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Abstract 

Extreme winds cause significant damage to infrastructure in the United States. Climate 

change effects to extreme winds including increasing trends have been predicted in climate 

change scenarios; however, little observational evidence exists to support the hypothesis of 

increasing winds in U.S. coastal communities due to climate change. In this study, we use the 

historical record of peak 3-s gust winds at sites along the Eastern Seaboard to determine if 

nonstationarity exists in the historic wind record. We evaluate nonstationarity at individual 

stations and within regional “superstation” clusters. In order to evaluate nonstationarity, both 

parametric (Student’s t-test) and non-parametric (Mann-Kendall) trend tests are used. As 

Lombardo and Ayyub (2014) separated winds by storm types, we observe evidence of 

nonstationarity by storm types (commingled, nonthunderstorms, thunderstorms and tropical 

storms). For commingled data, 23 out of 108 stations exhibit evidence of nonstationarity. 

Roughly 16% of these stations show a positive trend from Florida to NY. In New England, 6% 

of stations exhibit a negative trend. 

In addition to the single station results, we cluster similar wind sites together using the k-

means algorithm, to extend observation records and observe nonstationary behavior of extreme 

winds regionally. Incorporating L-moments in regional frequency analysis for clustering 

purposes requires regional standardized L-moment parameters (Eslamian et al., 2012; Parida et 

al., 1998). A combination of three parameters consisting of latitude, longitude and L-CV is used 

to define the k-means clustering. Regional frequency analysis (Hosking and Wallis, 1997) is 

carried out using L-moments to confirm homogeneity of the cluster prior to evaluation of 

nonstationarity. Once the clusters are defined, we employ the “superstation” (Peterka, 1992; 

Peterka and Shahid., 1993) method for each cluster to extend and regionalize the record. By 
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creating a virtual “superstation”, we have a single database with extended records and reduced 

sample errors. Using trend tests, we find evidence of statistically significant regional 

nonstationarity of 3-s gust wind speeds in 4 out of 7 clusters, all resulting in a positive trend. 

Two clusters are in Florida, one is along the mid-coast and the final one is New Englnad. The 

cluster in New England exhibits heterogeneity according to the L-moment homogeneity tests. 

The trend tests for three of the regional clusters do not exhibit a statistically significant trend. For 

the two statistically significant clusters in Florida, we apply a nonstationary homoscedastic trend 

model to identify return levels with time of interest at years 2010, 2030, 2050. 
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Introduction 

Extreme winds can cause significant damage to infrastructure. Some climate change 

scenarios for the U.S. have predicted increasing trends in extreme winds (Young et al., 2011). 

However, little observational evidence exists to support the hypothesis of increasing winds in US 

coastal communities due to climate change. The proposed work is an observational study of 

extreme winds along the Eastern Seaboard of the United States. 

Steenbergen et al. (2012) predicts a change of -1% to +4% of the annual minimum and 

maximum daily mean wind speeds in the Netherlands for 2050 using four possible climate 

change scenarios presented by Royal Netherlands Meteorological Institude (KNMI) (Van den 

Hurk et al., 2006). In addition, the study suggests that for buildings to have a certain level of 

safety during the intended life-time, building standards must consider future trends in wind 

speeds. Infrastructure is historically designed assuming a stationary climate; however, including 

a trend in wind speeds in design would provide a design that considers impacts of climate change 

(Klein Tank et al., 2009). In general, present-day building codes and government planning 

agencies do not consider issues related to nonstationarity from a climate change perspective. 

Buildings have been threatened by evident indicators (e.g. flood risk) of climate change since the 

20th century (Hamlet and Lettenmaier, 2007; Ten Brinke et al., 2008) and awareness of these 

issues is increasing. As evidence of climate change gains recognition, researchers and scientists 

need to quantify impacts of climate change, including extreme wind speeds. While the focus for 

infrastructure has been on flood risk (Rosner et al., 2014), this study examines observational 

evidence of nonstationarity in extreme winds. 

In the context of extreme winds, Nishijima et al. (2012) quantified wind risk of 

residential buildings in Japan by simulating future climates using the atmospheric general 
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circulation model (AGCM). Mudd et al. (2015) assessed climate change impact on the East 

Coast of the US through projected hurricanes in climate change scenarios; for example, the study 

identifies that the design wind speed will be exceeded under climate scenario RCP 8.5 in the year 

2100 across the East Coast. Knutson and Tuleya (2004) used Coupled Model Intercomparison 

Project (CMIP2+) climate models to show small increases in future wind speeds as result of 

climate change along with global warming.  The Intergovernmental Panel on Climate Change 

expect the frequency and intensity of extremes to fluctuate in the future (Solomon et al., 2007). 

Each of the studies that predict wind speed increases rely on atmospheric climate change 

scenarios. In contrast from observational data, Vautard et al. (2010) have shown evidence of 

atmospheric stilling in the Northern Hemisphere due to an increase in surface roughness -- 

annual mean wind speeds decreased at 73% of surface sites. Lombardo and Ayyub (2014) 

separated winds in the Baltimore-Washington metropolitan area by storm types and observed 

downward trends in the region; however, it suggested that future projection of extreme wind 

speeds to be difficult primarily due to nonclimate factors. Therefore, there is an open question 

concerning observational evidence of nonstationarity in extreme wind records. 

In the proposed work, wind recording sites that observed peak 3-s gust wind data along 

the Eastern Seaboard over the past 40 years are used to evaluate nonstationarity (Hosking and 

Wallis, 1997; Reed et al., 1999). Nonstationarity is evaluated both at single stations and by 

clustering stations within regional superstations. The “superstation” approach was introduced by 

Peterka (1992), which combines wind records of sites across a region resulting in longer records 

and a decrease in sampling errors. Wind recording sites across a region that share similar 

characteristics are identified as a cluster through cluster analysis. Several climatological studies 

have applied superstation methodology via cluster analysis (Goel et al., 2004; Erfani et al., 2016; 
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Hong and Ye, 2014). However, regional frequency analysis must be carried out beforehand to 

check for discordancy and homogeneity of the measuring sites to insure a homogeneous region 

or station cluster.  

Cluster analysis is a prevalent technique among climate studies (Darby, 2005; Wolter, 

1987; Kaufmann & Whiteman, 1999; Satyanarayana & Srinivas, 2008) to classify similar 

recording sites. Of the cluster analysis methodologies that exist, we apply the k-means analysis; 

k-means analysis is the most widely applied method because of a) its simplicity and b) its 

iterative mechanism that reassigns observations as it tries to fulfill the objective function. A 

disadvantage of the k-means analysis is that a specific number of clusters, k, needs to be assigned 

a priori. For our study, k-means cluster analysis is performed with a combination of variables 

consisting of physical variables (latitude, longitude, elevation, nearest distance to shore, angle of 

nearest distance to shore) and wind variables (coefficient of variation, L-CV, L-Skewness, L-

Kurtosis). After testing many combinations, we chose latitutde, longitude, and L-CV which is 

consistent with Hong and Ye (2014) which is a regional extreme wind study in Canada. 

To characterize nonstationary behavior, trends must be detected from existing time series 

observations using parametric (Student’s t-test) and nonparametric (Mann-Kendall test) Null-

Hypothesis Significance Testing (NHST). Several studies have demonstrated methods for trend 

analysis for different types of annual extreme natural phenomena such as maximum temperature, 

precipitation and flood flow detection (e.g. Cheng et al., 2014, Vogel et al., 2013, Rosner et al., 

2014, Pujol et al., 2007). Cheng et al. (2014) identified a significant trend on annual maximum 

temperature spatially using the Mann-Kendall trend test on observation sites around the world. 

Pujol et al. (2007) also identified a significant trend on annual maximum precipitation using the 

Mann-Kendall test. Hecht (2016), Vogel et al. (2013) and Rosner et al. (2013) identified whether 
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a nonstationary flood trend is apparent or not on annual maximum flood series using Student’s t-

test. 

In this work, we use parametric (Student’s t-test) and nonparametric (Mann-Kendall test) 

NHST for nonstationarity both at single stations and regional station clusters. We aim to address 

the following question: does nonstationarity exist in the observed 3-s peak gust record at sites 

and within regional clusters along the Eastern Seaboard? Answering this question will help us 

understand the behavior of extreme winds and will be of value in regionally assessing extreme 

winds. 

 

Data  

Observed peak 3-s gust wind data were originally recorded and archived by the National Oceanic 

and Atmospheric Administration (NOAA) website. Data have been converted to standardized 3-s 

gust wind speed at 10 m height as the measurement heights and instrumentations changed over 

the course of the records (Lombardo 2012). The region of interest for this study, the Eastern 

Seaboard, was defined between the ASCE 7-10 hurricane prone boundary (Figure 1) and the 

Atlantic Ocean. For this study, annual maximums of peak 3-s gust wind data from sites within 

the region of interest were considered to evaluate nonstationarity in extreme winds. The record 

length of annual maximum peak 3-s gust wind data differs by station site and by wind type. By 

using sites with at least 18 years of recorded data (5 years for tropical storms), a total of 108 sites 

for commingled and non-thunderstorms, 99 sites for thunderstorms and 117 sites for tropical 

storms were identified. While for majority of the commingled, non-thunderstorms and 

thunderstorm data are continuous, it is not the case for tropical storms. Tropical storm data are 
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limited and are often not continuous. Table A.1-4 shows each station, including latitude, 

longitude, and record length (by storm type). 

Figure 2 shows an example record from Jacksonville Executive at Craig Airport station 

(KCRG) in Florida. In addition to examining the annual maximum time series of 3-s gust wind 

for each site, it is also recommended by (Lombardo and Ayyub 2014) that wind data should be 

examined by storm type. Figure 2 also shows the time series for KCRG station for each storm 

type (non-thunderstorm, thunderstorm, and tropical) along with the original commingled record. 

Along with the time series, a linear trend model is shown as discussed in Trend Significance 

section below. The wind ! is shown as ln	(!). 

Figure 1. Illustration of the hurricane-prone region of the United States (Source: FEMA P-804) 
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Figure 2. Regression Plots of Jacksonville Executive at Craig Airport by storm types 
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 Studies have shown that extreme winds are well characterized by the lognormal 

distribution (LN2); for example, Morgan et al (2010) showed that the LN2 model performs best 

for estimating offshore extreme wind speeds and Huang (1999) showed that the LN2 model 

provides a better fit on simulated 50-year maximum extreme wind speeds for all sites in 

Southeastern United States compared to extreme value distributions. We use L-moments to 

verify the probability distribution for the annual maximum peak 3-s gust wind data. 

L-moments, first introduced by Hosking (1990), are quantitative measures originating 

from modifications of the probability weighted moments (PWMs) of Greenwood et al. (1979). L-

moments are used to describe a probability distribution and have been prevalently used in the 

field of regional frequency analysis. Compared to conventional moments, L-moments are 

superior descriptors of probability distributions and are also resistant to outliers (Vogel and 

Fennessey, 1993). The mathematical formulation of L-moments is as follows: 

 !" = $% (1) 

 !& = 2$" − $% (2) 

 !) = 6$& − 6$" + $% (3) 

 !, = 20$) − 30$& + 12$" − $% (4) 

and $0 is given by 

 $0 = "
1

23" 23& ⋯ 230
13" 13& ⋯ 130 52:1

1
2708" , for i = 0, 1, 2, … (5) 

where 52:1 is denoted as the <-th ordered sample (in ascending order) of a set of samples of size 

=. Analogous to product moment ratio estimators (i.e. coefficient of variation >?, skewness @, 

and kurtosis A), L-moments are standardized as higher moments as well, and are defined as 

 B1 = !1 !&, for n = 3, 4, … (6) 
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Figure 3 shows the L-moment diagrams (L-CV vs. L-Skewness) for annual maximum 3-s peak 

gust wind data by storm type. The majority of sites for commingled, non-thunderstorms and 

thunderstorms are clustered near the LN2 curve as compared to the other distribution curves. The 

scatter around the curve is expected and a result of sample size – the larger the sample size, the 

lower the scatter. For tropical storms, the sites plot more broadly around the LN2 – this is due to 

the fact that sample L-moments have been calculated using lower number of samples. We can 

therefore assume for our study that the annual maximum 3-s peak gust wind data can assume to 

follow a LN2 distribution.  
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Figure 3. L-moment diagrams of annual maximum 3-s peak gust wind data series by storm types 
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Methodology 

The trend test is a very important step in examining the stationarity of time series. In this 

work, the trend of individual sites is determined using the Student’s t-test (Rosner et al., 2014) or 

the Mann-Kendall (MK) test (Mann 1945; Kendall 1975). The Student’s t-test, which was first 

developed by William Sealy Gosset, is a parametric test that can be used to identify whether a 

linear trend in statistically significant. The MK test, as recommended by the WMO (World 

Meteorological Organization) (WMO 1988), is used to identify the significance of monotonic 

trends in hydrological series. However, the MK test generally has the advantage over the 

Student’s t-test because it is non-parametric, i.e. it does not require distribution assumptions in 

the data while it maintains the same power as its parametric alternatives. Both trend tests are 

done to check the accordance of trend test statistics for each site; however, the results of the MK 

test are given priority in determining whether a trend is significant or not.  

 

Prewhitening 

The MK test has been shown that it is sensitive to autocorrelation structure in the time 

series (Kumar et al., 2009). It is therefore essential to pre-whiten sites with time series that show 

lag-1 autocorrelation within the 5% significance level. For pre-whitening, recommendations of 

von Storch (1999) will be followed in this study with  

 !" = $" − &'$"(' for t = 2,3, … (7) 

where $" is the original time series, &' is the lag-1 autocorrelation coefficient and !" is the pre-

whitened time series. Subsequently, the MK test statistic will be calculated for the pre-whitened 

time series. The time series for KCRG station as shown in Figure 2 is prewhitened. 
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Trend Significance 

Time series data from individual sites or clusters are evaluated to identify trend. The 

ordinary simple linear regression is applied to the time series of annual maximum peak 3-s gust 

wind data: 

 . = /0 + /'2 + 3 (8) 

where . is defined as the logarithmic transformation of annual maximum peak 3-s gust wind data 

series as . = ln	(8), /0 is the intercept term of ., /' is the coefficient for the trend term, 2 is the 

time in year and 3 is the error term. 

