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Abstract
It is shown theoretically that a one-dimensional crystal with time reversal symmetry is charac-

terized by a Z2 topological invariant that predicts the existence or otherwise of edge states. This is

confirmed experimentally through the construction and simulation of a photonic crystal analogue

in the microwave regime.
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Topological phases have been shown to arise in a number of condensed matter systems:

in the quantum Hall effect[1] where electrons are confined to two dimensions and subject to

a perpendicular applied magnetic field and in so-called topological insulators[2, 3] which are

materials the possess conducting metallic surfaces despite being insulators in the bulk. Ex-

perimental studies of these states, in materials such as graphene[4] and Bi2Se3 have recently

been an area of considerable focus both for fundamental reasons, because the topological

states in these materials lead to exotic quasi-particles, and also for applications such as

quantum computing.

The states arise in these systems as follows: consider a map from the Brillouin zone to

a space of nondegenerate Bloch Hamiltonians H(k). If |k〉 is an eigenstate of H(k), then a

vector potential A(k) = −i 〈k |∂k| k〉 may be defined following Berry[5]. The topological in-

dex of this map called the Chern number is Q =
´
∇×A(k) d2k. Thouless et al. discovered

that non-trivial Chern numbers can arise in the Brillouin zone with time reversal symmetry

broken by the application of a strong magnetic field as in the quantum Hall effect[1]. More

recently Balents and Moore[6] applied this paradigm to systems with strong spin-orbit in-

teraction but with time reversal symmetry intact and thereby clarified an earlier proposition

by Kane and Mele[7] that a Z2 invariant of the band structure divides insulators into two

classes: an even class corresponding to conventional insulators and an odd topological insu-

lating phase that possesses conductive surface states. Both spin-orbit coupling and breaking

of inversion symmetry are prerequisites for such materials.

In this paper, we apply this paradigm to a system with different symmetry, a one-

dimensional crystal with time reversal and charge conjugation symmetry. In the language

of random matrix theory[8], our system corresponds to class BDI in contrast to the uni-

tary class A in the work of Thouless et al.[1] and the symplectic class AII in Balents and

Moore[6]. By an analogous argument, it is shown that such a structure may possess edge

states characterized by a Z2 topological invariant. The system is then realized experimen-

tally through a photonic analogue. We stress that while edge states such as Tamm states

are well known in 1D crystals[9], it is the topologically-protected nature of those presented

here that primarily concerns us.

Model—We begin with the topological argument. Consider a tight binding model on a

one dimensional-lattice with nearest neighbor hopping and a constant on-site energy. Such
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a model is described by the following Schrödinger equation,

− τnψn+1 − τn−1ψn−1 = Eψn, (1)

where as usual the ψn represent the amplitude of the wavefunction at the n-th lattice site

and τn is the real hopping coefficient between the n-th site to the n + 1th site. As is well-

known, for arbitrary τn, the model (1) possesses a time-reversal symmetry with associated

operator,

T ψn = ψ∗
n, (2)

as well as a particle-hole C symmetry represented by the anti-unitary charge conjugation

operator,

Cψn = (−1)nψ∗
n, (3)

and where,

C2 = 1, T 2 = 1. (4)

The particle-hole symmetry restricts the Hamiltonian’s spectrum because if |ψ〉 is an eigen-

function of (1) with energy E, then C |ψ〉 is also an eigenfunction with energy −E .

For simplicity, a bi-partite lattice is now considered where the bond strengths are alter-

nately τ1 and τ2. The Schrödinger equation for this situation has the form

− τ1φBn − τ2φBn−1 = EφAn ,

−τ1φAn − τ2φAn+1 = EφBn . (5)

This may be diagonalized by introducing the Bloch ansatz, φAn = αeikn, φBn = βeikn, yielding, 0 z∗(w)

z(w) 0

 α

β

 = E

 α

β

 , (6)

where the 2× 2 matrix on the left of eq (6) is the Bloch Hamiltonian, w = eik and z(w) =

−(τ1 + τ2w). Eq (6) thus defines a map from the Brillouin zone −π ≤ k < π to the space

of Bloch Hamiltonians. Equivalently, this may be viewed as a map z(w) from a unit circle

in the w plane (the Brillouin zone) to the complex plane with the origin excluded. The

origin is excluded provided, as we assume, the bands are non-degenerate. The π1 homotopy

of the punctured plane is well known to be non-trivial. The Chern number Q in this case

corresponds to the number of times the loop z(eik) winds about the origin. It is easy to see
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that for the case τ1 < τ2, Q = 1 [fig. 1(a)(i)]; for τ1 > τ2, Q = 0 [fig. 1(a)(ii)]. This can also

be determined more formally by constructing the eigenspinors of the Bloch Hamiltonian,

computing the corresponding Berry connection, and evaluating the Wilson loop
´
dkA(k).

