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Abstract 

 

Drug-drug interaction due to enzymatic inhibition is the focus of this research.  Two 

different projects to address separate questions of drug-drug interaction were carried out 

applying the in vitro approaches. 

In the project 1, we generated a fuller picture on the in vitro inhibitory effects of the 

selected anti-tuberculosis drugs on common human hepatic CYP450 and UGT enzymes 

in hope that these data may provide an in vitro basis for understanding some clinical DDI 

observations and practice. Briefly, the comorbidities of tuberculosis and diseases such as 

HIV require long-term treatment with multiple medications.  Despite extensively 

available in vitro and in vivo information on effects of rifampicin and isoniazid on human 

CYPs, there is limited published data regarding the inhibitory effects of other anti-TB 

drugs on human CYPs and UGTs.  The inhibitory effects of 5 first-line anti-TB drugs 

(isoniazid, rifampicin, pyrazinamide, ethambutol, and rifabutin), and the newly approved 

bedaquiline, were evaluated for 6 common human hepatic UGT enzymes (UGT1A1, 

1A4, 1A6, 1A9, 2B7 and 2B15) in vitro using HLMs.  Pyrazinamide, ethambutol, 

rifabutin and bedaquiline were also studied for their inhibitory effects on 8 of the most 

common human CYP enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A).  

Rifabutin was observed in vitro to inhibit different CYPs to varying degrees, but with all 

IC50 values exceeding 25 µM.  Rifabutin and rifampicin also inhibited several tested 

human UGTs.  The Ki value for rifabutin on human hepatic UGT1A4 was 2 μM.  In 

addition, the 6 selected anti-TB drugs produced minimal inhibition of acetaminophen 

glucuronidation suggesting that DDI between APAP and the selected drugs is unlikely.   
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In the project 2, the mechanism of the protective effects of two flavonoids, namely 

luteolin and quercetin, on APAP induced hepatotoxicity was investigated in the in vitro 

settings using HLMs.  Acetaminophen is a common over-the-counter analgesic and 

antipyretic.  When overdosed, APAP can cause acute hepatic necrosis.  The key 

mechanism in APAP induced hepatotoxicity is the CYP450 catalyzed formation of the 

reactive metabolite, N-acetyl-p-benzoquinone imine which depletes hepatic glutathione 

and accumulates to cause excessive cellular oxidative stress.  In this study, we observed 

that luteolin and quercetin inhibited in vitro most of the hepatic CYP450 enzyme 

isoforms including several key isoforms which are responsible to the formation of 

NAPQI; both luteolin and quercetin strongly inhibited APAP sulfation.  In addition, 

although both luteolin and quercetin inhibited individually several UGT isoforms in vitro, 

they didn’t inhibit the overall APAP glucuronidation.  Thus, the beneficial effects of 

luteolin and quercetin against APAP induced hepatotoxicity possibly result from their 

properties of being able to partially block the CYP-mediated oxidation and to drive the 

reaction via APAP glucuronidation.   
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Introduction 

 

1.1 Cytochrome P450 

CYP450s belong to the superfamily of hemeproteins which contain a heme cofactor. The 

term P450 depicts the fact that when the enzyme is in its reduced state and complexed 

with CO, the absorption wavelength is 450 nm
 (Axelrod, 1955, Brodie et al., 1955)

.  CYP enzymes 

are widely present in animals, plants, fungi, protists, bacteria, archaea, and viruses 
(Lamb et 

al., 2009, Sigel et al., 2007, Danielson, 2002)
.   

 

The Human Genome Project has identified 57 human genes coding for the various human 

CYP450 enzymes 
(Guengerich, 2005)

.  The majority of these enzymes are in families CYP1 to 

CYP4.  Families CYP1, CYP2 and CYP3 are primarily associated with the phase 1 

metabolism of exogenous compounds, while the others play a role in the biosynthesis of 

steroids, fatty acids and bile acids 
(Lewis, 2004)

.  Among the CYP450s which catalyze 

xenobiotics (about 15 CYPs), a selected list of 7 CYPs are recommended by FDA for 

routine assessment of metabolism-mediated drug-drug interaction, namely CYP1A2, 

CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6,and CYP3A 
(FDA  Draft, 2012)

. 

 

CYP450 enzymes can be found throughout the body, particularly at interfaces such as the 

liver, intestine, nasal epithelia, skin, lung and kidney. The liver and the intestinal epithelia 

are the predominant sites for CYP450-mediated drug elimination. The relative 

distributions of each major human CYP450 at the sites of liver and intestines have been 
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reported previously 
(Evans and Relling, 1999, Paine et al., 2006, Shimada et al., 1994)

.  The activity of 

individual CYPs is not strictly proportional to their protein expression.  For an example, 

according to a published survey in 2002 which involved the top 200 prescribed drugs 

marketed in the US, CYP2D6, even though is only about less than 5% of the total hepatic 

CYP450s, has a disproportional share in metabolizing about 25% of marketed 

pharmaceutics metabolized by P450s 
(Guengerich, 2005, Williams et al., 2004, Evans and Relling, 1999)

. 

 

1.2 UDP-glucuronosyltransferases 

Glucuronidation is an important phase II metabolism which detoxifies many xenobiotics 

including many drugs, dietary chemicals, environmental pollutants and endogenous 

compounds 
(Miners et al., 2002)

.  The corresponding UGT enzymes are classified into families 

and further into subfamilies as UGT1A, UGT2A and UGT2B 
(Mackenzie et al., 1997)

.  The 

major hepatic UGTs include UGT1A1, 1A4, 1A6, 1A9, 2B7 and 2B15 
(Court, 2010)

.  There 

are also extrahepatic UGTs.  For an example, UGT1A7, 1A8 and 1A10 are exclusively 

expressed in extrahepatic tissues and found in the gastrointestinal (GI) tract (Strassburg et al., 1997, 

Strassburg et al., 1998).  It has been reported that 1 in 13 drugs of the top 200 prescribed drugs in 

2002 in the United States is metabolized by glucuronidation and that UGT2B7, UGT1A4 

and UGT1A1 are among the most common UGT enzymes to metabolize the top 200 

drugs 
(Williams et al., 2004)

. 

 

1.3 In vitro inhibition studies of metabolic enzymes 

Drug metabolism in the body is generally divided into two groups, phase I and phase II 

reactions. Phase I reactions involve hydrolysis, reduction and oxidation.  Phase II 

reactions include various conjugation reactions, such as glucuronidation, sulfation, 
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acetylation, methylation, glutathione conjugation, and amino acid conjugation.  In vitro 

models using human liver microsomes, liver S9 fractions, liver slices, intact hepatocytes 

or recombinant CYP enzymes are cost-effective ways to study drug metabolism 

compared to clinical studies.  The in vitro methods on drug metabolism include but not 

limited to studying biotransformation of a drug of interest, identifying the involved 

metabolic enzymes by reaction phenotyping and assessing potential drug-drug interaction 

by enzymatic inhibition or induction.  Drug-drug interaction due to enzymatic inhibition 

is the focus of this research.   

 

Inhibition of metabolic enzymes by co-administered medications causes clinical relevant 

sometimes serious outcomes.  It is recognized by FDA and other regulatory agencies as 

an important aspect relating to drug safety when developing a drug 
(FDA , 2012, European 

Medicines Agency, 2012)
.  In vitro studies are cost-efficient and provide useful information for 

necessary clinical trials on drug-drug interaction.  The inhibition mechanisms of some 

metabolic enzymes are reversible, while others are time-dependent (TDI) 
(White, 2000)

 that is 

also termed as mechanism-based inhibition. 