One of the NHST trend tests that will be used in the study is the Student’s t-test and it is a 

parametric trend test. Test statistics used for the Student’s t-test are computed as (8) is applied 

for the linear regression of the annual maximum peak 3-s gust wind data series. The estimated 

slope coefficient, /', is a test statistic used to assess a positive or a negative trend in the mean of 

the response variable, time (Haan, 2002; Kundzewicz and Robson, 2004). The null hypothesis, 

:0, is when there is no linear trend (i.e. :0: /' = 0). For the trend test using Student’s t-test, we 

compute significance statistics such as Type-I and Type-II error probabilities. The Type-I error 

probability, =, is estimated using 

 = = > ?@(A ≥ 2  (9) 

where ?@(A is Student’s t random variable with C − 2 degrees of freedom and 2 = /' DEF where 

DEF is the standard deviation of the estimated trend coefficient /'. Type-II error probability, /, is 

estimated using  

 / = > ?@(A ≤ (2'(H,@(A − IC0.K)  (10) 

where I = L(A − 1
('

, where L is the Pearson product moment correlation coefficient between 

variables N and . is defined as: 
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L =

NO − N ∙ .O − .
@
OQ'

NO − N A@
OQ' ∙ .O − . A@

OQ'

 
(11) 

Per the definition of NHST, a low Type I error (i.e. < 0.05) implies that if there were no 

trend, there is a low chance we would conclude that a trend exists. Vice-versa, a high Type-I 

error is also associated with “over-preparedness” in the context of risk based decisions. 

Meanwhile, a low Type-II error probability implies that if there were a trend, there is a low 

chance we would conclude that a trend would not exist. Vice-versa, high type-II error 

probabilities imply that if there were a trend, there is a high chance we would conclude that a 

trend will not exist, which is associated with “under-preparedness”. Hecht (2016) identified sites 

with trends within the 5% significance level based on Type-I error probabilities (standard 

hypothesis test with :0: no trend). Similarly, we consider sites or clusters to have significant 

trends within the 5% significance level based on Type-I error probabilities. Shown in Figure 4 is 

the decision matrix of NHST. 

 No Trend Trend 

No 
Action 1 − = /, Type II Error 

(Under-preparedness) 

Action =, Type I Error 
(Over-preparedness) 1 − / 

Figure 4. NHST decision matrix 

The second NHST test, MK test, is a nonparametric trend test and goes through a rank-

based method as opposed to the linear regression method of the NHST. The MK test statistic, R 

 
R = STUC NO − NV

@

VQOW'

@('

OQ'

 
(12) 
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where N is the annual maximum peak 3-s gust wind data series. If NO > NV, sign(NO − NV) is equal 

to +1; else, if NO < NV, sign(NO − NV) is equal to -1. Furthermore, for independent and identically 

distributed (ie. iid) random variables 

 ](R) = 0 (13) 

 
^_& R = DA =

C(C − 1)(2C + 5)
18

 
(14) 

where C is the length of annual maximum peak 3-s gust wind data series. When C > 10, 

 

bc =

R − 1
D

	de&	R > 0

R + 1
D

	de&	R < 0

0	de&	R = 0

 

 

(15) 

the test statistic follows a normal distribution (Kendall 1962). With bc, the significance value (ie. 

p-value) of the MK test can be obtained via 

 f = 2 1 − Φ bc  (16) 

where Φ bc  is the cumulative distribution function of a standard normal distribution of bc. 

Similar to the Student’s t-test, we consider sites or clusters to have significant trends within the 

5% significance level based on f. 

 

Wind Station Characterization 

As it was previously mentioned, sites in this study follow these requirements: a) at least 

18 years of annual data (5 years for tropical storms) and b) pre-whitened time series following 

von Storch (1999) if lag-1 autocorrelation is within 5% significance level. Figure 5 is a map of 

the sites by type of storms considered for the study, where sites that show significant positive 

trends using the MK tests are identified with a red triangle. Sites that do not exhibit a significant 

trend are shown with a black dot, and those with significant negative trends are shown as a blue 
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triangle. From Figure 5 in the commingled data, 17 stations (16%) show significant positive 

trends, evenly distributed from Florida to Massachusetts. Six stations (6%) in New England 

show significant negative trends. For non-thunderstorms data, 25 stations (23%) show significant 

positive trends, also evenly distributed from Florida to Massachusetts. Six stations (6%) in New 

England also show significant negative trends. For thunderstorms, 17 stations (12%) show 

significant positive trends, mostly distributed in Florida and some in Massachusetts. Two stations 

(2%) each in Florida and Maine show significant negative trends. For tropical storms, six stations 

(5%) show significant positive trends, three in Florida, two in the Baltimore-DC Metro Area and 

one in Massachusetts. Ten stations (8%) in show significant negative trends primarily in Florida 

and Massachusetts. Because of the short record length, we will not focus on the results for 

Figure 5. Stations considered in the study; trend significances based on NHST and Mann-Kendall test by storm type 
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tropical storms. As a result the next section will be focused on the commingled record. Results 

for thunderstorm and non-thunderstorm will be included in future work. 

 

Clustering 

Cluster analyses are often used in climate studies to define areas with alike climatological 

characteristics. Among several analyses methods, k-means clustering is the most widely used 

clustering method on extreme wind studies (Kruger et al., 2012; Blender et al.,1997; Leckebusch 

et al., 2008). 

k-means clustering (MacQueen 1967) is an unsupervised machine learning algorithm that 

aims to cluster h observations (i.e. sites) into i centroids, as it tries to minimize the within-

cluster sum of squares.  

First, the selection of i is imperative. Several methods to determine the optimal value of 

i exist, of which the most commonly used is the “rule of thumb” introduced by Mardia et al. 

(1979), and is defined as 

 i ≈ C/2 (17) 

where C is the number of data points (sites). 

Once the i value is selected, k-means clustering method follows the following algorithm: 

1. Place i amount of centroids into the object space  

2. Assign each data point to a cluster that has the closest centroid 

3. Calculate the centroids of each cluster 

4. Steps 2 and 3 are reiterated until the objective function can be improved no more (i.e. 

global minimum achieved) 
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The objective function is 

 
_&Umin

m
n N, oO

p∈mr

s

OQ'

 (18) 

where tO is the set of data points in cluster T and n N, oO  is the Euclidean distance between a 

certain data point and the centroid of cluster T.  

Shown in Table 1 are the variables that were considered for the clustering analysis. 

 

 

 

 

As it was mentioned that Hong and Ye (2014) suggests the use of the latitude, longitude and L-

CV for the clustering of extreme winds, this will be taken into as one of the variable 

combinations. Therefore, since clustering will be based on L-moment variables, L-moment 

variables need to be normalized prior to clustering. The standardized &th order L-moment at site 

T is: 

 
uO,v
w =

uO,v
uO,'

=
uO,v
oO,'

 (19) 

where uO,v is the &th order L-moment at site T and uO,' is the 1st order L-moment of at site T (the 

1st order L-moment is also the arithmetic mean). With the new standardized L-moment values, 

higher order L-moment values x@ are also therefore standardized using equation (6). 

In addition, other variables in Table 1 aside from the L-moments also vary widely. Since 

clustering methods are very sensitive to range differences (Mardia et al., 1980), variables are 

normalized using the Z-Score normalization (Mohamad and Usman, 2013). The Z-score 

normalization is widely used (Parajka et al., 2010; Marzban and Sandgathe 2006; Puvaneswaran 

Table 1. Variables used for clustering analysis of extreme winds in Eastern Seaboard 

Physical variables Wind variables 
Latitude Coefficient of variation yz 
Longitude L-CV xA 
Elevation L-Skewness x{ 
Distance to water n L-Kurtosis x| 
Angle of distance to water ϕ Average wind direction 
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1990) and makes the variable have a mean of 0 and standard deviation of 1 prior to cluster 

analysis. The Z-score normalization formula is as follows: 

 N′ =
N − op
Dp

 (20) 

where Nw is the normalized value, N is the original value, op is the mean of N and Dp is the 

standard deviation of N. 

A technique that is used for measuring the quality of clustering is silhouette (Rousseeuw 

1987). The silhouette formula is defined as 

 
S(T) =

�(T) − _(T)
Ä_N _ T , �(T)

 (21) 

where _ is the average distance to all other data points from data point T in a cluster, and � is the 

minimum average distance from data point T in a cluster to all points in another cluster. We use 

silhouette widths to determine the optimal combination of three variables after k-means 

clustering.  

 

Homogeneity and Heterogeneity 

When clusters are formed, one must also check for the homogeneity and heterogeneity of 

the clusters. This is to see how homogeneous or heterogeneous the cluster is and to identify if 

there are any dissimilar observations (ie. sites) within the cluster.  

The discordancy measure, ÅO, was introduced by Hosking and Wallis (1997) to indicate if 

a certain site T is deemed as unusual from the cluster (i.e. site T that have significantly different 

sample L-moments from others within the cluster). Sites that are discordant within a cluster are 

disregarded due to inconsistency or gross errors. ÅO is defined as 
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ÅO =

1
3
ÇO − Ç ÉR(' ÇO − Ç  (22) 

where ÇO = xA,O x{,O x|,O ; 

 
R = hÑ − 1 (' ÇO − Ç ÇO − Ç É

ÖÜ

OQ'

 (23) 

 
Ç = hÑ

(' ÇO

ÖÜ

OQ'

 (24) 

where hÑ is the number of sites in the cluster. Such a site is deemed as discordant if its ÅO is 

above the critical value shown in Table 2. Removing discordant sites improve homogeneity of 

the cluster.  

 After discordant sites are removed from every cluster, we assess homogeneity for every 

processed cluster using the heterogeneity measure :': 

 
:' =

'̂ − oá
Dá

 (25) 

 and '̂, dispersion measure of L-CV, is given as 

Number of sites Critical value 
5 1.333 
6 1.648 
7 1.917 
8 2.140 
9 2.329 
10 2.491 
11 2.632 
12 2.757 
13 2.869 
14 2.971 
≥ 15 3 

Table 2. Discordancy measure critical values based on number of sites 
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'̂ = hO xA
(O) − xA

A
ÖÜ

OQ'

hO

ÖÜ

OQ'

'/A

 (26) 

 where hÑ is the number of sites, hO is the data length at each station and xA is the mean of xA
(O), 

which is given as 

 
xA
(O) = hOxA

(O)

ÖÜ

OQ'

hO

ÖÜ

OQ'

 (27) 

Generally, heterogeneity measure is defined as :O for T = 1,2,3. However, Hosking and 

Wallis (1997) state that the :' statistic is practically sufficient for heterogeneity measure. :A and 

:{ statistics lack the power of discriminating between homogeneous and heterogeneous regions 

because they do not yield :O > 2 often. Lu (1992) showed similar results from flood frequency 

investigations. Therefore, :' based on '̂ statistic is solely used as a principal indicator of 

heterogeneity in this study. 

 

Nonstationary Analysis 

While clustered regions are assumed to have equivalent frequency distributions, site 

estimates within a region could be different. Therefore, we also incorporate the use of the index 

procedure as part of regional frequency analysis on extreme winds as demonstrated from Hong 

and Ye (2014). In the field of hydrology, the index method (Dalrymple 1960) is a commonly 

used method for pooling flood data series. This method has also been applied to other types of 

phenomena such as wave heights (Ma et al., 2006), precipitation (Onibon et al., 2004), 

earthquakes (Thompson et al., 2007) and extreme winds (Hong and Ye 2014). Similar to Hong 

and Ye (2014), we apply the index methodology to the annual maximum peak 3-s gust wind time 

series. Once regions were clustered, we assume that the indexed annual maximum 3-s gust wind 



	 20 

data within a region have an equivalent frequency distribution. We obtain the n-year return level 

of annual maximum peak 3-s gust wind time series at site T, m̂,O, which is given by 

 m̂,O(C) = 8m(C)8m,à (28) 

where 8′m is the C-year return level of annual maximum peak the cluster t and 8m,à is the scaling 

factor which is the mean value of the annual maximum peak 3-s gust wind time series from site T 

within cluster t. The newly obtained ^, which is m̂,O, is now used in (8) instead of 8 in order to 

test for nonstationarity behavior on return levels. 

To test for nonstationarity behavior on return levels, we follow a postulate that the simple 

regression model in (8) is used to derive conditional moments needed to convert the stationary 

probability distributions to describe their nonstationary counterparts (Serago and Vogel 2018). 

Vogel et al. (2011) and Prosdocimi et al. (2014) examined flood trends for rivers in the US and 

UK with the simple regression model in (8) with 2. The regression model of (8) is rewritten as: 

 ." = oâ + / ä − o" + 3 (29) 

where ." is an explanatory variable . that depends upon the explanatory variables 2, oâ is the 

mean of . and o" is the mean of 2. / is the linear regression coefficient and 3 represents the 

model error term, which is assumed to be independent with time and to have zero mean and to be 

heteroskedastic (i.e. constant variance) with 

 DãA = 1 − LA DâA = DâA − /AD"A (30) 

where L is denoted as the cross-correlation coefficient between . and 2, which is defined as / =

LDâ/D". Sample estimate of the regression coefficient in (29) is defined as: 

 / = L
Sâ
S"

 (31) 

where Sâ =
'

@('
.O − . A@

OQ' , Så =
'

@('
äO − ä A@

OQ' ,   . = '

@
.O

@
OQ'  and  2 = '

@
2O

@
OQ' . 
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The expectation of (29) leads to an expression for the mean of ., condition upon 2: 

 oâ|" = oâ + /(2 − o") (32) 

Similarly, the variance of ., conditioned upon 2, is obtained by taking the variance of (29): 

 Dâ|"
A = DãA = DâA(1 − LA) (33) 

 

Nonstationarity in a LN2 Probability Distribution 

Finally, we demonstrate how the behavior of the return levels of annual maximum peak 

3-s gust wind data fluctuate depending on a nonstationary trend. While several extreme value 

probability distributions, such as extreme value distributions, log-Pearson III distribution and 3-

parameter lognormal distribution, are more widely used for extreme scenarios, we use a simple, 

realistic and representative two-parameter lognormal distribution (LN2) model for our study 

(Read and Vogel, 2015). As it was shown in Figure 3, annual maximum peak 3-s gust wind data 

are well fit by the LN2 distribution as compared to other distributions. Studies involving annual 

maximum phenomena have provided parsimonious procedures with the LN2 and have been 

commonly applied for annual maximum flood studies (Stedinger and Crainiceanu, 2000). We 

hypothesize that this equivalent procedure is applicable for the annual maximum peak 3-s gust 

wind data series by using previously derived nonstationary LN2 models (Vogel et al., 2011; 

Hecht, 2016; Serago and Vogel 2018). 