We will explain below why higher values of Q cannot be obtained even if we perturb the

model (e.g. by incorporating longer range hopping that respects C and T symmetry).

It is straightforward to verify that the Chern number is associated with a zero energy

bound state by noting that if the lattice is curtailed, so that n = 0 represents the leftmost

edge, the wave function will obey the boundary condition

− τ1φB0 = EφA0 ,

−τ1φA0 − τ2φA1 = EφB0 . (7)

Setting E = 0 it follows that the solution to eqs (5) and (7) is

φBn = 0,

φAn = (−τ1/τ2)nφA0 , (8)

which is finite as n → +∞ only if τ1 < τ2, and in such a case is manifestly localized in

character.

Now let us reformulate the argument with more generality. We continue to assume that

the crystal has a bi-partite lattice and that the Hamiltonian commutes with T and anti-

commutes with C. C and T transform a plane wave of wave vector k into one of wave-vector

−k. At the same time the amplitudes (α, β) are transformed to (α∗,−β∗) and (α∗, β∗)

respectively. The two symmetries relate the Bloch Hamiltonians at wave-vectors k and

−k via H(−k) = T H(k)T = −CH(k)C. Together these relations and the requirement of

hermiticity constrain the 2 × 2 Bloch Hamiltonian H(k) to be off-diagonal. At the special

points k = 0 and k = π which are invariant under k → −k the Bloch Hamiltonian is required

to have the form

H =

 0 −ia

ia 0

 . (9)

Here a is real and a 6= 0 since we are assuming that the bands have no accidental degeneracies.

Topologically, this space is a punctured line. Rather than considering the mapping of the

entire Brillouin zone to the space of Bloch Hamiltonians as before we may instead consider

the mapping from the two special points k = 0 and k = π to the punctured line. Such maps
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fall into two classes: a trivial one [fig. 1(b)(i)] where the special points are mapped to the

same side of the origin, a = 0, and a non-trivial case [fig. 1(b)(ii)] such that the special

points are mapped to opposite sides[17]. The edge mode occurs in the non-trivial case.

Our argument mirrors that of Balents and Moore[6] who considered maps from an effective

Brillouin zone in two dimensions which had the topology of a cylinder to the space of Bloch

Hamiltonians. The circular boundaries of the effective Brillouin zone in their argument are

analogous to our special points k = 0 and π. Apart from the difference in dimensionality

another key difference between their work and ours is in the symmetry. As noted above they

considered bands with odd time reversal symmetry (the symplectic class AII) whereas we

consider even time reversal symmetry accompanied by charge conjugation symmetry (class

BDI). As a consequence breaking of spatial inversion symmetry is essential for non-trivial

topology in their analysis but not for the class of topological insulator considered here.

Indeed the model eq (1) respects parity.

We now address the issue of how the edge state might be observed. The hopping model

on a bipartite lattice is actualized in a 1D solid where an electron is subject to a periodic

array of potential barriers of alternating height. The reflection and transmission of incident

free particle wavefunctions of wavevector k through such a structure is readily determined by

matching local solutions to the Schrödinger equation at interfaces using matrix methods[10].

To do so, define,

T (θ) =

 eiχ cosh θ sinh θ

sinh θ e−iχ cosh θ

 , U =

 eikb 0

0 e−ikb

 . (10)

Here T (θ) is the transfer matrix for a single symmetric barrier located at the origin and U

a translation operator; θ is the opacity of the barrier, b is the lattice spacing. In the limit

of large barriers, χ = ka+ ξ where a is the barrier width and ξ is an overall phase shift.

