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ABSTRACT

This thesis aims at incorporatihggarithmic imageprocessing anthe human visual response
whi ch i s bas e dintoovarioug/anage rpmcessihgaapplicatiohBiman Visual
System HVS) has been usem this thesisfor image decomposition. Specifically HVS based
image decompositiohas been applied towards the developmeiat mdvel framework foobject
detection and recognition systemfso Logarithmic Image Processing (LIP) has been used
towards the development of novel feature vectoogjarithmic Image Processing (LIP) replaces

the linear arithmetic (addition, subtraction, and multiplication) with a-lm&ar one, which

more accurately characterizes the nonlinearity of computer image arithmetic and is consistent
with the Weberdés Law and t he nsigualgystant.Twon chat
systems have been developed. One of whietects eyes from facial images after performing
morphological operations. It has been shown that extracting features from HVS decomposed
images followed by a feature fusion results in a bet&r of detection than when extracting
features from the original imagalone This has also proved effective in images that have
shadows near the eye regidrhis thesis also presents a novel approach to the problem of face
recognition that combines thdassical Local Binary Pattern (LBP) feature descriptors with
image processing in the logarithmic domain and the human visual system. Particularly, we have
introduced parameterized logarithmic image processing (PLIP) operators based LBP feature
extractor We have alsaised the human visual system based image decomposition to extract
features from the decomposed images and combine those with the features extracted from the
original images thereby enriching the feature vector set and obtaining improvedofrates
recognition. Experiments have clearly shown the superiority of the proposed scheme over

classical LBP feature descriptors.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the past few decades there has beém®mendous growth in the field of imageocessing
leading to the development of real time computer vision syst@msputer vision essentially

aims at duplicating the effect of human vision by perceiving and uaderag an imagél]. A

human observer perceives an objectistinguishing it from its immediate backgrour@he of

the primary objectives of a computer vision system is to effectively mimic the visual response of
the human eyeA human observer can easily detect an object from an image or video even under
partial occlusion. For example if we consider the proldemn f aci al recognition,
task of identifying a person is not that difficult for a human. However the same task becomes
extremely challenging for a computer vision system due to the absence of a unique
representation of the object, which ihis case is the face. Object detection and recognition
algorithms are often applied for a myriad of practical purposes like crowd surveillance, entrance
security, video context indexing, automatic detection of threat objects in airport security systems,
finger print identification, detecting eyes to determine driver fatigue while driving a vehicle and
many moreHowever the state of the abject detection and recognitiagorithms do not take

into account thenontlinearity of thehuman visual responséhe way in which a human observer
perceives an object is extremaygmplexand largéy depends on the background on which the
object resides. From our day to day experience we know that in a verpagground, the
slightest ray of light would cause a visual sensation whereas in dlwaihated surrounding,

that same small change might not cause a visual senddiioaover the visual response of the



eye is nodinear and hence an accurate simolatiof the human visual system in image
processingapplicationsis an extremely challenging taskhe logarithmic image processing
(LIP) framework introduced ifi2] replaces the linear arithmetic operations with almgar one

which more accurately charactaes the response of the human eye. Inspired by the success of
the LIP model towards various image processing applications like image enhancement, image
restoration, image denoising andianple but powerful texture descriptor, called Local Binary
Pattern [BP), we have proposed a system that does face recognition nsued modified
logarithmic LBP operators\lso a mathematical formulaticef the human visual system enables

to decompose images. We have used this concept towards the development of @ generi
framework for object detection and recognition and have developed an eye detgsteEm

based on this framework.

1.2 Objective

The objectiveof this thesiss to apply logarithmic image processing aldiman visual system

based image processing algorithms towards the development of object detection and recognition
systems.This includes an Hidepth study of the existing feature extraction algorithims
understandheir advantages and disadvantagesnajor part of the thesihas beerdevoted in
understanding theole of human visual response warious image processing applications like
edge detection, image decomposition, feature extraction, object detection and reco@sition
mentioned in the previousection, the response of the human eye is extremely complex and
depends largely on the background against which the object is visualized. Hengeifoon
illumination, shadows etc. present in image tend to affect the efficienaypanfe processing

algorithms. Thus the aim was to apply logarithmic and HVS based processing and compare



results with classical approache& major objective was to develop novel feature vectors that
use the no#linear LIP framework forface recognition. This framework is corsist with the
nontlinear characteristics of the human visual system and hence our objective was to improve the

robustness of facial recognition by utilizing the LIP framework.

