these considerations, there has recently been a growing interest

in extending conventional (centralized) methods, [4, 5], to distributed meth-

ods for solving optimization problems where information is distributed over a

network of agents. Usually each agent in the network owns local information

that is private. The agents cooperatively solve a global optimization problem

through local computation and information exchange over the network. Specif-

ically, we consider the problem of minimizing a sum of objectives,
∑n

i=1 fi(x),

where fi : Rp → R is a private objective function that belongs to the ith

agent in the network. This general form has applications in distributed large-

scale machine learning, [6–10], distributed averaging, [11, 12], model predictive

control, [13, 14], cognitive networks, [15, 16], wireless communication, [17], co-

ordination, [18–20], distributed source localization, [21, 22], distributed sparse

optimization, [23, 24], decentralized low-rank matrix completion, [25] and fac-

CHAPTER 1. INTRODUCTION 3

torization, [26], resource scheduling, [27], message routing, [28], and interfer-

ence [29], etc.

Existing distributed methods for solving optimization problems where in-

formation is distributed over multi-agent networks mostly deal with the corre-

sponding problems under the assumption that the network is undirected and

connected, i.e., if agent i can send information to agent j, then agent j can

also send information to agent i. However, in practice, it is desirable to merely

rely on one directional communication between agents. For instance, in a bi-

directional case where each node blocks until it receives a response, deadlocks

can occur when the network has cycles. In other cases, agents may broadcast

at different power levels, implying communication capability in one direction,

but not the other. Moreover, a one directional communication is more ro-

bust to noise interference than bi-directional communication. It is obvious

that the distributed optimization problem over directed networks has wider

applications than that over undirected graphs since the network topology is

more flexible. For example, agents may be able to reduce the communication

overhead when they have a large number of neighbors. Besides, if there exist

some slow communication links, it is good for algorithms to eliminate the link

such that the convergence can be accelerated. This results a directed graph.

Therefore, we focus on the case in this thesis when the communication between

the agents is described by a directed graph.

CHAPTER 1. INTRODUCTION 4

1.2 Preliminaries and Notations

In this section, we review some basics in convex optimization as well as graph

theory, which support the rest of contents in this thesis.

Properties of Functions

We first list some standard definitions and properties subject to functions of

our interest. The details can be found in standard literature, e.g., Ref. [4].

• Convex functions: A function f(x) : Rp → R is convex if, for any

points x, y ∈ Rp, and θ ∈ [0, 1], it satisfies that

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

• Smooth and nonsmooth functions: A function f(x) : Rp → R is

continuously differentiable if its derivative exists and is continuous. It

is smooth if it has derivatives of all orders. However, in the context

of convex optimization, nonsmooth functions, usually refer to functions

that do not even have a first-order derivative. For example, f(x) = x2 is

convex and smooth, and f(x) = |x| is convex but not smooth.

• Gradient and subgradient: When a function f(x) : Rp → R is

smooth, its first-order derivative Df(x) ∈ R1×p exists. The transpose of

this derivative is called function f(x) ’s gradient, denoted by ∇f(x) ∈

CHAPTER 1. INTRODUCTION 5

Rp. Its components are the partial derivatives of f(x): [∇f(x)]i = ∂f(x)
∂[x]i

,

∀i ∈ [1, n]. If f(x) is convex, the gradient ∇f(x) at point x satisfies

f(y) ≥ f(x) +∇f(x)>(y − x),

for all y ∈ Rp.

If a function f(x) : Rp → R is convex but not necessarily smooth, we

extend the definition of gradient to subgradient. A vector g(x) ∈ Rp is

called the subgradient of f(x) at point x if

f(y) ≥ f(x) + g(x)>(y − x),

for all y ∈ Rp. The set of all subgradients of f(x) at x is called the

subdifferential and is denoted as ∂f(x).

For a smooth convex function, the subgradient coincides with its gradi-

ent.

• Lipschitz-continuous: A function ∇ : Rp → R is called Lipschitz-

continuous if there exists a constant L > 0, such that

‖∇(x)−∇(y)‖ ≤ L‖x− y‖,

for all x, y ∈ Rp.

• Strong-convexity: A smooth convex function f(x) : Rp → R is further

said to be strongly convex if there exists some positive m such that for

CHAPTER 1. INTRODUCTION 6

any point x, y it satisfies

(∇f(x)−∇f(y))> (x− y) ≥ m‖x− y‖2,

where ‖ · ‖ is the euclidean norm.

Graph Theory

We next present some basic definitions and relations regarding graphs and

matrices. The details can be found in [30].

• Undirected graph and directed graph: An undirected graph is a

graph where all the edges are bidirectional. In contrast, a graph where

there exists at least one edge point in a direction is called a directed

graph.

• Strongly connected graph: A graph is said to be strongly connected

if every node is reachable from every other node.

• Stochastic Matrix: A stochastic matrix is a matrix used to describe

the transitions of a Markov chain. Each of its entries is a nonnegative

real number representing a probability. A row-stochastic matrix is a

real square stochastic matrix, with each row summing to 1. A column-

stochastic matrix is a real square stochastic matrix, with each column

CHAPTER 1. INTRODUCTION 7

summing to 1. A doubly-stochastic matrix is a square matrix of nonneg-

ative real numbers with each row and column summing to 1.

For a doubly-stochastic matrix, it always satisfies that both the left and

right eigenvector corresponding to eigenvalue 1 are an all-one-vector, i.e.,

for any W ∈ Rn×n being a doubly-stochastic matrix, it satisfies

W1n = 1n, 1>nW = 1>n ,

where we denote 1n ∈ Rn the n-dimensional all-one vector. In contrast,

we have that for any row-stochastic matrix, W , it satisfies that

W1n = 1n, π>nW = π>n ,

where πn ∈ Rn is not necessary equals to 1n. Similarly, we have for any

column-stochastic matrix, W ,

Wπn = πn, 1>nW = 1>n .

Convergence rate for iterative methods

• Linear convergence rate: Suppose that the sequence {xk} over k

converges to the limit x∗. We say that this sequence converges linearly

to x∗, if there exists a number τ ∈ (0, 1) such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = τ.

CHAPTER 1. INTRODUCTION 8

The number τ is called the rate of convergence. Moreover, if the sequence

{xk} satisfies for all k that

‖xk − x∗‖ ≤ τ k,

for τ ∈ (0, 1), we call that the sequence {xk} converges at an R-linear

rate. The R-linear rate extends the definition of linear convergence rate

in that the overall convergence rate remains linear while the convergence

“speed” at every iteration may vary.

• Sublinear convergence rate: Suppose that the sequence {xk} over k

converges to the limit x∗. We say that this sequence converges sublin-

early to x∗, if there exists a number τk → 1 for k →∞ such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = τk.

Typical sublinear rates that will appear in this thesis include O(ln k√
k

),

O(ln k
k

).

Notations

Besides some notations that already appeared above, we use the following

notations in the rest of this thesis. We use lowercase bold letters to denote

vectors and uppercase italic letters to denote matrices. We denote by [x]i,

the ith component of a vector, x. For a matrix, A, we denote by [A]i, the ith

CHAPTER 1. INTRODUCTION 9

row of A, and by [A]ij, the (i, j)th element of A. The matrix, In, represents

the n × n identity, and 1n and 0n are the n-dimensional vector of all 1’s and

0’s. The inner product of two vectors, x and y, is 〈x,y〉. The Euclidean

norm of any vector, x, is denoted by ‖x‖. We define the square of A-matrix

norm, ‖x‖2
A, of any vector, x, as

‖x‖2
A , 〈x, Ax〉 = 〈x, A>x〉 = 〈x, A+ A>

2
x〉,

where A is not necessarily symmetric. Note that the A-matrix norm is non-

negative only when A + A> is Positive Semi-Definite (PSD). If a symmetric

matrix, A, is PSD, we write A � 0, while A � 0 means A is Positive Def-

inite (PD). The largest and smallest eigenvalues of a matrix A are denoted

as λmax(A) and λmin(A). The smallest nonzero eigenvalue of a matrix A is

denoted as λ̃min(A). For any f(x), ∇f(x) denotes the (sub)gradient of f

at x. Finally, we use PX [x] for the projection of a vector x on the set X , i.e.,

PX [x] = arg minv∈X ‖v − x‖2.

1.3 Related Literature

In this section, we discuss existing research on the topic of distributed op-

timization that divide the computation load among multiple agents. Re-

lated work may be divided into three categories: Incremental method, dis-

tributed methods over undirected graphs, and distributed methods over di-

CHAPTER 1. INTRODUCTION 10

rected graphs. The earliest work of this problem can be found in [2, 31], where

each agent has access to the same global objective function. Note that in our

setting in this thesis, we assume that agents own private local objective func-

tions that are unknown to others agents in the network. In the following, we

briefly describe these approaches.

Incremental Methods

Incremental methods, [32–36], may be regarded the first big contribution to

distributed optimization where the computation load is divided over the multi-

agent network. In each iteration of these type of algorithms, the iterator passes

around the network and updates itself with each agent’s private local objec-

tive. Although the computation load is divided, incremental method is differ-

ent from distributed methods that we study in this thesis due to the following

reason. In Incremental methods, there is always exactly one agent updating

at each iteration while in distributed method all agents are updated simulta-

neously in every single iteration. Each agent in distributed method maintains

an estimate of the global optimal. Compared to distributed method, incre-

mental methods do not fully utilize the distributed properties. Incremental

methods rely on cyclic order of passing the iterator through the network. In

contrast, distributed methods consider more general network topology where

CHAPTER 1. INTRODUCTION 11

agents communicate to multiple neighbors at the same time.

Distributed Methods over undirected graphs

Distributed methods for solving optimization problems where information is

distributed over multi-agent networks are well-established. However, the ma-

jority of work deals with the corresponding problems under the assumption

that the multi-agent network is undirected and connected, i.e., if agent i can

send information to agent j, then agent j can also send information to agent i.

We describe these algorithms here. The well-known Distributed Gradient De-

scent (DGD), [37], is the very first distributed method to solve the correspond-

ing problem, whose convergence rate and fault tolerance are well analyzed in

related literature, [38–44]. At each iteration, a gradient-related step is calcu-

lated, followed by averaging over the neighbors in the network. [45] applies

a similar idea to develop a distributed algorithm in dual domain. The main

advantage of DGD is computational simplicity. However, the convergence rate

is slow due to the diminishing step-size, which is required to ensure exact

convergence. The convergence rate of DGD with a diminishing step-size is

shown to be O(ln k√
k

), [37]. Under a constant step-size, the algorithm accel-

erates to O(1
k
) at the cost of inexact convergence to a neighborhood of the

optimal solution, [46]. When the objective functions are further strongly-

CHAPTER 1. INTRODUCTION 12

convex, DGD has a faster convergence rate of O(ln k
k

), and DGD with a con-

stant step-size converges linearly to a neighborhood of the optimal solution.

To accelerate the slow convergence rate, some alternate approaches include

the Nesterov-based methods, e.g., Distributed Nesterov Gradient (DNG) with

a convergence rate of O(ln k
k

), and Distributed Nesterov gradient with Consen-

sus iterations (DNC), [47]. The algorithm, DNC, can be interpreted to have

an inner loop, where information is exchanged, within every outer loop where

the optimization-step is performed. The time complexity of the outer loop

is O(1
k2

) whereas the inner loop performs a substantial O(ln k) information ex-

changes within the kth outer loop. Therefore, the equivalent convergence rate

of DNC is O(ln k
k2

). Both DNG and DNC assume the gradient to be bounded

and Lipschitz continuous at the same time. Another related approach is EX-

TRA, see [48] for details. It uses a constant step-size and the gradients of the

last two iterates. The method converges at O(1
k
) for general convex functions

and converges linearly under the strong-convexity assumption.

Other related algorithms include the distributed implementation of ADMM,

based on augmented Lagrangian, where at each iteration the primal and dual

variables are solved to minimize a Lagrangian-related function, [49–51]. Com-

paring to the gradient-based methods with diminishing step-sizes, this type of

method converges exactly to the optimal solution with a faster rate of O(1
k
)

owing to the constant step-size; and further has a linear convergence when

CHAPTER 1. INTRODUCTION 13

the objective functions are strongly-convex. However, the disadvantage is a

high computation burden because each agent needs to optimize a subprob-

lem at each iteration. To resolve this issue, Decentralized Linearized ADMM

(DLM), [52], is proposed, which can be considered as a first-order approxi-

mation of decentralized ADMM. DLM converges at a linear rate if the local

objective functions are strongly-convex.

Considering the methods mentioned above, Refs. [37–45] solve the corre-

sponding distributed problem when the objective functions are not necessarily

differentiable and smooth. The assumption needed is that the (sub)-gradients

of objective functions are bounded. Refs. [46–52] solve the corresponding dis-

tributed problem when the objective functions are required to be differentiable

and smooth, i.e., the gradient of objective functions are required to satisfy be

Lipschistz continuous. Compared to the bounded gradient assumption, Lip-

schistz continuous assumption on the gradient is relatively more restrictive.

As a result, methods under Lipschistz continuous assumption achieve faster

convergence rate. All the methods mentioned above require only the first-order

information of functions. To accelerate the convergence speed, some methods,

[53–60], exploit the second-order information of the corresponding gradients.

All these distributed algorithms, [37–60], assume the multi-agent network

to be an undirected and connected graph. In contrast, the literature concern-

ing directed graphs is relatively limited. The challenge lies in the imbalance

CHAPTER 1. INTRODUCTION 14

caused by the asymmetric information exchange among the agents. Recall

that this asymmetry is because agent i sending information to agent j does

not necessarily imply that agent j can send information to agent i.

Distributed Methods over directed graphs

In the context of directed graphs, Gradient-Push (GP), [61–65], combines gra-

dient descent and push-sum consensus. The push-sum algorithm, [66, 67],

is first proposed in consensus problems1 to achieve average-consensus given

a column-stochastic matrix. The idea is based on computing the stationary

distribution (the left eigenvector of the weight matrix corresponding to eigen-

value 1) for the Markov chain characterized by the multi-agent network and

canceling the imbalance by dividing with the left-eigenvector. The algorithms

in [61–65] follow a similar spirit of push-sum consensus and propose nonlinear

(because of division) methods.

The work in [74] combines gradient descent and weight-balancing to de-

sign a distributed gradient-based method over directed graphs. The notion

of weights that balance a directed network was proposed in [75], where the

column-stochastic weighting matrix that describes a directed graph simulta-

neously converges to a doubly-stochastic matrix, which corresponds to a undi-

rected graph. In this thesis, we refer to the method in [74] as the Weighting

1See, [68–73], for additional information on average consensus problems.

CHAPTER 1. INTRODUCTION 15

Balancing-Distributed Gradient Descent (WB-DGD).

Neither GP and WB-DGD requires the objective functions to have Lipschitz-

continuous gradient nor being strongly-convex. This is to say that GP and

WB-DGD solve the corresponding distributed problems when the objective

functions are not necessarily smooth. The convergence rate of both algorithms

is O(ln k√
k

) for arbitrary convex functions.

When the objective functions are smooth, Refs. [76–78] modify the dis-

tributed implementation of ADMM by changing the weights that are used

for communication between agents. This improvement makes it possible to

balance the weights from in-neighbors and out-neighbors, which make the

convergence over directed graphs possible. For general convex functions, the

convergence rate is O(1
k
). When the objective functions are strongly con-

vex, the convergence rate is linear. However, this category of methods suffers

a high computation burden since at each iteration, a sub-optimize problem

needs solving.

1.4 Contributions

In this thesis, we relax the assumption on the underlying network topology

to follow a directed graph. The main contribution of this work is that we

propose four algorithms, Directed-Distributed Subgradient Descent (D-DSD),

CHAPTER 1. INTRODUCTION 16

Directed-Distributed Projection Subgradient (D-DPS), DEXTRA, and ADD-

OPT that converge over the directed graph. We now summarize each algorithm

in the following, the content of which can also be found in our work, [79–86].

• Chapter III: Directed-Distributed Subgradient Descent (D-DSD):

D-DSD is a subgradient-based method that combines surplus-consensus

techniques and DGD [37] to minimize the sum of local objective func-

tions when the network topology among agents is described by a di-

rected graph. It converges to the optimal solution in nonsmooth convex

optimization, i.e., the local objective functions are convex, but not nec-

essarily differentiable. Therefore, we stick to the notation subgradient

instead of gradient, implying that gradient may not exist. We will apply

the standard bounded subgradient assumption in nonsmooth optimiza-

tion as what can be found in GP [61], WB-DGD [74], or other related

work, [37, 38]. We provide the convergence analysis and show that D-

DSD converges at a rate of O(ln k√
k

), where k is the number of iterations.

• Chapter IV: Directed-Distributed Projection Subgradient (D-

DPS): D-DPS solves the distributed optimization problem over directed

graphs subject to additional convex constraints. D-DPS can be viewed

as a generalization of D-DSD when the constrained set changes from Rp,

implying no constraint, to a convex constrained set, X ⊆ Rp. Similar

CHAPTER 1. INTRODUCTION 17

to D-DSD, D-DPS converges to the optimal solution in nonsmooth con-

vex optimization, i.e., the local objective functions are convex, but not

necessarily differentiable. The convergence analysis shows that D-DPS

converges at a rate of O(ln k√
k

), where k is the number of iterations.

• Chapter V: DEXTRA: Though D-DSD and D-DPS successfully solve

the distributed optimization problem over directed networks, the conver-

gence rates, however, are sub-linear, which is relatively slow. Compared

to them, DEXTRA harnesses the smoothness to obtain a much faster

convergence rate. In other words, DEXTRA converges to the optimal

solution in smooth convex optimization, i.e., the local objective func-

tions are convex and differentiable. We show that, with the appropriate

step-size, DEXTRA converges at a linear rate O(τ k) for 0 < τ < 1, given

that the objective functions are restricted strongly-convex.

• Chapter VI: ADD-OPT: ADD-OPT is an improvement over DEX-

TRA that solves the distributed smooth optimization problem over di-

rected graphs. Same as DEXTRA, it achieves the best known rate of

convergence for this class of problems, O(µk) for 0 < µ < 1 given that

the objective functions are strongly-convex, where k is the number of it-

erations. However, ADD-OPT supports a wider and more realistic range

of step-sizes. In particular, the greatest lower bound of DEXTRA’s step-

CHAPTER 1. INTRODUCTION 18

size is strictly greater than zero while that of ADD-OPT’s equals exactly

to zero.

In table 1.1, we summarize algorithms solving distributed optimization prob-

lems, over both undirected and directed networks. In either case, the cor-

responding algorithms are categorized as either primal domain methods or

dual domain methods. It can be found that related literature considering the

directed case is limited. We label our contributions in red text. The pro-

posed algorithms in this thesis partially complete the distributed optimization

algorithm framework.

Algorithms References

undirected

nonsmooth
primal DSD, DPS, etc [37–44]
dual DDA,D-ADMM [45, 49]

smooth
primal

DGD, DNG, DNC,
[46–48, 58–60]

EXTRA, NN, etc
dual D-ADMM, DLM, DQM [49–57]

directed
nonsmooth primal

GP, WB-DGD,
D-DSD, D-DPS

smooth primal DEXTRA, ADD-OPT

Table 1.1: Distributed optimization algorithms summary.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter II formulates the

problem, recaps some related distributed optimization methods for solving the

CHAPTER 1. INTRODUCTION 19

problem, either over undirected graphs or directed graphs. These methods in-

clude Distributed Gradient Descent (DGD) [37] for general convex functions

over undirected graphs, EXTRA [48] for smooth and strongly-convex func-

tions over undirected graphs, and Gradient-Push (GP) [61] for general convex

functions over directed graphs. Chapter III proposes the Directed-Distributed

Subgradient Descent (D-DSD), which solves the distributed optimization prob-

lem over directed graphs for general convex functions. D-DSD can be viewed

as an generalization of DGD. In Chapter IV, we generalize D-DSD to Directed-

Distributed Projection Subgradient (D-DPS), which solves the problem with

an additional convex constraint. In Chapter V, we propose a fast algorithm,

termed DEXTRA, which combines EXTRA and push-sum consensus. An ex-

tended version of DEXTRA, termed ADD-OPT, is proposed in Chapter VI.

Chapter VII concludes this thesis and discuss the possibility of some future

works.

1.6 Summary

In this chapter, we motivate the work, and summarize the contribution made

in this thesis: the distributed algorithm that converges over directed graph is

important and necessary, yet not well established. The proposed algorithms

in this thesis complete the distributed optimization algorithm framework.

20

Chapter 2

Model and Previous Work

In this chapter, we formulate the problem, and recap some related distributed

optimization methods for solving the problem, either over undirected graphs or

directed graphs. These methods include Distributed Gradient Descent (DGD)

[37] for general convex functions over undirected graphs, EXTRA [48] for

smooth and strongly-convex functions over undirected graphs, and Gradient-

Push (GP) [61] for general convex functions over directed graphs.

2.1 Problem Formulation

Consider a strongly-connected network of n agents communicating over a di-

rected graph, G = (V , E), where V is the set of agents, and E is the collection of

ordered pairs, (i, j), i, j ∈ V , such that agent j can send information to agent i.

CHAPTER 2. MODEL AND PREVIOUS WORK 21

Define N in
i to be the collection of in-neighbors, i.e., the set of agents that can

send information to agent i. Similarly, N out
i is the set of out-neighbors of

agent i. We allow both N in
i and N out

i to include the node i itself. Note that

in a directed graph when (i, j) ∈ E , it is not necessary that (j, i) ∈ E . Conse-

quently, N in
i 6= N out

i , in general. We focus on solving a convex optimization

problem that is distributed over the above multi-agent network. In particular,

the network of agents cooperatively solve the following optimization problem:

P1 : min f(x) =
n∑
i=1

fi(x),

where each local objective function, fi : Rp → R, is convex, and known only by

agent i. Our goal is to develop a distributed iterative algorithm such that each

agent converges to the global solution of Problem P1 when the communications

between agents are described by a directed graph, G.

2.2 Distributed Gradient Descent

Consider the Distributed Gradient Descent (DGD) [37] to solve P1 over undi-

rected graphs. At each iteration, a gradient related step is calculated, followed

by averaging with neighbors in the network. More specifically, at kth iteration,

agent i updates its estimate, xk+1
i ∈ Rp, as follows:

xk+1
i =

n∑
j=1

wijx
k
j − αk∇fki , (2.1)

CHAPTER 2. MODEL AND PREVIOUS WORK 22

where wij is a non-negative weight such that W = {wij} is doubly-stochastic.

The scalar, αk, is a diminishing but non-negative step-size, satisfying the per-

sistence conditions, [39, 87]:

∞∑
k=0

αk =∞, (2.2)

∞∑
k=0

α2
k <∞. (2.3)

The vector ∇fki ∈ Rp is a sub-gradient of fi at xki . According to [37], the

iteration in Eq. (2.1) drives all agents to reach consensus, i.e., limk→∞ xki =

limk→∞ xkj , ∀i, j, and the consensus (accumulation) point approaches to the

optimal solution, i.e., limk→∞ xki = x∗, where x∗ is the optimal solution of P1.

The convergence rate of DGD is O(ln k√
k

) for general convex objective functions,

under the assumption that the local private convex objective function, fi(x),

is bounded for all x. DGD is valid for nonsmooth convex functions, i.e., the

objective functions are not necessarily differentiable.

We now derive an informal but intuitive proof showing how DGD pushes

agents to achieve consensus and reach the optimal solution. We first write the

matrix form of Eq. (2.1). Denote xk, ∇f(xk) ∈ Rn×p, and W ∈ Rn×n as follow,

xk =


(
xk1
)>

...(
xkn
)>

 , ∇f(xk) =


∇f>1 (xk1)

...

∇f>n (xkn)

 , W =


w11 · · · w1n

...
. . .

...

wn1 · · · wnn

 .

CHAPTER 2. MODEL AND PREVIOUS WORK 23

Thus, Eq. (2.1) can be written in a matrix form as

xk+1 = Wxk − αk∇f(xk). (2.4)

In Eq. (2.4), we have that the weighting matrix, W , is doubly-stochastic. For

the sake of argument, let us assume that the sequences,
{
xk
}

, generated by

Eq. (2.4), converge to its own limit, x∞, (not necessarily true). Note that

limk→∞ αk = 0. From Eq. (2.4), we have that

x∞ = Wx∞ − α∞∇f(x∞)

= Wx∞, (2.5)

which implies that x∞ ∈ span{1n} considering that 1n = W1n is satisfied for

any doubly stochastic matrix. Therefore, the consensus property is established.

We now consider the optimality property. It follows from Eq. (2.4) that

xk+1 ,
1

n
1>nx

k+1

=
1

n
1>nWxk − 1

n
αk1

>
n∇f(xk)

=xk − 1

n
αk∇f

k
, (2.6)

where we denote ∇fk as 1>n∇f(xk). By considering the consensus property, it

follows that the preceding relation can be regarded as an inexact centralized

gradient descent method (using ∇fk = 1>n∇f(xk) instead of ∇f>(xk)) with

step-size αk
n

to minimize the global objective function f(x) of Problem P1.

Therefore, the optimality property is achieved.

CHAPTER 2. MODEL AND PREVIOUS WORK 24

2.3 EXTRA

EXTRA is a fast exact first-order algorithm that solve Problem P1 when the

communication network is undirected. At the kth iteration, agent i performs

the following update:

xk+1
i =xki +

∑
j∈Ni

wijx
k
j −

∑
j∈Ni

w̃ijx
k−1
j − α

[
∇fi(xki)−∇fi(xk−1

i)
]
, (2.7)

where the weights, wij, form a weighting matrix, W = {wij}, that is symmetric

and doubly-stochastic. The collection W̃ = {w̃ij} satisfies W̃ = θIn+(1−θ)W ,

with some θ ∈ (0, 1
2
]. The update in Eq. (2.7) converges to the optimal solution

at each agent i with a convergence rate of O(1
k
) and converges linearly when

the objective functions are strongly-convex. To better represent EXTRA, we

write Eq. (2.7) in a matrix form. Let xk, ∇f(xk) ∈ Rn×p be the collections of

all agent states and gradients at time k,

xk =


(
xk1
)>

...(
xkn
)>

 , ∇f(xk) =


∇f>1 (xk1)

...