 

1.3.1 Reversible inhibition 

Reversible inhibition involves rapid association and dissociation of drugs and enzymes 

and may be competitive (Equation 2), noncompetitive (Equation 3), uncompetitive 

(Equation 4) or mixed inhibition of competitive and noncompetitive (Equation 5). The 

simplest enzyme kinetic model which is with no inhibition can be described as Michaelis 

Menten model (Equation 1). 
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Equation 1 No inhibition 

 

 

 

Equation 2 Competitive 

 

 

 

Equation 3 Noncompetitive 

 

 

 

Equation 4 Uncompetitive 

 

 

 

Equation 5 Mixed competitive and noncompetitive inhibition 
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v is the initial rate of the reaction; [S] is the substrate concentration; [I] is the inhibitor 

concentration; Vmax and Km are the kinetic constants for a given enzyme; Vmax, the 

maximum reaction velocity and Km, the Michaelis-Menten constant; Ki is the inhibitor 

constant; α is a number derived mathematically 
(Greenblatt et al., 2011)

.  

 

IC50 in general is greater than or equal to Ki.  α equals to ‘infinity’ for pure competitive 

inhibition (Equation 6) and equals to 1.0 for pure noncompetitive inhibition (Equation 7)
 

(Greenblatt et al., 2011)
.  

 

Equation 6 

 

 

Equation 7 

 

 

1.3.2 Time dependent inhibition (TDI) 

Time dependent inhibition (TDI) is characterized by an increase on inhibitory potency as 

compounds turnover.  TDI often results in more significant drug interactions, as the 

restoration of enzyme activity generally requires de novo synthesis of the enzyme.  TDI 

could result from irreversible covalent binding which is also called mechanism based 

inhibition or quasi-irreversible noncovalent tight binding of a chemically reactive 

intermediate to the enzyme or reversible inhibition from a metabolite(s) generated in situ 

(Grimm et al., 2009; Kalgutkar et al., 2007)
.  A typical initial test for TDI is an “IC50 shift” assay.  The 
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Pharmaceutical Research and Manufacturers of America (PhRMA) survey participated 

by 17 companies in 2009 indicated that 47% of companies used the model of  “IC50 shift” 

as the initial TDI assessment 
(Grimm et al., 2009)

.  A decrease of 1.5 to 2 fold for the initial 

IC50 value of the enzyme of interest with a 30 min pre-incubation with the compound of 

interest represents a signal to trigger further definitive time-dependent inhibition studies 

to obtain TDI parameters (i.e., kinact and KI )  
(Grimm et al., 2009, Berry and Zhao, 2008)

.  kinact is the 

maximum inactivation rate which is a theoretical value and cannot be experimentally 

observed, and KI is the inactivator concentration when the rate of inactivation reaches 

half of the kinact  value 
(Silverman, 1996)

.  A series of in vitro in vivo extrapolation 

mathematical models have been developed using the in vitro TDI parameters to predict 

the AUCR value, which is the ratio of the AUCs with and without inhibition 
(Grimm et al., 

2009)
.  When AUCR is greater than 1.25, drug-drug interaction is possible and a clinical 

study using an appropriate probe substrate is recommended 
(FDA, 2012, Zhang et al., 2010)

. 

 

1.4 Project 1: Inhibitory effects of anti-TB drugs on human CYPs and UGTs 

 

1.4.1 Tuberculosis 

Tuberculosis is a leading cause of morbidity and mortality worldwide.  The World Health 

Organization estimated that in 2013 there were around 9.0 million people that developed 

TB, and 1.5 million deaths from TB, including 360,000 deaths associated with co-

infection with HIV 
(WHO, 2014)

.  The comorbidity of TB and other diseases requires 

treatment with multiple medications. Understanding of potential drug-drug interactions 

(DDIs) is of importance in planning safe and effective combination therapies.  
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1.4.2 Anti-TB drugs 

Isoniazid, rifampicin (or rifampin), pyrazinamide, ethambutol, rifabutin and rifapentine 

are the recommended first-line anti-TB drugs to treat drug-susceptible tuberculosis 
(Zumla et 

al., 2013)
 (Table 1, and 2).  Bedaquiline is a novel anti-mycobacterial agent, which was 

newly approved by FDA to treat multidrug resistant tuberculosis 
(Chahine et al., 2014, Worley et al., 

2014)
.  Among those, rifampicin is a potent inducer of the CYPs, UGTs, as well as the P-

glycoprotein transport system both in vitro 
(Rae et al., 2001, van de Kerkhof et al., 2008, Soars et al., 2004)

 

and clinically 
(Baciewicz et al., 2013)

.  Rifampicin is also reported to be an inhibitor of some 

human CYPs in vitro 
(Kajosaari et al., 2005)

.  Overall, rifampicin clinically reduces serum 

concentrations of many drugs 
(Ochs et al., 1981)

.  Compared to rifampicin, rifabutin has less 

potency as a CYP3A inducer and is used as a substitute for rifampicin in patients 

receiving protease inhibitor-based antiretroviral therapy 
(Zumla et al., 2013, Baciewicz et al., 2013, WHO, 

2010)
.  Isoniazid is known as an inhibitor of many human CYPs in vitro 

(Wen et al., 2002, Desta et 

al., 2001, Polasek et al., 2004)
 and clinically 

(Ochs et al., 1981, Ochs et al., 1987)
.  

Both the induction effects of rifampicin and inhibitory effects of isoniazid on human 

CYPs have been extensively reported in vitro and in vivo.  However, the data of their 

inhibitory effects on human UGTs is limited.  The information for other anti-TB drugs is 

also limited.  In this work, inhibitory properties of the selected anti-TB drugs, including 

pyrazinamide, ethambutol, rifabutin and bedaquiline were studied with both common 

CYP and UGT enzymes; Inhibitory effects of isoniazid and rifampicin on human hepatic 

UGTs were also studied.  Since acetaminophen is so widely used as an analgisic agent, 

we also evaluated the effects of the anti-TB drugs on acetaminophen glucuronidation. 
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Table 1 Main tuberculosis drugs in clinical use and their pharmacological mechanisms 
Drug (year of discovery)  Mechanism of Action 

Isoniazid (1952) Inhibits mycolic acid synthesis 

Rifampicin (1963) Inhibits transcription 

Pyrazinamide (1954) Inhibits translation and trans-translation, acidifies cytoplasm 

Ethambutol (1961) Inhibits arabinosyl transferases 

Rifabutin (1975) blocks the DNA-dependent RNA-polymerase of the bacteria  

Bedaquilline (2012 FDA approval)) inhibits the c subunit of ATP synthase, thereby decreasing 

intracellular ATP levels 

 

 

Table 2 Plasma concentrations of the drugs 
(Peloquin et. al., 2002) 

  Usual adult dosage Plasma Cmax (μg/mL) Plasma Cmax (μM) 

Isoniazid 300mg qd 3.0-6.0  21.9-43.8 

  900mg biwk 9-18 mg/ml 65.6-131.3 

Rifampin  600mg qd 8.0-24  9.7-29.2 

Rifabutin 300mg qd 0.3-0.9  0.4-1.1 

Pyrazinamide  25mg/kg qd 20-50  162.5-406.1 

  50mg/kg biwk 40-100  324.9-812.3 

Ethambutol 25mg/kg qd 2.0-6.0  9.8-29.4 

  50mg/kg biwk 4.0-12  19.6-58.7 

Bedaquiline  400mg qd for a week 5.5 9.9 

 

 

1.5 Project 2: Metabolic interactions between APAP and two flavonoids (luteolin 

and quercetin) 

 

1.5.1 Acetaminophen and its metabolism 

Acetaminophen is a common over-the-counter pain reliever and fever reducer.  When 

overdosed, APAP can cause acute hepatic necrosis.  APAP induced hepatotoxicity is the 
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leading cause of acute liver failure in the US 
(Larson et al., 2005)

.  The key mechanism in 

APAP induced hepatotoxicity is the CYP450-catalyzed formation of the reactive 

metabolite, NAPQI, which depletes hepatic glutathione and accumulates to cause 

excessive cellular oxidative stress 
(Miner and Kissinger, 1979)

 (Fig 1).  Approximately 5% to 9% 

of an orally administered APAP is metabolized by the CYP450-dependent oxidation 

pathways.  CYP3A4 
(Laine et al., 2009, Thummel et al., 1993, Wolf et al., 2005)

, CYP2E1 
(Laine et al., 2009, Wolf et 

al., 2007, Manyike et al., 2000)
, CYP1A2 

(Laine et al., 2009, Tonge et al., 1998, Zaher et al., 1998)
, CYP2D6 

(Laine et al., 

2009, Zhou et al., 1997)
 and CYP2A6 

(Chen et al., 1998; 1998)
 are involved in the formation of NAPQI.  