The two-parameter lognormal distribution (LN2), or typically known as lognormal 

distribution, is one of the most widely used distributions in describing natural phenomena. 

Stedinger (1980) provided quantile estimation methods for the LN2 via maximum likelihood 

estimators. The following is a quantile function of a stationary LN2: 

 Né,ÑÉè = exp	(. + ìéSâ) (34) 
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where . is the sample mean of ., Sâ is the sample standard deviation of ., and ìé is the inverse 

of a standard normal variable with nonexceedance probability f. Substitution of the conditional 

moments of . into the stationary quantile function yields the nonstationary quantile function of 

LN2: 

 
Né,ÖÑÉè = exp	(oâ|" + ìéDâ|") = exp . + / 2O − 2 + ìé SâA − /AS"

A  
(35) 

where / is the regression coefficient obtained in (31), 2O are a series of explanatory variables (i.e. 

time),	2 is the sample mean of 2 and S" is the sample standard deviation of 2. Note that when / =

0 for the nonstationary quantile function, it yields the stationary quantile function. 

To model nonstationarity, this study adopts the homoscedastic model, one of the 

nonstationary regression models introduced by Hecht (2016). The homoscedastic model uses the 

equivalent quantile function in (35). Trends applied onto the log-space mean correspond to a 

concurrent trend in the real-space variance that enables the real-space coefficient of variation to 

remain unchanged. Similarly, trends applied to the log-space variance relate to trends in the real-

space coefficient of variance. Coefficient of variance is a distinct indicator of change in relative 

variability compared to the mean, and would normalize changes in the absolute real-space 

variance so it would have concurrent changes in the real-space mean. 

The homoscedastic nonstationary LN2, is a regression model that produces annual 

maximum series with LN2 distribution with a time-conditional mean. The time dependent 

expectation of ! is: 

 ] ! 2 = oâ|"î = /0 + /'2@ (36) 

where 2@ is the particular response variable (time) of interest. The model is assumed to have an 

error of a mean of zero, constant variance (i.e. homoscedastic), serially independent and 
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approximately normally distributed. As such, the conditional variance of ! at time 2@ is similar 

to (33), which is equivalent to: 

 ^_& !|2@ = Dâ|"î
A = DãA = DâA − /'AD"A (37) 

Using (36) and (37), the homoscedastic nonstationary model quantile function can be derived: 

 
NÖÑÉè = exp	(oâ|å + ìéDâ|å) = exp /0 + /'2@ + ìé DâA − /'

AD"
A  (38) 

As a whole, Figure 6 shows the methodology of this study. 

 

Results & Analysis 

It has been shown in Figure 5 that several stations exhibit nonstationarity by storm type. 

In this study, we considered a station, Jacksonville Executive at Craig Airport, to see 

nonstationarity at a single station by storm type. Jacksonville Executive at Craig Airport shows 

nonstationarity for annual maximum peak 3-s gust wind data series for all four types of storms 

(commingled, non-thunderstorms, thunderstorms and tropical storms). Regression plots for each 

storm type in Jacksonville Executive at Craig Airport (KCRG) are shown in Figure 2. Figure 2 

uses circles to show the . = ln	(8), where 8 is annual maximum peak 3-s gust wind data series 

and 2 (time) relationship. Shown in Figure 2 is also the goodness-of-fit metric ïA, sample size C, 

attained significance level ñ and the P-value of a nonparametric trend test (MK test) f. As  
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Figure 6. Methodology Flowchart 
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mentioned before, it is seen that all storm types from KCRG show significant trends based on the 

nonparametric trend test. For attained significance level, !, it is seen that commingled and 

thunderstorm storm types show extremely low values. As shown from a similar study from 

Serago and Vogel (2018), this can be interpreted as proof that a trend is so strong that there is 

little possibility for evidence for a trend as strong as or stronger to happen if there were no trend. 

The significant statistics by station are shown in Table A.5-8 by storm type in the appendix. 

Based on the methodology presented before, k-means clustering is done for the 108 sites. 

However, selection of k is required before the cluster analysis. By using (17), a heuristic method 

of calculating k (Mardia et al., 1980), a k value of 7.35 is obtained. However, since k value needs 

to be an integer greater than 0, the nearest integer 7 is used as k value for the k-means clustering. 

 Shown in Table 3 are the clustered statistics on the Eastern Seaboard based on the 

variable combination of latitude, longitude, and L-CV as suggested by Hong and Ye (2014) and 

the commingled time series. Figure 7 show spatial distribution of the identified clusters on the 

Eastern Seaboard via the Hong and Ye combination. The figure has colored dots, representing 

wind recording sites that belong to a certain cluster. Encircled colored dots represent a wind 

recording station that belongs to a certain cluster but is regarded discordant within the cluster and 

has been removed from the analysis.  

The Hong and Ye clusters have five acceptably homogeneous clusters, one possibly 

heterogeneous cluster and one definitely heterogeneous cluster. One of the homogeneous clusters 

from the Hong and Ye combination, cluster 6, has a discordant station. This discordant station is 

Westover Afb/Metropolitan Airport in Massachusetts. The discordancy index for this station was 

approximately 3.0143, a value very close to the critical value, 3.00. We hypothesize the 

discordancy of this station to be because it is one of the stations that is the furthest away from the  
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coast. Cluster 2, 4, 5 and 7 are homogeneous clusters and show significant trends. 

However, since cluster 7 is heterogeneous, only clusters 2, 4, and 5 will be further analyzed in 

this study.  

 Figures 8 show the clusters’ and sites’ trend coefficients and significances based on the 

Hong and Ye. Clusters that are significant have a white background; otherwise, clusters are have 

Ncl ID Ns Nd H "# α p TH 
7 1 23 0 3.874 0.001 0.297 0.762 DHet 

2 19 0 -1.751 0.007 0.000 0.001 AHom 
3 3 0 -0.289 0.005 0.166 0.252 AHom 
4 9 0 -1.899 0.007 0.002 0.014 AHom 
5 14 0 0.975 0.004 0.015 0.047 AHom 
6 20 1 0.238 -0.002 0.905 0.139 AHom 
7 20 0 1.791 0.003 0.004 0.016 PHet 

Note: Ncl = Number of clusters; ID = Cluster ID; Ns = Number of sites within a cluster; Nd = Number 
of discordant sites within a cluster; TH = Type of region; AHom = acceptably homogeneous; PHet 
= possibly heterogeneous; DHet = definitely heterogeneous; for H, α, p and "# see (11), (19), (26) 
and (31) 

Figure 7. Clustering Distribution of Hong and Ye Combination as Variables 

Table 3. Cluster Analysis Statistics (Latitude, Longitude and L-CV) for commingled time series 
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a gray background. From these results, it is apparent that sites in Florida until the Carolinas as 

represented by the homogeneous clusters 2, 4 and 5 show the most significant nonstationarity. 

Cluster 2 and 4 from the Hong and Ye combinations sites from Florida, and cluster 5 mostly 

depicts sites from the Carolinas.  

Regression plots for the clusters used in the study, 2, 4 and 5 are shown in Figures 9, 10 

and 11, respectively. We now use the nonstationary homoscedastic trend model (38) to estimate 

return levels of peak 3-s gust wind for each sites of each cluster. Shown in Figures 12, 13 and 14 

are comparisons of the return levels of peak 3-s gust wind for the commingled time series on a 

stationary model vs a nonstationary homoscedastic model for clusters 2, 4 and 5 via Hong and 

Ye combination. Return levels are computed for 100, 300, 700 and 1700 year events and three 

time of interests were used: 2010, 2030, and 2050. It is seen from Figures 12, 13 and 14 that for 

Figure 8. Slope coefficients of sites by cluster (Hong and Ye combination); shades indicate cluster trend 
significance, white is significant and gray is insignificant  

Figure 8. Slope Analysis by Clusters from 7-means via Hong and Ye combination 
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all return levels from 7-means via Hong and Ye combination show increase with the time of 

interest due to the significant positive slope.  

Figure 9. Regression Plot of Cluster 2 from 7-means via Hong and Ye Combination; solid black line represents regression 
line, gray shade represents 95% prediction interval and dashed line represents conditional means of y and t 

Figure 10. Regression Plot of Cluster 4 from 7-means via Hong and Ye Combination; solid black line represents 
regression line, gray shade represents 95% prediction interval and dashed line represents conditional means of y and t 
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We can infer that when homoscedastic trend is applied, the return level of peak 3-s gust 

wind increases drastically for all return periods. Some particular sites (16 and 18) in Cluster 1 via 

the Hong and Ye combination show the highest return levels from all sites within the cluster. 

These sites are located on the southwestern region coast in Florida and share a common 

characteristic that they are near the Gulf of Mexico. Some sites (5, 6 and 7) in cluster 2 also 

show the same phenomena by having high return level periods compared to other sites. These 

results are consistent with the positive correlation findings between SST (sea surface 

temperature) and Gulf of Mexico wind speeds predicted by Trepanier (2013), and the theory of 

maximum potential intensity in tropical storms studied by Emanuel (1986). 

Figure 11. Regression Plot of Cluster 5 from 7-means via Hong and Ye Combination; solid black line represents 
regression line, gray shade represents 95% prediction interval and dashed line represents conditional means of y and t 
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Figure 12. Return level (100, 300, 700, 1700 year) comparison of stationary and nonstationary trends (cluster 2 from 7-means via Hong and Ye combination); light blue, blue and light green points 

indicate return level data points; black solid line is a 1:1 line 
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 Figure 13. Return level (100, 300, 700, 1700 year) comparison of stationary and nonstationary trends (cluster 4 from 7-means via Hong and Ye combination); light blue, blue and light green points 
indicate return level data points; black solid line is a 1:1 line 
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Figure 14. Return level (100, 300, 700, 1700 year) comparison of stationary and nonstationary trends (cluster 5 from 7-means via Hong and Ye combination); light blue, blue and light green points 

indicate return level data points; black solid line is a 1:1 line 
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Discussion 

As shown from Figure 7, clusters 1 to 4 for Hong and Ye combination are composed of 

clusters in the Florida region. Clusters 5-7 represent regions from the Carolinas through New 

England. It can also be seen from Table 3 that cluster 2 and 4 have relatively lower ! and " 

compared to other clusters from the Hong and Ye combination representing the most significant 

trend. This is because magnitude of trends, #$, are higher as seen from Table 3 or Figure 8. 

Furthermore, clusters 2-6 show more homogeneity (ie. negative % compared to clusters 1 and 7).  

Meanwhile, clusters 5-7 show lower values of #$. In addition, while cluster 5 and 6 are 

homogeneous, their % values are generally higher compared to the Florida region with the 

exception of cluster 1. We find these high values of % to be an irregularity; however, it is seen 

from Figure 17 that the majority of major hurricanes that land from the Carolinas to the New 

England area dissipate shortly after landfall. Whereas in the Florida region, most of the 

hurricanes cross the peninsula. From these hurricane tracks, we can infer that sites nearby the 

coast in the Carolinas to the New England area could possibly have different characteristics that 

the coastal storms. This may have impacted the formation of cluster 6 and 7.  
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 Conclusion 

In this study, we have evaluated the observational record of annual maximum 3-s wind 

gust on both individual stations and regional clusters along the Eastern Seaboard. For the cluster 

analysis, a variety of physical (eg. Latitude/longitude coordinates) and wind characteristic (ie. L-

moments of annual maximum peak 3-s gust wind) variables have been considered as shown in 

Table 1. An index method was incorporated which allowed for the site mean to change with an 

assumption that the frequency distribution were equivalent for all sites within a cluster. The 

cluster analysis recommended by Hong and Ye (2014) (latitude, longitude and L-CV) was used. 

As seen from Table 3 (Figure 7), the Hong and Ye combination has identified 5 homogeneous 

clusters and three with significant nonstationary trends. With sites in the Eastern Seaboard 

clustered, stationary and a LN2 nonstationary homoscedastic models were used to compute 

return levels.  

Figure 15. United States major hurricane strikes (category 3 or higher), 1851-2010. (from Blake et al, 2011) 
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The extreme wind data used in this study were divided by storm types (commingled, 

nonthunderstorms, thunderstorms and tropical storms) and evidence of nonstationarity by storm 

types were observed. For commingled data, 23 out of 108 stations exhibit evidence of 

nonstationarity. 16% of these stations show positive trends and 6% show negative trends. For 

nonthunderstorm data, 31 out of 108 stations exhibit evidence of nonstationarity. 23% of these 

stations show positive trends and 6% show negative trends. For thunderstorm data, 19 out of 99 

stations exhibit evidence of nonstationarity. 19% of these stations show positive trends and 2% 

show negative trends. For tropical storm data, 16 out of 117 stations exhibit evidence of 

nonstationarity. 5% of these stations show positive trends and 8% show negative trends. 