∇f>n (xkn)

 ,

and W , W̃ ∈ Rn×n be the weighting matrices collecting weights, wij, w̃ij,

respectively. Then, Eq. (2.7) can be represented in a matrix form as:

xk+1 =(In +W)xk − W̃xk−1 − α
[
∇f(xk)−∇f(xk−1)

]
. (2.8)

CHAPTER 2. MODEL AND PREVIOUS WORK 25

Note that the difference between EXTRA and DGD lies in two aspects. Firstly,

it uses two weighting matrices instead of just one weighting matrix in DGD.

Secondly, the step-size used in EXTRA is constant while that in DGD is di-

minishing. This is the real reason why EXTRA has a much faster convergence

rate compared to DGD. As the index number, k, going large, a diminishing

step-size, αk, is small, which slows the performance.

We now derive an informal but intuitive proof showing that how EXTRA

pushes agents to achieve consensus and reach the optimal solution. For the sake

of argument, let us assume that the sequences,
{
xk
}

, generated by Eq. (2.8),

converge to its own limit, x∞, (not necessarily true). We first show the con-

sensus property. Let k goes to infinity, we obtain form Eq. (2.8) that

x∞ =(In +W)x∞ − W̃x∞ − α [∇f(x∞)−∇f(x∞)] , (2.9)

which implies that (W − W̃)x∞ = 0n×p, or x∞ ∈ span{1n}, where the con-

sensus is reached. Summing up Eq. (2.8) over k from 0 to ∞, we obtain that

x∞ = Wx∞ − α∇f(x∞)−
∞∑
r=0

(
W̃ −W

)
xr. (2.10)

Consider that x∞ = Wx∞ from the consensus property and the preceding

relation, it follows that

α∇f(x∞) =
∞∑
r=0

(
W̃ −W

)
xr. (2.11)

CHAPTER 2. MODEL AND PREVIOUS WORK 26

Therefore, we obtain that

α1>n∇f(x∞) = −1>n
(
W̃ −W

) ∞∑
r=0

xr = 0>p , (2.12)

which is the optimality condition of Problem P1 considering that x∞ ∈ span{1n}.

2.4 Gradient-Push

Unlike DGD and EXTRA which are two methods solving Problem P1 over

undirected graphs, GP is the first distributed method that solves Problem

P1 over directed networks. We describe the implementation of GP as follow.

Each agent, j ∈ V , maintains two vector variables: xkj , z
k
j ∈ Rp, as well as

a scalar variable, ykj ∈ R, where k is the discrete-time index. At the kth

iteration, agent j weights its states, aijx
k
j and aijy

k
j , and sends these to each

of its out-neighbors, i ∈ N out
j , where the weights, aij,’s are such that:

aij =


> 0, i ∈ N out

j ,

0, otw.,

n∑
i=1

aij = 1, ∀j, (2.13)

where θ ∈ (0, 1
2
]. With agent i receiving the information from its in-neighbors, j ∈

N in
i , it calculates the state, zki , by dividing xki over yki , and updates xk+1

i

and yk+1
i as follows:

zki =
xki
yki
, (2.14a)

xk+1
i =

∑
j∈N in

i

(
aijx

k
j

)
− αk∇fi(zki), (2.14b)

CHAPTER 2. MODEL AND PREVIOUS WORK 27

yk+1
i =

∑
j∈N in

i

(
aijy

k
j

)
. (2.14c)

In the above, ∇fi(zki) is the gradient of the function fi(z) at z = zki . The

scalar, αk, is a diminishing but non-negative step-size, satisfying the persis-

tence conditions, [39, 87]:

∞∑
k=0

αk =∞, (2.15)

∞∑
k=0

α2
k <∞. (2.16)

The method is initiated with an arbitrary vector, x0
i , and with y0

i = 1 for

any agent i. We note that the implementation of Eq. (2.14) needs each

agent to have the knowledge of its out-neighbors (such that it can design

the weights according to Eq. (5.1). In a more restricted setting, e.g., a broad-

cast application where it may not be possible to know the out-neighbors, we

may use aij = |N out
j |−1; thus, the implementation only requires each agent

to know its out-degree. We write Eq. (2.14) in a matrix form. Let xk,

zk, ∇f(zk) ∈ Rn×p, and yk ∈ Rn be the collections of all agent states and

gradients at time k,

xk =


(
xk1
)>

...(
xkn
)>

 ,y
k =


(
yk1
)>

...(
ykn
)>

 , z
k =


(
zk1
)>

...(
zkn
)>

 ,∇f(z
k) =


∇f>1 (zk1)

...

∇f>n (zkn)

 .

CHAPTER 2. MODEL AND PREVIOUS WORK 28

Let A = {aij} be the weighting matrix collecting all the weights. It is

straightforward that A is a column stochastic matrix. Define a diagonal ma-

trix, Dk ∈ Rn×n, for each k, such that the ith element of Dk is yki , i.e.,

Dk = diag
(
yk
)

= diag
(
Ak · 1n

)
. (2.17)

Given that the graph, G, is strongly-connected and the corresponding weight-

ing matrix, A, is non-negative, it follows that Dk is invertible for any k. Then,

we can write Eq. (2.14) in the matrix form equivalently as follows: Based on

the above notations, we have that

zk =(Dk)−1xk, (2.18a)

xk+1 =Axk − αk∇f(zk), (2.18b)

yk+1 =Ayk. (2.18c)

Compare Eqs. (2.18)(b) and (2.4), we realize that the difference between GP

and DGD is that the weighting matrix changes from a doubly-stochastic ma-

trix, W , to a column-stochastic matrix, A. To overcome the difficulties, GP

arguments two additional variables yk and zk. The consensus property can still

be achieved by dividing xk over yk, Eq. (2.18)(a), which cancels the imbalance

causing by the asymmetric information exchange in directed graphs.

CHAPTER 2. MODEL AND PREVIOUS WORK 29

2.5 Summary

In this chapter, we formulated the problem, and recapped some related dis-

tributed optimization methods for solving the problem, either over undirected

graphs or directed graphs. Distributed Gradient Descent (DGD) [37] converges

at O(ln k√
k

) for arbitrary convex functions over undirected graphs in nonsmooth

optimization. EXTRA [48] converges at O(1
k
) for smooth convex functions

over undirected graphs and a linear convergence rate can be achieved when

the objective functions are strongly-convex. Gradient-Push (GP) [61] is the

first work considering directed graph topology. It is valid in nonsmooth opti-

mization with the same convergence rate as DGD.

30

Chapter 3

D-DSD for Nonsmooth Convex

Optimization

In this chapter, we introduce an algorithm, termed Directed-Distributed Sub-

gradient Descent (D-DSD), to solve the distributed optimization problem, P1,

over directed networks. D-DSD converges to the optimal solution in nons-

mooth convex optimization, i.e., the local objective functions in Problem P1

are convex, but not necessarily differentiable. We first discuss the perfor-

mance of DGD, [37], over directed graphs. In particular, we show the reason

why DGD fails to converge to the optimal solution over directed graphs. Moti-

vated by the analysis, we propose D-DSD, which can be viewed as an extension

of DGD to the case of directed networks. We provide the convergence analysis

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 31

and show that D-DSD converges at a rate of O(ln k√
k

), where k is the number of

iterations. Numerical experiments illustrate the findings.

3.1 Motivation

When we restrict the assumption of network topology from undirected net-

works to directed networks, we no longer achieve a doubly-stochastic weighting

matrix. Instead, we can only construct a row-stochastic weighting matrix as

well as a column-stochastic weighting matrix. For a doubly-stochastic matrix,

it always satisfies that both the left and right eigenvector corresponding to

eigenvalue 1 are an all-one-vector, i.e., for any W being a doubly-stochastic

matrix, it satisfies

W1n = 1n, 1>nW = 1>n . (3.1)

In contrast, we have that for any row-stochastic matrix, W , it satisfies that

W1n = 1n, π>nW = π>n , (3.2)

where πn ∈ Rn is not necessary equals to 1n. Similarly, we have for any

column-stochastic matrix, W ,

Wπn = πn, 1>nW = 1>n . (3.3)

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 32

Recall the update of DGD, Eq. (2.1),

xk+1
i =

n∑
j=1

wijx
k
j − αk∇fki , (3.4)

and its matrix form, Eq. (2.4)

xk+1 = Wxk − αk∇f(xk). (3.5)

For the sake of argument, consider W to be row-stochastic but not column-

stochastic. Clearly, 1n is a right eigenvector of W , and let πn = {πi} be its

left eigenvector corresponding to eigenvalue 1. Summing over i in Eq. (3.4),

we get

x̂k+1 ,
n∑
i=1

πix
k+1
i

=
n∑
j=1

(
n∑
i=1

πiwij

)
xkj − αk

n∑
i=1

πi∇fi(xki)

= x̂k − αk
n∑
i=1

πi∇fi(xki), (3.6)

where πj =
∑n

i=1 πiwij, ∀i, j. If we assume that the agents reach an agree-

ment, then Eq. (3.6) can be viewed as an inexact (central) gradient descent

(with
∑n

i=1 πi∇fi(xki) instead of
∑n

i=1 πi∇fi(x̂k)) minimizing a new objective,

f̂(x) ,
∑n

i=1 πifi(x). As a result, the agents reach consensus and converge to

the minimizer of f̂(x).

Now consider the weight matrix, W , to be column-stochastic but not row-

stochastic. Let xk be the average of agents estimates at time k, then Eq. (3.4)

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 33

leads to

xk+1 ,
1

n

n∑
i=1

xk+1
i

=
1

n

n∑
j=1

(
n∑
i=1

wij

)
xkj −

αk
n

n∑
i=1

∇fi(xki)

= xk −
(αk
n

) n∑
i=1

∇fi(xki). (3.7)

Eq. (3.7) reveals that the average, xk, of agents estimates follows an inex-

act (central) gradient descent (
∑n

i=1∇fi(xki) instead of
∑n

i=1∇fi(xk)) with

stepsize αk/n, thus reaching the minimizer of f(x). Despite the fact that the

average, xk, reaches the optima, x∗, of f(x), the optima is not achievable for

each agent because consensus can not be reached with a matrix that is not

necessary row-stochastic.

Eqs. (3.6) and (3.7) explain the importance of doubly-stochastic matri-

ces in consensus-based optimization. The row-stochasticity guarantees all of

the agents to reach a consensus, while column-stochasticity ensures each lo-

cal gradient to contribute equally to the global objective. In other words, we

note that reaching a consensus requires the right eigenvector (corresponding

to eigenvalue 1) to lie in span{1n}, and minimizing the global objective re-

quires the corresponding left eigenvector to lie in span{1n}. Both the left

and right eigenvectors of a doubly-stochastic matrix are 1n, which, in gen-

eral, is not possible in directed graphs. Therefore, we aim to construct a new

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 34

weight matrix, W ∈ R2n×2n, whose left and right eigenvectors (corresponding

to eigenvalue 1) are in the form: [1>n ,v
>] and [1>n ,u

>]>, for some vector v and

u.

3.2 Algorithm and Assumptions

We introduce Directed-Distributed Subgradient Descent (D-DSD) that over-

comes the above issues by augmenting an additional variable at each agent

and thus constructing a new weight matrix, M ∈ R2n×2n, whose left and

right eigenvectors (corresponding to eigenvalue 1) are in the form: [1>n ,v
>]

and [1>n ,u
>]>, for some vector v and u. Formally, we describe D-DSD as

follows.

At kth iteration, each agent, j ∈ V , maintains two vectors: xkj and ykj , both

in Rp. Agent j sends its state estimate, xkj , as well as a weighted auxiliary

variable, bijy
k
j , to each out-neighbor, i ∈ N out

j , where bij’s are such that:

bij =


> 0, i ∈ N out

j ,

0, otw.,

n∑
i=1

bij = 1, ∀j.

Agent i updates the variables, xk+1
i and yk+1

i , with the information received

from its in-neighbors, j ∈ N in
i , as follows:

xk+1
i =

n∑
j=1

aijx
k
j + εyki − αk∇fi(xki), (3.8a)

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 35

yk+1
i = xki −

n∑
j=1

aijx
k
j +

n∑
j=1

bijy
k
j − εyki , (3.8b)

where:

aij =


> 0, j ∈ N in

i ,

0, otw.,

n∑
j=1

aij = 1, ∀i.

The diminishing step-size, αk ≥ 0, satisfies the persistence conditions, [39,

Send:

Receive:

xj1 1 xi 1 xj2

yj1 bj1i yi bj2i yj2

xm1 alm1 xl alm2 xm2

blm1ym1 1 yl 1 blm2ym2

Figure 3.1: Illustration of the message passing between agents by Eq. (3.8).

87]:
∑∞

k=0 αk = ∞,
∑∞

k=0 α
2
k < ∞. The scalar, ε, is a small positive number,

which plays a key role in the convergence of the algorithm1. For an illustration

of the message passing between agents in the implementation of Eq. (3.8), see

1Note that in the implementation of Eq. (3.8), each agent needs the knowledge of its
out-neighbors. In a more restricted setting, e.g., a broadcast application where it may not
be possible to know the out-neighbors, we may use bij = |N out

j |−1; thus, the implementation
only requires knowing the out-degrees, see, e.g., [61, 62] for similar assumptions.

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 36

Fig. 3.1 on how agent i sends information to its out-neighbors and agent l

receives information from its in-neighbors. In Fig. 3.1, the weights bj1i and bj2i

are designed by the sender, agent i, and satisfy bii + bj1i + bj2i = 1. The

weights alm1 and alm2 are designed by the receiver, agent l, and satisfy bll +

blm1 + blm2 = 1. To analyze the algorithm, we denote zki ∈ Rp, gki ∈ Rp,

and M ∈ R2n×2n as follows:

zki =


xki , i ∈ {1, ..., n},

yki−n, i ∈ {n+ 1, ..., 2n},

gki =


∇fi(xki), i ∈ {1, ..., n},

0p, i ∈ {n+ 1, ..., 2n},

M =

 A εI

I − A B − εI

 , (3.9)

where A = {aij} is row-stochastic, B = {bij} is column-stochastic. Con-

sequently, Eq. (3.8) can be represented compactly as follows: for any i ∈

{1, ..., 2n}, at k + 1th iteration,

zk+1
i =

2n∑
j=1

[M]ijz
k
j − αkgki . (3.10)

We refer to the iterative relation in Eq. (3.10) as the Directed-Distributed

Subgradient Descent (D-DSD) method, since it has the same form as DGD

except the dimension doubles due to a new weight matrix M ∈ R2n×2n as

defined in Eq. (3.9). It is worth mentioning that even though Eq. (3.10) looks

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 37

similar to DGD, [37], the convergence analysis of D-DSD does not exactly

follow that of DGD. This is because the weight matrix, M , has negative entries.

Besides, M is not a doubly-stochastic matrix, i.e., the row sum is not 1. Hence,

the tools in the analysis of DGD are not applicable, e.g., ‖∑j[M]ijzj −x∗‖ ≤∑
j[M]ij‖zj−x∗‖ does not necessarily hold because [M]ij are not non-negative.

We now describe the assumptions to ensure the convergence of D-DSD to

the optimal solution of Problem P1 over directed networks.

Assumption A1. In order to ensure the convergence of D-DSD to the op-

timal solution of Problem P1 over directed networks, we make the following

assumptions:

(a) The agent graph, G, is strongly-connected.

(b) The optimizer of Problem P1 and the corresponding optimal value exist

and are unique. Formally, we have

f(x∗) = f ∗ = min f(x).

(c) Each local function, fi : Rp → R, is convex, ∀i ∈ V.

(d) For each local objective function, it is not necessarily differentiable. The

sub-gradient, ∇fi(x), is bounded:

‖∇fi(x)‖ ≤ D,

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 38

for all x ∈ Rp, i ∈ V.

The Assumptions A1 are standard in nonsmooth distributed optimization,

see related literature, [38], and references therein. Note that in Assumption

A1(d), we claim that the objective functions are not necessarily differentiable.

Therefore, we use term sub-gradient instead of gradient in this chapter since

the gradients of functions do not necessary exist. We now present the conver-

gence analysis of D-DSD.

3.3 Convergence Analysis

The convergence analysis of D-DSD can be divided into two parts. In the first

part, we discuss the consensus property of D-DSD, i.e., we capture the decrease

in
∥∥zki − zk

∥∥ for i ∈ {1, ..., n}, as D-DSD progresses, where we define zk as the

accumulation point:

zk ,
1

n

2n∑
j=1

zki =
1

n

n∑
j=1

xki +
1

n

n∑
j=1

yki . (3.11)

The decrease in
∥∥zki − zk

∥∥ reveals that all agents approach a common accumu-

lation point. We then show the optimality property in the second part, i.e., the

decrease in the difference between the function evaluated at the accumulation

point and the optimal solution, f(zk) − f(x∗). We combine the two parts to

establish the convergence.

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 39

Consensus Property

To show the consensus property, we study the convergence behavior of the

weight matrices, Mk, in Eq. (3.9) as k goes to infinity. We use an existing

results on such matrices M , based on which we show the convergence behavior

as well as the convergence rate. We borrow the following from [88].

Lemma 1. (Cai et al. [88]) Assume the graph is strongly-connected. M is the

weighting matrix defined in Eq. (3.9), and the constant ε in M satisfies ε ∈

(0,Υ), where Υ := 1
(20+8n)n

(1− |λ3|)n, where λ3 is the third largest eigenvalue

of M in Eq. (3.9) by setting ε = 0. Then the weighting matrix, M , defined in

Eq. (3.9), has a simple eigenvalue 1 and all other eigenvalues have magnitude

smaller than one.

Based on Lemma 1, we now provide the convergence behavior as well as the

convergence rate of the weight matrix, M .

Lemma 2. Assume that the network is strongly-connected, and M is the

weight matrix that defined in Eq. (3.9).Then,

(a) The sequence of
{
Mk
}

, as k goes to infinity, converges to the following

limit:

lim
k→∞

Mk =

 1n1>n
n

1n1>n
n

0 0

 ;

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 40

(b) For all i, j ∈ V, the entries
[
Mk
]
ij

converge to their limits as k →∞ at a

geometric rate, i.e., there exist bounded constants, Γ ∈ R, and 0 < γ < 1,

such that ∥∥∥∥∥∥∥∥M
k −

 1n1>n
n

1n1>n
n

0 0


∥∥∥∥∥∥∥∥
∞

≤ Γγk.

Proof. Note that the sum of each column of M equals one, so 1 is an eigen-

value of M with a corresponding left (row) eigenvector [1>n 1>n]. We further

have M [1>n 0>n]> = [1>n 0>n]>, so [1>n 0>n]> is a right (column) eigenvector

corresponding to the eigenvalue 1. According to Lemma 1, 1 is a simple eigen-

value of M and all other eigenvalues have magnitude smaller than one. We

represent Mk in the Jordan canonical form for some Pi and Qi

Mk =
1

n
[1>n 0>n]>[1>n 1>n] +

n∑
i=2

PiJ
k
i Qi, (3.12)

where the diagonal entries in Ji are smaller than one in magnitude for all i.

The statement (a) follows by noting that limk→∞ J
k
i = 0, for all i.

From Eq. (3.12), and with the fact that all eigenvalues of M except 1 have

magnitude smaller than one, there exist some bounded constants, Γ and γ ∈

(0, 1), such that∥∥∥∥∥∥∥∥M
k −

 1n1>n
n

1n1>n
n

0 0


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=2

PiJ
k
i Qi

∥∥∥∥∥ ,
≤

n∑
i=2

‖Pi‖ ‖Qi‖
∥∥Jki ∥∥

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 41

≤ Γγk,

from which we get the desired result.

Using the result from Lemma 1, Lemma 2 shows the convergence behavior

of the power of the weight matrix, and further show that its convergence

is bounded by a geometric rate. Lemma 2 plays a key role in proving the

consensus properties of D-DSD. Based on Lemma 2, we bound the difference

between agent estimates in the following lemma. More specifically, we show

that the agent estimates, xki , approaches the accumulation point, zk, and the

auxiliary variable, yki , goes to 0n, where zk is defined in Eq. (3.11).

Lemma 3. Let the Assumptions A1 hold. Let
{
zki
}

be the sequence over k

generated by the D-DSD algorithm, Eq. (3.10). Then, there exist some bounded

constants, Γ and 0 < γ < 1, such that:

(a) for 1 ≤ i ≤ n, and k ≥ 1,

∥∥zki − zk
∥∥ ≤Γγk

2n∑
j=1

∥∥z0
j

∥∥+ nΓD
k−1∑
r=1

γk−rαr−1 + 2Dαk−1;

(b) for n+ 1 ≤ i ≤ 2n, and k ≥ 1,

∥∥zki ∥∥ ≤Γγk
2n∑
j=1

∥∥z0
j

∥∥+ nΓD
k−1∑
r=1

γk−rαr−1.

Proof. For any k ≥ 1, we write Eq. (3.10) recursively

zki =
2n∑
j=1

[Mk]ijz
0
j −

k−1∑
r=1

2n∑
j=1

[Mk−r]ijαr−1g
r−1
j − αk−1g

k−1
i . (3.13)

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 42

Since every column of M sums up to one, we have for any r
∑2n

i=1[M r]ij = 1.

Considering the recursive relation of zki in Eq. (3.13), we obtain that zk can

be represented as

zk =
2n∑
j=1

1

n
z0
j −

k−1∑
r=1

2n∑
j=1

1

n
αr−1g

r−1
j − 1

n

2n∑
j=1

αk−1g
k−1
j . (3.14)

Subtracting Eq. (3.14) from (3.13) and taking the norm, we obtain that for 1 ≤

i ≤ n,

∥∥zki − zk
∥∥ ≤ 2n∑

j=1

∥∥∥∥[Mk]ij −
1

n

∥∥∥∥∥∥z0
j

∥∥+
k−1∑
r=1

n∑
j=1

∥∥∥∥[Mk−r]ij −
1

n

∥∥∥∥αr−1

∥∥∇fj(xr−1
j)

∥∥
+ αk−1

∥∥∇fi(xk−1
i)

∥∥+
1

n

n∑
j=1

αk−1

∥∥∇fj(xk−1
j)

∥∥ . (3.15)

The proof of part (a) follows by applying the result of Lemma 2 to Eq. (3.15)

and noticing that the gradient is bounded by a constant D. Similarly, by

taking the norm of Eq. (3.13), we obtain that for n+ 1 ≤ i ≤ 2n,

∥∥zki ∥∥ ≤ 2n∑
j=1

∥∥[Mk]ij
∥∥∥∥z0

j

∥∥+
k−1∑
r=1

n∑
j=1

∥∥[Mk−r]ij
∥∥αr−1

∥∥∇fj(xr−1
j)

∥∥ .
The proof of part (b) follows by applying the result of Lemma 2 to the

preceding relation and considering the boundedness of gradient in Assump-

tion A1(d).

Using the above lemma, we now draw our first conclusion on the consensus

property at the agents. Proposition 1 reveals that all agents asymptotically

reach consensus.

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 43

Proposition 1. Let the Assumptions A1 hold. Let
{
zki
}

be the sequence over k

generated by the D-DSD algorithm, Eq. (3.10). Then, zki satisfies

(a) for 1 ≤ i ≤ n,

∞∑
k=1

αk
∥∥zki − zk

∥∥ <∞;

(b) for n+ 1 ≤ i ≤ 2n,

∞∑
k=1

αk
∥∥zki ∥∥ <∞.

Proof. Based on the result of Lemma 3(a), we obtain, for 1 ≤ i ≤ n,

K∑
k=1

αk
∥∥zki − zk

∥∥ ≤Γ

(
2n∑
j=1

∥∥z0
j

∥∥) K∑
k=1

αkγ
k + nΓD

K∑
k=1

k−1∑
r=1

γ(k−r)αkαr−1

+ 2D
K−1∑
k=0

α2
k. (3.16)

With the basic inequality ab ≤ 1
2
(a2 + b2), a, b ∈ R, we have:

2
K∑
k=1

αkγ
k ≤

K∑
k=1

[
α2
k + γ2k

]
≤

K∑
k=1

α2
k +

1

1− γ2
;

and

K∑
k=1

k−1∑
r=1

γ(k−r)αkαr−1 ≤
1

2

K∑
k=1

α2
k

k−1∑
r=1

γ(k−r) +
1

2

K−1∑
r=1

(αr−1)2

K∑
k=r+1

γ(k−r)

≤ 1

1− γ
K∑
k=1

α2
k.

The proof of part (a) follows by applying the preceding relations to Eq. (3.16)

along with
∑K

k=0 α
2
k < ∞ as K → ∞. Following the same spirit in the proof

of part (b), we can reach the conclusion of part (b).

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 44

Since
∑∞

k=1 αk =∞, Proposition 1 shows that all agents reach consensus at

the accumulation point, zk, asymptotically, i.e., for all 1 ≤ i ≤ n, 1 ≤ j ≤ n,

lim
k→∞

zki = lim
k→∞

zk = lim
k→∞

zkj , (3.17)

and for n + 1 ≤ i ≤ 2n, the states, zki , asymptotically, converge to zero, i.e.,

for n+ 1 ≤ i ≤ 2n,

lim
k→∞

zki = 0. (3.18)

We next show how the accumulation point, zk, approaches the optima, x∗, as

D-DSD progresses.

Optimality Property

The following lemma gives an upper bound on the difference between the

objective evaluated at the accumulation point, f(zk), and the optimal objective

value, f ∗.