Parallel to the CYP450-dependent oxidation, other major metabolic pathways of APAP 

are glucuronidation (about two-thirds of an orally administered dose) and sulfation (about 

one-third) which produce the nontoxic metabolites 
(Benson et al., 2005)

.  UGT1A1, 1A6, 1A9 

and 2B15 are important human UGTs involved in the glucuronidation of APAP 
(Court and 

Greenblatt, 1997, Court and Greenblatt, 2000, Court et al., 2001, Krishnaswamy et al., 2005, Fisher et al., 2000, Mutlib et al., 2006)
.  

SULT1A1, SULT1A3/4, SULT1E1, and SULT2A1 have been reported to be major 

contributors to APAP sulfation 
(Adjei et al., 2008)

.    

 

1.5.2 Cimetidine with its protective effects on APAP induced hepatotoxicity 

Various chemicals and therapeutics have been studied for their protective effects on 

APAP induced hepatotoxicity in animal models as well as clinically 
(Tran et al., 2001, Slattery et 

al., 1989)
.  For an example, in a mouse study, a simultaneous treatment of cimetidine at 75 

mg/kg with APAP significantly increased the LD50 of APAP 
(Abernethy et al., 1983)

.  The 

protective effects of cimetidine may be due to its greater inhibition to CYP450-depedent 

oxidation than the glucuronidation pathway.  It has been reported that cimetidine 
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significantly inhibited CYP1A2, 2C9, 2D6, and 3A4 both in vitro and clinically 
(Martinez et 

al., 1999)
;  And that it also inhibited APAP glucuronidation in vitro, but with a Ki value 10 

fold higher than required for CYP450-depedent oxidation 
(Mitchell et al., 1984)

.  Clinically, 

cimetidine didn’t protect against APAP induced hepatotoxicity, as the required effective 

dose could not be reached by the normal therapeutical ranges 
(Slattery et al., 1989)

. 

 

Figure 1 Acetaminophen metabolism 

 

 
 

 

 

1.5.3 Quercetin and luteolin with their protective effects on APAP induced 

hepatotoxicity 

 

Phytochemicals such as certain flavonoids in herbal extracts have been reported to have 

protective effects on liver in experimental animals 
(Aycan et al., 2014, Kiran et al., 2012, Sakeran et al., 

2014, Gilani et al., 1997, Shivashri et al., 2013, Yousef et al., 2010)
.  Although the effective mechanism is 

usually identified as antioxidant effects, the mechanism of protection remains elusive for 
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the following reasons. The diversity of phytochemicals in various herbs makes it difficult 

to pinpoint the effective chemical components.  Furthermore, the properties of the 

relevant phytochemicals are not well studied. 

 

Flavonoids are widely distributed in edible plants such as fruits and vegetables.  Many 

studies have reported that diets high in flavonoids may be associated with possible 

preventive effects of diseases such as cancer, cardiovascular and neurodegenerative 

diseases 
(Manach et al., 2004, Williamson and Manach, 2005, Hertog et al., 1994, Hertog et al., 1993)

.  Previous studies 

have shown that quercetin (a flavonoid) is beneficial in alleviating APAP induced 

hepatotoxicity 
(Gilani et al., 1997, Yousef et al., 2010)

.  A study using a freshwater fish has also 

demonstrated that the abnormalities associated with APAP exposure were reversed on the 

treatment with celery extract which is abundant in flavonoids such as rutein, quercetin 

and luteolin 
(Shivashri et al., 2013)

. 

 

The objective of this study is to provide in vitro evidence on the protective mechanism of 

the selected flavonoids (luteolin and quercetin) on APAP induced hepatotoxicity.  We 

observed that luteolin and quercetin inhibited most of the hepatic CYP450 enzymes 

including several key isoforms which are responsible to the formation of NAPQI in 

APAP metabolism; both luteolin and quercetin strongly inhibited APAP sulfation.  

However, neither luteolin nor quercetin inhibited the overall APAP glucuronidation.  The 

in vitro data collectively shed light onto the explanation of the protective effects of 

luteolin and quercetin against APAP induced hepatotoxicity. 
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Material and Methods 

 

2.1 Materials 

Chemicals and solvents were purchased from Sigma-Aldrich Corp (St. Louis, MO) and 

Fisher Scientific (Pittsburg, PA).  Water was purified with a Mili-Q system (Milford, 

MA).   

 

2.2 Inhibition studies on CYP-mediated oxidation using HLMs  

HLMs were prepared as previously described 
(Greenblatt et al., 2011, von Moltke et al., 1993a)

.  Fifty-

three individual liver microsomes were combined to make a batch of pooled HLMs.  The 

previously published incubation procedures for in vitro inhibition studies using HLMs 

(Greenblatt et al., 2011, von Moltke et al., 2001)
 were applied with modifications.  Briefly, appropriate 

substrates and positive controls (Table 3) were added to incubation tubes.  The anti-TB 

drugs or luteolin or quercetin were individually added in a series of concentrations to 

separate incubation tubes. The solvent (methanol) was evaporated to dryness at 40°C 

under mild vacuum conditions.  Due to their poor solubility in methanol, propofol (the 

UGT1A9 substrate) and bedaquiline were prepared in DMSO and added directly to 

incubation tubes (1% DMSO v/v).  Methanol at 1% (v/v) in the final incubation mixture 

was added to reconstitute the anti-TB compounds after dryness.  The incubation mixtures 

for CYP-mediated oxidation contained 50 mM phosphate buffer (pH 7.5), 5mM MgCl2, 

0.5mM NADP, isocitrate and an isocitric dehydrogenase regenerating system, and 

appropriate amounts of the pooled HLMs.  The anti-TB drugs were pre-incubated with 

HLMs (without the index substrates) for 20 minutes at 37°C, and then followed by 
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another timed incubation with the substrates (250μL).  100 µL of acetonitrile (or acidified 

acetonitrile adjusted with 85% H3PO4 for CYP2B6 and 2C9) with internal standards was 

used to stop the reactions.  All incubations were performed in duplicate.  Initial tests for 

detecting IC50 shifts were carried out by comparing incubations with 20 minutes’ 

preincubation to incubations without preincubations. The supernatant was transferred to 

HPLC vials for HPLC-UV or HPLC-fluorescence analysis. 

 

2.3 Solvent effects of methanol and DMSO on human hepatic CYPs 

The inhibitory effects of methanol and DMSO on some selected human CYP enzymes 

were investigated.  Briefly, various percentages of methanol or DMSO, namely 0, 0.05, 

0.1, 0.5, 1 and 2% v/v, were introduced in the incubation mixtures containing the index 

substrates.  The incubations were conducted without pre-incubation, and all incubations 

were performed in duplicate with the pooled HLMs.  Samples were incubated at 37°C for 

appropriate duration and stopped by addition of 100 µL cold acetonitrile (in 250 µL of 

the incubation mixture) with internal standards.   

 

2.4 Ki value for reversible enzymatic inhibition 

Inhibition of UGT1A4 by rifabutin was observed to have a low IC50 value around 11 µM 

which is low enough to trigger a DDI concern.  As there was no IC50 shift between with 

and without pre-incubation, the experimental design for reversible enzymatic inhibition 

was applied to determine the Ki value for rifabutin versus human UGT1A4 using the 

pooled HLMs 
(Greenblatt et al., 2011)

.  Varied concentrations of the index substrate 

(trifluoperazine) at 2, 5, 10, 20, 34.2, 72.4, 144.9 and 336.6 µM were incubated at 37°C 
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with the pooled HLMs  in presence of varied concentrations of the tested inhibitor 

(rifabutin), at 0, 1.25, 5, 10, 30, and 60 µM respectively.  Probenecid at 2.4 mM was used 

as the positive inhibitory control. After 30 minutes’ incubation, the reactions were 

stopped with 40 µL of acetonitrile (in the incubation mixtures of 100 µL) with the 

internal standard (phenacetin).  The supernatant was transferred to HPLC vials for 

HPLC-UV analysis. 