Once regional frequency analysis and k-means clustering were applied, we were able to 

find nonstationarity of the mean for regions in the Southern part of the Eastern Seaboard. 

Nonstationarity behavior was most significant and homogenous in the Gulf of Mexico/Florida 

region and into southern Georgia. Regions in the mid-Coast from the Carolinas to Baltimore-DC 

Metro Area also showed some significant trends. However, Baltimore-DC Metro Area to the 

north until New England did not show significant trends for individual sites. This has led to a 

formation of distinct clusters of insignificant trends compared to those in Baltimore-DC Metro 

Area and below. The New England region also showed negligible trends and the regional 

clusters were less homogeneous (less likely to cluster spatially). Furthermore, the nonstationary 

trend showed an increase in the mean behavior leading to higher return levels of peak 3-s gust 

wind under nonstationary conditions than stationary conditions. 

When looking at individual stations and by storm type, 16% of stations exhibit 

statistically significant positive trends for commingled wind, 23% for non-thundestorms, 17% 

for thunderstorms, and 6% for tropical storms. An example is shown with the KCRG station, 
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located in Florida, which has shown significant positive trends for all types of storm type. If 

instead we look for nonstationarity regionally using cluster analysis the nonstationarity is 

focused in the southern region. The regional cluster analysis provides observational evidence that 

nonstationarity of wind in terms of the 3-s wind gust is not observed for from the Baltimore/DC 

Metro Region to New England along the Eastern Seaboard. However, a positive statistically 

significant trend is observed in the annual maximum of the 3-s wind gust in the regional clusters 

from Florida to the Carolinas. This study therefore provides observational evidence of a positive 

trend in regional extreme winds in the Southern region of the Eastern Seaboard. This trend can 

be accounted for by using a nonstationary homoscedastic model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 37 

Appendix 

 
Table A.1. Sites used, commingled storm data stations 

Commingled         
STATION NAME ST CODE LAT LON ELEV (m) SIGN MEAN N 
Key West International Airpor FL KEYW 24.555 -81.752 1.2 + 62.74 38 
Key West Nas FL KNQX 24.583 -81.683 1.8 + 54.96 34 
Miami International Airport FL KMIA 25.791 -80.316 8.8 + 61.37 38 
Opa Locka Airport FL KOPF 25.907 -80.28 3.1 + 52.21 24 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 3.4 + 52.99 38 
Homestead Afb Airport FL KHST 25.483 -80.383 1.5 - 39.48 27 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 3.1 + 35.68 27 
Palm Beach International Airp FL KPBI 26.685 -80.099 5.8 + 58.41 35 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 4.3 + 45.06 27 
Melbourne Intl Ap FL KMLB 28.101 -80.644 8.2 + 59.12 37 
Vero Beach Muni FL KVRB 27.653 -80.243 8.5 - 67.62 38 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 6.4 + 35.23 22 
Orlando International Airport FL KMCO 28.434 -81.325 27.4 + 47.11 38 
Executive Airport FL KORL 28.545 -81.333 32.9 + 74.66 21 
Daytona Beach Intl FL KDAB 29.183 -81.048 12.5 - 56.34 38 
Orlando Sanford Airport FL KSFB 28.78 -81.244 16.8 + 47.64 35 
Jacksonville  International A FL KJAX 30.495 -81.694 7.9 - 44.90 38 
Jacksonville Nas FL KNIP 30.233 -81.667 6.1 + 60.60 37 
Mayport Naf FL KNRB 30.4 -81.417 4.9 + 50.19 32 
Cecil Field Airport FL KVQQ 30.219 -81.876 24.7 - 43.66 27 
Jacksonville/Craig FL KCRG 30.336 -81.515 12.5 + 48.34 37 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 14 - 57.30 34 
Charleston Afb/International SC KCHS 32.899 -80.04 12.2 + 69.19 38 
Beaufort Mcas SC KNBC 32.483 -80.717 11.3 + 43.53 36 
Wright Aaf Airport GA KLHW 31.883 -81.567 13.7 - 50.93 28 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 7.3 + 37.18 23 
Albert Whitted Airport FL KSPG 27.765 -82.628 2.4 + 42.31 25 
Page Field Airport FL KFMY 26.585 -81.861 4.6 + 50.65 35 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 9.5 + 55.69 27 
Tampa International Airport FL KTPA 27.962 -82.54 5.8 - 51.45 38 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 8.5 + 62.63 38 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 3.4 + 50.52 38 
Alma/Bacon Co. GA KAMG 31.536 -82.507 62.8 - 44.04 37 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 4.9 + 41.36 38 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 16.8 + 57.14 38 
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Gainesville Rgnl FL KGNV 29.692 -82.276 50.3 + 39.50 38 
Valdosta Regional Airport GA KVLD 30.783 -83.277 60.4 - 48.66 38 
Apalachicola Muni Airport FL KAAF 29.733 -85.033 5.8 + 42.34 33 
Eglin Afb Airport FL KVPS 30.483 -86.517 26.5 + 58.10 36 
Bob Sikes Airport FL KCEW 30.78 -86.523 57.9 + 48.16 38 
Pensacola Regional Airport FL KPNS 30.478 -87.187 34.1 + 52.31 20 
Pensacola Nas FL KNPA 30.35 -87.317 8.5 + 46.28 34 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 60.7 - 49.17 28 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 6.4 + 46.33 30 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 58 + 43.43 26 
Wilmington Intl NC KILM 34.268 -77.9 11.6 + 59.65 20 
Pope Afb Airport NC KPOB 35.174 -79.009 66.5 + 64.80 39 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 56.7 + 46.20 37 
Cape Hatteras NC KHSE 35.233 -75.622 3.4 + 56.78 23 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 33.2 + 50.36 38 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 48.8 + 59.40 37 
Oceana Nas VA KNTU 36.817 -76.033 7 + 44.56 36 
Norfolk International Airport VA KORF 36.903 -76.192 9.1 - 80.73 38 
Norfolk Nas VA KNGU 36.937 -76.289 5.2 + 56.11 38 
Cherry Point Mcas NC KNKT 34.9 -76.883 8.8 + 49.25 35 
Craven County Reg Airport NC KEWN 35.068 -77.048 5.8 - 42.82 38 
Jacksonville NC KNCA 34.708 -77.44 7.9 + 49.14 35 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 68.6 - 44.01 38 
Mcentire Air National Guard S SC KMMT 33.967 -80.8 77.4 + 47.28 29 
Florence Regional Airport SC KFLO 34.185 -79.724 44.5 + 66.80 38 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 14 + 49.52 25 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 18.3 - 78.67 38 
Atlantic City International A NJ KACY 39.449 -74.567 18.3 - 60.40 38 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 21.3 - 52.94 38 
Naes/Maxfield Field NJ KNEL 40.033 -74.35 30.8 + 60.46 30 
Sussex County Airport DE KGED 38.689 -75.359 15.5 + 38.04 18 
La Guardia Airport NY KLGA 40.779 -73.88 3.4 - 49.49 37 
Long Island Mac Art NY KISP 40.794 -73.102 30.2 - 42.09 38 
Westchester County Airport NY KHPN 41.067 -73.708 115.5 + 47.76 38 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 1.5 - 63.12 38 
Groton-New London Airport CT KGON 41.328 -72.049 3.1 - 46.15 38 
Nantucket Mem MA KACK 41.253 -70.061 14.3 - 56.48 21 
Plymouth Municipal Airport MA KPYM 41.91 -70.729 45.4 + 45.63 20 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 24.4 + 47.01 38 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 20.7 + 52.33 38 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 16.8 + 65.48 38 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 16.8 - 50.42 38 
Bradley International Airport CT KBDL 41.938 -72.682 53.3 - 64.66 38 
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Table A.2. Sites used, nonthunderstorm data stations 

Danbury Municipal Airport CT KDXR 41.371 -73.483 139.3 + 37.26 30 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 5.8 - 47.94 36 
Beverly Municipal Airport MA KBVY 42.584 -70.918 32.9 + 43.55 35 
Gen E L Logan International A MA KBOS 42.361 -71.01 3.7 - 53.73 38 
Naval Air Station MA KNZW 42.15 -70.933 49.1 - 55.85 21 
Norwood Memorial Airport MA KOWD 42.191 -71.174 15.2 + 46.90 38 
Concord Municipal Airport NH KCON 43.12 -71.3 105.5 + 49.94 34 
Pease International Tradeport NH KPSM 43.083 -70.817 30.5 - 50.40 40 
Portland International Jetpor ME KPWM 43.65 -70.3 13.7 - 58.87 38 
Naval Air Station ME KNHZ 43.9 -69.933 21.3 - 47.68 37 
Manchester Airport NH KMHT 42.933 -71.438 68.6 + 68.56 38 
John F Kennedy International NY KJFK 40.639 -73.762 3.4 - 57.46 38 
Republic Airport NY KFRG 40.734 -73.417 24.7 - 53.97 18 
Francis S Gabreski Ap NY KFOK 40.844 -72.632 20.4 - 62.87 31 
Bedford Hanscom Field MA KBED 42.47 -71.289 40.5 - 54.65 22 
Lawrence Municipal Airport MA KLWM 42.717 -71.124 45.4 + 59.69 28 
Fort Devens/Ayer MA KAYE 42.567 -71.6 82 - 49.13 18 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 73.5 - 45.42 39 
Barnes Municipal Airport MA KBAF 42.158 -72.716 82.6 + 43.97 37 
Langley Afb Airport VA KLFI 37.083 -76.36 3.1 - 64.05 40 
Simmons Aaf Airport NC KFBG 35.133 -78.933 74.4 + 75.27 37 

Non-Thunderstorms         
STATION NAME ST CODE LAT LON ELEV (m) SIGN MEAN N 
Key West International Airpor FL KEYW 24.555 -81.752 1.2 - 40.37 38 
Key West Nas FL KNQX 24.583 -81.683 1.8 + 45.74 34 
Miami International Airport FL KMIA 25.791 -80.316 8.8 + 42.64 38 
Opa Locka Airport FL KOPF 25.907 -80.28 3.1 + 45.38 24 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 3.4 - 47.05 38 
Homestead Afb Airport FL KHST 25.483 -80.383 1.5 - 38.42 27 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 3.1 + 34.46 27 
Palm Beach International Airp FL KPBI 26.685 -80.099 5.8 - 43.83 35 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 4.3 - 37.38 27 
Melbourne Intl Ap FL KMLB 28.101 -80.644 8.2 + 43.27 37 
Vero Beach Muni FL KVRB 27.653 -80.243 8.5 + 56.66 38 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 6.4 + 36.35 22 
Orlando International Airport FL KMCO 28.434 -81.325 27.4 + 45.45 38 
Executive Airport FL KORL 28.545 -81.333 32.9 + 55.94 21 
Daytona Beach Intl FL KDAB 29.183 -81.048 12.5 - 52.20 38 
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Orlando Sanford Airport FL KSFB 28.78 -81.244 16.8 + 42.57 35 
Jacksonville  International A FL KJAX 30.495 -81.694 7.9 - 47.70 38 
Jacksonville Nas FL KNIP 30.233 -81.667 6.1 - 39.96 37 
Mayport Naf FL KNRB 30.4 -81.417 4.9 + 52.85 32 
Cecil Field Airport FL KVQQ 30.219 -81.876 24.7 - 49.93 27 
Jacksonville/Craig FL KCRG 30.336 -81.515 12.5 + 37.66 37 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 14 - 56.23 34 
Charleston Afb/International SC KCHS 32.899 -80.04 12.2 + 56.57 38 
Beaufort Mcas SC KNBC 32.483 -80.717 11.3 + 50.08 36 
Wright Aaf Airport GA KLHW 31.883 -81.567 13.7 + 54.01 28 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 7.3 + 39.49 23 
Albert Whitted Airport FL KSPG 27.765 -82.628 2.4 + 45.14 25 
Page Field Airport FL KFMY 26.585 -81.861 4.6 - 53.74 35 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 9.5 + 41.47 27 
Tampa International Airport FL KTPA 27.962 -82.54 5.8 - 47.22 38 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 8.5 - 38.47 38 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 3.4 + 44.74 38 
Alma/Bacon Co. GA KAMG 31.536 -82.507 62.8 - 38.18 37 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 4.9 + 36.10 38 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 16.8 - 39.46 38 
Gainesville Rgnl FL KGNV 29.692 -82.276 50.3 + 37.46 38 
Valdosta Regional Airport GA KVLD 30.783 -83.277 60.4 - 36.34 38 
Eglin Afb Airport FL KVPS 30.483 -86.517 26.5 + 42.92 33 
Bob Sikes Airport FL KCEW 30.78 -86.523 57.9 + 50.95 36 
Pensacola Regional Airport FL KPNS 30.478 -87.187 34.1 - 41.34 38 
Pensacola Nas FL KNPA 30.35 -87.317 8.5 - 47.90 20 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 60.7 - 43.27 34 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 6.4 + 44.34 28 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 58 + 38.44 30 
Wilmington Intl NC KILM 34.268 -77.9 11.6 - 48.81 26 
Pope Afb Airport NC KPOB 35.174 -79.009 66.5 + 55.51 20 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 56.7 + 49.41 39 
Cape Hatteras NC KHSE 35.233 -75.622 3.4 - 48.51 37 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 33.2 + 50.96 23 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 48.8 + 43.71 38 
Oceana Nas VA KNTU 36.817 -76.033 7 + 47.64 37 
Norfolk International Airport VA KORF 36.903 -76.192 9.1 - 49.56 36 
Norfolk Nas VA KNGU 36.937 -76.289 5.2 - 49.36 38 
Cherry Point Mcas NC KNKT 34.9 -76.883 8.8 + 45.21 38 
Craven County Reg Airport NC KEWN 35.068 -77.048 5.8 - 44.38 35 
Jacksonville NC KNCA 34.708 -77.44 7.9 + 41.72 38 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 68.6 + 51.34 35 
Mcentire Air National Guard S SC KMMT 33.967 -80.8 77.4 + 47.41 38 
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Florence Regional Airport SC KFLO 34.185 -79.724 44.5 + 49.91 29 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 14 + 43.67 38 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 18.3 - 43.76 25 
Atlantic City International A NJ KACY 39.449 -74.567 18.3 - 64.52 38 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 21.3 + 58.46 38 
Naes/Maxfield Field NJ KNEL 40.033 -74.35 30.8 + 50.91 38 
La Guardia Airport NY KLGA 40.779 -73.88 3.4 + 48.85 30 
Long Island Mac Art NY KISP 40.794 -73.102 30.2 + 37.76 18 
Westchester County Airport NY KHPN 41.067 -73.708 115.5 - 61.55 37 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 1.5 + 55.30 38 
Groton-New London Airport CT KGON 41.328 -72.049 3.1 + 39.64 38 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 24.4 + 56.53 38 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 20.7 + 45.14 38 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 16.8 + 64.38 21 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 16.8 - 45.60 20 
Bradley International Airport CT KBDL 41.938 -72.682 53.3 + 43.88 38 
Danbury Municipal Airport CT KDXR 41.371 -73.483 139.3 + 51.80 38 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 5.8 + 66.51 38 
Beverly Municipal Airport MA KBVY 42.584 -70.918 32.9 + 51.06 38 
Gen E L Logan International A MA KBOS 42.361 -71.01 3.7 + 44.68 38 
Norwood Memorial Airport MA KOWD 42.191 -71.174 15.2 - 43.08 30 
Concord Municipal Airport NH KCON 43.12 -71.3 105.5 + 47.05 36 
Pease International Tradeport NH KPSM 43.083 -70.817 30.5 + 38.76 35 
Portland International Jetpor ME KPWM 43.65 -70.3 13.7 + 62.78 38 
Naval Air Station ME KNHZ 43.9 -69.933 21.3 - 75.40 21 
Manchester Airport NH KMHT 42.933 -71.438 68.6 + 43.53 38 
John F Kennedy International NY KJFK 40.639 -73.762 3.4 - 46.49 34 
Lawrence Municipal Airport MA KLWM 42.717 -71.124 45.4 + 58.31 40 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 73.5 + 50.60 38 
Barnes Municipal Airport MA KBAF 42.158 -72.716 82.6 + 46.69 37 
Langley Afb Airport VA KLFI 37.083 -76.36 3.1 - 57.30 38 
Simmons Aaf Airport NC KFBG 35.133 -78.933 74.4 + 52.66 38 
Elizabeth City Cgas NC KECG 36.261 -76.175 4 + 53.97 18 
Tyndall Afb Airport FL KPAM 30.067 -85.583 5.2 - 61.91 31 
Hurlburt Field Airport FL KHRT 30.417 -86.683 11.6 - 54.55 22 
Hunter Army Airfield GA KSVN 32.017 -81.133 12.5 - 62.39 28 
Mac Dill Afb Airport FL KMCF 27.85 -82.517 4.3 + 35.63 18 
Shaw Air Force Base SC KSSC 33.967 -80.467 73.5 + 54.17 39 
Grand Strand Airport SC KCRE 33.812 -78.724 9.8 - 49.96 37 
Kennedy Space Center FL KTTS 28.617 -80.683 3.1 + 47.59 40 
Patrick Afb Airport FL KCOF 28.233 -80.6 2.4 + 44.48 37 
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Table A.3. Sites used, thunderstorm data stations 