The band structure of the bipartite lattice, with alternating barriers of opacity θ1 and θ2

respectively, is determined by finding the eigenvalues of the transfer matrix corresponding

to the unit cell, i.e. UT (θ1)UT (θ2). For θ2 6= θ1, the usual band, i.e. values of k such

that the eigenvalues are complex, is found to split into two sub-bands symmetrically placed

around the point k0 = (π/2 − ξ)/(a + b) and with edges corresponding to the roots of

cos(2k(a+ b) + 2ξ) cosh θ1 cosh θ2 + sinh θ1 sinh θ2 = ±1. Between these subbands, including

the point k0, the reflection coefficient |r|2 → 1; the phase shift δ of a reflected wave, however,
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experiences a jump of π around k0 if θ1 < θ2 and 0 otherwise. The jump leads to a Lorentzian

feature in the time delay ∂δ
∂k

of a reflected wave; the width was determined by routine

calculations to be,

L = 2eθ2 cosh θ1
sinh(θ1 + θ2)− cosh θ1 cosh θ2

sinh2(θ2 − θ2)
. (11)

Hence, the topological mode may be observed experimentally by a technique such as Time

Delay Reflection Spectroscopy. As will be seen shortly, for a finite structure evidence of the

topological mode is also available in some circumstances from the reflection profile.

To verify the above arguments, we numerically evaluated the reflection coefficient and

time delay for a 3.5 period structure from the transfer matrix as a function of k and θ2 with

fixed θ1 = 1, a = 0.1, b = 1. Results are plotted in fig. 3. When θ1 = θ2 the reflection

spectrum [fig. 3(a)] consists of 6 minima, which correspond to a band in a structure with

an infinite number of unit cells. As θ2 is increased, the central two minima move closer

together and merge around θ2 ≈ 1.3; as θ2 →∞, this mid-band mode vanishes in reflection,

contributing only a phase shift to the reflected light as discussed earlier. Conversely, if

θ2 < θ1, the central minima become separated and, as predicted by the topological argument

above, no mid-band mode exists. Results for 6.5 units are shown in fig. 3(c) and (d);

the additional layers generate corresponding modes, but the topological mode remains for

θ2 > θ1. If the number of periods is increased further, more modes appear to eventually yield

the two sub-bands of the infinite bipartite lattice and the mid-gap mode persists confirming

its topological nature.

Photonic analogue— In order to conveniently verify the veracity of the topological index

as a predictor of edge states, we exploit the known isomorphism between the Schrödinger

equation and Maxwell’s equations in one dimension[11] to construct a photonic analogue

structure in the microwave regime.

The experimental setup is illustrated in fig. 2 and details of the data collection described

more fully in [12]. The experimental structure itself consists of alternating layers of dielectric

(air) and metamaterials. The metamaterial layers are separated by metallic spacers around

the edge of the sample yielding a nominal spacing of tair = 7.60± 0.01 mm. The metamate-

rial layers are made from a solid aluminium sheet perforated with a periodic square array of

holes of pitch d = 7.68± 0.01 mm and hole size of l = 6.15± 0.01 mm; the thickness of the

metamaterial in successive layers is alternated, and denoted tA and tB respectively, to form

6



the required ABAB bipartite stack with 3.5 unit cells as modelled earlier. When illuminated

with microwave radiation between 12 and 20 GHz, the metamaterial supports only evanes-

cently decaying modes in the subwavelength holes; hence the metamaterial layer behaves as

an effective metal layer [13] with a skin depth of ∼ 1 mm. This arrangement is used rather

than homogenous metal plates because metals behave as near perfect electrical conductors

at microwave frequencies; thin metallic films could be used but by using a metamaterial

the resulting structure is less sensitive to variations in thickness. The effective properties of

the metamaterial layer can also be controlled much more precisely by adjusting the design

parameters i.e. thickness, pitch and fill fraction.