 

2.5 Inhibition studies on glucuronidation using HLMs 

Previously described incubation procedures were used with modifications 
(von Moltke et al., 

1993b, Court, 2010, Court, 2005)
.  The incubation mixtures for glucuronidation was prepared with 

50 mM phosphate buffer (pH 7.5), 5mM MgCl2, alamethicin (50 µg per mg protein) and 

appropriate amounts of the pooled HLMs and kept on ice for 5 minutes.  UDPGA was 

prepared separately and fresh in the phosphate buffer.  The reactions were initiated by 

addition of the UDPGA solution (a final concentration of 10 mM) in the incubation 

mixtures (100uL).  All incubations were performed in duplicate.  The incubations were 

conducted without pre-incubation except for those with β-estradiol (UGT1A1), 

trifluoperazine (UGT1A4), and APAP, for which the incubations with 20 minutes’ pre-

incubation were also conducted.  The reactions were stopped by addition of 40 µL of 

acetonitrile (or acidified acetonitrile adjusted with 85% H3PO4 for UGT2B7 and APAP 

glucuronidation) with internal standards.  The supernatant was transferred to HPLC vials 

for HPLC-UV analysis. 
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Table 3 In vitro systems using HLMs for evaluating inhibitory activities of the selected 

anti-TB drugs or flavonoids on human CYPs and UGTs 

Enzyme 

Isoform 

Substrate   

(Concentration) 

Internal standard Metabolite assayed Inhibitor 

CYP1A2 Phenacetin (100uM) 2-acetaminophenol Acetaminophen α-Naphthoflavone 

CYP3A Triazolam (250uM) Phenacetin α-Hydroxytriazolam Ketoconazole 

CYP2B6 Bupropion (80uM) 2-acetaminophenol Hydroxybupropion Clopidogrel 

CYP2C8 Taxol (25uM) Phenacetin 6-Hydroxytaxol Quercetin 

CYP2C9 Flurbiprofen (5uM) Naproxen 4’-Hydroxyflurbiprofen Sulfaphenazole 

CYP2C19 S-mephenytoin (25uM) Phenacetin 4’-Hydroxymephenytoin Ticlopidine 

CYP2D6 Dextromethorphan 

(25uM) 

Pronethalol Dextrorphan Quinidine 

CYP2E1 Chlorzoxazone (50uM) Phenacetin 6-Hydroxychlorozoxazone Diethydithiocarbamate 

UGT1A1 β-Estradiol (100uM) Phenacetin Estradiol-3-glucuronide Probenecid 

UGT1A4 Trifluoperazine  

(200uM) 

Phenacetin Trifluoperazine-

glucuronide 

Probenecid 

UGT1A6 Serotonin  (4 mM) Phenacetin Serotonin-glucuronide Probenecid 

UGT1A9 Propofol (100uM) 3-acetaminophenol Propofol-glucuronide Niflumic acid 

UGT2B7 3’-azidothymidine 

(AZT) (500uM) 

3-acetaminophenol AZT-glucuronide Probenecid 

UGT2B15 Oxazepam (100uM) Phenacetin S-oxazepam-glucuronide Niflumic acid 

APAP 

Glucuronidation 

Acetaminophen 

(0.6mM) 

3-acetaminophenol APAP-glucuronide Probenecid 

     

 

 

2.6 Inhibition studies on APAP sulfation 

The incubation procedures for APAP sulfation was based on previously published 

methods with modifications 
(Miksits et al., 2009, Yang et al., 2011)

.  Briefly, APAP as the substrate 
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was added to incubation tubes and the solvent (methanol) was evaporated to dryness at 

40°C under mild vacuum conditions.  The amount of APAP was 0.6 mM in the final 

volume of 100 uL.  Luteolin (or quercetin) in a series of concentrations was added and 

the solvent (methanol) was evaporated to dryness.  1% (v/v) of methanol was then added 

to reconstitute luteolin (or quercetin).  The incubation mixture for APAP sulfation was 

prepared with 50 mM phosphate buffer (pH 7.5), 5 mM MgCl2, and 800 μg/ml pooled 

human S9.  The PAPS cofactor solution (PAPS at 0.2 mM) was prepared in water 

separately and fresh before the incubation experiments.  The reactions were started with 

addition of the PAPS solution into the incubation mixture (100uL).  After 2 hours’ 

incubation at 37°C, the reaction was stopped with 40 µL of acidified acetonitrile 0.5% 

(v/v) with 85% H3PO4 and 3-AAP (internal standard).  The supernatant after 

centrifugation was transferred to HPLC vials for HPLC-UV. 

 

2.7 Analytical methods 

Previously described methods, with modifications were used for analysis of the in vitro 

samples 
(von Moltke et al., 2001, Court, 2005)

.  The HPLC conditions and detection methods are 

summarized in Table 4 and Figure 2-16.  APAP glucuronide generated from in vitro 

incubation was analyzed using the previously described method, with modifications 
(Zhao 

et al., 2015)
.  Briefly, the HPLC analysis was carried out on a Hydro-RP column (4 μm, 

250x4.6 mm, Synergi Hydro-RP, Phenomenex, Torrance, CA), with a flow rate of 1.2 

mL/min.  The injection volume was 30 µL, and the UV detection wavelength was 254 

nm.  A multistep gradient for HPLC separation was started at 96.5% mobile phase A (20 

mM potassium phosphate buffer, pH 2.2) and 3.5% mobile phase B (methanol) for 5 



17 

 

minutes, increased to 16% B during the next 5 minutes, and reached to 20% B at 15 

minutes, then to 40% B at 30 minutes, followed by a 9 minutes’ isocratic run at 100% 

mobile phase C (50% H2O, 50% methanol) , followed by another 10 minutes’ isocratic 

run at 3.5% B.  The integration and quantitation were done with the software 

Chemistation (Agilent, Santa Clara, California). 

Since 1% organic solvent was introduced in the incubation mixture to improve solubility, 

he studies on the effects of MEOH and DMSO were also conducted in this study.  In 

order to minimize the solvent effects, controls which contain the same percentages of 

methanol or DMSO as the incubation samples were used to normalize for each sample.   

 

Table 4 Analytical methods used in this study 

Index reactions Metabolite assayed Column Mobile phase HPLC 

conditions 

Detection 

CYP1A2 Acetaminophen a 50mM potassium 

phosphate buffer in 

mixture (H2O:ACN, 

88:12) 

isocratic 

separation 

UV 254nm 

CYP3A α-Hydroxytriazolam a 10mM potassium 

phosphate buffer in 

mixture 

(H2O:ACN:MEOH, 

67.5:22.5:10) 

isocratic 

separation 

UV 220nm 

CYP2B6 Hydroxybupropion b 50mM potassium 

phosphate buffer in 

mixture (H2O:ACN, 

isocratic 

separation 

UV 214nm 
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85:15); pH=3 

CYP2C8 6-Hydroxytaxol c H2O:MEOH, 40.5:59.5 isocratic 

separation 

UV 230nm 

CYP2C9 4’-Hydroxyflurbiprofen a 20mM potassium 

phosphate buffer in 

mixture (H2O:ACN, 

65:35); pH=2.5 

isocratic 

separation 

fluorescence 

excitation 

260nm; 

emission 

320nm  

CYP2C19 4’-Hydroxymephenytoin b 50mM potassium 

phosphate buffer in 

mixture (H2O:ACN, 

80:20) 

isocratic 

separation 

UV 204nm 

CYP2D6 Dextrorphan b 50mM potassium 

phosphate buffer in 

mixture (H2O:ACN, 

75:25); pH=6 

isocratic 

separation 

fluorescence 

excitation 

280nm; 