Thunderstorms         
STATION NAME ST CODE LAT LON ELEV (m) SIGN MEAN N 
Key West International Airpor FL KEYW 24.555 -81.752 1.2 - 51.44 38 
Key West Nas FL KNQX 24.583 -81.683 1.8 + 54.70 32 
Miami International Airport FL KMIA 25.791 -80.316 8.8 + 51.23 38 
Opa Locka Airport FL KOPF 25.907 -80.28 3.1 + 36.34 24 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 3.4 - 45.23 35 
Homestead Afb Airport FL KHST 25.483 -80.383 1.5 - 40.64 23 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 3.1 + 37.22 26 
Palm Beach International Airp FL KPBI 26.685 -80.099 5.8 - 53.14 34 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 4.3 - 48.82 26 
Melbourne Intl Ap FL KMLB 28.101 -80.644 8.2 + 61.19 36 
Vero Beach Muni FL KVRB 27.653 -80.243 8.5 + 69.04 38 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 6.4 + 37.32 22 
Orlando International Airport FL KMCO 28.434 -81.325 27.4 + 52.29 38 
Executive Airport FL KORL 28.545 -81.333 32.9 + 73.79 21 
Daytona Beach Intl FL KDAB 29.183 -81.048 12.5 - 52.66 38 
Orlando Sanford Airport FL KSFB 28.78 -81.244 16.8 + 45.43 29 
Jacksonville  International A FL KJAX 30.495 -81.694 7.9 - 47.45 38 
Jacksonville Nas FL KNIP 30.233 -81.667 6.1 - 50.84 37 
Mayport Naf FL KNRB 30.4 -81.417 4.9 + 40.98 24 
Cecil Field Airport FL KVQQ 30.219 -81.876 24.7 - 41.43 25 
Jacksonville/Craig FL KCRG 30.336 -81.515 12.5 + 47.26 35 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 14 - 53.52 34 
Charleston Afb/International SC KCHS 32.899 -80.04 12.2 + 49.57 38 
Beaufort Mcas SC KNBC 32.483 -80.717 11.3 + 34.80 36 
Wright Aaf Airport GA KLHW 31.883 -81.567 13.7 + 55.06 26 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 7.3 + 41.16 23 
Albert Whitted Airport FL KSPG 27.765 -82.628 2.4 + 39.61 25 
Page Field Airport FL KFMY 26.585 -81.861 4.6 - 50.79 34 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 9.5 + 39.98 27 
Tampa International Airport FL KTPA 27.962 -82.54 5.8 - 42.56 38 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 8.5 - 52.94 38 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 3.4 + 56.89 38 
Alma/Bacon Co. GA KAMG 31.536 -82.507 62.8 - 35.97 35 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 4.9 + 36.71 37 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 16.8 - 54.25 38 
Gainesville Rgnl FL KGNV 29.692 -82.276 50.3 + 35.69 38 
Valdosta Regional Airport GA KVLD 30.783 -83.277 60.4 - 39.96 38 
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Eglin Afb Airport FL KVPS 30.483 -86.517 26.5 + 48.86 36 
Bob Sikes Airport FL KCEW 30.78 -86.523 57.9 + 43.76 37 
Pensacola Regional Airport FL KPNS 30.478 -87.187 34.1 - 39.08 20 
Pensacola Nas FL KNPA 30.35 -87.317 8.5 - 40.19 34 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 60.7 - 44.04 28 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 6.4 + 43.22 28 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 58 + 38.38 25 
Wilmington Intl NC KILM 34.268 -77.9 11.6 - 44.48 20 
Pope Afb Airport NC KPOB 35.174 -79.009 66.5 + 47.35 34 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 56.7 + 53.09 36 
Cape Hatteras NC KHSE 35.233 -75.622 3.4 - 48.19 23 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 33.2 + 40.38 36 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 48.8 + 51.57 33 
Oceana Nas VA KNTU 36.817 -76.033 7 + 37.17 33 
Norfolk International Airport VA KORF 36.903 -76.192 9.1 - 64.24 38 
Norfolk Nas VA KNGU 36.937 -76.289 5.2 - 41.66 38 
Cherry Point Mcas NC KNKT 34.9 -76.883 8.8 + 47.42 35 
Craven County Reg Airport NC KEWN 35.068 -77.048 5.8 - 39.92 37 
Jacksonville NC KNCA 34.708 -77.44 7.9 + 36.45 32 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 68.6 + 46.74 38 
Mcentire Air National Guard S SC KMMT 33.967 -80.8 77.4 + 48.82 25 
Florence Regional Airport SC KFLO 34.185 -79.724 44.5 + 46.49 36 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 14 + 40.77 18 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 18.3 - 43.10 32 
Atlantic City International A NJ KACY 39.449 -74.567 18.3 - 48.43 33 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 21.3 + 45.21 34 
Naes/Maxfield Field NJ KNEL 40.033 -74.35 30.8 + 58.93 21 
La Guardia Airport NY KLGA 40.779 -73.88 3.4 + 42.24 37 
Long Island Mac Art NY KISP 40.794 -73.102 30.2 + 55.42 37 
Westchester County Airport NY KHPN 41.067 -73.708 115.5 - 44.43 36 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 1.5 + 55.81 31 
Groton-New London Airport CT KGON 41.328 -72.049 3.1 + 45.42 33 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 24.4 + 32.11 29 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 20.7 + 42.76 24 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 16.8 + 42.53 29 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 16.8 - 41.20 38 
Bradley International Airport CT KBDL 41.938 -72.682 53.3 + 52.24 38 
Danbury Municipal Airport CT KDXR 41.371 -73.483 139.3 + 31.95 24 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 5.8 + 39.80 33 
Beverly Municipal Airport MA KBVY 42.584 -70.918 32.9 + 30.89 32 
Gen E L Logan International A MA KBOS 42.361 -71.01 3.7 + 43.86 38 
Norwood Memorial Airport MA KOWD 42.191 -71.174 15.2 - 40.58 28 
Concord Municipal Airport NH KCON 43.12 -71.3 105.5 + 39.76 31 
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Table A.4. Sites used, tropical storm data stations 

Pease International Tradeport NH KPSM 43.083 -70.817 30.5 + 52.92 26 
Portland International Jetpor ME KPWM 43.65 -70.3 13.7 + 49.08 32 
Naval Air Station ME KNHZ 43.9 -69.933 21.3 - 44.11 23 
Manchester Airport NH KMHT 42.933 -71.438 68.6 + 40.00 29 
John F Kennedy International NY KJFK 40.639 -73.762 3.4 - 40.21 38 
Lawrence Municipal Airport MA KLWM 42.717 -71.124 45.4 + 47.09 26 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 73.5 + 48.03 26 
Barnes Municipal Airport MA KBAF 42.158 -72.716 82.6 + 56.21 28 
Langley Afb Airport VA KLFI 37.083 -76.36 3.1 - 49.91 39 
Simmons Aaf Airport NC KFBG 35.133 -78.933 74.4 + 54.67 35 
Elizabeth City Cgas NC KECG 36.261 -76.175 4 + 69.10 19 
Tyndall Afb Airport FL KPAM 30.067 -85.583 5.2 - 46.36 32 
Hurlburt Field Airport FL KHRT 30.417 -86.683 11.6 - 44.15 32 
Hunter Army Airfield GA KSVN 32.017 -81.133 12.5 - 41.06 31 
Mac Dill Afb Airport FL KMCF 27.85 -82.517 4.3 + 57.18 30 
Shaw Air Force Base SC KSSC 33.967 -80.467 73.5 + 50.81 36 
Grand Strand Airport SC KCRE 33.812 -78.724 9.8 - 46.59 32 
Kennedy Space Center FL KTTS 28.617 -80.683 3.1 + 54.48 18 
Patrick Afb Airport FL KCOF 28.233 -80.6 2.4 + 44.24 36 