Lemma 4. Let the Assumptions A1 hold. Let
{
zki
}

be the sequence over k

generated by the D-DSD algorithm, Eq. (3.10). Then,

2
∞∑
k=0

αk
(
f(zk)− f ∗

)
≤n
∥∥z0 − x∗

∥∥2
+ nD2

∞∑
k=0

α2
k

+
4D

n

n∑
i=1

∞∑
k=0

αk
∥∥zki − zk

∥∥ . (3.19)

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 45

Proof. Consider Eq. (3.10) and the fact that each column of M sums to one,

we have

zk+1 =
1

n

2n∑
j=1

[
2n∑
i=1

[M]ij

]
zkj − αk

1

n

2n∑
i=1

gki ,

= zk − αk
n

n∑
i=1

∇fi(zki).

Therefore, we obtain that

∥∥zk+1 − x∗
∥∥2

=
∥∥zk − x∗

∥∥2
+

∥∥∥∥∥αkn
n∑
i=1

∇fi(zki)
∥∥∥∥∥

2

− 2
αk
n

n∑
i=1

〈
zk − x∗,∇fi(zki)

〉
. (3.20)

Denote ∇fki = ∇fi(zki). Since ‖∇fki ‖ ≤ D, we have

〈
zk − x∗,∇fki

〉
=
〈
zk − zki ,∇fki

〉
+
〈
zki − x∗,∇fki

〉
≥
〈
zk − zki ,∇fki

〉
+ fi(z

k
i)− fi(x∗)

≥ −D
∥∥zki − zk

∥∥+ fi(z
k
i)− fi(zk) + fi(z

k)− fi(x∗)

≥ −2D
∥∥zki − zk

∥∥+ fi(z
k)− fi(x∗). (3.21)

By substituting Eq. (3.21) in Eq. (3.20), and rearranging the terms, we obtain

that

2αk
(
f(zk)− f ∗

)
≤n
∥∥zk − x∗

∥∥2 − n
∥∥zk+1 − x∗

∥∥2
+ nD2α2

k

+
4D

n

n∑
i=1

αk
∥∥zki − zk

∥∥ . (3.22)

The desired result is achieved by summing Eq. (3.22) over time from k = 0 to

∞.

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 46

We are ready to present the main result of this paper, by combining all the

preceding results.

Theorem 1. Let the Assumptions A1 hold. Let
{
zki
}

be the sequence over k

generated by the D-DSD algorithm, Eq. (3.10). Then, for any agent i, we have

lim
k→∞

f(zki) = f ∗.

Proof. Since that the step-size follows that
∑∞

k=0 α
2
k <∞, and

∑∞
k=0 αk‖zki −

zk‖ <∞ from Lemma 1, we obtain from Eq. (3.19) that

2
∞∑
k=0

αk
(
f(zk)− f ∗

)
<∞, (3.23)

which reveals that limk→∞ f(zk) = f ∗, by considering that
∑∞

k=0 αk = ∞

and
(
f(zk)− f ∗

)
> 0 for all k. In Eq. (3.17), we have already shown that

limk→∞ zki = limk→∞ zk. Therefore, we obtain the desired result.

Convergence Rate

We now show the convergence rate of D-DSD. Let fm := mink f(zk), we have

(fm − f ∗)
K∑
k=0

αk ≤
K∑
k=0

αk(f(zk)− f ∗) (3.24)

By combining Eqs. (3.16), (3.19) and (3.24), it can be verified that Eq. (3.19)

can be represented in the following form:

(fm − f ∗)
K∑
k=0

αk ≤ C1 + C2

K∑
k=0

α2
k,

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 47

or equivalently,

(fm − f ∗) ≤
C1∑K
k=0 αk

+
C2

∑K
k=0 α

2
k∑K

k=0 αk
, (3.25)

where the constants, C1 and C2, are given by

C1 =
n

2

∥∥z0 − x∗
∥∥2 − n

2

∥∥zK+1 − x∗
∥∥2

+DΓ
2n∑
j=1

∥∥z0
j

∥∥ 1

1− γ2
,

C2 =
nD2

2
+ 4D2 +DΓ

2n∑
j=1

∥∥z0
j

∥∥+
2D2Γ

1− γ .

Eq. (3.25) actually has the same form as the equations in analyzing the con-

vergence rate of DGD (recall, e.g., [37]). In particular, when αk = k−1/2, the

first term in Eq. (3.25) leads to

C1∑K
k=0 αk

= C1
1/2

K1/2 − 1
= O

(
1√
K

)
,

while the second term in Eq. (3.25) leads to

C2

∑K
k=0 α

2
k∑K

k=0 αk
= C2

lnK

2(
√
K − 1)

= O

(
lnK√
K

)
.

It can be observed that the second term dominates, and the overall convergence

rate is O
(

ln k√
k

)
. As a result, D-DSD has the same convergence rate as DGD.

The restriction of directed graph does not effect the speed.

3.4 Numerical Experiment

We consider a distributed least squares problem in a directed graph: each agent

owns a private objective function, si = Rix + ni, where si ∈ Rmi and Ri ∈

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 48

Rmi×p are measured data, x ∈ Rp is unknown states, and ni ∈ Rmi is random

unknown noise. The goal is to estimate x. This problem can be formulated as

a distributed optimization problem solving

min f(x) =
1

n

n∑
i=1

‖Rix− si‖ .

We consider the network topology as the digraphs shown in Fig. 3.2. We

employ identical setting and graphs as [88]. In [88], the value of ε = 0.7 is

chosen for each Ga,Gb,Gc.

23 1

56 47

10 89

Ga

23 1

56 47

10 89

Gb

23 1

56 47

10 89

Gc

Figure 3.2: Three examples of strongly-connected but non-balanced digraphs.

Fig. 3.3 shows the convergence of the D-DSD algorithm for three digraphs

displayed in Fig. 3.2. Once the weight matrix, M , defined in Eq. (3.9), con-

verges, the D-DSD ensures the convergence. Moreover, it can be observed

that the residuals decrease faster as the number of edges increases, from Ga

to Gc. This indicates faster convergence when there are more communication

channels available for information exchange.

Fig. 3.4 shows the convergence of the D-DSD algorithm with three different

value of ε. We have shown earlier that the value of ε plays a key role in the

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 49

0 1 2 3 4 5

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

k

R
es
id
u
al

GaGbGc

Figure 3.3: Plot of residuals for digraph Ga,Gb,Gc as D-DSD progresses.

convergence of the new weighting matrix, M .It can be find in Fig. 3.4 that in

practical experiments, the range of ε is much larger than the theoretical range

shown earlier.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
k

×104

10-4

10-3

10-2

10-1

100

R
e
s
id
u
a
l

ǫ = 0.05

ǫ = 0.1

ǫ = 0.7

Figure 3.4: Plot of residuals for different ε as D-DSD progresses.

In Fig. 3.5, we display the trajectories of both states, x and y, when the

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 50

D-DSD, Eq. (3.10), is applied on digraph Ga with parameter ε = 0.7. Recall

that in Eqs. (3.17) and (3.18), we have shown that as times, k, goes to infinity,

the state, xki of all agents will converges to a same accumulation point, zk,

which is the optimal solution of the problem, and yki of all agents converges

to zero, which are shown in Fig. 3.5.

1000 2000 3000 4000 5000 6000 7000
−400

−200

0

200

x
k i

k

1000 2000 3000 4000 5000 6000 7000
−200

−100

0

100

200

y
k i

k

Figure 3.5: Sample paths of states, xki , and yki , on digraphs Ga with ε = 0.7.

In the next experiment, we compare the performance between the D-DSD

and others distributed optimization algorithms over directed graphs. The red

curve in Fig. 3.6 is the plot of residuals of D-DSD on Ga. In Fig. 3.6, we also

shown the convergence behavior of two other algorithms on the same digraph.

The blue line is the plot of residuals with a DGD algorithm using a row-

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 51

0 1 2 3 4 5

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

k

R
es
id
u
a
l

Distributed Gradient Descent
Gradient−Push
Directed−Distributed Gradient Descent

Figure 3.6: Comparison on convergence rate between different algorithms.

stochastic matrix. As we have discussed, when the weight matrix is restricted

to be row-stochastic, DGD actually minimizes a new objective function f̂(x) =∑n
i=1 πifi(x) where π = {πi} is the left eigenvector of the weight matrix

corresponding to eigenvalue 1. So it does not converge to the true x∗. The

black curve shows the convergence behavior of the gradient-push algorithm,

proposed in [61, 62]. Our algorithm has the same convergence rate as the

gradient-push algorithm, which is O
(

ln k√
k

)
.

3.5 Conclusions and Future Work

In this chapter, we describe a distributed algorithm, called Directed-Distributed

Subgradient Descent (D-DSD), to solve the problem of minimizing a sum of

convex objective functions over a directed graph. Existing distributed algo-

CHAPTER 3. D-DSD FOR NONSMOOTH CONVEX OPTIMIZATION 52

rithms, e.g., Distributed Gradient Descent (DGD), deal with the same problem

under the assumption of undirected networks. The primary reason behind as-

suming the undirected graphs is to obtain a doubly-stochastic weight matrix.

The row-stochasticity of the weight matrix guarantees that all agents reach

consensus, while the column-stochasticity ensures optimality, i.e., each agents

local gradient contributes equally to the global objective. In a directed graph,

however, it may not be possible to construct a doubly-stochastic weight matrix

in a distributed manner. In each iteration of D-DSD, we simultaneously con-

structs a row-stochastic matrix and a column-stochastic matrix instead of only

a doubly-stochastic matrix. The convergence of the new weight matrix, de-

pending on the row-stochastic and column-stochastic matrices, ensures agents

to reach both consensus and optimality. The analysis shows that the D-DSD

converges at a rate of O(ln k√
k

), where k is the number of iterations.

In the analysis of D-DSD, we stick to the setting of static directed networks.

Although we do not pursue this here, D-DSD can be generalized to work over

time-varying directed graphs. Numerical experiments illustrate this findings.

Extending the analysis to the case of time-varying directed graphs would be

important directions for future work.

53

Chapter 4

D-DPS for Constrained

Nonsmooth Convex

Optimization

In this chapter, we propose a distributed algorithm, termed Directed-Distributed

Projection Subgradient (D-DPS), to solve the distributed optimization prob-

lem over directed networks with an additional constrained set. D-DSD can be

viewed as a special case of D-DPS when the constrained set is Rp, meaning no

constraint. Same as D-DSD, D-DPS converges to the optimal solution in non-

smooth convex optimization, i.e., the local objective functions in the problem

are convex, but not necessarily differentiable. The convergence analysis shows

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 54

that D-DPS converges at a rate of O(ln k√
k

), where k is the number of iterations.

4.1 Problem, Assumptions, and Algorithm

Consider a strongly-connected network of n agents communicating over a di-

rected graph, G = (V , E), where V is the set of agents, and E is the collection of

ordered pairs, (i, j), i, j ∈ V , such that agent j can send information to agent i.

Define N in
i to be the collection of in-neighbors that can send information to

agent i. Similarly, N out
i is defined as the out-neighbors of agent i. We allow

both N in
i and N out

i to include the node i itself. In our case, N in
i 6= N out

i in

general. We focus on solving a constrained convex optimization problem that

is distributed over the above multi-agent network. In particular, the network

of agents cooperatively solve the following optimization problem:

P2 : minimize f(x) =
n∑
i=1

fi(x), subject to x ∈ X ,

where each local objective function fi : Rp → R being convex, not necessarily

differentiable, is only known by agent i, and the constrained set, X ⊆ Rp, is

convex and closed.

The goal is to solve Problem P2 in a distributed manner such that the

agents do not exchange the objective function with each other, but only share

their own states with their out-neighbors in each iteration. Note that Problem

P1 which we consider in previous chapters is a special case of P2 when X = Rp.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 55

As a result, D-DPS can be viewed as an extension of D-DSD to constrained

optimization. We adopt the same assumptions as the assumptions used in

D-DSD. For the sake of argument, we claim these assumptions again here.

Assumption A2. The graph G = (V , E) is strongly-connected, i.e., ∀i, j ∈ V,

there exists a directed path from j to i. Assumption A2 ensures that the private

information of any agent is disseminated to the whole network.

Assumption A3. Each function, fi, is convex, but not necessarily differen-

tiable. The subgradient, ∇fi(x), is bounded, i.e., ‖∇fi(x)‖ ≤ Bfi, ∀x ∈ Rp.

With B = maxi{Bfi}, we have for any x ∈ Rp,

‖∇fi(x)‖ ≤ B, ∀i ∈ V . (4.1)

We now formally describe the implementation of D-DPS. Let each agent, j ∈

V , maintain two vectors: xkj and ykj , both in Rp, where k is the discrete-time

index. At the k+ 1th iteration, agent j sends its state estimate, xkj , as well as

a weighted auxiliary variable, bijy
k
j , to each out-neighbor, i ∈ N out

j , where all

those out-weights, bij’s, of agent j satisfy:

bij =


> 0, i ∈ N out

j ,

0, otw.,

n∑
i=1

bij = 1.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 56

Agent i then updates the variables, xk+1
i and yk+1

i , with the information re-

ceived from its in-neighbors, j ∈ N in
i :

xk+1
i = PX

[
n∑
j=1

aijx
k
j + εyki − αk∇fki

]
, (4.2a)

yk+1
i = xki −

n∑
j=1

aijx
k
j +

n∑
j=1

(
bijy

k
j

)
− εyki , (4.2b)

where the in-weights, aij’s, of agent i satisfy that:

aij =


> 0, j ∈ N in

i ,

0, otw.,

n∑
j=1

aij = 1;

PX [·] is the projection operator on the set X . The scalar, ε, is a small positive

constant, of which we will give the range later. The diminishing step-size, αk ≥

0, satisfies the persistence conditions:
∑∞

k=0 αk = ∞;
∑∞

k=0 α
2
k < ∞; and

∇fki = ∇fi(xki) represents the subgradient of fi at xki . We provide the proof

of D-DPS in next section, where we show that all agents states converge to

some common accumulation state, and the accumulation state converges to

the optimal solution of the problem, i.e., x∞i = x∞j = x∞ and f(x∞) = f ∗,

∀i, j, where f ∗ denotes the optimal solution of Problem P2. To facilitate the

proof, we present some existing results regarding the convergence of a new

weighting matrix, and some inequality satisfied by the projection operator.

The first lemma is presented as Lemma 5 in Chapter III. We claim it here

again to facilitate the analysis.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 57

Lemma 5. Let Assumption A2 holds. Let M be the weighting matrix, Eq. (3.9),

and the constant ε in M satisfy ε ∈ (0,Υ), where Υ := 1
(20+8n)n

(1−|λ3|)n and λ3

is the third largest eigenvalue of M by setting ε = 0. Then:

(a) The sequence of
{
Mk
}

, as k goes to infinity, converges to the following

limit:

lim
k→∞

Mk =

 1n1>n
n

1n1>n
n

0 0

 ;

(b) For all i, j ∈ [1, . . . , 2n], the entries
[
Mk
]
ij

converge at a geometric rate,

i.e., there exist bounded constants, Γ ∈ R+, and γ ∈ (0, 1), such that∥∥∥∥∥∥∥∥M
k −

 1n1>n
n

1n1>n
n

0 0


∥∥∥∥∥∥∥∥
∞

≤ Γγk.

The proof and related discussion can be found in Lemma 5 in Chapter III.

The next lemma regarding the projection operator is from [38].

Lemma 6. Let X be a non-empty closed convex set in Rp. For any vector y ∈

X and x ∈ Rp, it satisfies:

(a) 〈y − PX [x] ,x− PX [x]〉 ≤ 0.

(b) ‖PX [x]− y‖2 ≤ ‖x− y‖2 − ‖PX [x]− x‖2.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 58

4.2 Convergence Analysis

To analyze D-DPS, we write Eq. (4.2) in a compact form. We denote zki ∈

Rp, gki ∈ Rp as

zki =


xki , 1 ≤ i ≤ n,

yki−n, n+ 1 ≤ i ≤ 2n,

gki =


xk+1
i −

n∑
j=1

aijx
k
j − εyki , 1 ≤ i ≤ n,

0p, n+ 1 ≤ i ≤ 2n,

(4.3)

and A = {aij}, B = {bij}, and M = {mij} collect the weights from Eqs. (4.2)

and (3.9). We now represent Eq. (4.2) as follows: for any i ∈ {1, ..., 2n},

at k + 1th iteration,

zk+1
i =

2n∑
j=1

mijz
k
j + gki , (4.4)

where we refer to gki as the perturbation. Eq. (4.4) can be viewed as a dis-

tributed subgradient method, [37], where the doubly stochastic matrix is sub-

stituted with the new weighting matrix, M , Eq. (3.9), and the subgradient

is replaced by the perturbation, gki . We summarize the spirit of the upcom-

ing convergence proof, which consists of proving both the consensus prop-

erty and the optimality property of D-DPS. As to the consensus property,

we show that the disagreement between estimates of agents goes to zero, i.e.,

limk→∞ ‖xki − xkj‖ = 0, ∀i, j ∈ V . More specifically, we show that the limit

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 59

of agent estimates converge to some accumulation state, zk = 1
n

∑2n
i=1 z

k
i , i.e.,

limk→∞ ‖xki − zk‖ = 0, ∀i, and the agents additional variables go to zero, i.e.,

limk→∞ ‖yki ‖ = 0, ∀i. Based on the consensus property, we next show the

optimality property that the difference between the objective function eval-

uated at the accumulation state and the optimal solution goes to zero, i.e.,

limk→∞ f(zk) = f ∗.

We formally define the accumulation state zk as follow,

zk =
1

n

2n∑
i=1

zki =
1

n

n∑
i=1

xki +
1

n

n∑
i=1

yki . (4.5)

The following lemma regarding xki , y
k
i , and zk is straightforward. We assume

that all of the initial states of agents are zero, i.e., zki = 0p, ∀i, for the sake of

simplicity in the representation of proof.

Lemma 7. Let Assumptions A2, A3 hold. Then, there exist some bounded

constants, Γ > 0 and 0 < γ < 1, such that:

(a) for all i ∈ V and k ≥ 0, the agent estimate satisfies1

∥∥xki − zk
∥∥ ≤Γ

k−1∑
r=1

γk−r
n∑
j=1

∥∥gr−1
j

∥∥+
n∑
j=1

∥∥gk−1
j

∥∥ ;

(b) for all i ∈ V and k ≥ 0, the additional variable satisfies

∥∥yki ∥∥ ≤ Γ
k−1∑
r=1

γk−r
n∑
j=1

∥∥gr−1
j

∥∥ .
1In this paper, we allow the notation that the superscript of sum being smaller than its

subscript. In particular, for any sequence {sk}, we have
∑k2

k=k1
sk = 0, if k2 < k1. Besides,

we denote in this paper for convenience that g−1
i = 0p, ∀i

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 60

Proof. For any k ≥ 0, we write Eq. (4.4) recursively

zki =
k−1∑
r=1

n∑
j=1

[Mk−r]ijg
r−1
j + gk−1

i . (4.6)

We have
∑2n

i=1[Mk]ij = 1 for any k ≥ 0 since each column of M sums up to

one. Considering the recursive relation of zki in Eq. (4.6), we obtain that zk

can be written as

zk =
k−1∑
r=1

n∑
j=1

1

n
gr−1
j +

1

n

n∑
i=1

gk−1
i . (4.7)

Subtracting Eq. (4.7) from (4.6) and taking the norm, we obtain

∥∥zki − zk
∥∥ ≤ k−1∑

r=1

n∑
j=1

∥∥∥∥[Mk−r]ij −
1

n

∥∥∥∥∥∥gr−1
j

∥∥
+
n− 1

n

∥∥gk−1
i

∥∥+
1

n

∑
j 6=i

∥∥gk−1
j

∥∥ . (4.8)

The proof of part (a) follows by applying Lemma 5 to Eq. (4.8) for 1 ≤ i ≤

n, whereas the proof of part (b) follows by applying Lemma 5 to Eq. (4.6)

for n+ 1 ≤ i ≤ 2n.

Convergence of the perturbation

We now show that the perturbation, gki , goes to zero, i.e., at kth iteration, the

norm of the perturbation, gki , at any agent can be bounded by the step-size

times some positive bounded constant, i.e., there exists some bounded constant

C > 0 such that ‖gki ‖ ≤ Cαk,∀i, k. The next lemma bounds perturbations by

step-sizes in an ergodic sense.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 61

Lemma 8. Let Assumptions A2, A3 hold. Let ε be the small constant used

in the algorithm, Eq. (3.8), such that ε ≤ 1−γ
2nΓγ

. Define the variable gk =∑n
i=1 ‖gki ‖. Then there exists some bounded constant D > 0 such that for

all K ≥ 2, gk satisfies:

K∑
k=0

gk ≤ D

K∑
k=0

αk; (4.9)

K∑
k=0

αkgk ≤ D
K∑
k=0

α2
k, (4.10)

where αk is the diminishing step-size used in the algorithm.

Proof. Based on the result of Lemma 6(b), we have∥∥∥∥∥PX
[

n∑
j=1

aijx
k
j + εyki − αk∇fki

]
−

n∑
j=1

aijx
k
j

∥∥∥∥∥ ≤ ∥∥εyki − αk∇fki ∥∥ . (4.11)

Therefore, we obtain

∥∥gki ∥∥ ≤
∥∥∥∥∥xk+1

i −
n∑
j=1

aijx
k
j

∥∥∥∥∥+ ε
∥∥yki ∥∥ ,

≤
∥∥εyki − αk∇fki ∥∥+ ε

∥∥yki ∥∥ ,
≤ Bαk + 2ε

∥∥yki ∥∥ , (4.12)

where in the last inequality, we use the relation ‖∇fki ‖ ≤ B. Applying the

result of Lemma 7(b) regarding ‖yki ‖ to the preceding relation, we have for all

i,

∥∥gki ∥∥ ≤ Bαk + 2εΓ
k−1∑
r=1

γk−r
n∑
j=1

∥∥gr−1
j

∥∥ .

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 62

By defining gk =
∑n

i=1 ‖gki ‖, and summing the above relation over i, it follows

that

gk ≤ nBαk + 2nεΓ
k−1∑
r=1

γk−rgr−1. (4.13)

Summing Eq. (4.13) over time from k = 0 to K, we obtain

K∑
k=0

gk ≤ nB
K∑
k=0

αk + 2nεΓ
K∑
k=0

k−1∑
r=1

γk−rgr−1,

≤ nB
K∑
k=0

αk + 2nεΓ
γ(1− γK−2)

1− γ
K−2∑
k=0

gk.

Therefore, it satisfies, for any K ≥ 2, that(
1− 2nεΓγ

1− γ

) K∑
k=0

gk ≤ nB
K∑
k=0

αk.

Since ε can be arbitrary small, (see Lemma 5), it is achievable that ε ≤ 1−γ
2nΓγ

,

which obtains the desired result.

Similarly, it can be derived from Eq. (4.13) that

K∑
k=0

αkgk ≤ nB
K∑
k=0

α2
k + 2nεΓ

K∑
k=0

αk

k−1∑
r=1

γk−rgr−1.

Noticing that the step-size is diminishing, it follows that

K∑
k=0

αk

k−1∑
r=1

γk−rgr−1 ≤
K∑
k=0

k−1∑
r=1

γk−rαr−1gr−1,

≤ γ(1− γK−2)

1− γ
K−2∑
k=0

αkgk.

Therefore, it satisfies, for any K ≥ 2, that(
1− 2nεΓγ

1− γ

) K∑
k=0

αkgk ≤ nB

K∑
k=0

α2
k,

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 63

which completes the proofs.

Based on the result of Lemma 8, we show that at kth iteration, the norm

of perturbation, gki , of any agent can be bounded by the step-size times some

bounded constant.

Lemma 9. Let Assumptions A2, A3 hold. Let ε be the small constant used

in the algorithm, Eq. (3.8), such that ε ≤ 1−γ
2nΓγ

. Define the variable gk =∑n
i=1 ‖gki ‖. Then there exists some bounded contant C > 0 such that for

all k ≥ 0, gk satisfies:

gk ≤ Cαk; (4.14)

where αk is the diminishing step-size used in the algorithm.

Proof. Suppose on the contrary that gk/αk =∞, for some k. Since αk 6= 0, for

any finite k, and we get from Lemma 8 that
∑∞

k=0 αkgk ≤
∑∞

k=0 α
2
k < ∞, we

obtain that gk is bounded for any finite k. Therefore, we only get gk/αk =∞

when k goes to infinity, i.e., limk→∞
gk
αk

= ∞. This implies that there exists

some finite K such that for all k ≥ K, we have gk > 2Dαk, where D is the

constant in the result of Lemma 8. The preceding relation implies that

∞∑
k=K

gk > 2D
∞∑
k=K

αk.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 64

Since
∑∞

k=0 αk = ∞, we have
∑K−1

k=0 αk <
∑∞

k=K αk = ∞. Therefore, we

obtain

∞∑
k=0

gk >
∞∑
k=K

gk > 2D
∞∑
k=K

αk > D
∞∑
k=0

αk,

which is a contradiction to the result in Lemma 8(a).

Lemma 9 shows that the perturbation, gki , goes to zero and the D-DPS

converges. We next show that the agents reach consensus and also converge

to the optimal solution.

Consensus in Estimates

In Lemma 7, we bound the disagreement between estimates of agent and the

accumulation state, ‖xki − zk‖, in terms of the perturbation norm,
∑n

j=1 ‖gkj ‖.

In Lemmas 8 and 9, we bound the perturbation. By combining these results,

we show the consensus property of the algorithm in the following lemma.