emission 

310nm 

CYP2E1 6-

Hydroxychlorozoxazone 

a 50mM potassium 

phosphate buffer in 

mixture (H2O:ACN, 

75:25) 

isocratic 

separation 

UV 295nm 

UGT1A1 Estradiol-3-glucuronide d Mobile phase A: 20mM 

potassium phosphate 

buffer, pH=4.5; Mobile 

phase B: MEOH 

Court, 

2005 

UV 280nm 

UGT1A4 Trifluoperazine-

glucuronide 

d Mobile phase A: 0.1% 

TFA in  H2O; Mobile 

phase B: MEOH 

Court, 

2005 

UV 254nm 

UGT1A6 Serotonin-glucuronide d Mobile phase A: 20mM 

potassium phosphate 

Court, 

2005 

UV 270nm 
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buffer, pH=4.5; Mobile 

phase B: MEOH 

UGT1A9 Propofol-glucuronide a Mobile phase A: 20mM 

potassium phosphate 

buffer, pH=4.5; Mobile 

phase B: MEOH 

Court, 

2005 

UV 214nm 

UGT2B7 AZT-glucuronide d Mobile phase A: 20mM 

potassium phosphate 

buffer, pH=2.2; Mobile 

phase B: MEOH 

Court, 

2005 

UV 266nm 

UGT2B15 S-oxazepam-glucuronide d Mobile phase A: 20mM 

potassium phosphate 

buffer, pH=4.5; Mobile 

phase B: MEOH 

Court, 

2005 

UV 214nm 

APAP 

Glucuronidatione 

APAP-glucuronide d Mobile phase A: 20mM 

potassium phosphate 

buffer, pH=2.2; Mobile 

phase B: MEOH 

Zhao, 2014 UV 254nm 

APAP sulfation APAP-sulfate d 

a:  C18 reversed phase 150 x 3.9 mm Nova-pak (Waters); b: C18 reversed phase 300 x 3.9 mm uBondapak 

(Waters); c: ODS reversed phase 250 x 4.6mm (Alltech); d: Synergi 4μm Hydro-RP 80A 250 x 4.6mm 

(Phenominex); e APAP glucuronidation involves several UGT isoforms, such as UGT1A1, 1A6, 1A9 and 

2B15. 
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Figure 2, HPLC chromatogram of the CYP1A2 specific incubation sample using HLMs 

a) acetaminophen as the phenacetin metabolite formed by HLMs, b) 2-acetaminophenol 

as the IS and c) phenacetin. 

 

 
 

 

Figure 3, HPLC chromatogram of the CYP3A specific incubation sample using HLMs   

a, b) α-hydroxytriazolam and 4-hydroxytriazolam as the triazolam metabolites formed by 

HLMs, c) triazolam. 

 
 

 

 

 

a) b) 
c) 

a) b) c) 
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Figure 4, HPLC chromatogram of the CYP2B6 specific incubation sample using HLMs 

a) 2-acetaminophenol as the IS, b) hydroxybupropion as the bupropion metabolite formed 

by HLMs and c) bupropion. 

 

 
 

 

Figure 5, HPLC chromatogram of the CYP2C8 specific incubation sample using HLMs 

a) 6-hydroxytaxol as the taxol metabolite formed by HLMs, b) taxol and c) phenacetin as 

the IS. 

 

 
 

a) b) c) 

a) 

b) 

c) 
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Figure 6, HPLC chromatogram of the CYP2C9 specific incubation sample using HLMs 

a) 4’-hydroxyflurbiprofen as the flurbiprofen metabolite formed by HLMs, b) naproxen 

as the IS and c) flurbiprofen. 

 

 
 

 

Figure 7, HPLC chromatogram of the CYP2C19 specific incubation sample using HLMs 

a) 4’-hydroxymephenytoin as the s-mephenytoin metabolite formed by HLMs, b) 

phenacetin as the IS, c) s-mephenytoin and d) a case-specific peak of quercetin washout 

in this particular study. 

 

 
 

a) 
b) 

c) 

a) b) 

c) d) 
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Figure 8, HPLC chromatogram of the CYP2D6 specific incubation sample using HLMs 

a) dextrorphan as the dextromethorphan metabolite formed by HLMs, b) pronethalol as 

the IS, and c) dextromethorphan. 

 

 

 
 

 

 

 

 

 

 

a) 

b) 

c) 

c) 
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Figure 9, HPLC chromatogram of the CYP2E1 specific incubation sample using HLMs 

a) 6-hydroxychlorozoxazone as the chlorzoxazone metabolite formed by HLMs, b) 

phenacetin as the IS, and c) chlorzoxazone. 

 

 

 
 

 

 

 

 

 

 

a) 

b) 

c) 
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Figure 10, HPLC chromatogram of the UGT1A1 specific incubation sample using HLMs 

a, c) estradiol-3-glucuronide and estradiol-17-glucuronide as the β-Estradiol metabolite 

formed by HLMs, and b) phenacetin as the IS. 

 

 
 

 

Figure 11, HPLC chromatogram of the UGT1A4 specific incubation sample using HLMs 

a) phenacetin as the IS, b) trifluoperazine-glucuronide as the trifluoperazine metabolite 

formed by HLMs, and c) trifluoperazine. 

 

 
 

 

 

a) 

b) 

c) 

a) 

b) 

c) 
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Figure 12, HPLC chromatogram of the UGT1A6 specific incubation sample using HLMs 

a) serotonin-glucuronide as the serotonin metabolite formed by HLMs, b) serotonin, and 

c) phenacetin as the IS. 

 

 
 

 

Figure 13, HPLC chromatogram of the UGT1A9 specific incubation sample using HLMs 

a) propofol, b) 3-acetaminophenol as the IS, and c) propofol-glucuronide as the propofol 

metabolite formed by HLMs. 

 

 
 

 

 

a) 

b) 

c) 

a) 

b) c) 
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Figure 14, HPLC chromatogram of the UGT2B7 specific incubation sample using HLMs 

AZT-glucuronide as the 3’-azidothymidine (AZT) metabolite formed by HLMs, 3-

acetaminophenol as the IS  

 

 
 

 

Figure 15, HPLC chromatogram of the UGT2B15 specific incubation sample using 

HLMs  R-oxazepam glucuronide and S-oxazepam glucuronide as the  metabolites of 

oxazepam formed by HLMs, 3-acetaminophenol as the IS  
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Figure 16, HPLC chromatogram of APAP glucuronidation using HLMs a) APAP-

glucuronide, b) APAP-sulfate, c) APAP and d) 3-acetaminophenol (3AAP) as the IS. 

 

  
 

 

 

 

 

a) 

b) 
c) 

c) 

d) 
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2.8 Data analysis   

2.8.1 IC50 calculation 

IC50 values were determined using nonlinear regression based on Equation 8
 (Greenblatt et al., 

2011, von Moltke et al., 2001)
.  Sigmaplot 11.0 was applied for the curve fitting. The IC50 values 

were generated from the IC values using Equation 9. 
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                Equation 9 

R is the reaction velocity expressed as the percentage of the control velocity with no 

inhibitor present for metabolites generated with co-addition of the compounds of interest 

as inhibitors; Emax, the maximum degree of inhibition; [I], the concentration of the anti-

TB drugs; b, an exponent; IC, the inhibitor concentration at 50% inhibition of absolute 

100% activity; IC50, the inhibitor concentration at 50% inhibition of maximal activity 

which is related to Emax and its value is calculated from IC using Equation 9. 

 

2.8.2 Ki value for reversible enzymatic inhibition 

Ki is the normalized concentration of inhibitor which gives half the maximal rate of 

inactivation.  The Ki value of rifabutin on human UGT1A4 was fitted using the reversible 

inhibition model of full competitive inhibition on Sigmaplot 13.0.  Significant substrate 
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inhibition of trifluoperazine was observed at the highest tested concentration (336.6 μM) 

in our study, as reported previously 
(Uchaipichat et al., 2006)

. 