Tropical Storms         
STATION NAME ST CODE LAT LON ELEV (m) SIGN MEAN N 
Key West International Airpor FL KEYW 24.555 -81.752 1.2 + 40.85 14 
Hernando County Airport FL KBKV 28.474 -82.454 1.8 + 57.61 8 
Key West Nas FL KNQX 24.583 -81.683 8.8 - 45.07 11 
The Fl Keys Marathon Arpt FL KMTH 24.726 -81.052 3.1 + 74.06 6 
Miami International Airport FL KMIA 25.791 -80.316 3.4 + 48.76 18 
Opa Locka Airport FL KOPF 25.907 -80.28 1.5 - 47.55 8 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 3.1 + 43.40 14 
Homestead Afb Airport FL KHST 25.483 -80.383 5.8 - 37.10 11 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 4.3 + 68.35 10 
Palm Beach International Airp FL KPBI 26.685 -80.099 8.2 + 38.77 16 
Charlotte County Airport FL KPGD 26.917 -81.991 8.5 - 29.37 8 
North Perry Airport FL KHWO 25.999 -80.241 6.4 - 43.81 5 
Naples Municipal Airport FL KAPF 26.152 -81.775 27.4 - 46.36 8 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 32.9 + 38.96 10 
Melbourne Intl Ap FL KMLB 28.101 -80.644 12.5 + 79.06 15 
Vero Beach Muni FL KVRB 27.653 -80.243 16.8 + 59.87 17 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 7.9 + 35.97 9 
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Orlando International Airport FL KMCO 28.434 -81.325 6.1 + 52.69 16 
Executive Airport FL KORL 28.545 -81.333 4.9 + 66.85 11 
Daytona Beach Intl FL KDAB 29.183 -81.048 24.7 + 49.56 20 
Orlando Sanford Airport FL KSFB 28.78 -81.244 12.5 + 60.68 13 
Jacksonville  International A FL KJAX 30.495 -81.694 14 + 53.67 16 
Jacksonville Nas FL KNIP 30.233 -81.667 12.2 + 47.85 14 
Mayport Naf FL KNRB 30.4 -81.417 11.3 - 60.13 14 
Cecil Field Airport FL KVQQ 30.219 -81.876 13.7 + 36.66 5 
Jacksonville/Craig FL KCRG 30.336 -81.515 7.3 + 49.10 12 
Destin-Ft.Walton Beach Apt FL KDTS 30.4 -86.472 2.4 + 50.42 8 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 4.6 - 34.24 12 
Charleston Afb/International SC KCHS 32.899 -80.04 9.5 + 68.16 19 
Beaufort Mcas SC KNBC 32.483 -80.717 5.8 - 39.33 10 
Wright Aaf Airport GA KLHW 31.883 -81.567 8.5 + 40.05 5 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 3.4 + 38.89 11 
Albert Whitted Airport FL KSPG 27.765 -82.628 62.8 - 50.25 13 
Page Field Airport FL KFMY 26.585 -81.861 4.9 + 37.07 13 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 16.8 + 35.62 12 
Tampa International Airport FL KTPA 27.962 -82.54 50.3 - 37.35 15 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 60.4 - 41.04 18 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 26.5 - 43.83 16 
Cross City Airport FL KCTY 29.633 -83.105 57.9 + 39.32 8 
Alma/Bacon Co. GA KAMG 31.536 -82.507 34.1 + 42.95 8 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 8.5 + 37.54 14 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 60.7 - 42.63 13 
Gainesville Rgnl FL KGNV 29.692 -82.276 6.4 + 44.93 13 
Valdosta Regional Airport GA KVLD 30.783 -83.277 58 + 59.06 9 
Apalachicola Muni Airport FL KAAF 29.733 -85.033 11.6 - 67.15 8 
Eglin Afb Airport FL KVPS 30.483 -86.517 66.5 + 73.10 14 
Leesburg Regional Airport FL KLEE 28.821 -81.81 56.7 + 56.52 7 
Bob Sikes Airport FL KCEW 30.78 -86.523 3.4 - 64.02 14 
Pensacola Regional Airport FL KPNS 30.478 -87.187 33.2 - 48.63 9 
Perry Foley FL K40J 30.072 -83.574 48.8 + 65.18 7 
Pensacola Nas FL KNPA 30.35 -87.317 7 - 31.64 11 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 9.1 - 52.34 9 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 5.2 - 46.12 11 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 8.8 - 63.61 5 
Wilmington Intl NC KILM 34.268 -77.9 5.8 + 85.99 13 
Pope Afb Airport NC KPOB 35.174 -79.009 7.9 + 41.63 13 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 68.6 + 49.80 13 
Michael J Smith Fld Arpt NC KMRH 34.734 -76.661 77.4 + 73.36 7 
Cape Hatteras NC KHSE 35.233 -75.622 44.5 + 50.78 13 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 14 + 99.29 10 
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Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 18.3 + 65.86 10 
Oceana Nas VA KNTU 36.817 -76.033 18.3 + 52.25 20 
Norfolk International Airport VA KORF 36.903 -76.192 21.3 + 50.70 22 
Norfolk Nas VA KNGU 36.937 -76.289 30.8 + 53.76 18 
Cherry Point Mcas NC KNKT 34.9 -76.883 3.4 + 56.76 21 
Craven County Reg Airport NC KEWN 35.068 -77.048 30.2 + 43.84 12 
Jacksonville NC KNCA 34.708 -77.44 115.5 + 50.25 16 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 1.5 - 35.43 11 
Florence Regional Airport SC KFLO 34.185 -79.724 3.1 - 37.10 11 
Lumberton Municipal Arpt NC KLBT 34.608 -79.059 24.4 - 44.57 5 
Laurinburg-Maxton Airport NC KMEB 34.792 -79.366 20.7 - 36.35 5 
Billy Mitchell Airport NC KHSE 35.233 -75.622 16.8 - 61.40 14 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 16.8 + 72.39 10 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 53.3 + 75.57 14 
Atlantic City International A NJ KACY 39.449 -74.567 139.3 - 29.52 14 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 5.8 - 55.79 10 
Sussex County Airport DE KGED 38.689 -75.359 32.9 + 53.48 6 
La Guardia Airport NY KLGA 40.779 -73.88 3.7 - 50.04 11 
Long Island Mac Art NY KISP 40.794 -73.102 15.2 - 34.12 10 
Westchester County Airport NY KHPN 41.067 -73.708 105.5 - 38.60 7 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 30.5 - 30.64 10 
Groton-New London Airport CT KGON 41.328 -72.049 13.7 - 30.63 7 
Nantucket Mem MA KACK 41.253 -70.061 21.3 - 51.78 12 
Plymouth Municipal Airport MA KPYM 41.91 -70.729 68.6 + 38.04 7 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 3.4 + 72.45 6 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 45.4 + 49.05 14 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 73.5 + 61.06 12 
Chatham Municipal Airport MA KCQX 41.688 -69.993 82.6 + 62.46 5 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 3.1 - 38.90 9 
Bradley International Airport CT KBDL 41.938 -72.682 74.4 - 40.46 8 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 4 + 82.46 5 
Beverly Municipal Airport MA KBVY 42.584 -70.918 5.2 + 74.08 5 
Gen E L Logan International A MA KBOS 42.361 -71.01 11.6 - 50.68 8 
Concord Municipal Airport NH KCON 43.12 -71.3 12.5 + 60.88 6 
Pease International Tradeport NH KPSM 43.083 -70.817 4.3 + 82.78 8 
Portland International Jetpor ME KPWM 43.65 -70.3 73.5 - 23.41 7 
Manchester Airport NH KMHT 42.933 -71.438 9.8 - 42.82 6 
John F Kennedy International NY KJFK 40.639 -73.762 3.1 - 32.22 9 
Francis S Gabreski Ap NY KFOK 40.844 -72.632 2.4 - 42.94 8 
Bedford Hanscom Field MA KBED 42.47 -71.289 40.5 - 46.55 5 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 73.5 + 87.84 7 
Barnes Municipal Airport MA KBAF 42.158 -72.716 82.6 + 73.20 5 
Ocean City Municipal Artp MD KOXB 38.308 -75.124 3.7 + 41.57 6 
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Table A.5. Significance Statistics for Commingled Stations 

Langley Afb Airport VA KLFI 37.083 -76.36 3.1 + 50.69 17 
Simmons Aaf Airport NC KFBG 35.133 -78.933 74.4 + 54.49 14 
Elizabeth City Cgas NC KECG 36.261 -76.175 4 + 41.41 15 
Tyndall Afb Airport FL KPAM 30.067 -85.583 5.2 - 50.22 13 
Marianna Municipal Airport FL KMAI 30.836 -85.184 34.4 - 37.65 5 
Hurlburt Field Airport FL KHRT 30.417 -86.683 11.6 + 78.19 11 
Hunter Army Airfield GA KSVN 32.017 -81.133 12.5 - 46.72 14 
Mac Dill Afb Airport FL KMCF 27.85 -82.517 4.3 + 71.80 13 
Shaw Air Force Base SC KSSC 33.967 -80.467 73.5 - 47.04 9 
Myrtle Beach Intl Airport SC KMYR 33.683 -78.933 7.6 + 51.27 5 
Grand Strand Airport SC KCRE 33.812 -78.724 9.8 + 43.62 16 
Nasa Shuttle Fclty FL KSC 28.617 -80.7 3 - 44.87 6 
Kennedy Space Center FL KTTS 28.617 -80.683 3.1 + 55.57 11 
Patrick Afb Airport FL KCOF 28.233 -80.6 2.4 + 46.78 17 

Commingled         
Station Name ST CODE LAT LON SIGN N MK T 
Key West International Airpor FL KEYW 24.555 -81.752 P 38 0.860 0.223 
Key West Nas FL KNQX 24.583 -81.683 P 34 0.678 0.303 
Miami International Airport FL KMIA 25.791 -80.316 P 38 0.183 0.074 
Opa Locka Airport FL KOPF 25.907 -80.28 P 24 0.000 0.000 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 P 38 0.633 0.235 
Homestead Afb Airport FL KHST 25.483 -80.383 N 27 0.934 0.687 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 P 27 0.050 0.043 
Palm Beach International Airp FL KPBI 26.685 -80.099 P 35 0.609 0.393 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 P 27 0.588 0.286 
Melbourne Intl Ap FL KMLB 28.101 -80.644 P 37 0.038 0.048 
Vero Beach Muni FL KVRB 27.653 -80.243 N 38 0.669 0.571 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 P 22 0.159 0.035 
Orlando International Airport FL KMCO 28.434 -81.325 P 38 0.339 0.108 
Executive Airport FL KORL 28.545 -81.333 P 21 0.110 0.146 
Daytona Beach Intl FL KDAB 29.183 -81.048 N 38 0.436 0.696 
Orlando Sanford Airport FL KSFB 28.78 -81.244 P 35 0.000 0.000 
Jacksonville  International A FL KJAX 30.495 -81.694 N 38 0.209 0.881 
Jacksonville Nas FL KNIP 30.233 -81.667 P 37 0.647 0.432 
Mayport Naf FL KNRB 30.4 -81.417 P 32 0.733 0.314 
Cecil Field Airport FL KVQQ 30.219 -81.876 N 27 0.646 0.732 
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Jacksonville/Craig FL KCRG 30.336 -81.515 P 37 0.001 0.001 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 N 34 0.085 0.966 
Charleston Afb/International SC KCHS 32.899 -80.04 P 38 0.597 0.314 
Beaufort Mcas SC KNBC 32.483 -80.717 P 36 0.577 0.354 
Wright Aaf Airport GA KLHW 31.883 -81.567 N 28 0.890 0.546 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 P 23 0.170 0.184 
Albert Whitted Airport FL KSPG 27.765 -82.628 P 25 0.154 0.097 
Page Field Airport FL KFMY 26.585 -81.861 P 35 0.293 0.051 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 P 27 0.095 0.022 
Tampa International Airport FL KTPA 27.962 -82.54 N 38 0.113 0.953 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 P 38 0.113 0.071 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 P 38 0.108 0.026 
Alma/Bacon Co. GA KAMG 31.536 -82.507 N 37 0.647 0.755 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 P 38 0.087 0.028 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 P 38 0.669 0.424 
Gainesville Rgnl FL KGNV 29.692 -82.276 P 38 0.597 0.307 
Valdosta Regional Airport GA KVLD 30.783 -83.277 N 38 0.303 0.956 
Apalachicola Muni Airport FL KAAF 29.733 -85.033 P 33 0.001 0.006 
Eglin Afb Airport FL KVPS 30.483 -86.517 P 36 0.376 0.143 
Bob Sikes Airport FL KCEW 30.78 -86.523 P 38 0.011 0.010 
Pensacola Regional Airport FL KPNS 30.478 -87.187 P 20 0.820 0.496 
Pensacola Nas FL KNPA 30.35 -87.317 P 34 0.635 0.373 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 N 28 0.678 0.608 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 P 30 0.015 0.014 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 P 26 0.290 0.212 
Wilmington Intl NC KILM 34.268 -77.9 P 20 0.770 0.489 
Pope Afb Airport NC KPOB 35.174 -79.009 P 39 0.276 0.205 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 P 37 0.077 0.043 
Cape Hatteras NC KHSE 35.233 -75.622 P 23 0.342 0.113 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 P 38 0.481 0.124 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 P 37 0.048 0.024 
Oceana Nas VA KNTU 36.817 -76.033 P 36 0.007 0.005 
Norfolk International Airport VA KORF 36.903 -76.192 N 38 0.200 0.850 
Norfolk Nas VA KNGU 36.937 -76.289 P 38 0.258 0.228 
Cherry Point Mcas NC KNKT 34.9 -76.883 P 35 0.001 0.003 
Craven County Reg Airport NC KEWN 35.068 -77.048 N 38 0.687 0.685 
Jacksonville NC KNCA 34.708 -77.44 P 35 0.053 0.026 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 N 38 0.706 0.553 
Mcentire Air National Guard S SC KMMT 33.967 -80.8 P 29 0.026 0.009 
Florence Regional Airport SC KFLO 34.185 -79.724 P 38 0.108 0.040 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 P 25 0.005 0.007 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 N 38 0.615 0.534 
Atlantic City International A NJ KACY 39.449 -74.567 N 38 0.980 0.661 
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Millville Municipal Arpt NJ KMIV 39.367 -75.067 N 38 0.669 0.824 
Naes/Maxfield Field NJ KNEL 40.033 -74.35 P 30 0.544 0.319 
Sussex County Airport DE KGED 38.689 -75.359 P 18 0.034 0.017 
La Guardia Airport NY KLGA 40.779 -73.88 N 37 0.327 0.814 
Long Island Mac Art NY KISP 40.794 -73.102 N 38 0.191 0.926 
Westchester County Airport NY KHPN 41.067 -73.708 P 38 0.379 0.329 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 N 38 0.218 0.761 
Groton-New London Airport CT KGON 41.328 -72.049 N 38 0.247 0.929 
Nantucket Mem MA KACK 41.253 -70.061 N 21 0.097 0.756 
Plymouth Municipal Airport MA KPYM 41.91 -70.729 P 20 0.581 0.297 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 P 38 0.005 0.007 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 P 38 0.010 0.001 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 P 38 0.669 0.166 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 N 38 0.039 0.986 
Bradley International Airport CT KBDL 41.938 -72.682 N 38 0.669 0.727 
Danbury Municipal Airport CT KDXR 41.371 -73.483 P 30 0.002 0.134 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 N 36 0.178 0.900 
Beverly Municipal Airport MA KBVY 42.584 -70.918 P 35 0.027 0.034 
Gen E L Logan International A MA KBOS 42.361 -71.01 N 38 0.003 0.990 
Naval Air Station MA KNZW 42.15 -70.933 N 21 0.740 0.750 
Norwood Memorial Airport MA KOWD 42.191 -71.174 P 38 0.763 0.495 
Concord Municipal Airport NH KCON 43.12 -71.3 P 34 0.313 0.085 
Pease International Tradeport NH KPSM 43.083 -70.817 N 40 0.012 0.979 
Portland International Jetpor ME KPWM 43.65 -70.3 N 38 0.209 0.883 
Naval Air Station ME KNHZ 43.9 -69.933 N 37 0.043 0.985 
Manchester Airport NH KMHT 42.933 -71.438 P 38 0.421 0.210 
John F Kennedy International NY KJFK 40.639 -73.762 N 38 0.113 0.895 
Republic Airport NY KFRG 40.734 -73.417 N 18 0.112 0.982 
Francis S Gabreski Ap NY KFOK 40.844 -72.632 N 31 0.001 0.999 
Bedford Hanscom Field MA KBED 42.47 -71.289 N 22 0.003 0.999 
Lawrence Municipal Airport MA KLWM 42.717 -71.124 P 28 0.594 0.486 
Fort Devens/Ayer MA KAYE 42.567 -71.6 N 18 0.173 0.905 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 N 39 0.127 0.920 
Barnes Municipal Airport MA KBAF 42.158 -72.716 P 37 0.061 0.203 
Langley Afb Airport VA KLFI 37.083 -76.36 N 40 0.268 0.815 
Simmons Aaf Airport NC KFBG 35.133 -78.933 P 37 0.327 0.265 
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Table A.6. Significance Statistics for Nonthunderstorms Stations 