Lemma 10. Let Assumptions A2, A3 hold. Let
{
zki
}

be the sequence over k

generated by Eq. (4.4). Then, for all i ∈ V:

(a) the agents reach consensus, i.e., limk→∞
∥∥xki − zk

∥∥ = 0;

(b) at each agent, limk→∞
∥∥yki ∥∥ = 0.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 65

Proof. Considering Lemma 7(a), we have for any K > 0

K∑
k=1

αk
∥∥xki − zk

∥∥ ≤Γ
K∑
k=1

k−1∑
r=1

γk−rαk

n∑
j=1

∥∥gr−1
j

∥∥+
K∑
k=1

αk

n∑
j=1

∥∥gk−1
j

∥∥ ,
≤ΓC

K∑
k=1

k−1∑
r=1

γk−rαkαr−1 +
K∑
k=1

αkαk−1,

≤ΓCγ(1− γK)

1− γ
K∑
k=1

α2
k +

K∑
k=1

α2
k, (4.15)

where we used Lemma 9 to obtain the second inequality. By letting K → ∞

and noticing that
∑∞

k=0 α
2
k <∞, we get

∞∑
k=1

αk
∥∥xki − zk

∥∥ <∞. (4.16)

Combined with
∑∞

k=0 αk = ∞, the preceding relation implies part (a). The

result in part (b) follows a similar argument.

Optimality Convergence

The result of Lemma 10 reveals the fact that all agents reach consensus. We

next show that the accumulation state converges to the optimal solution of

the problem.

Theorem 2. Let Assumptions A2, A3 hold. Let
{
zki
}

be the sequence over k

generated by Eq. (4.4). Then, each agent converges to the optimal solution,

i.e.,

lim
k→∞

f(xki) = f ∗, ∀i ∈ V .

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 66

Proof. Consider Eq. (4.4) and the fact that each column of M sums to one,

we have the accumulation state

zk+1 = zk +
1

n

n∑
i=1

gki .

Therefore, we obtain that

∥∥zk+1 − x∗
∥∥2

=
∥∥zk − x∗

∥∥2
+

∥∥∥∥∥ 1

n

n∑
i=1

gki

∥∥∥∥∥
2

+
2

n

n∑
i=1

〈
zk − x∗,gki

〉
,

=
∥∥zk − x∗

∥∥2
+

1

n2

∥∥∥∥∥
n∑
i=1

gki

∥∥∥∥∥
2

− 2αk
n

n∑
i=1

〈
zk − x∗,∇fki

〉
+

2

n

n∑
i=1

〈
zk − x∗,gki + αk∇fki

〉
. (4.17)

Since ‖∇fki ‖ ≤ B, we have

〈
zk − x∗,∇fki

〉
=
〈
zk − xki ,∇fki

〉
+
〈
xki − x∗,∇fki

〉
,

≥
〈
zk − xki ,∇fki

〉
+ fi(x

k
i)− fi(x∗),

≥ −B
∥∥zk − xki

∥∥+ fi(x
k
i)− fi(zk) + fi(z

k)− fi(x∗),

≥ −2B
∥∥zk − xki

∥∥+ fi(z
k)− fi(x∗). (4.18)

By substituting Eq. (4.18) in Eq. (4.17), we obtain that

2αk
n

(
f(zk)− f ∗

)
≤
∥∥zk − x∗

∥∥2 −
∥∥zk+1 − x∗

∥∥2
+

4Bαk
n

n∑
i=1

∥∥zk − xki
∥∥

+
1

n2

∥∥∥∥∥
n∑
i=1

gki

∥∥∥∥∥
2

+
2

n

n∑
i=1

〈
zk − x∗,gki + αk∇fki

〉
. (4.19)

We now analyze the last term in Eq. (4.19).

n∑
i=1

〈
zk − x∗,gki + αk∇fki

〉
=

n∑
i=1

〈
zk − zk+1,gki + αk∇fki

〉

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 67

+
n∑
i=1

〈
zk+1 − xk+1

i ,gki + αk∇fki
〉

+
n∑
i=1

〈
xk+1
i − x∗,gki + αk∇fki

〉
:=s1 + s2 + s3 (4.20)

where s1, s2, and s3 denote each of RHS terms in Eq. (4.20). We discuss each

term in sequence. Since gk =
∑n

i=1 ‖gki ‖ ≤ Cαk and ‖∇fki ‖ ≤ B, we have

s1 = −
n∑
i=1

〈
gki ,g

k
i + αk∇fki

〉
≤ Bαk

n∑
i=1

∥∥gki ∥∥ = BCα2
k;

s2 ≤ (B + C)αk

n∑
i=1

∥∥zk+1 − xk+1
i

∥∥ .
Using the result of Lemma 6(a), we have for any i

〈
xk+1
i − x∗,gki + αk∇fki

〉
≤ 0,

which reveals that s3 ≤ 0. Using the upperbound of s1, s2, and s3 in the

preceding relations and the fact that gk =
∑n

i=1 ‖gki ‖ ≤ Cαk, we derive from

Eq. (4.19) that

2αk
n

(
f(zk)− f ∗

)
≤
∥∥zk − x∗

∥∥2 −
∥∥zk+1 − x∗

∥∥2
+

4Bαk
n

n∑
i=1

∥∥zk − xki
∥∥+

C2

n2
α2
k

+
2BC

n
α2
k +

2(B + C)

n
αk

n∑
i=1

∥∥zk+1 − xk+1
i

∥∥ .
By summing the preceding relation over k, we have that

∞∑
k=1

2αk
n

(
f(zk)− f ∗

)
≤
∥∥z1 − x∗

∥∥2
+

(
C2

n2
+

2BC

n

) ∞∑
k=1

α2
k

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 68

+
4B

n

n∑
i=1

∞∑
k=1

αk
∥∥zk − xki

∥∥+
2(B + C)

n

n∑
i=1

∞∑
k=1

αk
∥∥zk+1 − xk+1

i

∥∥ . (4.21)

Since that the step-size follows
∑∞

k=1 α
2
k < ∞ and

∑∞
k=1 αk‖zk − xki ‖ < ∞,

from Eq. (4.16), we obtain that

∞∑
k=1

2αk
n

(
f(zk)− f ∗

)
<∞, (4.22)

which reveals that limk→∞ f(zk) = f ∗ as
∑∞

k=1 αk =∞; the proof follows from

Lemma 10.

Convergence Rate

We now characterize the convergence rate with αk = 1
ka

, and a > 0. Let f ∗K :=

min0<k≤K f(zk), we have

(f ∗K − f ∗)
K∑
k=1

αk ≤
K∑
k=1

αk(f(zk)− f ∗). (4.23)

By combining Eqs. (4.15), (4.21) and (4.23), Eq. (4.21) leads to

(f ∗K − f ∗)
K∑
k=1

αk ≤ C1 + C2

K∑
k=1

α2
k,

or equivalently,

(f ∗K − f ∗) ≤
C1∑K
k=1 αk

+
C2

∑K
k=1 α

2
k∑K

k=1 αk
, (4.24)

where the constants, C1 and C2, are given by

C1 =
n

2

∥∥z0 − x∗
∥∥2
, C2 =

C2

2n
+BC + (3B + C)

(
ΓCγ

1− γ + 1

)
.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 69

Assume the diminishing step-size, αk = 1
ka

, with a > 0.

(i) When 0 < a < 1
2
, the first term in Eq. (4.24) leads to

C1∑K
k=1 αk

< C1
1− a

K1−a − 1
= O

(
1

K1−a

)
,

while the second term in Eq. (4.24) leads to

C2

∑K
k=1 α

2
k∑K

k=1 αk
< C2

(1− a)(K1−2a − 2a)

(1− 2a)(K1−a − 1)
= O

(
1

Ka

)
.

Considering that 0 < a < 1
2
, we have O

(
1
Ka

)
dominates since it decreases

slower than O
(

1
K1−a

)
.

(ii) When αk = k−1/2, the first term in Eq. (4.24) leads to

C1∑K
k=1 αk

< C1
1/2

K1/2 − 1
= O

(
1√
K

)
,

while the second term in Eq. (4.24) leads to

C2

∑K
k=1 α

2
k∑K

k=1 αk
< C2

1 + lnK

2(
√
K − 1)

= O

(
lnK√
K

)
.

It can be observed that O
(

lnK√
K

)
dominates.

(iii) When 1
2
< a < 1, the first term in Eq. (4.24) leads to

C1∑K
k=1 αk

< C1
1− a

K1−a − 1
= O

(
1

K1−a

)
,

while the second term in Eq. (4.24) leads to

C2

∑K
k=1 α

2
k∑K

k=1 αk
< C2

(1− a)(2a− 1/K2a−1)

(2a− 1)(K1−a − 1)
= O

(
1

K1−a

)
.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 70

The two terms are in the same order.

(iv) When a > 1, the two terms in Eq. (4.24) approach constant values. There-

fore, the persistence conditions of step-size are not satisfied, and convergence

of D-DPS is not satisfied.

By comparing (i), (ii), and (iii), we have that O(lnK√
K

) is the fastest. In

conclusion, the optimal convergence rate is achieved by choosing αk = 1√
k
,

and the corresponding convergence rate of D-DPS is O(ln k√
k

). This convergence

rate is the same as the distributed projected subgradient method, [38], solving

constrained optimization over undirected graphs. Therefore, the restriction of

directed graphs does not effect the convergence speed.

4.3 Numerical Results

Consider the application of D-DPS for solving a distributed logistic regression

problem over a directed graph:

x∗ = argmin
x∈X⊂Rp

n∑
i=1

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijx

)
yij
)]
,

where X is a small convex set restricting the value of x to avoid overfitting.

Each agent i has access to mi training samples, (cij, yij) ∈ Rp × {−1,+1},

where cij includes the p features of the jth training sample of agent i, and yij

is the corresponding label. This problem can be formulated in the form of P2

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 71

with the private objective function fi being

fi(x) =

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijx

)
yij
)]
, s.t. x ∈ X .

In our setting, we have n = 10, mi = 10, for all i, and p = 100. The con-

strained set is described by a ball in Rp. We consider the network topology

as the digraph shown in Fig. 4.1. We plot the residuals
‖xki−x∗‖F
‖x0

i−x∗‖F
for each

23 1

56 47

10 89

Figure 4.1: A strongly-connected but non-balanced directed graph.

agent i as a function of k in Fig. 4.2. In Fig. 4.3, we show the disagree-

ment between the state estimate of each agent and the accumulation state,

and the additional variables of all agents. The experiment follows the results

of Lemma 10 that both the disagreements and the additional variables con-

verge to zero. We compare the convergence of D-DPS with others related

algorithms, Subgradient-Push (SP), [61], and WeightBalencing Subgradient

Descent (WBSD), [74], in Fig. 4.4. Since both SP and WBSD are algorithms

for unconstrained problems, we reformulate the problem in an approximate

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 72

0 1000 2000 3000 4000
k

10-3

10-2

10-1

100
R
e
s
id
u
a
l

Figure 4.2: D-DPS residuals at 10 agents.

1000 2000 3000 4000
k

-50
0

50

‖x
k i
−
z
k
‖

1000 2000 3000 4000
k

-50
0

50

‖y
k i
‖

Figure 4.3: Sample paths of states, ‖xki − zk‖, and ‖yki ‖, for all agents.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 73

form,

fi(x) = λ‖x‖2 +

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijx

)
yij
)]
,

where the regularization term λ‖x‖2 is an approximation to replace the original

constrained set to avoid overfitting. It can be observed from Fig. 4.4 that all

three algorithms have the same order of convergence rate. However, D-DPS is

further suited for the constrained problems.

0 200 400 600 800 1000
k

10-1

100

R
e
s
id
u
a
l

Subgradient-Push
Directed-Distributed Projected Subgradient
WeightBalencing Subgradient Descent

Figure 4.4: Convergence comparison between different algorithms.

CHAPTER 4. D-DPS FOR CONSTRAINED NONSMOOTH CONVEX
OPTIMIZATION 74

4.4 Conclusions

In this Chapter, we present a distributed solution, D-DPS, to the constrained

optimization problem over directed multi-agent networks, where the agents’

goal is to collectively minimize the sum of locally known convex functions. D-

DSD, proposed in Chapter III, can be viewed as a special case of D-DPS when

the constrained set is Rp. Same as D-DSD, D-DPS converges to the optimal

solution in nonsmooth convex optimization, i.e., the local objective functions

in Problem P2 are convex, but not necessarily differentiable. Compared to

the algorithm solving over undirected networks, the D-DPS simultaneously

constructs a row-stochastic matrix and a column-stochastic matrix instead

of only a doubly-stochastic matrix. This enables all agents to overcome the

asymmetry caused by the directed communication network. We show that

D-DPS converges to the optimal solution and the convergence rate is O(log k√
k

),

where k is the number of iterations.

75

Chapter 5

DEXTRA for Smooth Convex

Optimization

In this chapter, we introduce DEXTRA, to solve the distributed optimization

problem, P1, over directed networks. Recall D-DSD and D-DPS, which achieve

a sub-linear convergence rate to solve P1. We harness the function smoothness

to accelerate the convergence rate. Therefore, DEXTRA converges to the opti-

mal solution in smooth convex optimization, i.e., the local objective functions

in Problem P1 are convex and differentiable. We show that, with the appropri-

ate step-size, DEXTRA converges at a linear rate O(τ k) for 0 < τ < 1, given

that the objective functions are restricted strongly-convex. The implementa-

tion of DEXTRA requires each agent to know its local out-degree. Simulation

examples further illustrate our findings.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 76

5.1 Algorithm

To solve the Problem P1 suited to the case of directed graphs, we propose

DEXTRA that can be described as follows. Each agent, j ∈ V , maintains

two vector variables: xkj , zkj ∈ Rp, as well as a scalar variable, ykj ∈ R,

where k is the discrete-time index. At the kth iteration, agent j weights

its states, aijx
k
j , aijy

k
j , as well as ãijx

k−1
j , and sends these to each of its out-

neighbors, i ∈ N out
j , where the weights, aij, and, ãij,’s are such that:

aij =


> 0, i ∈ N out

j ,

0, otw.,

n∑
i=1

aij = 1, ∀j, (5.1)

ãij =


θ + (1− θ)aij, i = j,

(1− θ)aij, i 6= j,

∀j, (5.2)

where θ ∈ (0, 1
2
]. With agent i receiving the information from its in-neighbors, j ∈

N in
i , it calculates the state, zki , by dividing xki over yki , and updates xk+1

i

and yk+1
i as follows:

zki =
xki
yki
, (5.3a)

xk+1
i =xki +

∑
j∈N in

i

(
aijx

k
j

)
−
∑
j∈N in

i

(
ãijx

k−1
j

)
− α

[
∇fi(zki)−∇fi(zk−1

i)
]
, (5.3b)

yk+1
i =

∑
j∈N in

i

(
aijy

k
j

)
. (5.3c)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 77

In the above, ∇fi(zki) is the gradient of the function fi(z) at z = zki , and

∇fi(zk−1
i) is the gradient at zk−1

i , respectively. The method is initiated with

an arbitrary vector, x0
i , and with y0

i = 1 for any agent i. The step-size, α, is a

positive number within a certain interval. We will explicitly discuss the range

of α later. We adopt the convention that x−1
i = 0p and ∇fi(z−1

i) = 0p, for

any agent i, such that at the first iteration, i.e., k = 0, we have the following

iteration instead of Eq. (5.3),

z0
i =

x0
i

y0
i

, (5.4a)

x1
i =

∑
j∈N in

i

(
aijx

0
j

)
− α∇fi(z0

i), (5.4b)

y1
i =

∑
j∈N in

i

(
aijy

0
j

)
. (5.4c)

We note that the implementation of Eq. (5.3) needs each agent to have the

knowledge of its out-neighbors (such that it can design the weights according to

Eqs. (5.1) and (5.2)). In a more restricted setting, e.g., a broadcast application

where it may not be possible to know the out-neighbors, we may use aij =

|N out
j |−1; thus, the implementation only requires each agent to know its out-

degree, [61, 63–65, 74, 79, 82].

To simplify the analysis, we assume from now on that all sequences updated

by Eq. (5.3) have only one dimension, i.e., p = 1; thus xki , y
k
i , zki ∈ R,∀i, k.

For xki , zki ∈ Rp being p-dimensional vectors, the proof is the same for ev-

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 78

ery dimension by applying the results to each coordinate. Therefore, as-

suming p = 1 is without the loss of generality. We next write DEXTRA,

Eq. (5.3), in a matrix form. Let, A = {aij} ∈ Rn×n, Ã = {ãij} ∈ Rn×n, be

the collection of weights, aij, ãij, respectively. It is clear that both A and

Ã are column-stochastic matrices. Let xk, zk, ∇f(xk) ∈ Rnp, be the collec-

tion of all agent states and gradients at time k, i.e., xk , [xk1; · · · ;xkn], zk ,

[zk1 ; · · · ; zkn], ∇f(xk) , [∇f1(xk1); · · · ;∇fn(xkn)], and yk ∈ Rn be the collection

of agent states, yki , i.e., yk , [yk1 ; · · · ; ykn]. Note that at time k, yk can be

represented by the initial value, y0:

yk = Ayk−1 = Aky0 = Ak · 1n. (5.5)

Define a diagonal matrix, Dk ∈ Rn×n, for each k, such that the ith element

of Dk is yki , i.e.,

Dk = diag
(
yk
)

= diag
(
Ak · 1n

)
. (5.6)

Given that the graph, G, is strongly-connected and the corresponding weight-

ing matrix, A, is non-negative, it follows that Dk is invertible for any k. Then,

we can write Eq. (5.3) in the matrix form equivalently as follows:

zk =
[
Dk
]−1

xk, (5.7a)

xk+1 =xk + Axk − Ãxk−1 − α
[
∇f(zk)−∇f(zk−1)

]
, (5.7b)

yk+1 =Ayk, (5.7c)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 79

where both of the weight matrices, A and Ã, are column-stochastic and satisfy

the relationship: Ã = θIn + (1 − θ)A with some θ ∈ (0, 1
2
]. From Eq. (5.7a),

we obtain for any k

xk =Dkzk. (5.8)

Therefore, Eq. (5.7) can be represented as a single equation:

Dk+1zk+1 = (In + A)Dkzk − ÃDk−1zk−1 − α
[
∇f(zk)−∇f(zk−1)

]
. (5.9)

We refer to the above algorithm as DEXTRA, since Eq. (5.9) has a similar

form as EXTRA in Eq. (2.8) and is designed to solve Problem P1 in the case

of directed graphs. We later shows that as time goes to infinity, the iteration

in Eq. (5.9) pushes zk to achieve consensus and reach the optimal solution in

a linear rate. Our proof in this paper will based on the form, Eq. (5.9), of

DEXTRA.

Interpretation of DEXTRA

In this section, we give an intuitive interpretation on DEXTRA’s convergence

to the optimal solution. Since A is column-stochastic, the sequence,
{
yk
}

,

generated by Eq. (5.7c), satisfies limk→∞ yk = π, where π is some vector in

the span of A’s right-eigenvector corresponding to the eigenvalue 1. We also

obtain that D∞ = diag (π). For the sake of argument, let us assume that the

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 80

sequences,
{
zk
}

and
{
xk
}

, generated by DEXTRA, Eq. (5.7) or (5.9), also

converge to their own limits, z∞ and x∞, respectively (not necessarily true).

According to the updating rule in Eq. (5.7b), the limit x∞ satisfies

x∞ =x∞ + Ax∞ − Ãx∞ − α [∇f(z∞)−∇f(z∞)] , (5.10)

which implies that (A− Ã)x∞ = 0n, or x∞ = uπ for some scalar, u. It follows

from Eq. (5.7a) that

z∞ =u [D∞]−1 π = u1n, (5.11)

where the consensus is reached. The above analysis reveals the idea of DEX-

TRA, which is to overcome the imbalance of agent states occurred when the

graph is directed: both x∞ and y∞ lie in the span of π; by dividing x∞

over y∞, the imbalance is canceled.

Summing up the updates in Eq. (5.7b) over k from 0 to∞, we obtain that

x∞ = Ax∞ − α∇f(z∞)−
∞∑
r=0

(
Ã− A

)
xr;

note that the first iteration is slightly different as shown in Eqs. (5.4). Con-

sider x∞ = uπ and the preceding relation. It follows that the limit, z∞,

satisfies

α∇f(z∞) = −
∞∑
r=0

(
Ã− A

)
xr. (5.12)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 81

Therefore, we obtain that

α1>n∇f(z∞) = −1>n
(
Ã− A

) ∞∑
r=0

xr = 0,

which is the optimality condition of Problem P1 considering that z∞ = u1n.

Therefore, given the assumption that the sequence of DEXTRA iterates,
{
zk
}

and
{
xk
}

, have limits, z∞ and x∞, we have the fact that z∞ achieves consensus

and reaches the optimal solution of Problem P1. In the next section, we state

the convergence result of DEXTRA.

5.2 Assumptions and Main Results

Recall D-DSD and D-DPS in previous chapters, which achieve a sub-linear

convergence rate to solve P1. We harness the function smoothness to accel-

erate the convergence rate. In particular, we modify the bounded gradient

assumption to a Lipschitz continuous gradient assumption. In other words,

DEXTRA converges to the optimal solution in smooth convex optimization,

i.e., the local objective functions in Problem P1 are convex and differentiable.

With appropriate assumptions, our main result states that DEXTRA con-

verges to the optimal solution of Problem P1 linearly. We state again that

from now on we assume that the states of agents have only one dimension,

i.e., p = 1, which is without the loss of generality. We assume that the agent

graph, G, is strongly-connected; each local function, fi : Rp → R, is convex and

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 82

differentiable, and the optimal solution of Problem P1 and the corresponding

optimal value exist. Formally, we denote the optimal solution by u ∈ R and

optimal value by f ∗, i.e.,

f ∗ = f(u) = min
x∈R

f(x). (5.13)

Let z∗ ∈ Rn be defined as

z∗ = u1n. (5.14)

Besides the above assumptions, we emphasize some other assumptions re-

garding the objective functions and weighting matrices, which are formally

presented as follows.

Assumption A4 (Functions and Gradients). Each private function, fi, is

convex and differentiable and satisfies the following assumptions.

(a) The function, fi, has Lipschitz gradient with the constant Lfi, i.e., ‖∇fi(x)−

∇fi(y)‖ ≤ Lfi‖x− y‖, ∀x, y ∈ R.

(b) The function, fi, is restricted strongly-convex1 with respect to point u with

a positive constant Sfi, i.e., Sfi‖x−u‖2 ≤ 〈∇fi(x)−∇fi(u), x−u〉, ∀x ∈

R, where u is the optimal solution of the Problem P1.

1There are different definitions of restricted strong-convexity. We use the same as the
one used in EXTRA, [48].

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 83

Following Assumption A4, we have for any x,y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ , (5.15a)

Sf ‖x− z∗‖2 ≤ 〈∇f(x)−∇f(z∗),x− z∗〉 , (5.15b)

where ∇f(x) , [∇f1(x1); · · · ;∇fn(xn)] for any x , [x1; · · · ;xn], and the

constants Lf = maxi{Lfi}, Sf = mini{Sfi}.

Recall the definition of Dk in Eq. (5.6), we formally denote the limit of Dk

by D∞, i.e.,

D∞ = lim
k→∞

Dk = diag (A∞ · 1n) = diag (π) , (5.16)

where π is some vector in the span of the right-eigenvector of A correspond-

ing to eigenvalue 1. The next assumption is related to the weighting matri-

ces, A, Ã, and D∞.

Assumption A5 (Weighting matrices). The weighting matrices, A and Ã,

used in DEXTRA, Eq. (5.7) or (5.9), satisfy the following.

(a) A is a column-stochastic matrix.

(b) Ã is a column-stochastic matrix and satisfies Ã = θIn + (1 − θ)A, for

some θ ∈ (0, 1
2
].

(c) (D∞)−1 Ã+ Ã> (D∞)−1 � 0.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 84

One way to guarantee Assumption A5(c) is to design the weighting matrix, Ã,

to be diagonally-dominant. For example, each agent j designs the following

weights:

aij =


1− ζ(|N out

j | − 1), i = j,

ζ, i 6= j, i ∈ N out
j ,

,

where ζ is some small positive constant close to zero. This weighting strat-

egy guarantees the Assumption A5(c) as we explain in the following. Ac-

cording to the definition of D∞ in Eq. (5.16), all eigenvalues of the matrix,

2(D∞)−1 = (D∞)−1In + I>n (D∞)−1, are greater than zero. Since eigenvalues

are a continuous functions of the corresponding matrix elements, [30, 89], there

must exist a small constant ζ such that for all ζ ∈ (0, ζ) the weighting matrix,

Ã, designed by the constant weighting strategy with parameter ζ, satisfies that

all the eigenvalues of the matrix, (D∞)−1Ã+Ã>(D∞)−1, are greater than zero.

Since the weighting matrices, A and, Ã, are designed to be column-stochastic,

they satisfy the following.

Lemma 11. (Nedic et al. [61]) For any column-stochastic matrix A ∈ Rn×n,

we have

(a) The limit limk→∞
[
Ak
]

exists and limk→∞
[
Ak
]
ij

= πi, where π = {πi}

is some vector in the span of the right-eigenvector of A corresponding to

eigenvalue 1.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 85

(b) For all i ∈ {1, · · · , n}, the entries
[
Ak
]
ij

and πi satisfy

∣∣∣[Ak]
ij
− πi

∣∣∣ < Cγk, ∀j,

where we can have C = 4 and γ = (1− 1
nn

).

As a result, we obtain that for any k,

∥∥Dk −D∞
∥∥ ≤ nCγk. (5.17)

Eq. (5.17) implies that different agents reach consensus in a linear rate with

the constant γ. Clearly, the convergence rate of DEXTRA will not exceed this

consensus rate (because the convergence of DEXTRA means both consensus

and optimality are achieved). We will show this fact theoretically later in this

section. We now denote some notations to simplify the representation in the

rest of the paper. Define the following matrices,

M = (D∞)−1Ã, (5.18)

N = (D∞)−1(Ã− A), (5.19)

Q = (D∞)−1(In + A− 2Ã), (5.20)

P = In − A, (5.21)

L = Ã− A, (5.22)

R = In + A− 2Ã, (5.23)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 86

and constants,

d = max
k

{
‖Dk‖

}
, (5.24)

d− = max
k

{
‖(Dk)−1‖

}
, (5.25)

d−∞ = ‖(D∞)−1‖. (5.26)

We also define some auxiliary variables and sequences. Let q∗ ∈ Rn be some

vector satisfying

Lq∗ + α∇f(z∗) = 0n; (5.27)

and qk be the accumulation of xr over time:

qk =
k∑
r=0

xr. (5.28)

Based on M , N , Dk, zk, z∗, qk, and q∗, we further define

G =

 M>

N

 , tk =

 Dkzk

qk

 , t∗ =

 D∞z∗

q∗

 . (5.29)

It is useful to note that the G-matrix norm, ‖a‖2
G, of any vector, a ∈ R2n, is

non-negative, i.e., ‖a‖2
G ≥ 0, ∀a. This is because G + G> is PSD as can be

shown with the help of the following lemma.