 

Results 

 

3.1 Project 1: Inhibitory effects of anti-TB drugs on human CYPs and UGTs 

3.1.1 IC50 values for rifabutin on human hepatic CYPs 

Rifabutin was observed to inhibit human CYP3A, 2B6, 2D6, 1A2 and 2C9 to varying 

degrees in vitro using the pooled HLMs (Table 5, Figure 17).  At the highest tested 

concentration (600 μM), no inhibition of human CYP2E1, 2C19 or 2C8 was observed 

with rifabutin (Figure 17). 

 

3.1.2 IC50 values for rifabutin on human hepatic UGTs, and Ki value for rifabutin 

on UGT1A4   

Rifabutin inhibited UGT1A1, 1A4 and 2B15 at varied levels (Table 5, Figure 18, 19), and 

partially inhibited human UGT1A9 and 2B7 (Table 5, Figure 18) at a high concentration 

of 600 μM.  The IC50 values for rifabutin on human hepatic UGT1A4 were 10.8 and 11.3 

μM respectively, for the incubations with and without pre-incubation.  The Ki value of 

rifabutin on UGT1A4 using trifluoperazine as the index substrate was 2 μM with the 

pattern of inhibition consistent with reversible competitive inhibition (Figure 20).   
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Table 5 IC50 values of the selected anti-TB drugs on common human hepatic CYPs and 

UGTs 

 Bedaquiline Rifabutin Pyrazinamide Ethambutol Rifampicin Isoniazid 

Wa       

μM 

W/Ob    

μM 

W        

μM 

W/O 

μM 

W      

μM 

W/O 

μM 

W      

μM 

W/O 

μM 

W        

μM 

W/O 

μM 

W        

μM 

W/O 

μM 

CYP1A2 NCc NC 183.3 NC NC NC NC NC - - - - 

CYP3A NC NC 
27.9 31.5 NC NC NC NC - - - - 

CYP2B6 NC NC 
120.8 165.3 NC NC NC NC - - - - 

CYP2C8 NC NC NC NC NC NC NC NC - - - - 

CYP2C9 NC NC 75 150.9 NC NC NC NC - - - - 

CYP2C19 NC NC NC NC NC NC NC NC - - - - 

CYP2D6 NC NC 
147.7 166.5 NC NC NC NC - - - - 

CYP2E1 NC NC NC NC NC NC NC NC - - - - 

UGT1A1 NC NC 35 44 NC NC NC NC 70 63 NC NC 

UGT1A4 -d NC 10.8 11.3 - NC - NC - 230 - NC 

UGT1A6 - NC - NC - NC - NC - f - NC 

UGT1A9 - NC - NC - NC - NC - NC - NC 

UGT2B7 - NC - e - NC - NC - NC - NC 

UGT2B15 - NC - 81.3 - NC - NC - 357 - NC 

APAP-

Glucuronida

-tion 

NC NC 237.2 422.2 NC NC NC NC 860 397 NC NC 

a: Incubations with pre-incubation; b: Incubations without pre-incubation;  c: Not calculated (No IC50 values 

were calculated due to less than 50% inhibition at the highest tested concentrations where the highest 

concentrations for rifabutin, pyrazinamide, ethambutol, and isoniazid were 1000 μM, rifampicin 600 μM, 

bedaquiline 25 μM);  d : not tested;  e: 57%  inhibition at 600 μM;  f: 58%  inhibition at 1000 μM 
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Figure 17 In vitro inhibitory effects of rifabutin on a) CYP1A2, b) CYP3A, c) CYP2B6, 

d) CYP2C8, e) CYP2C9, f) CYP2C19, g) CYP2D6 and h) CYP2E1; Data points 

represent the means ± standard errors (SEM) of each concentration of rifabutin that was 

tested in duplicate. IC50 values were determined by non-linear regression and summarized 

in Table 5. 
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Figure 18 In vitro inhibitory effects of the selected anti-TB drugs on human hepatic a) 

UGT1A1, b) UGT1A4, c) UGT1A6, d) UGT1A9, e) UGT2B7, and f) UGT2B15; Two 

concentrations of each compound were tested.  Z: Control without inhibition; A: 

Pyrazinamide (black:100 μM, gray:1000 μM); B: Ethambutol (black:100 μM, 

gray:1000 μM); C: Rifabutin (black:100 μM, gray:600 μM); D*: Bedaquiline (black: 26 

μM, gray: 52 μM); D: Bedaquiline (black:12.5 μM, gray: 25 μM); E: Rifampicin 

(black:100 μM, gray:1000 μM); F: Isoniazid (black:100 μM, gray:1000 μM) 
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Figure 19 In vitro inhibitory effects of rifabutin and rifampicin on human UGT1A1, 1A4 

and 2B15   a, b, c) rifabutin, d, e, f) rifampicin, a, d) UGT1A1, b, e) UGT1A4 and c, f) 

UGT2B15; The incubations were with pre-incubation (closed circle) and without pre-

incubation (open circle); Data points represent the means ± standard errors (SEM) of 

each drug concentration that was tested in duplicate. IC50 values were determined by non-

linear regression and summarized in Table 5.  
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Figure 20 Rates of formation of trifluoperazine glucuronide in presence of inhibitory 

rifabutin (Rif) in a series of concentrations (0, 1.25, 5, 10, 30 and 60 μM).  The Ki value 

for rifabutin on human hepatic UGT1A4 using trifluoperazine as the index substrate is 2 

μM (Km = 77.6 μM, Vmax = 3.6).  Data points represent the means ± standard errors 

(SEM) of duplicate incubations. 

 

3.1.3 IC50 values for rifampicin and isoniazid on human hepatic UGTs 

Rifampicin had inhibitory effects on UGT1A1, 1A4 and 2B15 with varied IC50 values 

(Figure 19); Partial inhibition of human UGT1A6 was observed at the highest tested 

concentration (1000 μM) (Figure 18).  Up to the highest tested concentration (1000 μM), 

no inhibitory effects of isoniazid were observed (Figure 18). 
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3.1.4  Inhibitory effects of pyrazinamide, ethambutol and bedaquiline on human 

hepatic CYPs and UGTs  

Up to the highest tested concentration (1000 μM), no inhibitory effects of pyrazinamide 

or ethambutol were observed on the 8 screened CYPs (Table 5) or 6 UGTs (Figure 18).  

At the highest tested concentration (25 μM), bedaquiline partially inhibited human 

hepatic CYP3A, 2B6, 2C8, 2C19 and 2D6 at varied levels, but inhibition did not exceed 

50% of metabolite formation (Figure 18). 

 

3.1.5 Effects of anti-TB drugs on APAP glucuronidation 

The IC50 values on the inhibition of APAP glucuronidation for rifabutin with or without 

20 minutes’ pre-incubation were 237.2 μM and 422.2 μM respectively, and 860 μM and 

397 μM respectively for rifampicin.  Isoniazid, pyrazinamide, ethambutol, and 

bedaquiline provided minimal inhibition of APAP glucuronidation (Table 5, Figure 21).  

The positive control (probenecid, 0.5mM) produeced approximately 50% inhibition of 

APAP glucuronidation. 
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Figure 21 a) In vitro inhibitory effects of the selected anti-TB drugs on APAP 

glucuronidation using HLMs; Two concentrations of each compound were tested. Z: 

Control without inhibitor, P: Probenecid as the positive control 0.5mM, A: 

Pyrazinamide (black:100 μM, gray:1000 μM), B: Ethambutol (black:100 μM, 

gray:1000 μM), C*: Rifabutin (black:80 μM, gray:600 μM), D*: Bedaquiline (black:26 

μM, gray:52 μM), E*: Rifampicin (black:80 μM, gray:1000 μM), F: Isoniazid 

(black:100 μM, gray:1000 μM); 
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b) In vitro inhibitory effects of rifabutin and c) rifampicin on APAP glucuronidation 

Incubations with pre-incubation (closed circle) or without pre-incubation (open circle); 

Data points represent the means ± standard errors (SEM) of each drug concentration that 

was tested in duplicate. IC50 values were determined by non-linear regression and 

summarized in Table 5. 