Non-Thunderstorms         
Station_Na ST ID LAT LON SIGN N MK T 
Key West International Airpor FL KEYW 24.555 -81.752 P 38 0.940 0.528 
Key West Nas FL KNQX 24.583 -81.683 P 34 0.635 0.485 
Miami International Airport FL KMIA 25.791 -80.316 N 38 0.407 0.481 
Opa Locka Airport FL KOPF 25.907 -80.28 P 23 0.000 0.231 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 P 38 0.024 0.492 
Homestead Afb Airport FL KHST 25.483 -80.383 N 27 0.227 0.160 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 P 26 0.005 0.347 
Palm Beach International Airp FL KPBI 26.685 -80.099 N 35 0.156 0.450 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 P 27 0.260 0.439 
Melbourne Intl Ap FL KMLB 28.101 -80.644 P 37 0.301 0.345 
Vero Beach Muni FL KVRB 27.653 -80.243 P 38 0.481 0.338 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 P 21 0.085 0.471 
Orlando International Airport FL KMCO 28.434 -81.325 P 38 0.393 0.462 
Executive Airport FL KORL 28.545 -81.333 P 21 0.110 0.446 
Daytona Beach Intl FL KDAB 29.183 -81.048 N 38 0.237 0.125 
Orlando Sanford Airport FL KSFB 28.78 -81.244 P 34 0.000 0.409 
Jacksonville  International A FL KJAX 30.495 -81.694 N 38 0.339 0.009 
Jacksonville Nas FL KNIP 30.233 -81.667 P 37 0.948 0.457 
Mayport Naf FL KNRB 30.4 -81.417 P 32 0.189 0.487 
Cecil Field Airport FL KVQQ 30.219 -81.876 P 27 0.835 0.132 
Jacksonville/Craig FL KCRG 30.336 -81.515 P 36 0.015 0.304 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 N 34 0.091 0.000 
Charleston Afb/International SC KCHS 32.899 -80.04 N 38 0.725 0.441 
Beaufort Mcas SC KNBC 32.483 -80.717 P 36 0.294 0.445 
Wright Aaf Airport GA KLHW 31.883 -81.567 N 28 0.567 0.412 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 P 23 0.004 0.375 
Albert Whitted Airport FL KSPG 27.765 -82.628 P 21 0.003 0.414 
Page Field Airport FL KFMY 26.585 -81.861 P 35 0.050 0.478 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 P 25 0.042 0.421 
Tampa International Airport FL KTPA 27.962 -82.54 P 38 0.044 0.001 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 P 37 0.205 0.424 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 P 38 0.008 0.476 
Alma/Bacon Co. GA KAMG 31.536 -82.507 P 36 0.754 0.113 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 P 38 0.001 0.486 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 P 38 0.379 0.460 
Gainesville Rgnl FL KGNV 29.692 -82.276 N 38 0.280 0.480 
Valdosta Regional Airport GA KVLD 30.783 -83.277 N 37 0.224 0.001 
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Apalachicola Muni Airport FL KAAF 29.733 -85.033 P 33 0.000 0.292 
Eglin Afb Airport FL KVPS 30.483 -86.517 P 35 0.776 0.483 
Bob Sikes Airport FL KCEW 30.78 -86.523 P 38 0.047 0.383 
Pensacola Regional Airport FL KPNS 30.478 -87.187 P 20 0.496 0.493 
Pensacola Nas FL KNPA 30.35 -87.317 P 34 0.594 0.474 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 N 27 0.169 0.274 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 P 29 0.008 0.427 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 N 26 1.000 0.455 
Wilmington Intl NC KILM 34.268 -77.9 P 20 0.183 0.390 
Pope Afb Airport NC KPOB 35.174 -79.009 N 39 0.236 0.513 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 P 37 0.000 0.425 
Cape Hatteras NC KHSE 35.233 -75.622 P 23 0.460 0.471 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 P 38 0.841 0.496 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 P 37 0.133 0.445 
Oceana Nas VA KNTU 36.817 -76.033 P 36 0.000 0.452 
Norfolk International Airport VA KORF 36.903 -76.192 N 38 0.119 0.021 
Norfolk Nas VA KNGU 36.937 -76.289 P 38 0.379 0.456 
Cherry Point Mcas NC KNKT 34.9 -76.883 P 35 0.001 0.418 
Craven County Reg Airport NC KEWN 35.068 -77.048 N 38 0.530 0.188 
Jacksonville NC KNCA 34.708 -77.44 P 35 0.021 0.355 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 N 38 0.063 0.396 
Mcentire Air National Guard S SC KMMT 33.967 -80.8 P 29 0.002 0.412 
Florence Regional Airport SC KFLO 34.185 -79.724 P 38 0.119 0.458 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 P 25 0.008 0.496 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 N 38 0.481 0.415 
Atlantic City International A NJ KACY 39.449 -74.567 P 38 0.597 0.210 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 N 38 0.421 0.046 
Naes/Maxfield Field NJ KNEL 40.033 -74.35 P 30 0.887 0.504 
Sussex County Airport DE KGED 38.689 -75.359 P 18 0.028 0.438 
La Guardia Airport NY KLGA 40.779 -73.88 N 37 0.120 0.035 
Long Island Mac Art NY KISP 40.794 -73.102 N 38 0.315 0.003 
Westchester County Airport NY KHPN 41.067 -73.708 P 38 0.421 0.443 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 N 38 0.145 0.061 
Groton-New London Airport CT KGON 41.328 -72.049 N 38 0.218 0.002 
Nantucket Mem MA KACK 41.253 -70.061 P 21 0.216 0.088 
Plymouth Municipal Airport MA KPYM 41.91 -70.729 P 20 0.770 0.350 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 P 38 0.006 0.449 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 P 38 0.012 0.452 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 P 38 0.530 0.450 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 N 38 0.042 0.000 
Bradley International Airport CT KBDL 41.938 -72.682 N 38 0.379 0.142 
Danbury Municipal Airport CT KDXR 41.371 -73.483 P 30 0.004 0.259 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 N 36 0.258 0.007 
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Table A.7. Significance Statistics for Thunderstorm Stations 

Beverly Municipal Airport MA KBVY 42.584 -70.918 P 35 0.047 0.462 
Gen E L Logan International A MA KBOS 42.361 -71.01 N 38 0.001 0.000 
Naval Air Station MA KNZW 42.15 -70.933 P 21 0.786 0.078 
Norwood Memorial Airport MA KOWD 42.191 -71.174 P 38 0.841 0.501 
Concord Municipal Airport NH KCON 43.12 -71.3 P 34 0.534 0.476 
Pease International Tradeport NH KPSM 43.083 -70.817 N 40 0.007 0.000 
Portland International Jetpor ME KPWM 43.65 -70.3 N 38 0.615 0.010 
Naval Air Station ME KNHZ 43.9 -69.933 N 37 0.395 0.000 
Manchester Airport NH KMHT 42.933 -71.438 P 38 0.339 0.445 
John F Kennedy International NY KJFK 40.639 -73.762 N 38 0.131 0.006 
Republic Airport NY KFRG 40.734 -73.417 N 18 0.112 0.000 
Francis S Gabreski Ap NY KFOK 40.844 -72.632 N 31 0.001 0.000 
Bedford Hanscom Field MA KBED 42.47 -71.289 N 22 0.004 0.000 
Lawrence Municipal Airport MA KLWM 42.717 -71.124 P 28 0.984 0.447 
Fort Devens/Ayer MA KAYE 42.567 -71.6 N 18 0.405 0.007 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 N 39 0.026 0.003 
Barnes Municipal Airport MA KBAF 42.158 -72.716 P 37 0.025 0.349 
Langley Afb Airport VA KLFI 37.083 -76.36 N 40 0.096 0.037 
Simmons Aaf Airport NC KFBG 35.133 -78.933 N 37 0.948 0.459 

Thunderstorms         

Station_Na ST CALL LAT LON SIGN N MK T 
Key West International Airpor FL KEYW 24.555 -81.752 N 38 0.183 0.381 
Key West Nas FL KNQX 24.583 -81.683 P 32 0.858 0.214 
Miami International Airport FL KMIA 25.791 -80.316 P 38 0.497 0.846 
Opa Locka Airport FL KOPF 25.907 -80.28 P 24 0.130 0.000 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 N 35 0.426 0.022 
Homestead Afb Airport FL KHST 25.483 -80.383 N 23 0.245 0.977 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 P 26 0.022 0.012 
Palm Beach International Airp FL KPBI 26.685 -80.099 N 34 0.573 0.872 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 N 26 0.402 0.263 
Melbourne Intl Ap FL KMLB 28.101 -80.644 P 36 0.505 0.207 
Vero Beach Muni FL KVRB 27.653 -80.243 P 38 0.841 0.280 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 P 22 0.071 0.024 
Orlando International Airport FL KMCO 28.434 -81.325 P 38 0.191 0.114 
Executive Airport FL KORL 28.545 -81.333 P 21 0.097 0.013 
Daytona Beach Intl FL KDAB 29.183 -81.048 N 38 0.152 0.686 
Orlando Sanford Airport FL KSFB 28.78 -81.244 P 29 0.002 0.000 
Jacksonville  International A FL KJAX 30.495 -81.694 N 38 0.247 0.565 
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Jacksonville Nas FL KNIP 30.233 -81.667 N 37 0.824 0.488 
Mayport Naf FL KNRB 30.4 -81.417 P 24 0.602 0.104 
Cecil Field Airport FL KVQQ 30.219 -81.876 N 25 0.441 0.329 
Jacksonville/Craig FL KCRG 30.336 -81.515 P 35 0.005 0.015 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 N 34 0.050 0.972 
Charleston Afb/International SC KCHS 32.899 -80.04 P 38 0.960 0.583 
Beaufort Mcas SC KNBC 32.483 -80.717 P 36 0.347 0.264 
Wright Aaf Airport GA KLHW 31.883 -81.567 P 26 0.402 0.785 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 P 23 0.170 0.002 
Albert Whitted Airport FL KSPG 27.765 -82.628 P 25 0.154 0.000 
Page Field Airport FL KFMY 26.585 -81.861 N 34 0.313 0.003 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 P 27 0.868 0.053 
Tampa International Airport FL KTPA 27.962 -82.54 N 38 0.001 0.017 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 N 38 0.159 0.021 
St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 P 38 0.037 0.005 
Alma/Bacon Co. GA KAMG 31.536 -82.507 N 35 0.629 0.458 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 P 37 0.425 0.001 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 N 38 0.900 0.159 
Gainesville Rgnl FL KGNV 29.692 -82.276 P 38 0.597 0.892 
Valdosta Regional Airport GA KVLD 30.783 -83.277 N 38 0.940 0.963 
Eglin Afb Airport FL KVPS 30.483 -86.517 P 36 0.505 0.468 
Bob Sikes Airport FL KCEW 30.78 -86.523 P 37 0.022 0.015 
Pensacola Regional Airport FL KPNS 30.478 -87.187 N 20 0.256 0.040 
Pensacola Nas FL KNPA 30.35 -87.317 N 34 0.358 0.191 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 N 28 0.567 0.687 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 P 28 0.011 0.013 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 P 25 0.559 0.508 
Wilmington Intl NC KILM 34.268 -77.9 N 20 0.974 0.014 
Pope Afb Airport NC KPOB 35.174 -79.009 P 34 0.790 0.869 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 P 36 0.215 0.000 
Cape Hatteras NC KHSE 35.233 -75.622 N 23 0.492 0.246 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 P 36 0.946 0.347 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 P 33 0.150 0.071 
Oceana Nas VA KNTU 36.817 -76.033 P 33 0.053 0.000 
Norfolk International Airport VA KORF 36.903 -76.192 N 38 0.063 0.918 
Norfolk Nas VA KNGU 36.937 -76.289 N 38 0.821 0.137 
Cherry Point Mcas NC KNKT 34.9 -76.883 P 35 0.000 0.004 
Craven County Reg Airport NC KEWN 35.068 -77.048 N 37 0.472 0.816 
Jacksonville NC KNCA 34.708 -77.44 P 32 0.062 0.001 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 P 38 0.880 0.907 
Mcentire Air National Guard S SC KMMT 33.967 -80.8 P 25 0.183 0.000 
Florence Regional Airport SC KFLO 34.185 -79.724 P 36 0.989 0.097 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 P 18 0.150 0.018 
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Salisbury Ocean Cit MD KSBY 38.341 -75.51 N 32 0.758 0.834 
Atlantic City International A NJ KACY 39.449 -74.567 N 33 0.085 0.487 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 P 34 0.573 0.957 
Naes/Maxfield Field NJ KNEL 40.033 -74.35 P 21 0.833 0.401 
La Guardia Airport NY KLGA 40.779 -73.88 P 37 0.327 0.928 
Long Island Mac Art NY KISP 40.794 -73.102 P 37 0.990 0.903 
Westchester County Airport NY KHPN 41.067 -73.708 N 36 0.693 0.112 
Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 P 31 0.734 0.913 
Groton-New London Airport CT KGON 41.328 -72.049 P 33 0.271 0.940 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 P 29 0.013 0.019 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 P 24 0.006 0.001 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 P 29 0.694 0.112 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 N 38 0.466 0.990 
Bradley International Airport CT KBDL 41.938 -72.682 P 38 0.175 0.903 
Danbury Municipal Airport CT KDXR 41.371 -73.483 P 24 0.070 0.023 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 P 33 0.566 0.917 
Beverly Municipal Airport MA KBVY 42.584 -70.918 P 32 0.036 0.043 
Gen E L Logan International A MA KBOS 42.361 -71.01 P 38 0.801 1.000 
Norwood Memorial Airport MA KOWD 42.191 -71.174 N 28 0.953 0.404 
Concord Municipal Airport NH KCON 43.12 -71.3 P 31 0.308 0.255 
Pease International Tradeport NH KPSM 43.083 -70.817 P 26 0.103 0.995 
Portland International Jetpor ME KPWM 43.65 -70.3 P 32 0.158 0.797 
Naval Air Station ME KNHZ 43.9 -69.933 N 23 0.003 0.944 
Manchester Airport NH KMHT 42.933 -71.438 P 29 0.196 0.242 
John F Kennedy International NY KJFK 40.639 -73.762 N 38 0.393 0.896 
Lawrence Municipal Airport MA KLWM 42.717 -71.124 P 26 0.252 0.281 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 P 26 1.000 0.998 
Barnes Municipal Airport MA KBAF 42.158 -72.716 P 28 0.396 0.105 
Langley Afb Airport VA KLFI 37.083 -76.36 N 39 0.561 0.963 
Simmons Aaf Airport NC KFBG 35.133 -78.933 P 35 0.932 0.842 
Elizabeth City Cgas NC KECG 36.261 -76.175 P 19 0.484 0.105 
Tyndall Afb Airport FL KPAM 30.067 -85.583 N 32 0.466 0.219 
Hurlburt Field Airport FL KHRT 30.417 -86.683 N 32 0.527 0.172 
Hunter Army Airfield GA KSVN 32.017 -81.133 N 31 0.734 0.261 
Mac Dill Afb Airport FL KMCF 27.85 -82.517 P 30 0.498 0.790 
Shaw Air Force Base SC KSSC 33.967 -80.467 P 36 0.138 0.584 
Grand Strand Airport SC KCRE 33.812 -78.724 N 32 0.833 0.184 
Kennedy Space Center FL KTTS 28.617 -80.683 P 18 0.150 0.717 
Patrick Afb Airport FL KCOF 28.233 -80.6 P 36 0.215 0.414 
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Table A.8. Significance Statistics for Tropical Storm Stations 