In summary the objectives are

1 Applying human visual system based imggecessing towards edge detection, image
decomposition, feature vectors extraction, development of object detection and
recognition systems.

1 Analyzing the effect of different parameters for human visual system based image
processing and parameter tuningifaproved performance.

1 Development of human visual system based object detection and recognition systems and
comparing their performance with traditional systems that do not take into account
human visual system based imagegessing

1 Development oinovd featurevector that combines the classical Local Binary Pattern
(LBP) feature descriptors with image processing in the logarithmic domain and the

human visual system.

1.3 Contributions

The contributions are:

1 Introduction of human visual system (HVS) basmdge decomposition towards feature

extraction from images.



Introduction of a new framework involving human visual response based image
decomposition for object detection and recognition systems.

An analysis of parameter selection in human visual systeeddenage decomposition.

A literature review of the state of the art feature extraction algorithms from images.
Development of an eye detection system using human visual system based image
decomposition and morphological image processing. The systemuog®tuman visual
system based image decompositiamto an existing system and compares the
performance with theriginal norHVS basedsystem. The system is tested using images
having andnonuniform illumination andshadowsnear the eye regiorit is shavn that

by suitably selecting parameters for HVS decomposition, the performance of the system
surpasses that of the original system when testing images havinginiiorm
illumination.

Introduction of a novel approach to the problem of face recognitiahdombines the
classical Local Binary Pattern (LBP) feature descriptors with image processing in the
logarithmic domainNovel logarithmieLBP feature descriptors have been introduced
Introductionof parameterized logarithmic image processing (PLIPyaipes based LBP
feature extractor.

Introduction of luman visual system base8P operator whi ch i s based on
law. In this approacteatures extractefiom the decomposed imagase combined with

the features extracted from the original imagesreby enriching the feature vector set

and obtaining improved rates of recognition.



1.4Thesis plan and organization

We start the thesis by presenting an overview of thelinear LIP framework for image
processing.Next we present an overview of tmeathematical framework for human visual
system based edge detection and imagmmeosition. The state of the art feature vector
extradion algorithms are also studied/e thenpropose anovel framework foiobject detection

and recognition thatan be usetb enrich the feature vector set by applying HVS based image
decomposition We essentially developed two systems that detect objects from images based on
human visual response. One of them detects eyes from facial images and we show the
effectiveness ofhe system on images having romiform illumination. The second system does

face recognition baseon the novel logarithmic LBP based feature descriptors that have been

introduced as a part of this thesis

Thesis Planand Methodology

1 Review ofthe nonlinear logarithmic framework for image processing.

1 Understanding the pros and cons of the conventional edge detegmmithahs and
understanding thenotivation for using human visual system based image processing for
edge detection.

1 Analyzing the role of p@meter selection for HVS based image decomposition.

1 A literature review of the existing feature extraction algorithms from images.

1 Introduction of HVS based edge detection for edge based feature extraction from images.

1 Introduction of HVS based imagkcomposition for feature gaction from images.

9 Introduction of novel framework for human visual system based object detection and

recognition



91 Introduction of HVS based image decomposition for the development of eye detection
system. Testing with imagdsaving shadowsnonuniform illuminationaround the eyes
region

1 Novel approach to face recognition thmimbines the classical Local Binary Pattern
(LBP) feature descriptors with image processing in the logarithmic domain and the
human visual system.

1 Comparison of performance of facial recognition using modified LBP based feature

extractors and classical LBP feature extractors using publicly available face databases.

The remainingpart of thethesis is organized as follow&€hapter 2 givesn overview ofthe
logarithmic image processing framewokie will show how this framework is consistent with

the nonlinear and saturation characteristics of the human visual system.

Chapter 3gives an overview of the mathematical framework for human visual system based

image decompositiom.he effect of parameter selection on the algorithm is also presented.

Chapter 4presents a review of the state of the art feature extraction algorithms of imAages.
feature vector is essentially ardimensional vector of numerical features that represent some
object in an image. Many algorithms in machine learning require a numerical representation of

objects, since such representations facilitate processingairstical analysis.

Chapter Spreserd the novel framework for human visual system based object detection and

recognition from images.