Lemma 12. (Chung. [90]) Let LG denote the Laplacian matrix of a directed

graph, G. Let U be a transition probability matrix associated to a Markov chain

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 87

described on G and s be the left-eigenvector of U corresponding to eigenvalue 1.

Then,

LG = In −
S1/2US−1/2 + S−1/2U>S1/2

2
,

where S = diag(s). Additionally, if G is strongly-connected, then the eigenval-

ues of LG satisfy 0 = λ0 < λ1 < · · · < λn.

Considering the underlying directed graph, G, and let the weighting matrix

A, used in DEXTRA, be the corresponding transition probability matrix, we

obtain that

LG =
(D∞)1/2(In − A>)(D∞)−1/2

2
+

(D∞)−1/2(In − A)(D∞)1/2

2
. (5.30)

Therefore, we have the matrix N , defined in Eq. (5.19), satisfy

N +N> = 2θ (D∞)−1/2 LG (D∞)−1/2 , (5.31)

where θ is the positive constant in Assumption A5(b). Clearly, N+N> is PSD

as it is a product of PSD matrices and a non-negative scalar. Additionally,

from Assumption A5(c), note that M + M> is PD and thus for any a ∈ Rn,

it also follows that ‖a‖2
M> ≥ 0. Therefore, we conclude that G + G> is PSD

and for any a ∈ R2n,

‖a‖2
G ≥ 0. (5.32)

We now state the main result of this paper in Theorem 3.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 88

Theorem 3. Define

C1 = d−
(
d ‖(In + A)‖+ d

∥∥∥Ã∥∥∥+ 2αLf

)
,

C2 =

(
λmax

(
NN>

)
+ λmax

(
N +N>

))
2λ̃min (L>L)

,

C3 = α(nC)2

[
C2

1

2η
+ (d−∞d

−Lf)
2

(
η +

1

η

)
+
Sf
d2

]
,

C4 = 8C2

(
Lfd

−)2
,

C5 = λmax

(
M +M>

2

)
+ 4C2λmax

(
R>R

)
,

C6 =

Sf
d2
− η − 2η(d−∞d

−Lf)
2

2
,

C7 =
1

2
λmax

(
MM>)+ 4C2λmax

(
Ã>Ã

)
,

∆ = C2
6 − 4C4δ

(
1

δ
+ C5δ

)
,

where η is some positive constant satisfying that 0 < η <
Sf

d2(1+(d−∞d−Lf)2)
, and

δ < λmin(M+M>)/(2C7) is a positive constant reflecting the convergence rate.

Let Assumptions A4 and A5 hold. Then with proper step-size α ∈ [αmin, αmax],

there exist, 0 < Γ <∞ and 0 < γ < 1, such that the sequence
{
tk
}

defined in

Eq. (5.29) satisfies

∥∥tk − t∗
∥∥2

G
≥ (1 + δ)

∥∥tk+1 − t∗
∥∥2

G
− Γγk. (5.33)

The constant γ is the same as used in Eq. (5.17), reflecting the consensus rate.

The lower bound, αmin, of α satisfies αmin ≤ α, where

α ,
C6 −

√4
2C4δ

, (5.34)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 89

and the upper bound, αmax, of α satisfies αmax ≥ α, where

α , min

{
ηλmin

(
M +M>)

2(d−∞d
−Lf)2

,
C6 +

√4
2C4δ

}
. (5.35)

Proof. See next section.

Theorem 3 is the key result of this paper. We will show the complete proof of

Theorem 3 in next section. Note that Theorem 3 shows the relation between

‖tk − t∗‖2
G and ‖tk+1 − t∗‖2

G but we would like to show that zk converges

linearly to the optimal point z∗, which Theorem 3 does not show. To this

aim, we provide Theorem 4 that describes a relation between ‖zk − z∗‖2 and

‖zk+1 − z∗‖2.

In Theorem 3, we are given specific bounds on αmin and αmax. In order to

ensure that the solution set of step-size, α, is not empty, i.e., αmin ≤ αmax, it

is sufficient (but not necessary) to satisfy

α =
C6 −

√4
2C4δ

≤ ηλmin
(
M +M>)

2(d−∞d
−Lf)2

≤ α, (5.36)

which is equivalent to

η ≥

(
Sf
2d2
−
√

∆
)
/ (2C4δ)

λmin(M+M>)
2L2

f (d−∞d−)2
+

1+2(d−∞d−Lf)2

4C4δ

. (5.37)

Recall from Theorem 3 that

η ≤ Sf
d2(1 + (d−∞d

−Lf)2)
. (5.38)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 90

We note that it may not always be possible to find solutions for η that sat-

isfy both Eqs. (5.37) and (5.38). The theoretical restriction here is due to

the fact that the step-size bounds in Theorem 3 are not tight. However,

the representation of α and α imply how to increase the interval of appro-

priate step-sizes. For example, it may be useful to set the weights to in-

crease λmin

(
M +N>

)
/(2d∞−d

−)2 such that α is increased. We will discuss

such strategies in the numerical experiments. We also observe that in reality,

the range of appropriate step-sizes is much wider. Note that the values of α

and α need the knowledge of the network topology, which may not be avail-

able in a distributed manner. Such bounds are not uncommon in the literature

where the step-size is a function of the entire topology or global objective func-

tions, see [46, 48]. It is an open question on how to avoid the global knowledge

of network topology when designing the interval of α.

Remark 1. The positive constant δ in Eq. (5.33) reflects the convergence rate

of ‖tk − t∗‖2
G. The larger δ is, the faster ‖tk − t∗‖2

G converges to zero. As

δ < λmax(M + M>)/(2C7), we claim that the convergence rate of ‖tk − t∗‖2
G

can not be arbitrarily large.

Based on Theorem 3, we now show the r-linear convergence rate of DEX-

TRA to the optimal solution.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 91

Theorem 4. Let Assumptions A4 and A5 hold. With the same step-size,

α, used in Theorem 3, the sequence, {zk}, generated by DEXTRA, converges

exactly to the optimal solution, z∗, at an r-linear rate, i.e., there exist some

bounded constants, T > 0 and max
{

1
1+δ

, γ
}
< τ < 1, where δ and γ are

constants used in Theorem 3, Eq. (5.33), such that for any k,

∥∥Dkzk −D∞z∗
∥∥2 ≤ Tτ k.

Proof. We start with Eq. (5.33) in Theorem 3, which is defined earlier in

Eq. (5.29). Since the G-matrix norm is non-negative. recall Eq. (5.32), we

have ‖tk − t∗‖2
G ≥ 0, for any k. Define ψ = max

{
1

1+δ
, γ
}

, where δ and γ are

constants in Theorem 3. From Eq. (5.33), we have for any k,

∥∥tk − t∗
∥∥2

G
≤ 1

1 + δ

∥∥tk−1 − t∗
∥∥2

G
+ Γ

γk−1

1 + δ
,

≤ ψ
∥∥tk−1 − t∗

∥∥2

G
+ Γψk,

≤ ψk
∥∥t0 − t∗

∥∥2

G
+ kΓψk.

For any τ satisfying ψ < τ < 1, there exists a constant Ψ such that (τ
ψ

)k > k
Ψ

,

for all k. Therefore, we obtain that

∥∥tk − t∗
∥∥2

G
≤ τ k

∥∥t0 − t∗
∥∥2

G
+ (ΨΓ)

k

Ψ

(
ψ

τ

)k
τ k,

≤
(∥∥t0 − t∗

∥∥2

G
+ ΨΓ

)
τ k. (5.39)

From Eq. (5.29) and the corresponding discussion, we have

∥∥tk − t∗
∥∥2

G
=
∥∥Dkzk −D∞z∗

∥∥2

M>
+
∥∥qk − q∗

∥∥2

N
.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 92

Since N +N> is PSD, (see Eq. (5.31)), it follows that

∥∥Dkzk −D∞z∗
∥∥2
M+M>

2

≤
∥∥tk − t∗

∥∥2

G
.

Noting that M + M> is PD (see Assumption A5(c)), i.e., all eigenvalues of

M +M> are positive, we obtain that

∥∥Dkzk −D∞z∗
∥∥2
λmin(M+M>)

2
Inp
≤
∥∥Dkzk −D∞z∗

∥∥2
M+M>

2

.

Therefore, we have that

λmin(M +M>)

2

∥∥Dkzk −D∞z∗
∥∥2 ≤

∥∥tk − t∗
∥∥2

G

≤
(∥∥t0 − t∗

∥∥2

G
+ ΨΓ

)
τ k.

By letting

T = 2
‖t0 − t∗‖2

G + ΨΓ

λmin(M +M>)
,

we obtain the desired result.

Theorem 4 shows that the sequence, {zk}, converges at an r-linear rate to the

optimal solution, z∗, where the convergence rate is described by the constant,

τ . During the derivation of τ , we have τ satisfying that γ ≤ max{ 1
1+δ

, γ} <

τ < 1. This implies that the convergence rate (described by the constant τ) is

bounded by the consensus rate (described by the constant γ). In next section,

we present some basic relations. Based on these relations, we finally state the

proof of Theorem 3.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 93

5.3 Auxiliary Relations

We provide several basic relations in this section, which will help in the proof

of Theorem 3. We first establish a relation among Dkzk, qk, D∞z∗, and q∗.

Lemma 13. Let Assumptions A4 and A5 hold. In DEXTRA, the quadruple

sequence {Dkzk,qk, D∞z∗,q∗} obeys, for any k,

R
(
Dk+1zk+1 −D∞z∗

)
+ Ã

(
Dk+1zk+1 −Dkzk

)
=− L

(
qk+1 − q∗

)
− α

[
∇f(zk)−∇f(z∗)

]
, (5.40)

recall Eqs. (5.18)–(5.28) for notation.

Proof. We sum DEXTRA, Eq. (5.9), over time from 0 to k,

Dk+1zk+1 = ÃDkzk − α∇f(zk)− L
k∑
r=0

Drzr.

By subtracting LDk+1zk+1 on both sides of the preceding equation and rear-

ranging the terms, it follows that

RDk+1zk+1 + Ã
(
Dk+1zk+1 −Dkzk

)
= −Lqk+1 − α∇f

(
zk
)
. (5.41)

Note that D∞z∗ = π, where π is some vector in the span of the right-

eigenvector of A corresponding to eigenvalue 1. Since Rπ = 0n, we have

RD∞z∗ = 0n. (5.42)

By subtracting Eq. (5.42) from Eq. (5.41), and noting that Lq∗ + α∇f(z∗) =

0n, Eq. (5.27), we obtain the desired result.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 94

Recall Eq. (5.17) that shows the convergence of Dk to D∞ at a geometric

rate. We will use this result to develop a relation between
∥∥Dk+1zk+1 −Dkzk

∥∥
and

∥∥zk+1 − zk
∥∥, which is in the following lemma. Similarly, we can establish

a relation between
∥∥Dk+1zk+1 −D∞z∗

∥∥ and
∥∥zk+1 − z∗

∥∥.

Lemma 14. Let Assumptions A4 and A5 hold and recall the constants d and

d− from Eqs. (5.24) and (5.25). If zk is bounded, i.e., ‖zk‖ ≤ B <∞, then

(a)
∥∥zk+1 − zk

∥∥ ≤ d−
∥∥Dk+1zk+1 −Dkzk

∥∥+ 2d−nCBγk;

(b)
∥∥zk+1 − z∗

∥∥ ≤ d−
∥∥Dk+1zk+1 −D∞z∗

∥∥+ d−nCBγk;

(c)
∥∥Dk+1zk+1 −D∞z∗

∥∥ ≤ d
∥∥zk+1 − z∗

∥∥+ nCBγk;

where C and γ are constants defined in Lemma 11.

Proof. (a)

∥∥zk+1 − zk
∥∥ =

∥∥∥(Dk+1
)−1 (

Dk+1
) (

zk+1 − zk
)∥∥∥ ,

≤
∥∥∥(Dk+1

)−1
∥∥∥∥∥Dk+1zk+1 −Dkzk +Dkzk −Dk+1zk

∥∥ ,
≤ d−

∥∥Dk+1zk+1 −Dkzk
∥∥+ d−

∥∥Dk −Dk+1
∥∥∥∥zk∥∥ ,

≤ d−
∥∥Dk+1zk+1 −Dkzk

∥∥+ 2d−nCBγk.

Similarly, we can prove (b). Finally, we have

∥∥Dk+1zk+1 −D∞z∗
∥∥ =

∥∥Dk+1zk+1 −Dk+1z∗ +Dk+1z∗ −D∞z∗
∥∥ ,

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 95

≤ d
∥∥zk+1 − z∗

∥∥+
∥∥Dk+1 −D∞

∥∥ ‖z∗‖ ,
≤ d

∥∥zk+1 − z∗
∥∥+ nCBγk.

The proof is complete.

Note that the result of Lemma 14 is based on the prerequisite that the sequence

{zk} generated by DEXTRA at kth iteration is bounded. We will show this

boundedness property (for all k) together with the proof of Theorem 3 in the

next section. The following two lemmas discuss the boundedness of ‖zk‖ for

a fixed k.

Lemma 15. Let Assumptions A4 and A5 hold and recall tk, t∗, and G defined

in Eq. (5.29). If ‖tk−t∗‖2
G is bounded by some constant F for some k, i.e.,‖tk−

t∗‖2
G ≤ F , we have ‖zk‖ be bounded by a constant B for the same k, defined

as follow,

∥∥zk∥∥ ≤ B ,

√√√√ 2(d−)2F

λmin

(
M+M>

2

) + 2(d−)2 ‖D∞z∗‖2, (5.43)

where d−, M are constants defined in Eq. (5.25) and (5.18).

Proof. We follow the following derivation,

1

2

∥∥zk∥∥2 ≤ (d−)2

2

∥∥Dkzk
∥∥2
,

≤ (d−)2
∥∥Dkzk −D∞z∗

∥∥2
+ (d−)2 ‖D∞z∗‖2 ,

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 96

≤ (d−)2

λmin

(
M+M>

2

) ∥∥Dkzk −D∞z∗
∥∥2

M>
+ (d−)2 ‖D∞z∗‖2 ,

≤ (d−)2

λmin

(
M+M>

2

) ∥∥tk − t∗
∥∥2

G
+ (d−)2 ‖D∞z∗‖2 ,

≤ (d−)2F

λmin

(
M+M>

2

) + (d−)2 ‖D∞z∗‖2 ,

where the third inequality holds due to M + M> being PD (see Assump-

tion A5(c)), and the fourth inequality holds because N -matrix norm has been

shown to be nonnegative (see Eq. (5.31)). Therefore, it follows that
∥∥zk∥∥ ≤ B

for B defined in Eq. (5.43), which is clearly <∞ as long as F <∞.

Lemma 16. Let Assumptions A4 and A5 hold and recall the definition of

constant C1 from Theorem 3. If ‖zk−1‖ and ‖zk‖ are bounded by a same

constant B, we have that ‖zk+1‖ is also bounded. More specifically, we have

‖zk+1‖ ≤ C1B.

Proof. According to the iteration of DEXTRA in Eq. (5.9), we can bound

Dk+1zk+1 as

∥∥Dk+1zk+1
∥∥ ≤∥∥(In + A)Dk

∥∥∥∥zk∥∥+
∥∥∥ÃDk−1

∥∥∥∥∥zk−1
∥∥

+ αLf
∥∥zk∥∥+ αLf

∥∥zk−1
∥∥ ,

≤
[
d ‖(In + A)‖+ d

∥∥∥Ã∥∥∥+ 2αLf

]
B,

where d is the constant defined in Eq. (5.24). Accordingly, we have zk+1 be

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 97

bounded as follow,

∥∥zk+1
∥∥ ≤ d−

∥∥Dk+1zk+1
∥∥ = C1B. (5.44)

5.4 Convergence Analysis

In this section, we first give two propositions that provide the main framework

of the proof. Based on these propositions, we use induction to prove Theorem

3. Proposition 2 claims that for all k ∈ N+, if ‖tk−1 − t∗‖2
G ≤ F1 and ‖tk −

t∗‖2
G ≤ F1, for some bounded constant F1, then, ‖tk − t∗‖2

G ≥ (1 + δ)‖tk+1 −

t∗‖2
G − Γγk, for some appropriate step-size.

Proposition 2. Let Assumptions A4 and A5 hold, and recall the constants C1,

C2, C3, C4, C5, C6, C7, ∆, δ, and γ from Theorem 3. Assume ‖tk−1− t∗‖2
G ≤

F1 and ‖tk − t∗‖2
G ≤ F1, for a same bounded constant F1. Let the constant B

be a function of F1 as defined in Eq. (5.43) by substituting F with F1, and we

define Γ as

Γ =C3B
2. (5.45)

With proper step-size α, Eq. (5.33) is satisfied at kth iteration, i.e.,

∥∥tk − t∗
∥∥2

G
≥ (1 + δ)

∥∥tk+1 − t∗
∥∥2

G
− Γγk,

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 98

where the range of step-size is given in Eqs. (5.34) and (5.35) in Theorem 3.

Proof. We first bound ‖zk−1‖, ‖zk‖, and ‖zk+1‖. According to Lemma 15,

we obtain that ‖zk−1‖ ≤ B and ‖zk‖ ≤ B, since ‖tk−1 − t∗‖2
G ≤ F1 and

‖tk−t∗‖2
G ≤ F1. By applying Lemma 16, we further obtain that ‖zk+1‖ ≤ C1B.

Based on the boundedness of ‖zk−1‖, ‖zk‖, and ‖zk+1‖, we start to prove

the desired result. By applying the restricted strong-convexity assumption,

Eq. (5.15b), it follows that

2αSf
∥∥zk+1 − z∗

∥∥2 ≤2α
〈
D∞

(
zk+1 − z∗

)
, (D∞)−1 [∇f(zk+1)−∇f(z∗)

]〉
,

=2α
〈
D∞zk+1 −Dk+1zk+1, (D∞)−1 [∇f(zk+1)−∇f(z∗)

]〉
+ 2α

〈
Dk+1zk+1 −D∞z∗, (D∞)−1 [∇f(zk+1)−∇f(zk)

]〉
+ 2

〈
Dk+1zk+1 −D∞z∗, (D∞)−1 α

[
∇f(zk)−∇f(z∗)

]〉
,

:=s1 + s2 + s3, (5.46)

where s1, s2, s3 denote each of RHS terms. We show the boundedness of s1,

s2, and s3 as follow.

Bounding s1: By using 2〈a,b〉 ≤ η‖a‖2+ 1
η
‖b‖2 for any appropriate vectors

a,b, and a positive η, we obtain that

s1 ≤
α

η

∥∥D∞ −DK+1
∥∥2 ∥∥zK+1

∥∥2
+ αη(d−∞Lf)

2
∥∥zK+1 − z∗

∥∥2
. (5.47)

It follows
∥∥D∞ −DK+1

∥∥ ≤ nCγK as shown in Eq. (5.17), and ‖zK+1‖2 ≤

C2
1B

2 as shown in Eq. (5.44). The term ‖zK+1 − z∗‖ can be bounded with

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 99

applying Lemma 14(b). Therefore,

s1 ≤α(nC)2

[
C2

1

η
+ 2η(d−∞d

−Lf)
2

]
B2γ2K

+ 2αη(d−∞d
−Lf)

2
∥∥DK+1zK+1 −D∞z∗

∥∥2
. (5.48)

Bounding s2: Similarly, we use Lemma 14(a) to obtain

s2 ≤αη
∥∥DK+1zK+1 −D∞z∗

∥∥2
+
α(d−∞Lf)

2

η

∥∥zK+1 − zk
∥∥2
,

≤αη
∥∥DK+1zK+1 −D∞z∗

∥∥2
+

2α(nCd−∞d
−Lf)

2B2

η
γ2K

+
2α(d−∞d

−Lf)
2

η

∥∥Dk+1zk+1 −Dkzk
∥∥2
. (5.49)

Bounding s3: We rearrange Eq. (5.40) in Lemma 13 as follow,

α
[
∇f(zk)−∇f(z∗)

]
=R

(
Dk+1zk+1 −D∞z∗

)
+ Ã

(
Dk+1zk+1 −Dkzk

)
+ L

(
qk+1 − q∗

)
. (5.50)

By substituting α[∇f(zk) − ∇f(z∗)] in s3 with the representation in the pre-

ceding relation, we represent s3 as

s3 =
∥∥DK+1zK+1 −D∞z∗

∥∥2

−2Q

+ 2
〈
DK+1zK+1 −D∞z∗,M

(
DKzK −DK+1zK+1

)〉
+ 2

〈
DK+1zK+1 −D∞z∗, N

(
q∗ − qk+1

)〉
,

:=s3a + s3b + s3c, (5.51)

where s3b is equivalent to

s3b = 2
〈
DK+1zK+1 −DKzK ,M> (D∞z∗ −DK+1zK+1

)〉
,

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 100

and s3c can be simplified as

s3c = 2
〈
DK+1zK+1, N

(
q∗ − qK+1

)〉
= 2

〈
qK+1 − qK , N

(
q∗ − qK+1

)〉
.

The first equality in the preceding relation holds due to the fact thatN>D∞z∗ =

0n and the second equality follows from the definition of qk, see Eq. (5.28).

By substituting the representation of s3b and s3c into (5.51), and recalling the

definition of tk, t∗, G in Eq. (5.29), we simplify the representation of s3,

s3 =
∥∥DK+1zK+1 −D∞z∗

∥∥2

−2Q
+ 2

〈
tK+1 − tK , G

(
t∗ − tK+1

)〉
. (5.52)

With the basic rule

〈
tK+1 − tK , G

(
t∗ − tK+1

)〉
+
〈
G
(
tK+1 − tK

)
, t∗ − tK+1

〉
=
∥∥tK − t∗

∥∥2

G
−
∥∥tK+1 − t∗

∥∥2

G
−
∥∥tK+1 − tK

∥∥2

G
, (5.53)

We obtain that

s3 =
∥∥DK+1zK+1 −D∞z∗

∥∥2

−2Q

+ 2
∥∥tK − t∗

∥∥2

G
− 2

∥∥tK+1 − t∗
∥∥2

G
− 2

∥∥tK+1 − tK
∥∥2

G

− 2
〈
G
(
tK+1 − tK

)
, t∗ − tK+1

〉
. (5.54)

We analyze the last two terms in Eq. (5.54):

−2
∥∥tK+1 − tK

∥∥2

G
≤− 2

∥∥DK+1zK+1 −DKzK
∥∥2

M>
, (5.55)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 101

where the inequality holds due to N -matrix norm is nonnegative, and

−2
〈
G
(
tK+1 − tK

)
, t∗ − tK+1

〉
=− 2

〈
M> (DK+1zK+1 −DKzK

)
, D∞z∗ −DK+1zK+1

〉
− 2

〈
DK+1zK+1 −D∞z∗, N>

(
q∗ − qK+1

)〉
,

≤δ
∥∥DK+1zK+1 −DKzK

∥∥2

MM>
+ δ

∥∥q∗ − qK+1
∥∥2

NN>

+
2

δ

∥∥DK+1zK+1 −D∞z∗
∥∥2
, (5.56)

for some δ > 0. By substituting Eqs. (5.55) and (5.56) into Eq. (5.54), we

obtain that

s3 ≤2
∥∥tK − t∗

∥∥2

G
− 2

∥∥tK+1 − t∗
∥∥2

G
+
∥∥q∗ − qK+1

∥∥2

δNN>

+
∥∥DK+1zK+1 −D∞z∗

∥∥2
2
δ
In−2Q

+
∥∥DK+1zK+1 −DKzK

∥∥2

−2M>+δMM>
. (5.57)

Next, it follows from Lemma 14(c) that

∥∥Dk+1zk+1 −D∞z∗
∥∥2 ≤2d2

∥∥zk+1 − z∗
∥∥2

+ 2(nCB)2γ2k.