Tropical Storms         
Station_Na ST CALL LAT LON SIGN N MK T 
Key West International Airpor FL KEYW 24.555 -81.752 P 14 0.913 0.491 
Hernando County Airport FL KBKV 28.474 -82.454 P 8 0.536 0.369 
Key West Nas FL KNQX 24.583 -81.683 N 11 0.533 0.503 
The Fl Keys Marathon Arpt FL KMTH 24.726 -81.052 P 6 0.060 0.477 
Miami International Airport FL KMIA 25.791 -80.316 P 18 0.081 0.021 
Opa Locka Airport FL KOPF 25.907 -80.28 N 8 0.174 0.209 
Fort Lauderdale Hol FL KFLL 26.072 -80.154 P 14 0.155 0.414 
Homestead Afb Airport FL KHST 25.483 -80.383 N 11 0.533 0.000 
Kendall-Tamiami Exec Arpt FL KTMB 25.648 -80.433 P 10 1.000 0.344 
Palm Beach International Airp FL KPBI 26.685 -80.099 P 16 0.893 0.009 
Charlotte County Airport FL KPGD 26.917 -81.991 N 8 0.108 0.250 
North Perry Airport FL KHWO 25.999 -80.241 N 5 0.027 0.533 
Naples Municipal Airport FL KAPF 26.152 -81.775 N 8 0.536 0.009 
Ft Lauder Executive Arpt FL KFXE 26.197 -80.171 P 10 0.474 0.392 
Melbourne Intl Ap FL KMLB 28.101 -80.644 P 15 0.322 0.513 
Vero Beach Muni FL KVRB 27.653 -80.243 P 17 0.202 0.407 
Pompano Beach Airpark Arpt FL KPMP 26.25 -80.108 P 9 0.917 0.419 
Orlando International Airport FL KMCO 28.434 -81.325 P 16 0.964 0.485 
Executive Airport FL KORL 28.545 -81.333 P 11 0.350 0.423 
Daytona Beach Intl FL KDAB 29.183 -81.048 P 20 0.496 0.131 
Orlando Sanford Airport FL KSFB 28.78 -81.244 P 13 0.024 0.399 
Jacksonville  International A FL KJAX 30.495 -81.694 P 16 0.224 0.305 
Jacksonville Nas FL KNIP 30.233 -81.667 P 14 0.324 0.489 
Mayport Naf FL KNRB 30.4 -81.417 N 14 0.743 0.450 
Cecil Field Airport FL KVQQ 30.219 -81.876 P 5 0.462 0.504 
Jacksonville/Craig FL KCRG 30.336 -81.515 P 12 0.047 0.467 
Destin-Ft.Walton Beach Apt FL KDTS 30.4 -86.472 P 8 0.902 0.282 
Savannah/Hilton Head Intl Air GA KSAV 32.13 -81.21 N 12 0.244 0.000 
Charleston Afb/International SC KCHS 32.899 -80.04 P 19 0.529 0.315 
Beaufort Mcas SC KNBC 32.483 -80.717 N 10 0.283 0.450 
Wright Aaf Airport GA KLHW 31.883 -81.567 P 5 0.806 0.056 
St Lucie County Intl Arpt FL KFPR 27.498 -80.377 P 11 0.350 0.456 
Albert Whitted Airport FL KSPG 27.765 -82.628 N 13 0.669 0.339 
Page Field Airport FL KFMY 26.585 -81.861 P 13 0.246 0.431 
Sw Florida Intn Airport FL KRSW 26.536 -81.755 P 12 0.451 0.326 
Tampa International Airport FL KTPA 27.962 -82.54 N 15 0.373 0.515 
Sarasota/Bradenton Intl Ap FL KSRQ 27.401 -82.559 N 18 0.596 0.609 
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St Pete-Clwtr Intl Airport FL KPIE 27.911 -82.688 N 16 0.065 0.448 
Cross City Airport FL KCTY 29.633 -83.105 P 8 0.902 0.506 
Alma/Bacon Co. GA KAMG 31.536 -82.507 P 8 0.174 0.451 
Malcolm Mc Kinnon Airport GA KSSI 31.152 -81.391 P 14 0.827 0.463 
Tallahassee Regional Airport FL KTLH 30.393 -84.353 N 13 0.583 0.490 
Gainesville Rgnl FL KGNV 29.692 -82.276 P 13 0.024 0.011 
Valdosta Regional Airport GA KVLD 30.783 -83.277 P 9 0.175 0.001 
Apalachicola Muni Airport FL KAAF 29.733 -85.033 N 8 0.536 0.522 
Eglin Afb Airport FL KVPS 30.483 -86.517 P 14 0.228 0.404 
Leesburg Regional Airport FL KLEE 28.821 -81.81 P 7 0.368 0.464 
Bob Sikes Airport FL KCEW 30.78 -86.523 N 14 1.000 0.440 
Pensacola Regional Airport FL KPNS 30.478 -87.187 N 9 0.602 0.526 
Perry Foley FL K40J 30.072 -83.574 P 7 0.072 0.481 
Pensacola Nas FL KNPA 30.35 -87.317 N 11 0.119 0.522 
Whiting Field Naval Air Stati FL KNSE 30.717 -87.017 N 9 0.016 0.114 
Panama City-Bay Co. Int Ap FL KPFN 30.212 -85.683 N 11 1.000 0.503 
Eglin Af Aux Nr 3 D FL KEGI 30.65 -86.517 N 5 0.027 0.457 
Wilmington Intl NC KILM 34.268 -77.9 P 13 0.502 0.382 
Pope Afb Airport NC KPOB 35.174 -79.009 P 13 0.855 0.012 
Fayett Rgnl/Grannis Fld Ap NC KFAY 34.991 -78.88 P 13 0.502 0.434 
Michael J Smith Fld Arpt NC KMRH 34.734 -76.661 P 7 0.368 0.401 
Cape Hatteras NC KHSE 35.233 -75.622 P 13 0.502 0.462 
Seymour-Johnson Afb Airport NC KGSB 35.344 -77.965 P 10 0.592 0.511 
Rocky Mount-Wilson Rgn Apt NC KRWI 35.855 -77.893 P 10 0.474 0.535 
Oceana Nas VA KNTU 36.817 -76.033 P 20 0.030 0.373 
Norfolk International Airport VA KORF 36.903 -76.192 P 22 0.499 0.003 
Norfolk Nas VA KNGU 36.937 -76.289 P 18 0.112 0.491 
Cherry Point Mcas NC KNKT 34.9 -76.883 P 21 0.216 0.452 
Craven County Reg Airport NC KEWN 35.068 -77.048 P 12 0.451 0.048 
Jacksonville NC KNCA 34.708 -77.44 P 16 0.344 0.396 
Columbia Metropolitan Airport SC KCAE 33.942 -81.118 N 11 0.276 0.007 
Florence Regional Airport SC KFLO 34.185 -79.724 N 11 0.533 0.452 
Lumberton Municipal Arpt NC KLBT 34.608 -79.059 N 5 0.806 0.372 
Laurinburg-Maxton Airport NC KMEB 34.792 -79.366 N 5 0.221 0.454 
Billy Mitchell Airport NC KHSE 35.233 -75.622 N 14 0.381 0.359 
Wallops Flight Facility Airpo VA KWAL 37.937 -75.471 P 10 0.032 0.517 
Salisbury Ocean Cit MD KSBY 38.341 -75.51 P 14 0.743 0.036 
Atlantic City International A NJ KACY 39.449 -74.567 N 14 0.274 0.465 
Millville Municipal Arpt NJ KMIV 39.367 -75.067 N 10 0.721 0.001 
Sussex County Airport DE KGED 38.689 -75.359 P 6 0.133 0.440 
La Guardia Airport NY KLGA 40.779 -73.88 N 11 0.005 0.002 
Long Island Mac Art NY KISP 40.794 -73.102 N 10 0.283 0.005 
Westchester County Airport NY KHPN 41.067 -73.708 N 7 0.368 0.521 
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Igor I Sikorsky Memorial Airp CT KBDR 41.158 -73.129 N 10 0.107 0.004 
Groton-New London Airport CT KGON 41.328 -72.049 N 7 0.133 0.001 
Nantucket Mem MA KACK 41.253 -70.061 N 12 0.537 0.441 
Plymouth Municipal Airport MA KPYM 41.91 -70.729 P 7 0.764 0.378 
New Bedford Rgnl Airport MA KEWB 41.676 -70.958 P 6 0.133 0.440 
Marthas Vineyard Airport MA KMVY 41.393 -70.615 P 14 0.155 0.445 
Brnsbl Muni-Bman/Pol Fd Ap MA KHYA 41.669 -70.28 P 12 0.945 0.449 
Chatham Municipal Airport MA KCQX 41.688 -69.993 P 5 0.462 0.406 
Theodore F Green State Airpor RI KPVD 41.723 -71.433 N 9 0.118 0.000 
Bradley International Airport CT KBDL 41.938 -72.682 N 8 0.019 0.009 
Hartford-Brainard Airport CT KHFD 41.736 -72.651 P 5 0.086 0.005 
Beverly Municipal Airport MA KBVY 42.584 -70.918 P 5 0.086 0.454 
Gen E L Logan International A MA KBOS 42.361 -71.01 N 8 0.063 0.000 
Concord Municipal Airport NH KCON 43.12 -71.3 P 6 0.260 0.458 
Pease International Tradeport NH KPSM 43.083 -70.817 P 8 0.266 0.000 
Portland International Jetpor ME KPWM 43.65 -70.3 N 7 0.035 0.055 
Manchester Airport NH KMHT 42.933 -71.438 N 6 0.060 0.452 
John F Kennedy International NY KJFK 40.639 -73.762 N 9 0.076 0.005 
Francis S Gabreski Ap NY KFOK 40.844 -72.632 N 8 0.266 0.000 
Bedford Hanscom Field MA KBED 42.47 -71.289 N 5 0.086 0.000 
Westover Afb/Metropolitan Air MA KCEF 42.2 -72.533 P 7 0.548 0.000 
Barnes Municipal Airport MA KBAF 42.158 -72.716 P 5 0.027 0.372 
Ocean City Municipal Artp MD KOXB 38.308 -75.124 P 6 0.260 0.487 
Langley Afb Airport VA KLFI 37.083 -76.36 P 17 0.711 0.000 
Simmons Aaf Airport NC KFBG 35.133 -78.933 P 14 0.661 0.031 
Elizabeth City Cgas NC KECG 36.261 -76.175 P 15 0.692 0.450 
Tyndall Afb Airport FL KPAM 30.067 -85.583 N 13 0.300 0.484 
Marianna Municipal Airport FL KMAI 30.836 -85.184 N 5 0.462 0.247 
Hurlburt Field Airport FL KHRT 30.417 -86.683 P 11 0.213 0.444 
Hunter Army Airfield GA KSVN 32.017 -81.133 N 14 0.274 0.487 
Mac Dill Afb Airport FL KMCF 27.85 -82.517 P 13 0.669 0.061 
Shaw Air Force Base SC KSSC 33.967 -80.467 N 9 0.175 0.327 
Myrtle Beach Intl Airport SC KMYR 33.683 -78.933 P 5 0.462 0.008 
Grand Strand Airport SC KCRE 33.812 -78.724 P 16 0.753 0.428 
Nasa Shuttle Fclty FL KSC 28.617 -80.7 N 6 0.260 0.488 
Kennedy Space Center FL KTTS 28.617 -80.683 P 11 0.533 0.129 
Patrick Afb Airport FL KCOF 28.233 -80.6 P 17 0.303 0.494 
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