 

3.2 Project 2: Metabolic interactions between APAP and two flavonoids (luteolin 

and quercetin) 

 

3.2.1 IC50 values for luteolin and quercetin 

The in vitro IC50 values for luteolin and quercetin for individual CYP and UGT enzymes 

using the pooled HLMs are in Table 6.  Both luteolin and quercetin were observed to 

inhibit human hepatic CYP1A2, 3A, 2B6, 2C8, 2C9, 2C19, 2D6 and 2E1 as well as 

UGT1A1 and 1A4 at different levels.  Left shifts of IC50s between incubations without 

and with 20 minutes’ pre-incubation were noticed (Figure 23, 24, and 26), indicating 

possibilities of mechanism based inhibition 
(Grimm et al., 2009, Bertelsen et al., 2003)

.  In addition, up 

to the highest tested concentrations of luteolin and quercetin (600 μM for the CYP 

systems and 250 μM for the UGT systems), no IC50s for luteolin and quercetin were 

obtained for UGT1A6, UGT1A9, UGT2B7 and UGT2B15 due to less than 50% 

inhibition (Table 6, Figure 25).  
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 Table 6 IC50 values of luteolin, quercetin, probenecid, MEOH and DMSO on human 

hepatic CYPs, and UGTs  
 

a: Incubations with pre-incubation; b: Incubations without pre-incubation;  c: Not calculated (No IC50 values 

were calculated due to less than 50% inhibition at the highest tested concentrations where luteolin and 

quercetin were 600 μM for the CYP systems and 250 μM for the UGT systems, and the highest tested percentage 

for methanol and DMSO was 2%);  d : not tested; e: APAP glucuronidation is a mixed effect of several UGT 

isoforms such as UGT1A6, 1A1,1A9 and 2B15; f: APAP sulfation is a mixed effect of several SULT isoforms; g: 52%  

inhibition at 250 μM 

 

 

 

 

 

 

 

 

 

 

  

Luteolin Quercetin Probenecid MEOH DMSO 

W
a 
   

(μM) 

W/O
b
 

(μM)    

W        

(μM) 

W/O           

(μM) 

W        

(mM) 

W/O    

(mM) 

W/O   

(%) 

W/O   

(%) 

CYP1A2 1.6 3.5 4.5 5.2 - - NC NC 

CYP3A 6.1 12.4 7.5 10.4 - - NC NC 

CYP2B6 37.8 103.4 41.7 89.2 - - NC NC 

CYP2C8 4 2.1 7.1 2.4 - - NC NC 

CYP2C9 13.8 28.9 21.7 72.1 - - NC 2.4 

CYP2C19 47.9 NC
c
 31.9 65.1 - - NC NC 

CYP2D6 132.6 152.7 99.4 233.6 - - NC NC 

CYP2E1 81.8 89.3 58 66.2 - - 0.63 0.06 

UGT1A1 93 44 86 54 - - - - 

UGT1A4 -
d
 48.1 - 50.2 - - - - 

UGT1A6 - NC - NC - - - - 

UGT1A9 - NC - NC - - - - 

UGT2B7 - NC - 
g
 - - - - 

UGT2B15 - NC - NC - - - - 

APAP-

Glucuronidation
e
 

NC NC 286.5 NC 0.42 0.5 - - 

APAP-sulfation
f
 - 0.87  -  3.5 - - - - 
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Figure 22 In vitro inhibitory effects of luteolin on a) CYP1A2, b) CYP3A, c) CYP2B6, 

d) CYP2C8, e) CYP2C9, f) CYP2C19, g) CYP2D6 and h) CYP2E1; Data points 

represent the means ± standard errors (SEM) of each concentration that was tested in 

duplicate. IC50 values were determined by non-linear regression and summarized in Table 

6.  
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Figure 23 In vitro inhibitory effects of quercetin on a) CYP1A2, b) CYP3A, c) CYP2B6, 

d) CYP2C8, e) CYP2C9, f) CYP2C19, g) CYP2D6 and h) CYP2E1; Data points 

represent the means ± standard errors (SEM) of each concentration that was tested in 

duplicate. IC50 values were determined by non-linear regression and summarized in Table 

6.  
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Figure 24 In vitro inhibitory effects of luteolin and quercetin on human hepatic a) 

UGT1A1, b) UGT1A4, c) UGT1A6, d) UGT1A9, e) UGT2B7 and f) UGT2B15; C: 

Control without inhibition (black: 0 μM); L: Luteolin (black:100 μM, gray:250 μM); Q: 

Quercetin (black:100 μM, gray:250 μM) 

 

 

 

 

 

 

 



43 

 

 
 

Figure 25 In vitro inhibitory effects of luteolin and quercertin on a, b) UGT1A1 or c, d) 

UGT1A4; Data points represent the means ± standard errors (SEM) of each concentration 

that was tested in duplicate. IC50 values were determined by non-linear regression and 

summarized in Table 6.  
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Figure 26 In vitro inhibitory effects of a) luteolin, b) quercertin and c) probenecid on 

APAP glucuronidation with pooled HLMs; Data points represent the means ± standard 

errors (SEM) of each drug concentration that was tested in duplicate. IC50 values were 

determined by non-linear regression and summarized in Table 6. 
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Furthermore, the inhibitory effects of luteolin and quercetin on overall APAP 

glucuronidation were also tested using APAP as the substrate.  While probenecid, a 

known inhibitor for APAP glucucronidation as the positive control, yielded an IC50 value 

of 0.5 mM, we didn’t observe luteolin or quercetin to inhibit overall APAP 

glucuronidation (Figure 26). 

APAP sulfation is another major detoxifying pathway to clear APAP safely from the 

body.  In our in vitro experiments, we observed that both luteolin and quercetin were 

strong inhibitors toward APAP sulfation with IC50 values of 0.87 and 3.5 µM respectively 

(Figure 27).  

 

3.2.2 Solvent effects of methanol and DMSO on human hepatic CYPs   

CYP2E1 was most sensitive for both methanol and DMSO.  The IC50 values for methanol 

and DMSO on CYP2E1 were 0.63% and 0.06% respectively.  The IC50 value for DMSO 

on CYP2C9 was 2.4%.  CYP2B6 was also partially inhibited by 1% methanol. (Table 6, 

Figure 28, 29) 
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Figure 27 In vitro inhibitory effects of a) luteolin and b) quercertin on acetaminophen 

sulfation; Data points represent the means ± standard errors (SEM) of each drug 

concentration that was tested in duplicate. IC50 values were determined by non-linear 

regression and summarized in Table 6.  

 

 



47 

 

 

Figure 28 Inhibitory effects of a) methanol or b) DMSO on human hepatic CYP 

enzymes with pooled HLMs;  Methanol percentages were at 0.05% (black), 0.1% (gray), 

or 1% (dark gray); A: CYP1A2; B: CYP2B6; C: CYP2C8; D: CYP2C9; E: CYP2C19; F: 

CYP2D6; G: CYP2E1; H: CYP3A. 
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Figure 29 In vitro inhibition of CYP2E1 in a) methanol, in b) DMSO, or c) inhibition of 

CYP2C9 in DMSO; Data points represent the means ± standard errors (SEM) of each 

solvent concentration that was tested in duplicate. IC50 values were determined by non-

linear regression and summarized in Table 6.  
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Discussion 

4.1 Project 1: Inhibitory effects of anti-TB drugs on human CYPs and UGTs 

Rifabutin inhibited human CYP3A, 2B6, 2D6, 1A2, 2C9, UGT1A1, 2B15, UGT1A9 and 

2B7 in HLMs, with varying inhibitory potency.  However, most of those inhibitory 

effects observed in vitro are not likely to be of clinical importance since the IC50 values 

were much higher than typical clinical plasma concentrations of rifabutin, which are 

usually less than 1.1 μM 
(Peloquin, 2002)

. 