Multiplying both sides of the preceding relation by
αSf
d2

and combining it with

Eq. (55), we obtain

αSf
d2

∥∥Dk+1zk+1 −D∞z∗
∥∥2 ≤ s1 + s2 + s3 +

2αSf (nCB)2

d2
γ2k. (5.58)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 102

By plugging the related bounds (s1 from Eq. (5.48), s2 from Eq. (5.49), and

s3 from Eq. (5.57)) in Eq. (5.58), it follows that

∥∥tk − t∗
∥∥2

G
−
∥∥tk+1 − t∗

∥∥2

G
≥
∥∥Dk+1zk+1 −D∞z∗

∥∥2
α
2

[
Sf

d2
−η−2η(d−∞d−Lf)2

]
In− 1

δ
In+Q

+
∥∥Dk+1zk+1 −Dkzk

∥∥2

M>− δ
2
MM>−

α(d−∞d−Lf)2

η
In

− α(nC)2

[
C2

1

2η
+ (d−∞d

−Lf)
2

(
η +

1

η

)
+
Sf
d2

]
B2γk

−
∥∥q∗ − qk+1

∥∥2
δ
2
NN>

. (5.59)

In order to derive the relation that

∥∥tk − t∗
∥∥2

G
≥ (1 + δ)

∥∥tk+1 − t∗
∥∥2

G
− Γγk, (5.60)

it is sufficient to show that the RHS of Eq. (5.59) is no less than δ
∥∥tk+1 − t∗

∥∥2

G
−

Γγk. Recall the definition of G, tk, and t∗ in Eq. (5.29), we have

δ
∥∥tk+1 − t∗

∥∥2

G
− Γγk =

∥∥Dk+1zk+1 −D∞z∗
∥∥2

δM>

+
∥∥q∗ − qk+1

∥∥2

δN
− Γγk. (5.61)

Comparing Eqs. (5.59) with (5.61), it is sufficient to prove that

∥∥Dk+1zk+1 −D∞z∗
∥∥2
α
2

[
Sf

d2
−η−2η(d−∞d−Lf)2

]
In− 1

δ
In+Q−δM>

+
∥∥Dk+1zk+1 −Dkzk

∥∥2

M>− δ
2
MM>−

α(d−∞d−Lf)2

η
In

+ Γγk − α(nC)2

[
C2

1

2η
+ (d−∞d

−Lf)
2

(
η +

1

η

)
+
Sf
d2

]
B2γk

≥
∥∥q∗ − qk+1

∥∥2

δ
(
NN>

2
+N

) . (5.62)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 103

We next aim to bound ‖q∗ − qk+1‖2

δ(NN
>

2
+N)

in terms of ‖Dk+1zk+1 −D∞z∗‖

and ‖Dk+1zk+1 − Dkzk‖, such that it is easier to analyze Eq. (5.62). From

Lemma 13, we have

∥∥q∗ − qk+1
∥∥2

L>L
=
∥∥L (q∗ − qk+1

)∥∥2
,

=
∥∥∥R(Dk+1zk+1 −D∞z∗) + α[∇f(zk+1)−∇f(z∗)]

+ Ã(Dk+1zk+1 −Dkzk) + α[∇f(zk)−∇f(zk+1)]
∥∥∥2

,

≤4
(∥∥Dk+1zk+1 −D∞z∗

∥∥2

R>R
+ α2L2

f

∥∥zk+1 − z∗
∥∥2
)

+ 4
(∥∥Dk+1zk+1 −Dkzk

∥∥2

Ã>Ã
+ α2L2

f

∥∥zk+1 − zk
∥∥2
)
,

≤
∥∥Dk+1zk+1 −D∞z∗

∥∥2

4R>R+8(αLfd−)2In

+
∥∥Dk+1zk+1 −Dkzk

∥∥2

4Ã>Ã+8(αLfd−)2In

+ 24
(
αnCd−Lf

)2
B2γk. (5.63)

Since that λ
(
N+N>

2

)
≥ 0, λ

(
NN>

)
≥ 0, λ

(
L>L

)
≥ 0, and λmin

(
N+N>

2

)
=

λmin

(
NN>

)
= λmin

(
L>L

)
= 0 with the same corresponding eigenvector, we

have

∥∥q∗ − qk+1
∥∥2

δ
(
NN>

2
+N

) ≤ δC2

∥∥q∗ − qk+1
∥∥2

L>L
, (5.64)

where C2 is the constant defined in Theorem 3. By combining Eqs. (5.63) with

(5.64), it follows that

∥∥q∗ − qk+1
∥∥2

δ
(
NN>

2
+N

) ≤δC2

∥∥q∗ − qk+1
∥∥2

L>L
,

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 104

≤
∥∥Dk+1zk+1 −D∞z∗

∥∥2

δC2(4R>R+8(αLfd−)2In)

+
∥∥Dk+1zk+1 −Dkzk

∥∥2

δC2(4Ã>Ã+8(αLfd−)2In)

+ 24δC2

(
αnCd−Lf

)2
B2γk. (5.65)

Consider Eq. (5.62), together with (5.65). Let

Γ =C3B
2, (5.66)

where C3 is the constant defined in Theorem 3, such that all “γk items” in

Eqs. (5.62) and (5.65) can be canceled out. In order to prove Eq. (5.62), it

is sufficient to show that the LHS of Eq. (5.62) is no less than the RHS of

Eq. (5.65), i.e.,

∥∥Dk+1zk+1 −D∞z∗
∥∥2
α
2

[
Sf

d2
−η−2η(d−∞d−Lf)2

]
In− 1

δ
In+Q−δM>

+
∥∥Dk+1zk+1 −Dkzk

∥∥2

M>− δ
2
MM>−

α(d−∞d−Lf)2

η
In

≥
∥∥Dk+1zk+1 −D∞z∗

∥∥2

δC2(4R>R+8(αLfd−)2In)

+
∥∥Dk+1zk+1 −Dkszk

∥∥2

δC2(4Ã>Ã+8(αLfd−)2In) . (5.67)

To satisfy Eq. (5.67), it is sufficient to have the following two relations hold

simultaneously,

α

2

[
Sf
d2
− η − 2η(d−∞d

−Lf)
2

]
− 1

δ
− δλmax

(
M +M>

2

)
≥δC2

[
4λmax

(
R>R

)
+ 8(αLfd

−)2
]
, (5.68a)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 105

λmin

(
M +M>

2

)
− δ

2
λmax

(
MM>)− α(d−∞d

−Lf)
2

η

≥δC2

[
4λmax

(
Ã>Ã

)
+ 8(αLfd

−)2
]
. (5.68b)

where in Eq. (5.68a) we ignore the term
λmin(Q+Q>)

2
due to λmin

(
Q+Q>

)
= 0.

Recall the definition

C4 = 8C2

(
Lfd

−)2
, (5.69)

C5 = λmax

(
M +M>

2

)
+ 4C2λmax

(
R>R

)
, (5.70)

C6 =

Sf
d2
− η − 2η(d−∞d

−Lf)
2

2
, (5.71)

∆ = C2
6 − 4C4δ

(
1

δ
+ C5δ

)
. (5.72)

The solution of step-size, α, satisfying Eq. (5.68a), is

C6 −
√

∆

2C4δ
≤ α ≤ C6 +

√
∆

2C4δ
, (5.73)

where we set

η <
Sf

d2(1 + (d−∞d
−Lf)2)

, (5.74)

to ensure the solution of α contains positive values. In order to have δ > 0 in

Eq. (5.68b), the step-size, α, is sufficient to satisfy

α ≤ ηλmin
(
M +M>)

2(d−∞d
−Lf)2

. (5.75)

By combining Eqs. (5.73) with (5.75), we conclude it is sufficient to set the

step-size α ∈ [α, α], where

α ,
C6 −

√4
2C4δ

, (5.76)

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 106

and

α , min

{
ηλmin

(
M +M>)

2(d−∞d
−Lf)2

,
C6 +

√4
2C4δ

}
, (5.77)

to establish the desired result, i.e.,

‖tk − t∗‖2
G ≥ (1 + δ)‖tk+1 − t∗‖2

G − Γγk. (5.78)

Finally, we bound the constant δ, which reflecting how fast
∥∥tk+1 − t∗

∥∥2

G
con-

verges. Recall the definition of C7

C7 =
1

2
λmax

(
MM>)+ 4C2λmax

(
Ã>Ã

)
. (5.79)

To have α’s solution of Eq. (5.68b) contains positive values, we need to set

δ <
λmin

(
M +M>)
2C7

. (5.80)

Note that Proposition 2 is different from Theorem 3 in that: (i) it only proves

the result, Eq. (5.33), for a certain k, not for all k ∈ N+; and, (ii) it requires

the assumption that ‖tk−1 − t∗‖2
G ≤ F1, and ‖tk − t∗‖2

G ≤ F1, for some

bounded constant F1. Next, Proposition 3 shows that for all k ≥ K, where

K is some specific value defined later, if ‖tk − t∗‖2
G ≤ F , and ‖tk − t∗‖2

G ≥

(1 + δ)‖tk+1 − t∗‖2
G − Γγk, we have that ‖tk+1 − t∗‖2

G ≤ F .

Proposition 3. Let Assumptions A4 and A5 hold, and recall the constants

C1, C2, C3, C4, C5, C6, C7, ∆, δ, and γ from Theorem 3. Assume that at kth

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 107

iteration, ‖tk − t∗‖2
G ≤ F2, for some bounded constant F2, and ‖tk − t∗‖2

G ≥

(1 + δ)‖tk+1 − t∗‖2
G − Γγk. Then we have that

∥∥tk+1 − t∗
∥∥2

G
≤ F2 (5.81)

is satisfied for all k ≥ K, where K is defined as

K =

logr

δλmin

(
M+M>

2

)
2α(d−)2C3

. (5.82)

Proof. Since we have ‖tk− t∗‖2
G ≤ F2, and ‖tk− t∗‖2

G ≥ (1 + δ)‖tk+1− t∗‖2
G−

Γγk, it follows that

∥∥tk+1 − t∗
∥∥2

G
≤
∥∥tk − t∗

∥∥2

G

1 + δ
+

Γγk

1 + δ
,

≤ F2

1 + δ
+

Γγk

1 + δ
. (5.83)

Given the definition of K in Eq. (5.82), it follows that for k ≥ K

γk ≤
δλmin

(
M+M>

2

)
B2

2α(d−)2C3B2
≤ δF2

Γ
, (5.84)

where the second inequality follows with the definition of Γ, and F in Eqs. (5.45)

and (5.43). Therefore, we obtain that

∥∥tk+1 − t∗
∥∥2

G
≤ F2

1 + δ
+

δF2

1 + δ
= F2. (5.85)

Proof of Theorem 3

We now formally state the proof of Theorem 3.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 108

Proof. Define F = max1≤k≤K{‖tk− t∗‖2
G}, where K is the constant defined in

Eq. (5.82). The goal is to show that Eq. (5.33) in Theorem 3 is valid for all k

with the step-size being in the range defined in Eqs. (5.34) and (5.35).

We first prove the result for k ∈ [1, ..., K]: Since
∥∥tk − t∗

∥∥2

G
≤ F , ∀k ∈

[1, ..., K], we use the result of Proposition 2 to have

‖tk − t∗‖2
G ≥ (1 + δ)‖tk+1 − t∗‖2

G − Γγk, ∀k ∈ [1, ..., K].

Next, we use induction to show Eq. (5.33) for all k ≥ K. For F defined

above:

(i) Base case: when k = K, we have the initial relations that

∥∥tK−1 − t∗
∥∥2

G
≤ F, (5.86a)∥∥tK − t∗

∥∥2

G
≤ F, (5.86b)

‖tK − t∗‖2
G ≥ (1 + δ)‖tK+1 − t∗‖2

G − ΓγK . (5.86c)

(ii) We now assume that the induction hypothesis is true at the kth iteration,

for some k ≥ K, i.e.,

∥∥tk−1 − t∗
∥∥2

G
≤ F, (5.87a)∥∥tk − t∗

∥∥2

G
≤ F, (5.87b)

‖tk − t∗‖2
G ≥ (1 + δ)‖tk+1 − t∗‖2

G − Γγk, (5.87c)

and show that this set of equations also hold for k + 1.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 109

(iii) Given Eqs. (5.87b) and (5.87c), we obtain ‖tk+1 − t∗‖2
G ≤ F by applying

Proposition 3. Therefore, by combining ‖tk+1 − t∗‖2
G ≤ F with (5.87b), we

obtain that ‖tk+1 − t∗‖2
G ≥ (1 + δ)‖tk+2 − t∗‖2

G − Γγk+1 by Proposition 2. To

conclude, we obtain that

∥∥tk − t∗
∥∥2

G
≤ F, (5.88a)∥∥tk+1 − t∗

∥∥2

G
≤ F, (5.88b)

‖tk+1 − t∗‖2
G ≥ (1 + δ)‖tk+2 − t∗‖2

G − Γγk+1. (5.88c)

hold for k + 1.

By induction, we conclude that this set of equations holds for all k, which

completes the proof.

5.5 Numerical Experiments

This section provides numerical experiments to study the convergence rate of

DEXTRA for a least squares problem over a directed graph. The local objec-

tive functions in the least squares problems are strongly-convex. We compare

the performance of DEXTRA with other algorithms suited to the case of di-

rected graph: GP as defined by [61, 63–65], and D-DSD as defined by [79].

Our second experiment verifies the existence of αmin and αmax, such that the

proper step-size α is between αmin and αmax. We also consider various net-

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 110

work topologies and weighting strategies to see how the eigenvalues of network

graphs effect the interval of step-size, α. Convergence is studied in terms of

the residual

re =
1

n

n∑
i=1

∥∥zki − u
∥∥ ,

where u is the optimal solution. The distributed least squares problem is

described as follows.

Each agent owns a private objective function, hi = Hix + ni, where hi ∈

Rmi and Hi ∈ Rmi×p are measured data, x ∈ Rp is unknown, and ni ∈ Rmi is

random noise. The goal is to estimate x, which we formulate as a distributed

optimization problem solving

min f(x) =
1

n

n∑
i=1

‖Hix− hi‖ .

We consider the network topology as the digraph shown in Fig. 5.1. We first

apply the local degree weighting strategy, i.e., to assign each agent itself and

its out-neighbors equal weights according to the agent’s own out-degree, i.e.,

aij =
1

|N out
j |

, (i, j) ∈ E . (5.89)

According to this strategy, the corresponding network parameters are shown

in Fig. 5.2. We now estimate the interval of appropriate step-sizes. We choose

Lf = maxi{2λmax(H>i Hi)} = 0.14, and Sf = mini{2λmin(H>i Hi)} = 0.1. We

set η = 0.04 < Sf/d
2, and δ = 0.1. Note that η and δ are estimated values.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 111

According to the calculation, we have C1 = 36.6 and C2 = 5.6. Therefore, we

estimate that α =
ηλmin(M+M>)

2L2
f (d−∞d−)2

= 0.26, and α <
Sf/(2d

2)−η/2
2C2δ

= 9.6×10−4. We

thus pick α = 0.1 ∈ [α, α] for the following experiments.

23 1

56 47

10 89

Figure 5.1: Strongly-connected but non-balanced digraphs.

Figure 5.2: The calculated network parameters.

Our first experiment compares several algorithms suited to directed graphs,

illustrated in Fig. 5.1. The comparison of DEXTRA, GP, D-DSD and DGD

with weighting matrix being row-stochastic is shown in Fig. 5.3. In this exper-

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 112

iment, we set α = 0.1, which is in the range of our theoretical value calculated

above. The convergence rate of DEXTRA is linear as stated in Section 6.3. G-

P and D-DSD apply the same step-size, α = α√
k
. As a result, the convergence

rate of both is sub-linear. We also consider the DGD algorithm, but with the

weighting matrix being row-stochastic. The reason is that in a directed graph,

it is impossible to construct a doubly-stochastic matrix. As expected, DGD

with row-stochastic matrix does not converge to the exact optimal solution

while other three algorithms are suited to directed graphs.

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

k

R
es
id
u
al

DGD with Row−Stochastic Matrix
GP
D−DGD
DEXTRA

Figure 5.3: Convergence rate comparison between DEXTRA, GP, and D-DSD
in a least squares problem over directed graphs.

According to the theoretical value of α and α, we are able to set available

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 113

step-size, α ∈ [9.6 × 10−4, 0.26]. In practice, this interval is much wider.

Fig. 5.4 illustrates this fact. Numerical experiments show that αmin = 0+

and αmax = 0.447. Though DEXTRA has a much wider range of step-size

compared with the theoretical value, it still has a more restricted step-size

compared with EXTRA, see [48], where the value of step-size can be as low

as any value close to zero in any network topology, i.e., αmin = 0, as long as

a symmetric and doubly-stochastic matrix is applied in EXTRA. The relative

smaller range of interval is due to the fact that the weighting matrix applied

in DEXTRA can not be symmetric.

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

k

R
es
id
u
al

DEXTRA converge, α=0.001
DEXTRA converge, α=0.03
DEXTRA converge, α=0.1
DEXTRA converge, α=0.447
DEXTRA diverge, α=0.448

Figure 5.4: DEXTRA convergence w.r.t. different step-sizes.

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 114

The explicit representation of α and α given in Theorem ?? imply the way

to increase the interval of step-size, i.e.,

α ∝
λmin(M +M>)

(d−∞d
−)2

, α ∝
1

(d−d)2
.

To increase α, we increase λmin(M+M>)

(d−∞d−)2
; to decrease α, we can decrease 1

(d−d)2
.

Compared with applying the local degree weighting strategy, Eq. (5.89), as

shown in Fig. 5.4, we achieve a wider range of step-sizes by applying the

constant weighting strategy, which can be expressed as

aij =


1− 0.01(|N out

j | − 1), i = j,

0.01, i 6= j, i ∈ N out
j ,

∀j,

This constant weighting strategy constructs a diagonal-dominant weighting

matrix, which increases λmin(M+M>)

(d−∞d−)2
. It may also be observed from Figs. 5.4

and 5.5 that the same step-size generates quiet different convergence speed

when the weighting strategy changes. Comparing Figs. 5.4 and 5.5 when step-

size α = 0.1, DEXTRA with local degree weighting strategy converges much

faster.

5.6 Conclusions

In this chapter, we introduce DEXTRA, a distributed algorithm to solve multi-

agent smooth optimization problems over directed graphs. We have shown

CHAPTER 5. DEXTRA FOR SMOOTH CONVEX OPTIMIZATION 115

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

k

R
es
id
u
al

DEXTRA converge, α=0.001
DEXTRA converge, α=0.1
DEXTRA converge, α=0.3
DEXTRA converge, α=0.599
DEXTRA diverge, α=0.6

Figure 5.5: DEXTRA convergence using the constant weighting strategy.

that DEXTRA succeeds in driving all agents to the same point, which is the

exact optimal solution of the problem, given that the communication graph is

strongly-connected and the objective functions are strongly-convex. Moreover,

the algorithm converges at a linear rate O(τ k) for some constant, τ < 1.

This is the best known rate of convergence for this class of problems. The

fast convergence rate is achieved because we harness the function smoothness.

Numerical experiments on a least squares problem show that DEXTRA is

the fastest distributed algorithm among all algorithms applicable to directed

graphs.

116

Chapter 6

ADD-OPT for Smooth Convex

Optimization

In this chapter, we propose, ADD-OPT: Accelerated Distributed Directed OP-

Timization, to solve the distributed smooth optimization problem, P1, over

directed networks. ADD-OPT achieves the best known rate of convergence

for this class of problems, O(µk) for 0 < µ < 1 given that the objective func-

tions are strongly-convex, where k is the number of iterations. Compared

with DEXTRA, ADD-OPT supports a wider and more realistic range of step-

size. In particular, the greatest lower bound of DEXTRA’s step-size is strictly

greater than zero while that of ADD-OPT’s equals exactly to zero. Simulation

examples further illustrate the improvements.

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 117

6.1 Motivation

In previous chapter, we propose DEXTRA, a fast distributed algorithm over

directed network for smooth optimization. By combining the push-sum proto-

col, [66, 67], and EXTRA, [48], DEXTRA achieves a linear convergence rate

given that the objective functions are strongly-convex. However, one drawback

of DEXTRA is the restrictive range of step-size. The greatest lower bound of

DEXTRA’s step-size is strictly greater than zero. In particular, a proper step-

size, α, for DEXTRA converging to the optimal solution lies in α ∈ (α, α),

where α and α denote the lower and upper bound respectively. It is true that

α > 0. Considering that it is hard to estimate α in a distributed setting be-

cause the expression of α requires the global knowledge, it is always an open

problem on how to pick a proper step-size, α, in DEXTRA to guarantee the

convergence, i.e., α ∈ (α, α). In contrast if α = 0, agents can pick whatever

small value for α to ensure the convergence.

Therefore, we propose ADD-OPT, aiming to relax the range of step-size

while keep achieving a linear convergence rate when the objective functions

are strongly-convex. Compared to DEXTRA, ADD-OPT’s step-size, α, lies

in α ∈ (0, α), i.e., α = 0. This guarantees ADD-OPT to be a more reliable

algorithm in distributed setting. We show that, after some derivation, the

ADD-OPT has a similar representation as DEXTRA. In this point of view, it

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 118

can be regarded as an extended result of DEXTRA.

6.2 ADD-OPT Development

In this section, we first describe the implementation of ADD-OPT. We derive

an informal but intuitive proof showing that ADD-OPT pushes the agents

to achieve consensus and reach the optimal solution of Problem P1. After

proposing ADD-OPT, we derive it to a similar representation of DEXTRA

to show the relations between the two. The analysis also helps to reveal how

to increase the range of step-size in DEXTRA by adjusting the weighting

matrices. We also analyze the performance of both ADD-OPT and DEXTRA

when the step-size is zero. Formal convergence results are left to later sections.

ADD-OPT Algorithm

To solve Problem P1, we describe the implementation of ADD-OPT as follows.

Each agent, j ∈ V , maintains three vector variables: xk,j, zk,j, wk,j ∈ Rp, as

well as a scalar variable, yk,j ∈ R, where k is the discrete-time index. At kth

iteration, agent j weights its states, aijxk,j, aijyk,j, as well as aijwk,j, and sends

these to each of its out-neighbors, i ∈ N out
j , where the weights, aij’s are such

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 119

that:

aij =


> 0, i ∈ N out

j ,

0, otw.,

n∑
i=1

aij = 1,∀j. (6.1)

With agent i receiving the information from its in-neighbors, j ∈ N in
i , it

updates xk+1,i, yk+1,i, zk+1,i and wk+1,i as follows:

xk+1,i =
∑
j∈N in

i

aijxk,j − αwk,i, (6.2a)

yk+1,i =
∑
j∈N in

i

aijyk,j, (6.2b)

zk+1,i =
xk+1,i

yk+1,i

, (6.2c)

wk+1,i =
∑
j∈N in

i

aijwk,j +∇fi(zk+1,i)−∇fi(zk,i). (6.2d)

In the above, ∇fi(zk,i) in the gradient of the function fi(z) at z = zk,i, for

all k ≥ 0. The step-size, α, is a positive number within a certain interval.

We will explicitly show the range of α later. For any agent i, it is initiated

with an arbitrary vector, x0,i, and with w0,i = ∇fi(z0,i) and y0,i = 1. We note

that the implementation of Eq. (6.2) needs each agent to at least have the

knowledge of its out-neighbors degree. See [61, 63–65, 74, 79, 82, 83] for the

similar assumptions.

To simplify the analysis, we assume from now on that all sequences up-

dated by Eq. (6.2) have only one dimension, i.e., p = 1; thus xk,i, yk,i, wk,i,

zk,i ∈ R,∀i, k. For xk,i, wk,i, zk,i ∈ Rp being p-dimensional vectors, the

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 120

proof is the same for every dimension by applying the results to each co-

ordinate. Therefore, assuming p = 1 is without the loss of generality. We

next write Eq. (6.2) in a matrix form. Define xk, yk, wk, zk, ∇fk ∈ Rn

as xk = [xk,1, · · · , xk,n]>, yk = [yk,1, · · · , yk,n]>, wk = [wk,1, · · · , wk,n]>, zk =

[zk,1, · · · , zk,n]>, and∇fk = [∇f1(zk,1), · · · ,∇fn(zk,n)]>. Let A = {aij} ∈ Rn×n

be the collection of weights aij. It is clear that A is a column-stochastic matrix.

Define a diagonal matrix, Yk ∈ Rn×n, for each k, as follow

Yk = diag (yk) . (6.3)

Given that the graph, G, is strongly-connected and the corresponding weight-

ing matrix, A, is non-negative, it follows that Yk is invertible for any k. Then,

we can write Eq. (6.2) in the matrix form equivalently as follows:

xk+1 =Axk − αwk, (6.4a)

yk+1 =Ayk, (6.4b)

zk+1 =Y −1
k+1xk+1, (6.4c)

wk+1 =Awk +∇fk+1 −∇fk, (6.4d)

where similarly we have the initial condition w0 = ∇f0.

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 121

Interpretation of ADD-OPT

Based on Eq. (6.4), we now give an intuitive interpretation on the convergence

of ADD-OPT to the optimal solution. By combining Eqs. (6.4a) and (6.4d),

we obtain that

xk+1 = Axk − α [Awk−1 +∇fk −∇fk−1]

= Axk − αA
[
Axk−1 − xk

α

]
− α [∇fk −∇fk−1]

= 2Axk − A2xk−1 − α [∇fk −∇fk−1] . (6.5)

Assume that the sequences generated by Eq. (6.4) converge to their limits (not

necessarily true), denoted by x∞, y∞, w∞, z∞, ∇f∞, respectively. It follows

from Eq. (6.5) that

x∞ = 2Ax∞ − A2x∞ − α [∇f∞ −∇f∞] , (6.6)

which implies that (In − A)2x∞ = 0n, or x∞ ∈ span{y∞}, considering that

y∞ = Ay∞. Therefore, we obtain that

z∞ = Y −1
∞ x∞ ∈ span{1n}, (6.7)

where the consensus is reached.

By summing up the updates in Eq. (6.5) over k from 0 to ∞, we obtain

that

x∞ = Ax∞ +
∞∑
r=1

(A− In)xr −
∞∑
r=0

(A2 − A)xr − α∇f∞.

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 122

Noting that x∞ = Ax∞, it follows

α∇f∞ =
∞∑
r=1

(A− In)xr −
∞∑
r=0

(A2 − A)xr.

Therefore, we obtain that

α1>n∇f∞ = 1>n (A− In)
∞∑
r=1

xr − 1>n (A2 − A)
∞∑
r=0

xr = 0,

which is the optimality condition of Problem P1 considering that z∞ ∈ span{1n}.

To conclude, if we assume the sequences updated in Eq. (6.4) have limits, x∞,

y∞, w∞, z∞, ∇f∞, we have the fact that z∞ achieves consensus and reaches

the optimal solution of Problem P1. We next discuss the relations between

ADD-OPT and DEXTRA.

ADD-OPT and DEXTRA

We consider DEXTRA to solve the corresponding distributed optimization

problem over directed graphs. It achieves a linear convergence rate given that

the objective functions are strongly-convex. At kth iteration, each agent i

keeps and updates three states, xk,i, yk,i, and zk,i. The iteration, in matrix

form, is shown as follow.

xk+1 = (In + A)xk − Ãxk−1 − α [∇fk −∇fk−1] , (6.8a)

yk+1 =Ayk, (6.8b)

zk+1 =Y −1
k+1xk+1, (6.8c)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 123

where Ã is a column-stochastic matrix satisfying that Ã = θIn+(1−θ)A with

any θ ∈ (0, 1
2
], and all other notations stick to the same definition appeared

earlier in the chapter.