In the experiment, the sample is illuminated by a collimated s-polarized (transverse elec-

tric) microwave beam, produced by a microwave horn placed at the focus of a spherical

mirror, incident on the sample at 10◦. Reflected intensity is measured as a function of fre-

quency using a detector horn and secondary mirror. The sample studied had tA < tB,

specifically tA = 0.66±0.01 mm and tB = 2.33±0.01 mm as measured from the constructed

sample. Since the opacity parameters θ of eq. (10) monotonically increase with the thick-

nesses t, the topological argument above predicts that the edge states should be observed

in this case. The reflected intensity is plotted as a function of frequency in fig. 4(a), con-

firming the presence of the midgap topological mode. Due to the finite number of periods

in the structure, the band is manifested as a series of reflection minima corresponding to

resonant modes in the structure; if the number of unit cells were increased, the continuous

sub-bands would be recovered[14]. We also simulated the response of a reversed structure,

i.e. where tA = 2.33 mm and tB = 0.66 mm; the reflection profile is plotted in gray in

fig. 4(a). No mid-gap topological mode is observed in this structure in agreement with the

above prediction.

To characterize the nature of these modes, we numerically modelled the reflection re-

sponse of the structures using commercial finite-element software (Comsol). As with other

experiments[15, 16], modelling can be used to visualize the electric field distribution in each

mode. The simulated response is plotted in fig. 4(a). We emphasize that no fitting was

performed and the agreement between model and data displayed in fig. 4(a) is typical for

such studies, accurately locating the position of the minima while incorrectly estimating

their depth. This discrepency is due to a number of physical effects including: finite area

of the sample in the experiment; spherical aberration of the microwave source and detector;
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imperfections in the experimental sample such as bowing of the metamaterial layers which

changes the dielectric spacing; and a radius of curvature associated with the hole edges that

reduces the effective skin depth.

Plots of the time averaged electric field magnitude as a function of the distance through

the sample are displayed in fig. 4(b) for each reflection minimum in the fitted profile fig.

4(a). Modes A,B,D and E are clearly distinct in character from mode C. Mode C has the

predicted properties of the topological edge state: it is confined to the edge of the sample

and also occurs in the middle of the band. Plots of the average electric field are also shown

in fig. 4(c) for the six minima in the reversed structure. Unlike the previous case, none of

the modes i—vi are localized to the edges, in agreement with the prediction of the above

topological argument.

Conclusion—A topologically protected edge state has been experimentally observed in a

1D photonic crystal with time-reversal symmetry. The existence or otherwise of the state as

a function of the design parameters of the crystal is predicted by a Z2 topological invariant

that classifies mappings from the band structure to the space of Bloch Hamiltonians; the

classification was constructed using methods previously applied to two and three dimen-

sional topological insulators. However the crystals we consider are of a different class from

conventional topological insulators in terms of their symmetries. The latter must have time

reversal symmetry, strong spin-orbit interaction and a lack of inversion symmetry; in our

work we use an anti-unitary charge conjugation symmetry C as well as the time-reversal

operator T to develop the classification.
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Figure 1: (a) Maps from the Brillouin zone to the space of 2× 2 Hamiltonians (6) fall into 2 classes

depending on the value of parameters τ1 and τ2: i) those that encircle the origin and ii) those that

do not. (b) Maps from the Brillouin zone to the space of C-symmetric Hamiltonians are i) trivial if

both points are mapped to the same side of the excluded point a = 0 and ii) nontrivial otherwise.
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Figure 2: Sketch of experimental setup to obtain reflected intensity profiles of microwave radiation

from the metamaterial structure. The structure consists of metamaterial layers of alternating

thicknesses tA = 0.66 mm and tB = 2.33 mm. The metamaterial layers are aluminium plates

stamped with a square array of pitch d = 7.68 mm and hole size l = 6.15 mm; the metamaterials

are spaced by air with tair = 7.6mm.
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Figure 3: (a) Reflected intensity as a function of wavevector for opacity parameters θ1 = 1 and

varying θ2. (b) Time delay as a function of wavevector and θ2; the lorentzian feature indicative of

the topological mode for θ2 > θ1 is indicated with a *. Corresponding plots are shown for 6.5 units

in (c) and (d).
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Figure 4: (a) Measured (disks) and modelled (black solid line) reflection profile for a 3.5 period AB

bipartite stack with tA < tB; reflection minima are labelled (A-E). Also plotted (grey dashed line)

is the reflection profile for a structure with tA > tB with reflection minima labelled (i-vi). Incident

radiation is from the left. (b) Normalized electric field intensity profile for each observed mode A-E,

calculated from finite-element modelling of the experimental setup. Position of metamaterial layers

is indicated by gray shading. The topological mode C is highlighted in red. (c) Corresponding plots

for modes of the reversed structure i-vi.
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