UGT1A4 is an important drug-metabolizing enzyme 
(Williams et al., 2004)

, and the IC50 value 

for rifabutin on human hepatic UGT1A4 was low enough to be of potential clinical 

relevance.  A Ki value for rifabutin on UGT1A4 was determined using the pooled HLMs 

and the result was 2 μM.  Based on FDA guidance 
(CDER, 2012)

, an approximate estimation 

of the produced DDI was calculated using the ratio of [I]/Ki where [I] is the maximum in 

vivo plasma concentration of rifabutin (1.1 μM) 
(Peloquin, 2002) 

and Ki was 2 μM.  The ratio 

of 0.55 indicates a possibility that rifabutin may increase the systemic exposure of some 

drugs metabolized mainly by human UGT1A4.  On the other hand, it has been widely 

reported that rifabutin induces human CYPs and UGTs 
(Baciewicz et al., 2013)

.  Thus the 

prediction of the overall drug-drug interaction of rifabutin needs to take into account of 

both its inhibitory and possible inductive properties.  

Human UGT1A1 is the main metabolizing enzyme for several anti-HIV drugs such as 

raltegravir 
(Kassahun et al., 2007)

 and dolutegravir 
(Castellino et al., 2013)

.  The IC50 values of rifabutin 

and rifampicin on UGT1A1 were around 35 μM and 70 μM respectively (Figure 18).  

The inhibitory effects of rifabutin and rifampicin are not clinically relevant, as their 
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overall effects show prominent inductive properties.  Rifampicin significantly decreased 

the systemic exposure of dolutegravir 
(Dooley et al., 2013)

.  Co-administration of rifabutin, on 

the other hand, did not alter the pharmacokinetics of raltegravir 
(Brainard et al., 2011)

 or 

dolutegravir 
(Dooley et al., 2013)

.  

The IC50 values for rifabutin on CYP1A2 shifted leftward between the incubations 

without and with pre-incubation (Figure 17).  However, a value of Ki was not determined. 

Nevertheless, no clinically meaningful DDIs due to inhibition of CYP1A2 by rifabutin 

have been reported. 

Since high concentrations of the anti-TB drugs were used in the incubations, 1% 

methanol was introduced to improve solubility.  Bedaquiline was prepared in DMSO for 

better solubility and added directly to the incubation mixtures.  Because methanol and 

DMSO may themselves inhibit metabolic activities of CYPs and UGTs, inhibitor-free 

controls were included using the same amounts of these solutions to normalize the 

solvent effects. 

Glucuronidation is one of the major metabolizing pathways in the clearance of 

acetaminophen in parallel with the CYP mediated oxidation pathway.  Therefore, APAP 

glucuronidation diverts APAP clearance away from generation of the toxic intermediate 

N-acetyl-p-benzoquinone imine (NAPQI) 
(Miner and Kissinger, 1979)

, known to be responsible 

for acetaminophen hepatotoxicity.  APAP glucuronidation is likely to be mediated by 

several UGTs 
(Court et al., 2001, Court and Greenblatt, 2000, Court and Greenblatt, 1997, Krishnaswamy et al., 2005, Mutlib 

et al., 2006)
 including UGT1A1, 1A6, 1A9 and 2B15.  In this study, none of the selected 
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anti-TB drugs significantly inhibited glucuronidation of APAP (Figure 21), suggesting 

that DDIs which involve increasing APAP toxicity are unlikely.   

 

In conclusion, this study provided a relatively complete survey on in vitro inhibitory 

effects of the common anti-TB drugs on CYPs and UGTs using HLMs.  The findings 

from this study do not raise substantial new concerns about DDIs involving anti-TB 

drugs. 

 

 

4.2 Project 2: Metabolic interactions between APAP and two flavonoids (luteolin 

and quercetin) 

Flavonoids are important dietary constituents consumed daily.  In the US, a study 

indicated that normal daily intake of 5 flavonoids including quercetin, kaempferol, 

myricetin, apigenin and luteolin was 20-22 mg/d 
(Chun et al., 2007)

.  In another study among a 

Chinese university-campus population, the daily consumption of luteolin was reported as 

7.96 ± 5.64 mg/d, with the plasma exposure at 100. 63 ± 98.51 nmol/L 
(Zhang et al., 2010)

.  In 

addition to the daily intake of flavonoids, consumption of dietary supplements containing 

flavonoids in some populations can dramatically increase the systemic exposure of 

flavonoids.  In a study of daily supplementation of quercetin, the median maximum 

plasma concentrations of quercetin including its glucuronidated and sulfated metabolites 

were observed as 431 nmol/L at 3 hours after intake of 150 mg quercetin 
(Egert et al., 2008)

.  

When we apply the reported in vivo plasma concentrations to understand the in vitro data, 

we need to take into account of many factors, including but not limited to the following 

considerations.  First, the plasma concentrations are not equivalent to the concentrations 

in the tissues of interest.  The exposure of the flavonoids such as luteolin and quercetin 
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may be more concentrated in liver than in plasma 
(Shimoi, 2001)

.  Thus, in this study, an 

arbitrary multiplication, for an example, 10 fold of those reported plasma values in vivo, 

was applied to roughly estimate the upper limits of the exposure of the flavonoids in 

liver, that is 1 μM for luteolin and 4 μM for quercetin.  Second, only aglycone luteolin 

and quercetin were studied in this study.  But in the in vivo systems, flavonoids such as 

luteolin and quercetin are known for having extensive glucuronide and sulfate conjugates 

as well as methylated metabolites 
(Spencer, 2003)

, and those major metabolites could have 

their inhibitory effects on the liver metabolic enzymes, which have not yet been 

investigated.  Third, the reported in vivo plasma concentrations of luteolin or quercetin 

usually include the aglycone forms and their metabolites due to the enzymatic hydrolysis 

steps commonly used in the sample preparation. 

CYP3A4, CYP2E1, CYP1A2, CYP2D6 and CYP2A6 have previously been reported to 

be responsible for the production of NAPQI.  Both luteolin and quercetin were observed 

to inhibit CYP1A2 and CYP3A at low concentrations with their IC50 values less than 10 

μM (Table 6).  It is likely that both luteolin and quercetin could inhibit part of the CYP-

mediated oxidation of APAP by inhibiting CYP1A2 and 3A. 

Because APAP glucuronidation and sulfation are also important pathways to detoxify 

APAP in the body parallel to the CYP-mediated oxidation, we also tested whether 

luteolin and quercetin inhibited the human hepatic UGT systems as well as APAP 

sulfation in vitro.  Six human hepatic UGT isoforms were individually tested (Figure 24).  

We observed that both luteolin and quercetin inhibited UGT1A1 and 1A4 with IC50 

values around 50 µM in the in vitro systems without pre-incubation (Figure 25).  In 
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addition, at 100 µM which is a much higher concentration than the possible physiological 

exposure, luteolin and quercetin only partially inhibited UGT1A6 (less than 50%) and 

UGT1A9 (around 20%).  The inhibitory effects of luteolin and quercetin on overall 

APAP glucuronidation, which is the combined effect from all of the individual hepatic 

UGTs, were also studied using APAP as the substrate.  Luteolin or quercetin didn’t 

inhibit overall APAP glucuronidation, while probenecid, a positive inhibitor of APAP 

glucucronidation as the positive control, had an IC50 value of 0.5 mM (Figure 24).  

Therefore, based on our in vitro data, APAP glucuronidation is not likely to be inhibited 

by luteolin or quercetin.  As for APAP sulfation, we observed that both luteolin and 

quercetin were strong inhibitors of APAP sulfation (Figure 27).  

In conclusion, our observed in vitro data suggest that both luteolin and quercetin may 

inhibit some of the CYP450 isoforms which are responsible for the NAPQI formation, 

such as CYP1A2 and CYP3A, with the IC50 values less than 10 μM.  Luteolin or 

quercetin is not likely inhibitory to APAP glucuronidation.  Luteolin and quercetin 

however may strongly inhibit APAP sulfation.  Therefore, the beneficial effects of 

luteolin and quercetin against APAP induced hepatotoxicity possibly result from their 

properties of being able to block partially the CYP-mediated oxidation and to drive the 

reaction via APAP glucuronidation. 
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