By comparing Eqs. (6.5) and (6.8a), (6.4b) and (6.8b), and (6.4c) and

(6.8c), it follows that the only difference between ADD-OPT and DEXTRA lies

in the weighting matrices used when updating xk. From DEXTRA to ADD-

OPT, we change (In + A) in (6.8a) to 2A in (6.5), and Ã to A2, respectively.

Mathematically, if A = In, the two algorithms become the same. Therefore,

ADD-OPT can be regarded as an extended version of DEXTRA, in that we

will show later that it has a wider range of step-size compared to DEXTRA,

i.e., the greatest lower bound, α, of ADD-OPT’s step-size is zero while that of

DEXTRA’s is positve. This also reveals the reason why in DEXTRA we prefer

constructing A to be an extremely diagonal dominant matrix (see Assumption

A5(C) in the previous chapter). The more similar A is to In, the closer α

approaches zero. However, in DEXTRA α can never reach zero since A can

not be the identity, In, which otherwise means there is no communication

between agents. Therefore, ADD-OPT can not be regarded as a special case

of DEXTRA since A 6= In. In this chapter, we provide a totally different,

but much more compact and elegant proof, compared to DEXTRA’s proof, to

show the linear convergence rate of ADD-OPT.

Note that the implementation of Eq. (6.5) requires agents to communicate

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 124

with the neighbors of their own neighbors (because of A2), which takes two

iterations for each agent. This explains why ADD-OPT needs to keep and

update 4 variables, xk, yk, wk, and zk, compared with DEXTRA which only

have 3 variables, xk, yk, and zk. It can be considered as a tradeoff of between

increasing the step-size range and decreasing the number of variables.

Interpretation of Algorithms when α = 0

For any gradient-based method, let α = 0 is mathematically equivalent to

∇fk = 0n for all k, which means all local objective functions are constants.

Thus, the methods are simplified to have agents reach consensus only. We

now discuss whether DEXTRA can push all agents to consensus if we force

the step-size to be zero. Assume that the sequences generated by Eq. (6.8)

converge to their limits (not necessarily true), denoted by x∞, y∞, z∞, and

∇f∞, respectively. Consider Eq. (6.8a) when α = 0,

xk+1 = (In + A)xk − Ãxk−1. (6.9)

By summing Eq. (6.9) over k from 0 to ∞, we obtain that

x∞ = Ax∞ −
∞∑
r=0

(Ã− A)xr. (6.10)

According to the previous analysis from Eqs. (6.6) to (6.7), we know that

in order to reach consensus, i.e., z∞ ∈ span{1n}, it is equivalent to satisfy

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 125

x∞ ∈ span{y∞}, which results in

∞∑
r=0

(Ã− A)xr = 0n. (6.11)

Since x0 is arbitrary, and only x∞ satisfying that x∞ = Ax∞ or (Ã−A)x∞ =

0n, we have that
∑∞

r=0(Ã− A)xr 6= 0n. This reaches a contradiction. There-

fore, DEXTRA does not push all agents to the consensus when α = 0.

We now consider the performance of ADD-OPT when α = 0. We still

assume that the sequences generated by Eq. (6.4) converge to their limits

(not necessarily true), denoted by x∞, y∞, w∞, z∞, ∇f∞, respectively. In

fact, it is straightforward to observe that Eq. (6.4) with having α = 0 is

exactly the push-sum consensus, [66, 67], which push agents to reach average

consensus in a directed graph. Therefore, ADD-OPT converges to the optimal

solution when α = 0. To better compare ADD-OPT with DEXTRA, we

analyze ADD-OPT using similar derivations for DEXTRA above. By summing

up the updates in Eq. (6.5) over k from 0 to ∞, we obtain that

x∞ = Ax∞ + A(In − A)x0 −
∞∑
r=1

(In − A)2xr, (6.12)

which is sufficient to satisfy that

∞∑
r=1

(A− In)xr = Ax0, (6.13)

by considering the condition that x∞ = Ax∞. Compared Eqs. (6.13) from the

derivation of ADD-OPT with (6.11) from DEXTRA, we say that ADD-OPT

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 126

works when α = 0 because there exists a additional term Ax0. The infinit sum∑∞
r=1(A − In)xr is accumulated to compensate this initial term Ax0. In the

next section, we state the convergence result with appropriate assumptions.

6.3 Assumptions and Main Result

With appropriate assumptions, our main result states that ADD-OPT con-

verges to the optimal solution of Problem P1 linearly. We state again that

from now on we assume that the states of agents have only one dimension,

i.e., p = 1, which is without the loss of generality. In this paper, we assume

that the agent graph, G, is strongly-connected; each local function, fi(z), is

convex and differentiable, and the optimal solution of Problem P1 and the

corresponding optimal value exist. Formally, we denote the optimal solution

by z∗ and optimal value by f ∗, i.e., f ∗ = f(z∗) = minz∈R f(z). Besides the

above assumptions, we formally present assumptions regarding the gradients of

objective functions as follows, which is standard for smooth convex functions,

[46, 48, 83],

Assumption A6 (Lipschitz continuous gradients and strong convexity). Each

private function, fi, is differentiable and strongly-convex, and the gradient is

Lipschitz continuous, i.e., for any i and z1, z2 ∈ R,

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 127

(a) there exists a positive constant l such that,

‖∇fi(z1)−∇fi(z2)‖ ≤ l‖z1 − z2‖;

(b) there exists a positive constant s such that,

s‖z1 − z2‖2 ≤ 〈∇fi(z1)−∇fi(z2), z1 − z2〉.

With these assumptions, we are able to present ADD-OPT’s convergence re-

sult, the representation of which are based on the following notations. Based

on earlier notations, xk, wk, and∇fk, we further define xk, wk, z
∗, gk, hk ∈ Rn

as

xk =
1

n
1n1

>
nxk, (6.14)

wk =
1

n
1n1

>
nwk, (6.15)

z∗ = z∗1n, (6.16)

gk =
1

n
1n1

>
n∇fk, (6.17)

hk =
1

n
1n1

>
n∇f(xk), (6.18)

where ∇f(xk) = [∇f1(1
n
1>nxk), ...,∇fn(1

n
1>nxk)]

>. We denote constants τ , ε,

and η as

τ = ‖A− In‖ , (6.19)

ε = ‖In − A∞‖ , (6.20)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 128

η = max (|1− αl| , |1− αs|) , (6.21)

where A is the column-stochastic weighting matrix used in Eq. (6.4), A∞ =

limk→∞A
k represents A’s limit, α is the step-size, and l and s are respectively

the Lipschitz gradient constant and strong-convexity constant in Assumption

A6. Let Y∞ be the limit of Yk in Eq. (6.3),

Y∞ = lim
k→∞

Yk, (6.22)

and y and y− be the maximum of ‖Yk‖ and ‖Y −1
k ‖ over k, respectively,

y = max
k
‖Yk‖ , (6.23)

y− = max
k

∥∥Y −1
k

∥∥ . (6.24)

Moreover, we define two constants, σ, and, γ1, through the following two

lemmas, which is related to the convergence of A and Y∞. Note that Lemmas

17 and 18 are reformulated with notations introduced above to simplify the

proof.

Lemma 17. (Nedic et al. [61]) Consider Yk, generated from the column-

stochastic matrix, A, and its limit Y∞. There exist 0 < γ1 < 1 and 0 < T <∞

such that for all k

‖Yk − Y∞‖ ≤ Tγk1 . (6.25)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 129

Lemma 18. (Olshevsky et al. [olshevsky]) Consider Y∞ in Eq. (6.22), and A

being the column-stochastic matrix used in Eq. (6.4). For any a ∈ Rn, define

a = 1
n
1n1

>
na. There exist 0 < σ < 1 such that for all k

‖Aa− Y∞a‖ ≤ σ ‖a− Y∞a‖ . (6.26)

Based on the above notations, we finally denote tk, sk ∈ R3, and G, Hk ∈

R3×3 for all k as

tk =


‖xk − Y∞xk‖

‖xk − z∗‖

‖wk − Y∞gk‖

 , sk =


‖xk‖

0

0

 ,

G =


σ 0 α

α(ly−) η 0

εlτy− + α(εl2yy2
−) α(εl2yy−) σ + α(εly−)

 ,

Hk =


0 0 0

αly−Tγ
k
1 0 0

(αly + 2)εly2
−Tγ

k
1 0 0

 , (6.27)

We now state the key relation in this chapter.

Theorem 5. Let Assumption 6.2 holds. The following inequality holds for all

k ≥ 1,

tk ≤ Gtk−1 +Hk−1sk−1. (6.28)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 130

Proof. See the section of convergence analysis.

Eq. (6.28) in Theorem 5 is the key relation of this paper. We leave the

complete proof in later sections, with the help of several auxiliary relations.

Note that Eq. (6.28) provides a linear iterative relation between tk and tk−1

with matrix G and Hk. Thus, the convergence of tk is fully determined by

G and Hk. More specifically, if we want to prove a linear convergence rate

of ‖tk‖ to zero, it is sufficient to show that ρ(G) < 1, where ρ(·) denotes the

spectral radius, as well as the linear decaying of Hk, which is straightforward

since 0 < γ1 < 1. In Lemma 19, we first show that with appropriate step-size,

the spectral radius of G is less than 1. Following Lemma 19, we show the

linear convergence rate of Gk and Hk in Lemma 20.

Lemma 19. Consider the matrix, Gα, defined in Eq. (6.27) as a function of

the step-size, α. It follows that ρ(Gα) < 1 if the step-size, α ∈ (0, α), where

α =

√
(ετs)2 + 4εy(l + s)s(1− σ)2 − ετs

2εlyy−(l + s)
. (6.29)

Proof. It is easy to verify that α ≤
√

4εy(l+s)s(1−σ)2

2εlyy−(l+s)
< 1

l
. As a result, we have

η = 1− αs. When α = 0, we have that

G0 =


σ 0 0

0 1 0

εlτy− 0 σ

 , (6.30)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 131

the eigenvalues of which are σ, σ, and 1. Therefore, ρ(G0) = 1, where ρ(·)

denotes the spectral radius. We now consider how the eigenvalue 1 is changed

if we slightly increase α from 0. We denote PGα(q) = det(qIn − Gα) the

characteristic polynomial of Gα. By letting det(qIn − Gα) = 0, we get the

following equation.

((q − σ)2 − αεly−(q − σ))(q − 1 + αs)− α3l3εyy2
−

−α(q − 1 + αs)(εlτy− + α(εl2yy2
−)) = 0. (6.31)

Since we have already shown that 1 is one of the eigenvalues of G0, Eq. (6.31)

is valid when q = 1 and α = 0. Take the derivative on both sides of Eq. (6.31),

and let q = 1 and α = 0, we obtain that dq
dα
|α=0,q=1 = −s < 0. This is saying

that when α increases from 0 slightly, ρ(Gα) will decrease first.

We now calculate all possible values of α for λ(Gα) = 1. Let q = 1 in

Eq. (6.31), and solve the step-size, α, we obtain that, α1 = 0, α2 < 0, and

α3 = α =

√
(ετs)2 + 4εy(l + s)s(1− σ)2 − ετs

2εlyy−(l + s)
.

Since there is no other value of α for λ(Gα) = 1, we know that all eigenvalues

of Gα is less than 1 for α ∈ (0, α) by considering the fact that eigenvalues are

continuous functions of matrix. Therefore, ρ(Gα) < 1 when α ∈ (0, α).

Lemma 20. With the step-size, α ∈ (0, α), where α is defined in Eq. (6.29),

the following statements hold for all k,

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 132

(a) there exist 0 < γ1 < 1 and 0 < Γ1 <∞, where γ1 is defined in Eq. (6.25),

such that

‖Hk‖ = Γ1γ
k
1 ;

(b) there exist 0 < γ2 < 1 and 0 < Γ2 <∞, such that

∥∥Gk
∥∥ ≤ Γ2γ

k
2 ;

(c) there exist γ = max{γ1, γ2} and Γ = Γ1Γ2/γ, such that for all 0 ≤ r ≤ k,

∥∥Gk−r−1Hr

∥∥ ≤ Γγk.

Proof. (a). This is easy to verify according to Eq. (6.27), and by letting

Γ1 = ly−T
√
α2 + (αly + 2)2ε2y2

−.

(b). We represent Gk in the Jordan canonical form as Gk = PJkQ. Ac-

cording to Lemma 19, we have that all diagonal entries in J are smaller than

one. Therefore, there exist 0 < Γ2 <∞ and 0 < γ2 < 1, such that

∥∥Gk
∥∥ ≤ ‖P‖ ‖Q‖∥∥Jk∥∥ ≤ Γ2γ

k
2 . (6.32)

(c). The proof of (c) is achieved by combining (a) and (b).

We now present the main result of this paper in Theorem 6, which shows

the linear convergence rate of ADD-OPT.

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 133

Theorem 6. Let Assumption 6.2 holds. With the step-size, α ∈ (0, α), where

α is defined in Eq. (6.29), the sequence, {zk}, generated by ADD-OPT, con-

verges exactly to the optimal solution, z∗, at a linear rate, i.e., there exist some

bounded constants M > 0 and γ < µ < 1, where γ is used in Lemma 20(c),

such that for any k,

‖zk − z∗‖ ≤Mµk. (6.33)

Proof. We write Eq. (6.28) recursively, which results

tk ≤Gkt0 +
k−1∑
r=0

Gk−r−1Hrsr. (6.34)

By taking the norm on both sides of Eq. (6.34), and considering Lemma 20,

we obtain that

‖tk‖ ≤
∥∥Gk

∥∥ ‖t0‖+
k−1∑
r=0

∥∥Gk−r−1Hr

∥∥ ‖sr‖
≤Γ2γ

k
2 ‖t0‖+

k−1∑
r=0

Γγk ‖sr‖ , (6.35)

in which we can bound ‖sr‖ as

‖sr‖ ≤‖xr − Y∞xr‖+ ‖Y∞‖ ‖xr − z∗‖+ ‖Y∞‖ ‖z∗‖

≤(1 + y) ‖tr‖+ y ‖z∗‖ . (6.36)

Therefore, we have that for all k

‖tk‖ ≤
(

Γ2‖t0‖+ Γ(1 + y)
k−1∑
r=0

‖tr‖+ Γyk‖z∗‖
)
γk. (6.37)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 134

Our first step is to show that ‖tk‖ is bounded for all k. It is true that there

exists some bounded K > 0 such that for all k > K it satisfies that

(Γ2 + Γ(1 + 2y)k) γk ≤ 1. (6.38)

Define Φ = max0≤k≤K (‖tk‖ , ‖z∗‖), which is bounded since K is bounded. It

is true that ‖tk‖ ≤ Φ for 0 ≤ k ≤ K. Consider the case when k = K + 1. By

combining Eqs. (6.37) and (6.38), we have that

‖tK+1‖ ≤Φ
(

Γ2 + Γ(1 + 2y)(K + 1)
)
γK+1 ≤ Φ. (6.39)

We repeat the procedures to show that ‖tk‖ ≤ Φ for all k.

The next step is to show that ‖tk‖ decays linearly. For any µ satisfying

γ < µ < 1, there exist a constant U such that (µ
γ
)k > k

U
for all k. Therefore,

by bounding all ‖tk‖ and ‖z∗‖ by Φ in Eq. (6.37), we obtain that for all k

‖tk‖ ≤Φ
(

Γ2 + Γ(1 + 2y)k
)
γk

≤Φ

(
Γ2 + Γ(1 + 2y)U

k

U

(
γ

µ

)k)
µk

≤Φ
(

Γ2 + Γ(1 + 2y)U
)
µk. (6.40)

It follows that ‖zk − z∗‖ and ‖tk‖ satisfy the relation that

‖zk − z∗‖ ≤
∥∥Y −1

k xk − Y −1
k Y∞xk

∥∥+
∥∥Y −1

k Y∞z
∗ − z∗

∥∥
+
∥∥Y −1

k Y∞xk − Y −1
k Y∞z

∗∥∥
≤y−(1 + y) ‖tk‖+ y−Tγ

k
1 ‖z∗‖ , (6.41)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 135

where in the second inequality we use the relation ‖Y −1
k Y∞−In‖ ≤ ‖Y −1

k ‖‖Y∞−

Yk‖ ≤ y−Tγ
k
1 achieved from Eq. (6.25). By combining Eqs. (6.40) and (6.41),

we obtain that

‖zk − z∗‖ ≤y−Φ [(1 + y)(Γ2 + Γ(1 + 2y)U) + T]µk.

The desired result is obtained by letting M = y−Φ[(1 + y)(Γ2 + Γ(1 + 2y)U) +

T].

Themorem 6 shows the linear convergence rate of ADD-OPT. In next twp

sections, we prove Theorem 5 with the help of some auxiliary relations.

6.4 Auxiliary Relations

We provide several basic relations in this section, which will help the proof

of Theorem 5. Lemma 21 derives iterative equations that govern the average

sequence xk and wk. Lemma 22 gives inequalities that are direct consequences

of Eq. (6.25). Lemma 23 can be found in standard optimization literature, [91].

It states that if we perform a gradient descent step with a fixed step-size for a

strongly convex and smooth function, then the distance to optimizer shrinks

by at least a fixed ratio.

Lemma 21. The following equations hold for all k,

(a) wk = gk;

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 136

(b) xk+1 = xk − αgk.

Proof. Since A is column-stochastic, satisfying 1>nA = 1>n , we obtain that

wk =
1

n
1n1

>
n (Awk−1 +∇fk −∇fk−1)

= wk−1 + gk − gk−1.

Do this recursively, and we have that

wk = w0 + gk − g0.

Recall that we have the initial condition that w0 = ∇f0, which is equivalently

to w0 = gk. Hence, we achieve the result of (a). The proof of (b) follows the

following derivation,

xk+1 =
1

n
1n1

>
n (Axk − αwk)

= xk − αwk,

= xk − αgk,

where the last equation use result of (a). The proof is done.

Lemma 22. The following inequalities hold for all k ≥ 1,

(a)
∥∥Y −1

k−1Y∞ − In
∥∥ ≤ y−Tγ

k−1
1 ;

(b)
∥∥Y −1

k − Y −1
k−1

∥∥ ≤ 2y2
−Tγ

k−1
1 .

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 137

Proof. By considering Eq. (6.25), it follows that

∥∥Y −1
k−1Y∞ − In

∥∥ ≤ ∥∥Y −1
k−1

∥∥ ‖Y∞ − Yk−1‖ ≤ y−Tγ
k−1
1 ;

The proof of (b) follows

∥∥Y −1
k − Y −1

k−1

∥∥ ≤ ∥∥Y −1
k−1

∥∥ ‖|Yk−1 − Yk‖
∥∥Y −1

k

∥∥
≤ 2y2

−Tγ
k−1
1 .

This finishes the proof.

Lemma 23. Let Assumption A6 hold for the objective function, f(z), in P1,

and s and l are the strong-convexity constant and Lipschitz continuous gradient

constant, respectively. For any z ∈ R, define z+ = z − α∇f(z), where 0 <

α < 2
l
. Then

‖z+ − z∗‖ ≤ η ‖z − z∗‖ ,

where η = max (|1− αl| , |1− αs|).

6.5 Convergence Analysis

The proof of Theorem 5 is provided in this section. We will bound ‖xk−Y∞xk‖,

‖xk − z∗‖, and ‖wk − Y∞gk‖ by the linear combinations of their past values,

i.e., ‖xk−1 − Y∞xk−1‖, ‖xk−1 − z∗‖, and ‖wk−1 − Y∞gk−1‖, as well as ‖xk−1‖.

The coefficients will be shown to be the entries of G and Hk−1.

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 138

Step 1: Bound ‖xk − Y∞xk‖.

According to Eq. (6.4a) and Lemma 21(b), we obtain that

‖xk − Y∞xk‖ ≤‖Axk−1 − Y∞xk−1‖+ α ‖wk−1 − Y∞gk−1‖ . (6.42)

Note that ‖Axk−1 − Y∞xk−1‖ ≤ σ‖xk−1 − Y∞xk−1‖ from Eq. (6.26), we have

‖xk − Y∞xk‖ ≤σ ‖xk−1 − Y∞xk−1‖+ α ‖wk−1 − Y∞gk−1‖ . (6.43)

Step 2: Bound ‖xk − z∗‖.

By considering Lemma 21(b), we obtain that

xk = [xk−1 − αhk−1]− α [gk−1 − hk−1] . (6.44)

Let x+ = xk−1 − αhk−1, which is performing a (centralized) gradient descent

to minimize the objective function in Problem P1. Therefore, we have that,

according to Lemma 23,

‖x+ − z∗‖ ≤ η ‖xk−1 − z∗‖ . (6.45)

By applying the Lipschitz continuous gradient assumption, Assumption 6.2(a),

we obtain

‖gk−1 − hk−1‖ ≤
∥∥∥∥ 1

n
1n1

>
n

∥∥∥∥ l ‖zk−1 − xk−1‖ . (6.46)

Therefore, it follows that

‖xk − z∗‖ ≤ ‖x+ − z∗‖+ α ‖gk−1 − hk−1‖

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 139

≤ η ‖xk−1 − z∗‖+ αl ‖zk−1 − xk−1‖ . (6.47)

Notice by Eq. (6.4c) and Lemma 22(a), it follows that

‖zk−1 − xk−1‖ ≤
∥∥Y −1

k−1 (xk−1 − Y∞xk−1)
∥∥+

∥∥(Y −1
k−1Y∞ − In

)
xk−1

∥∥
≤y− ‖xk−1 − Y∞xk−1‖+ y−Tγ

k−1
1 ‖xk−1‖ , (6.48)

where in the second inequality we also make use of the relation ‖xk−1‖ ≤

‖xk−1‖. By substituting Eq. (6.48) into Eq. (6.47), we obtain that

‖xk − z∗‖ ≤αly− ‖xk−1 − Y∞xk−1‖+ η ‖xk−1 − z∗‖

+ αly−Tγ
k−1
1 ‖xk−1‖ . (6.49)

Step 3: Bound ‖wk − Y∞gk‖.

According to Eq. (6.4d), we have

‖wk − Y∞gk‖ ≤‖Awk−1 − Y∞gk−1‖+ ‖(∇fk −∇fk−1)− (Y∞gk − Y∞gk−1)‖ .

With Lemma 21(a) and Eq. (6.26), we obtain that

‖Awk−1 − Y∞gk−1‖ = ‖Awk−1 − Y∞wk−1‖

≤ σ ‖wk−1 − Y∞wk−1‖ . (6.50)

It follows from the definition of gk that

‖(∇fk −∇fk−1)− (Y∞gk − Y∞gk−1)‖ =

∥∥∥∥(In − 1

n
Y∞1n1

>
n

)
(∇fk −∇fk−1)

∥∥∥∥ .
(6.51)

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 140

Since 1
n
Y∞1n1

>
n = A∞, where A∞ = limk→∞A

k, we obtain that

‖(∇fk −∇fk−1)− (Y∞gk − Y∞gk−1)‖ ≤εl ‖zk − zk−1‖ ,

where in the preceding relation we use the Lipschitz continuous gradient as-

sumption, Assumption A6(a). Therefore, we have

‖wk − Y∞gk‖ ≤σ ‖wk−1 − Y∞gk−1‖+ εl ‖zk − zk−1‖ . (6.52)

We now bound ‖zk − zk−1‖. Note that

‖hk−1‖ =

∥∥∥∥ 1

n
1n1

>
n∇f(xk−1)

∥∥∥∥ ≤ l ‖xk−1 − z∗‖ . (6.53)

As a result, we have

∥∥Y −1
k wk−1

∥∥ ≤∥∥Y −1
k (wk−1 − Y∞gk−1)

∥∥+
∥∥Y −1

k Y∞hk−1

∥∥
+
∥∥Y −1

k Y∞ (gk−1 − hk−1)
∥∥

≤y− ‖wk−1 − Y∞gk−1‖+ y−yl ‖xk−1 − z∗‖+ y−yl ‖zk−1 − xk−1‖

≤y− ‖wk−1 − Y∞gk−1‖+ y−yl ‖xk−1 − z∗‖+ y2
−yl ‖xk−1 − Y∞xk−1‖

+ y2
−ylTγ

k−1
1 ‖xk−1‖ , (6.54)

where the last inequality is valid by considering Eq. (6.48). With the upper

bound of ‖Y −1
k wk−1‖ provided in the preceding relation and note that (A −

In)Y∞xk−1 = 0n, we can bound ‖zk − zk−1‖ as follow.

‖zk − zk−1‖ ≤
∥∥Y −1

k (xk − xk−1)
∥∥+

∥∥(Y −1
k − Y −1

k−1

)
xk−1

∥∥

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 141

≤
∥∥Y −1

k (A− In)xk−1

∥∥+ α
∥∥Y −1

k wk−1

∥∥+
∥∥Y −1

k − Y −1
k−1

∥∥ ‖xk−1‖

≤(y−τ + αy2
−yl) ‖xk−1 − Y∞xk−1‖+ αy− ‖wk−1 − Y∞gk−1‖

+ αy−yl ‖xk−1 − z∗‖+ (αyl + 2)y2
−Tγ

k−1
1 ‖xk−1‖ . (6.55)

By substituting Eq. (6.55) in Eq. (6.52), we obtain that

‖wk − Y∞gk‖ ≤(εlτy− + αεl2yy2
−) ‖xk−1 − Y∞xk−1‖+ αεl2yy− ‖xk−1 − z∗‖

+ (σ + αεly−) ‖wk−1 − Y∞gk−1‖+ (αyl + 2)εly2
−Tγ

k−1
1 ‖xk−1‖ .

(6.56)

Step 4: By combining Eqs. (6.43) in step 1, (6.49) in step 2, and (6.56) in

step 3, we complete the proof.

6.6 Numerical Experiments

In this section, we compare the performances of algorithms solving the dis-

tributed consensus optimization problem over directed graphs, including ADD-

OPT, DEXTRA [83], Gradient-Push [61], Directed-Distributed Subgradient

Descent [79], and the Weighting Balancing-Distributed Gradient Descent [74].

Our numerical experiments are based on the distributed logistic regression

problem over a directed graph:

z∗ = argmin
z∈Rp

β

2
‖z‖2 +

n∑
i=1

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijz

)
bij
)]
,

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 142

where for any agent i, it is accessible to mi training examples, (cij, bij) ∈

Rp × {−1,+1}, where cij includes the p features of the jth training example

of agent i, and bij is the corresponding label. This problem can be formulated

in the form of P1 with the private objective function fi being

fi =
β

2n
‖z‖2 +

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijz

)
bij
)]
.

In our setting, we have n = 10, mi = 10, for all i, and p = 3. The network

topology is described in Fig. 6.1.

In the implementation of algorithms, we apply to all algorithms the local

degree weighting strategy, i.e., to assign each agent itself and its out-neighbors

equal weights according to the agents’s own out-degree.

23 1

56 47

10 89

Figure 6.1: A strongly-connected directed network.

In our first experiment, we compare the convergence rates between ADD-

OPT and other methods that designed for directed graphs. we apply the same

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 143

local degree weighting strategy to all methods. The step-size used in Gradient-

Push, Directed-Distributed Subgradient Descent, and WeightingBalencing-

Distributed Gradient Descent is αk = 1/
√
k. The constant step-size used

in DEXTRA and ADD-OPT is α = 1. It can be found that ADD-OPT and

DEXTRA has a fast linear convergence rate, while other methods are sub-

linear. The convergence rate performances between different algorithms are

found in Fig. 6.2.

0 200 400 600 800 1000
k

10-1

100

R
es
id
u
al

Gradient-Push
Directed-Distributed Gradient Descent
WeightBalancing-Distributed Gradient Descent
DEXTRA
Augmented DEXTRA

Figure 6.2: Convergence rates between optimization methods for directed net-
works.

The second experiment compares ADD-OPT and DEXTRA in terms of

their step-size ranges. We stick to the same local degree weighting strategy

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 144

for both ADD-OPT and DEXTRA. It is shown in Fig. 6.3 that the greatest

lower bound of DEXTRA is round α = 0.2. Since the value of α requires the

global knowledge, it is hard for agents to estimate this value in the distributed

implementation. Once agents pick some value for α < 0.2, DEXTRA diverges.

In contrast, agents that implementing ADD-OPT can pick whatever small

values to ensure the convergence.

0 200 400 600 800 1000
k

10-1

100

101

R
es
id
u
al

DEXTRA α=0.001
DEXTRA α=0.2
DEXTRA α=0.3
Augmented DEXTRA α=0.001
Augmented DEXTRA α=0.2
Augmented DEXTRA α=0.3

Figure 6.3: Comparison between ADD-OPT and DEXTRA in terms of step-
size ranges.

According to the setting, we can calculate that τ = 1.25, ε = 1.11, y = 1.96,

y− = 2.2, and l = 1. It is also satisfied that σ < 1. Therefore, we can estimate

α <
√

8.7
9.57

= 0.3. It can be found in Fig. 6.4 that the practical upper bound of

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 145

step-size is much bigger, i.e., α = 1.12. In the implementation of ADD-OPT

when we are trying to estimate α, we set α ≈ 1
10l

assuming that l is not a

global knowledge. This is an experienced estimation. Finally, we also show

the relation between convergence speed and step-size does not simply satisfy

any linear function. This can be found in Fig. 6.4.

0 200 400 600 800 1000
k

10-2

10-1

100

R
es
id
u
al

α=0.01
α=0.05
α=0.1
α=0.5
α=1.1
α=1.11
α=1.12
α=1.13

Figure 6.4: The range of ADD-OPT ’s step-size.

6.7 Conclusions

In this chapter, we focus on solving the distributed consensus optimization

problem over directed graphs. The proposed algorithm, termed ADD-OPT,

CHAPTER 6. ADD-OPT FOR SMOOTH CONVEX OPTIMIZATION 146

can be viewed as an improvement of our recent work, DEXTRA. ADD-OPT

converges at a linear rate O(µk) for 0 < µ < 1 given the assumption that the

objective functions are strongly-convex, where k is the number of iterations.

Compared to DEXTRA, ADD-OPT owns a wider and more realistic range

of step-size for the convergence. In particular, the greatest lower bound of

DEXTRA’s step-size is strictly greater than zero while that of ADD-OPT’s

equals exactly to zero. This guarantees the convergence of ADD-OPT in the

distributed implementation as long as agents picking some small step-size.

Therefore, ADD-OPT is more reliable in distributed setting. We provide a

much more compact proof compared with DEXTRA to show the linear con-

vergence rate of ADD-OPT. Simulation examples further illustrate the im-

provements.

147

Chapter 7

Epilogue

In this chapter, we conclude our contribution, and discuss some possible di-

rections for future work.

In this thesis, we focus on solving optimization problems where informa-

tion is distributed over multi-agents networks. Each agent in the network owns

local information that is private. They cooperatively solve a global optimiza-

tion problem through local computations and information exchange over the

network. In particular, we consider the problem of minimizing a sum of objec-

tives,
∑n

i=1 fi(x), where fi : Rp → R is a private objective function at the ith

agent of the network. Existing distributed methods mostly deal with this class

of problem under the assumption that the multi-agents network is strongly-

connected and undirected, i.e., if agent i can send information to agent j,

then agent j can also send information to agent i. We relax the assumption

CHAPTER 7. EPILOGUE 148

of network topologies to directed networks. The main contribution of this

work lies in that we propose four algorithms, Directed-Distributed Subgradi-

ent Descent (D-DSD), Directed-Distributed Projection Subgradient (D-DPS),

DEXTRA, and ADD-OPT to overcome the challenges. We now summarize

each algorithm in the following.

• Directed-Distributed Subgradient Descent (D-DSD): D-DSD is a

subgradient based method that combines surplus-consensus techniques

and DGD [37] to minimize the sum of local objective functions when

the network topology among agents is described by a directed graph.

It converges to the optimal solution in nonsmooth convex optimization,

i.e., the local objective functions are convex, but not necessary to be

differentiable. It can shown that D-DSD converges at a rate of O(ln k√
k

),

where k is the number of iterations.

• Directed-Distributed Projection Subgradient (D-DPS): D-DPS

solves the distributed optimization problem over directed networks with

an additional constrained set. It can be viewed as a generalization of D-

DSD when the constrained set changes from Rp, meaning no constraint,

to a convex constrained set, X ⊆ Rp. Same as D-DSD, D-DPS converges

to the optimal solution in nonsmooth convex optimization, i.e., the local

objective functions in the problem are convex, but not necessary to be

CHAPTER 7. EPILOGUE 149

differentiable. The convergence rate is O(ln k√
k

), where k is the number of

iterations.

• DEXTRA: DEXTRA harness the smoothness to obtain a fast conver-

gence rate. In other words, DEXTRA converges to the optimal solution

in smooth convex optimization, i.e., the local objective functions are

convex and differentiable. We show that, with the appropriate step-size,

DEXTRA converges at a linear rate O(τ k) for 0 < τ < 1, given that the

objective functions are restricted strongly-convex.

• ADD-OPT: ADD-OPT is the other algorithm that solves the distributed

smooth optimization problem over directed networks. Same as EXTRA,

it achieves the best known rate of convergence for this class of problems,

O(µk) for 0 < µ < 1 given that the objective functions are strongly-

convex, where k is the number of iterations. Compared with DEXTRA,

ADD-OPT supports a wider and more realistic range of step-size. In

particular, the greatest lower bound of DEXTRA’s step-size is strictly

greater than zero while that of ADD-OPT’s equals exactly to zero.

In the analysis of D-DSD, we stick to the setting of static directed networks.

Although we do not pursue this in this thesis, D-DSD can be generalized to

work over time-varying directed graphs. Numerical experiments illustrate this

CHAPTER 7. EPILOGUE 150

findings. Extending the analysis to the case of time-varying directed graphs

would be important directions for future work.

151

Bibliography

[1] J. N. Tsitsiklis. Problems in Decentralized Decision making and Compu-

tation. Tech. rep. DTIC Document, 1984.

[2] D. P Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation:

numerical methods. Vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[3] J. Manyika et al. “Big data: The next frontier for innovation, competi-

tion, and productivity”. In: (2011).

[4] D. P. Bertsekas, A. Nedi, and A. E. Ozdaglar. “Convex analysis and

optimization”. In: (2003).

[5] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge univer-

sity press, 2004.

[6] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learn-

ing: Parallel and distributed approaches. Cambridge University Press,

2011.

BIBLIOGRAPHY 152

[7] S. Boyd et al. “Distributed Optimization and Statistical Learning via

the Alternating Direction Method of Multipliers”. In: Foundation and

Trends in Maching Learning 3.1 (Jan. 2011), pp. 1–122. issn: 1935-8237.

[8] V. Cevher, S. Becker, and M. Schmidt. “Convex optimization for big

data: Scalable, randomized, and parallel algorithms for big data analyt-

ics”. In: IEEE Signal Processing Magazine 31.5 (2014), pp. 32–43.

[9] G. Mateos, J. A. Bazerque, and G. B. Giannakis. “Distributed sparse

linear regression”. In: IEEE Transactions on Signal Processing 58.10

(2010), pp. 5262–5276.

[10] J. B. Predd, S. R. Kulkarni, and H. V. Poor. “A collaborative training

algorithm for distributed learning”. In: IEEE Transactions on Informa-

tion Theory 55.4 (2009), pp. 1856–1871.

[11] A. G. Dimakis et al. “Gossip algorithms for distributed signal process-

ing”. In: Proceedings of the IEEE 98.11 (2010), pp. 1847–1864.

[12] L. Xiao, S. Boyd, and S. Kim. “Distributed average consensus with least-

mean-square deviation”. In: Journal of Parallel and Distributed Comput-

ing 67.1 (2007), pp. 33–46.

[13] I. Necoara and J. A. K. Suykens. “Application of a Smoothing Technique

to Decomposition in Convex Optimization”. In: IEEE Transactions on

Automatic Control 53.11 (2008), pp. 2674–2679.

BIBLIOGRAPHY 153

[14] S. H. Low and D. E. Lapsley. “Optimization flow controlI: basic algo-

rithm and convergence”. In: IEEE/ACM Transactions on Networking

(TON) 7.6 (1999), pp. 861–874.

[15] G. Mateos, J. A. Bazerque, and G. B. Giannakis. “Distributed Sparse

Linear Regression”. In: IEEE Transactions on Signal Processing 58.10

(2010), pp. 5262–5276.

[16] J. A. Bazerque and G. B. Giannakis. “Distributed Spectrum Sensing for

Cognitive Radio Networks by Exploiting Sparsity”. In: IEEE Transac-

tions on Signal Processing 58.3 (2010), pp. 1847–1862. issn: 1053-587X.

[17] A. Ribeiro. “Ergodic stochastic optimization algorithms for wireless com-

munication and networking”. In: IEEE Transactions on Signal Process-

ing 58.12 (2010), pp. 6369–6386.

[18] Y. Xu et al. “Distributed subgradient-based coordination of multiple

renewable generators in a microgrid”. In: IEEE Transactions on Power

Systems 29.1 (2014), pp. 23–33.

[19] A. Jadbabaie, J. Lin, and A. S. Morse. “Coordination of groups of mobile

autonomous agents using nearest neighbor rules”. In: IEEE Transactions

on automatic control 48.6 (2003), pp. 988–1001.

BIBLIOGRAPHY 154

[20] S. Yang, S. Tan, and J. Xu. “Consensus based approach for economic

dispatch problem in a smart grid”. In: IEEE Transactions on Power

Systems 28.4 (2013), pp. 4416–4426.

[21] U. A. Khan, S. Kar, and J. M. F. Moura. “DILAND: An Algorithm for

Distributed Sensor Localization With Noisy Distance Measurements”.

In: IEEE Transactions on Signal Processing 58.3 (2010), pp. 1940–1947.

[22] M. Rabbat and R. Nowak. “Distributed optimization in sensor net-

works”. In: 3rd International Symposium on Information Processing in

Sensor Networks. 2004, pp. 20–27.

[23] Q. Ling, Z. Wen, and W. Yin. “Decentralized jointly sparse optimization

by reweighted minimization”. In: IEEE Transactions on Signal Process-

ing 61.5 (2013), pp. 1165–1170.

[24] K. Yuan et al. “A linearized Bregman algorithm for decentralized basis

pursuit”. In: 21st European Signal Processing Conference (EUSIPCO

2013). IEEE. 2013, pp. 1–5.

[25] Q. Ling et al. “Decentralized low-rank matrix completion”. In: 2012

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE. 2012, pp. 2925–2928.

BIBLIOGRAPHY 155

[26] Y. Liao et al. “DMFSGD: A decentralized matrix factorization algo-

rithm for network distance prediction”. In: IEEE/ACM Transactions on

Networking 21.5 (2013), pp. 1511–1524.

[27] C. L and L. Li. “A distributed multiple dimensional QoS constrained re-

source scheduling optimization policy in computational grid”. In: Jour-

nal of Computer and System Sciences 72.4 (2006), pp. 706 –726.

[28] G. Neglia, G. Reina, and S. Alouf. “Distributed gradient optimization

for epidemic routing: A preliminary evaluation”. In: 2nd IFIP in IEEE

Wireless Days. 2009, pp. 1–6.

[29] C. Xi and U. A. Khan. “On the impact of low-rank interference on

distributed multi-agent optimization”. In: 48th Asilomar Conference on

Signals, Systems and Computers. 2014, pp. 1511–1514.

[30] R. Bhatia. Matrix analysis. Vol. 169. Springer Science & Business Media,

2013.

[31] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. “Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms”.

In: 1984 American Control Conference. 1984, pp. 484–489.

[32] D. P. Bertsekas. “Incremental gradient, subgradient, and proximal meth-

ods for convex optimization: A survey”. In: Optimization for Machine

Learning 2010 (2011), pp. 1–38.

BIBLIOGRAPHY 156

[33] A. Nedić and D. Bertsekas. “Convergence rate of incremental subgradi-

ent algorithms”. In: Stochastic optimization: algorithms and applications.

Springer, 2001, pp. 223–264.

[34] A. Nedic and D. P. Bertsekas. “Incremental subgradient methods for

nondifferentiable optimization”. In: SIAM Journal on Optimization 12.1

(2001), pp. 109–138.

[35] A. Nedic, D. P. Bertsekas, and V. S. Borkar. “Distributed asynchronous

incremental subgradient methods”. In: (2000).

[36] S. S. Ram, A. Nedic, and V. V. Veeravalli. “Incremental stochastic sub-

gradient algorithms for convex optimization”. In: SIAM Journal on Op-

timization 20.2 (2009), pp. 691–717.

[37] A. Nedic and A. Ozdaglar. “Distributed Subgradient Methods for Multi-

Agent Optimization”. In: IEEE Transactions on Automatic Control 54.1

(2009), pp. 48–61.

[38] A. Nedic, A. Ozdaglar, and P. A. Parrilo. “Constrained Consensus and

Optimization in Multi-Agent Networks”. In: IEEE Transactions on Au-

tomatic Control 55.4 (2010), pp. 922–938.

[39] I. Lobel, A. Ozdaglar, and D. Feijer. “Distributed multi-agent optimiza-

tion with state-dependent communication”. English. In: Mathematical

Programming 129.2 (2011), pp. 255–284.

BIBLIOGRAPHY 157

[40] I. Lobel and A. Ozdaglar. “Distributed Subgradient Methods for Con-

vex Optimization Over Random Networks”. In: IEEE Transactions on

Automatic Control 56.6 (2011), pp. 1291–1306.

[41] S. S. Ram, A. Nedic, and V. V. Veeravalli. “Distributed subgradient

projection algorithm for convex optimization”. In: IEEE International

Conference on Acoustics, Speech and Signal Processing. 2009, pp. 3653–

3656.

[42] S. S. Ram, A. Nedic, and V. V. Veeravalli. “Distributed Stochastic Sub-

gradient Projection Algorithms for Convex Optimization”. English. In:

Journal of Optimization Theory and Applications 147.3 (2010), pp. 516–

545.

[43] S. Lee and A. Nedic. “Distributed Random Projection Algorithm for

Convex Optimization”. In: IEEE Journal of Selected Topics in Signal

Processing 7.2 (2013), pp. 221–229.

[44] B. Johansson et al. “Subgradient methods and consensus algorithms for

solving convex optimization problems”. In: 47th IEEE Conference on

Decision and Control. 2008, pp. 4185–4190.

[45] J. C. Duchi, A. Agarwal, and M. J. Wainwright. “Dual Averaging for

Distributed Optimization: Convergence Analysis and Network Scaling”.

In: IEEE Transactions on Automatic Control 57.3 (2012), pp. 592–606.

BIBLIOGRAPHY 158

[46] K. Yuan, Q. Ling, and W. Yin. “On the convergence of decentralized

gradient descent”. In: arXiv preprint arXiv:1310.7063 (2013).

[47] D. Jakovetic, J. Xavier, and J. M. F. Moura. “Fast distributed gradient

methods”. In: IEEE Transactions on Automatic Control 59.5 (2014),

pp. 1131–1146.

[48] W. Shi et al. “EXTRA: An Exact First-Order Algorithm for Decentral-

ized Consensus Optimization”. In: SIAM Journal on Optimization 25.2

(2015), pp. 944–966.

[49] J. F. C. Mota et al. “D-ADMM: A Communication-Efficient Distributed

Algorithm for Separable Optimization”. In: IEEE Transactions on Signal

Processing 61.10 (2013), pp. 2718–2723.

[50] E. Wei and A. Ozdaglar. “Distributed Alternating Direction Method of

Multipliers”. In: 51st IEEE Annual Conference on Decision and Control.

2012, pp. 5445–5450.

[51] W. Shi et al. “On the Linear Convergence of the ADMM in Decentralized

Consensus Optimization”. In: IEEE Transactions on Signal Processing

62.7 (2014), pp. 1750–1761. issn: 1053-587X.

[52] Q. Ling and A. Ribeiro. “Decentralized linearized alternating direction

method of multipliers”. In: IEEE International Conference on Acoustics,

Speech and Signal Processing. IEEE. 2014, pp. 5447–5451.

BIBLIOGRAPHY 159

[53] M. Zargham et al. “Accelerated dual descent for network flow optimiza-

tion”. In: IEEE Transactions on Automatic Control 59.4 (2014), pp. 905–

920.

[54] A. Jadbabaie, A. Ozdaglar, and M. Zargham. “A distributed newton

method for network optimization”. In: Decision and Control, 2009 held

jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009.

Proceedings of the 48th IEEE Conference on. IEEE. 2009, pp. 2736–2741.

[55] E. Wei, A. Ozdaglar, and A. Jadbabaie. “A distributed Newton method

for network utility maximization–I: algorithm”. In: IEEE Transactions

on Automatic Control 58.9 (2013), pp. 2162–2175.

[56] E. Wei, A. Ozdaglar, and A. Jadbabaie. “A Distributed Newton Method

for Network Utility MaximizationPart II: Convergence”. In: IEEE Trans-

actions on Automatic Control 58.9 (2013), pp. 2176–2188.

[57] A. Mokhtari et al. “Dqm: Decentralized quadratically approximated al-

ternating direction method of multipliers”. In: arXiv preprint arXiv:1508.02073

(2015).

[58] A. Mokhtari, Q. Ling, and A. Ribeiro. “Network newton-part i: Algo-

rithm and convergence”. In: arXiv preprint arXiv:1504.06017 (2015).

BIBLIOGRAPHY 160

[59] A. Mokhtari, Q. Ling, and A. Ribeiro. “Network Newton-Part II: Conver-

gence Rate and Implementation”. In: arXiv preprint arXiv:1504.06020

(2015).

[60] A. Mokhtari et al. “A decentralized second-order method with exact

linear convergence rate for consensus optimization”. In: arXiv preprint

arXiv:1602.00596 (2016).

[61] A. Nedic and A. Olshevsky. “Distributed optimization over time-varying

directed graphs”. In: IEEE Transactions on Automatic Control PP.99

(2014), pp. 1–1.

[62] A. Nedic and A. Olshevsky. “Distributed optimization over time-varying

directed graphs”. In: 52nd IEEE Annual Conference on Decision and

Control. 2013, pp. 6855–6860.

[63] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. “Push-Sum Distributed

Dual Averaging for convex optimization”. In: 51st IEEE Annual Con-

ference on Decision and Control. 2012, pp. 5453–5458.

[64] K. I. Tsianos. “The role of the Network in Distributed Optimization Al-

gorithms: Convergence Rates, Scalability, Communication/Computation

Tradeoffs and Communication Delays”. PhD thesis. Dept. Elect. Comp.

Eng. McGill University, 2013.

BIBLIOGRAPHY 161

[65] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. “Consensus-based dis-

tributed optimization: Practical issues and applications in large-scale

machine learning”. In: 50th Annual Allerton Conference on Communi-

cation, Control, and Computing. 2012, pp. 1543–1550.

[66] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-based computation of ag-

gregate information”. In: 44th Annual IEEE Symposium on Foundations

of Computer Science. 2003, pp. 482–491.

[67] F. Benezit et al. “Weighted Gossip: Distributed Averaging using non-

doubly stochastic matrices”. In: IEEE International Symposium on In-

formation Theory. 2010, pp. 1753–1757.

[68] A. Jadbabaie, J. Lim, and A. S. Morse. “Coordination of groups of mobile

autonomous agents using nearest neighbor rules”. In: IEEE Transactions

on Automatic Control 48.6 (2003), pp. 988–1001.

[69] C. W. Reynolds. “Flocks, Herds and Schools: A Distributed Behavioral

Model”. In: 14th Annual Conference on Computer Graphics and Inter-

active Techniques. New York, NY, USA: ACM, 1987, pp. 25–34. isbn:

0-89791-227-6.

[70] R. Olfati-Saber and R. M. Murray. “Consensus problems in networks of

agents with switching topology and time-delays”. In: IEEE Transactions

on Automatic Control 49.9 (2004), pp. 1520–1533.

BIBLIOGRAPHY 162

[71] R. Olfati-Saber and R. M. Murray. “Consensus protocols for networks of

dynamic agents”. In: IEEE American Control Conference. Vol. 2. 2003,

pp. 951–956.

[72] R. Olfati-Saber, J. A. Fax, and R. M. Murray. “Consensus and Cooper-

ation in Networked Multi-Agent Systems”. In: Proceedings of the IEEE

95.1 (2007), pp. 215–233.

[73] L. Xiao, S. Boyd, and S. J. Kim. “Distributed average consensus with

least-mean-square deviation”. In: Journal of Parallel and Distributed

Computing 67.1 (2007), pp. 33 –46.

[74] A. Makhdoumi and A. Ozdaglar. “Graph Balancing for Distributed Sub-

gradient Methods over Directed Graphs”. In: 54th IEEE Annual Con-

ference on Decision and Control (2015).

[75] L. Hooi-Tong. “On a class of directed graphswith an application to

traffic-flow problems”. In: Operations Research 18.1 (1970), pp. 87–94.

[76] N. Derbinsky et al. “An improved three-weight message-passing algo-

rithm”. In: arXiv preprint arXiv:1305.1961 (2013).

[77] Q. Ling et al. “Weighted ADMM for Fast Decentralized Network Op-

timization”. In: IEEE Transactions on Signal Processing 64.22 (2016),

pp. 5930–5942. issn: 1053-587X. doi: 10.1109/TSP.2016.2602803.

BIBLIOGRAPHY 163

[78] A. Ozdaglar. “Distributed Alternating Direction Method of Multipliers

for Multi-agent Optimization”. In: Lund Workshop on Dynamics and

Control in Networks (Oct. 2014).

[79] C. Xi, Q. Wu, and U. A. Khan. “Distributed gradient descent over di-

rected graphs”. In: arXiv preprint arXiv:1510.02146 (2015).

[80] C. Xi and U. A. Khan. “Directed-Distributed Gradient Descent”. In: 53rd

Annual Allerton Conference on Communication, Control, and Comput-

ing. 2015, pp. 1022–1026.

[81] C. Xi and U. A. Khan. “Distributed Dynamic Optimization over Directed

Graphs”. In: 55th IEEE Conference on Decesion and Control. 2016.

[82] C. Xi and U. A. Khan. “Distributed Subgradient Projection Algorithm

over Directed Graphs”. In: arXiv preprint arXiv:1602.00653 (2016).

[83] C. Xi and U. A. Khan. “On the linear convergence of distributed op-

timization over directed graphs”. In: arXiv preprint arXiv:1510.02149

(2015).

[84] C. Xi, Q. Wu, and U. A. Khan. “Fast distributed optimization over

directed graphs”. In: 35th American Control Conference. 2016, pp. 6507–

6512.

[85] C. Xi and U. A. Khan. “ADD-OPT: Accelerated Distributed Directed

Optimization”. In: arXiv preprint arXiv:1607.04757 (2016).

BIBLIOGRAPHY 164

[86] C. Xi and U. A. Khan. “Augmented DEXTRA for Fast Distributed Op-

timization over Directed Graphs”. In: 54th Annual Allerton Conference

on Communication, Control, and Computing. 2016.

[87] H. J. Kushner and G. Yin. Stochastic approximation and recursive al-

gorithms and applications. Vol. 35. Springer Science & Business Media,

2003.

[88] K. Cai and H. Ishii. “Average consensus on general strongly connected

digraphs”. In: Automatica 48.11 (2012), pp. 2750 –2761.

[89] G. W. Stewart. “Matrix perturbation theory”. In: (1990).

[90] F. Chung. “Laplacians and the Cheeger inequality for directed graphs”.

In: Annals of Combinatorics 9.1 (2005), pp. 1–19.

[91] S. Bubeck. “Convex optimization: Algorithms and complexity”. In: arXiv

preprint arXiv:1405.4980 (2014).