In chapter 6 we present a novel eye detection system based on human visual system and
morphological image processing.e/8how how incorporating human visual systeased image

decomposition improves the results of the original algorithm. We present results of our testing

6



and compare with the original system that does not involve human visual system based
processing for eydetection. We also show that the algorithm is effective on images having non

uniform illuminationand shadows around the eye region

In chapter 7 wéntroduce a novel approach towards facial recognition that comthieedassical

Local Binary Pattern (LB) feature descriptors with image processing in the logarithmic domain
and the human visual systefWe compare performance of face recognition system using the
modified LBP operators and the classical LBP operators. We perform our experiments using

publicly available face databases.



CHAPTER 2

REVIEW OF LOGARITHMIC IMAGE PROCESSING

Image processing involves the transformatioamimage from one form into another. The result

may be a new image or may take the form of an abstraction, paraiswsin, or a decisiofi3].

Image processing includes many applications, such as image enhancement, edge detection,
object recognition, and noise reduction. The most important aspect of an imagesipgoces
technique is that the image processing framewoukt be physically consistent with the nature

of the images and the mathematical rules and structures must be compatible with the information
to be processefdl]. Jain[5] has clearly shown the interest and power of mathematics for image
representdon and processing. Granrafb] has recognized that the human visual laws and
models play an important role in image processing. Vidrhas pointed out that, to develop an
effective computer vision technique, the following three points must be considered: (1) what are
the particular operations to be used and why? (2) How the image® caprbsented? And (3)

what implementation structure can be usédi®eover, Schreibef8] has argued that image
processing is an application field and not a fundamental scidites an image processing

framework must satisfy the following fouraim fundamental requiremerj9

1. Itis based on a physically (and/or psychophysicallgvant image formation model

2. Its mathematical structures and operations are both powerful and consistent with the
physical nature of the images, that is, with the infagmaation and combinatiolaws

3. lIts operations are computationally effective

4. 1t is practically fruitful in the sense that it enables to develop succeggblications in

real situations



Traditionally, image processing makes use of linear operations to manipulate,iimatgsisice

computer arithmeti¢computer addition, multiplication and others) is inherently a-lmear

process, accuracy issues can arj4€]. As an example we can consider the addition of two
imagesl n t he digital world the addirangeooprotwbe
becausea value above the saturatitireshold (for example, for 8 bits, the maximum value

would be 255)s likely to be obtaineavhen two images are digitalgdded and is likely to be

clipped causing a loss of information. Saturation of these values to the maximum often happens

in digital image processing, but those extremadues are actually never readhm natural

images, since our retina, which acts as a natural sensor, works in a logarithmidathodang

t he Fec h[ilg Mdreovellliaear operations typically do not yield results consistent with

the physical phenomenaqQ].

Thus image processing specific arithmetic operations were introduced to adidrdesst of
information issug12]. One attempt at resolving computer arithmetic issues was proposed by
Ritter et al. The image algebra was designed to provide a mathematical framework to support
implementation, comparison, and analysis of imggocessing transformatio3] [14]. It

consists ofa core set of léperationg[15]. This image algebra has the standard paise

addition, multiplication, and it focuses on developing operations to impleowgvolutions.

Jourlin and Pinoli introduced the Logarithmic Image Processing (LIP) nj@llel The LIP

model replaces the linear arithmetic (addition, swiwa, and multiplication) witta nonlinear

one, which more accurately characterizes the nonlineafitcomputer image arithmetic.
Moreover LI P model i s consistent with the Web

human visual systeifi6].



2.1Role of Human Vision in Image Processing

The human visugberception playsn important role in imag processing applicatio§] [7].
However there exists a largap between the strong ability of human vision to perform difficult
perceptual tasks, such gsattern recognition or imageorrelation and the weakness of even
sophisticated algorithms to successfully addreuch mblems[17]. One of the majoreason for

this is that the human vision system is complex and still remains paudidhown or not known
enough[17]. In this section we'll present a review of the two laws that formulate the human

visual peception towards light intensity.

Weber Law:Psychophysiat Weber[18] [19] established that the response to light intensity of

the human visual system is nbnear. He argued that the human visual d&tecdepends on the

ratio, rather than the difference, between the light intensity vaeesd O  w "Owherew "@s

thesecal | ed Aj ust noticeable difference, 06 which
visual test field of intensity valu®such that it can be discriminated from a reference field of

intensity value FWe ber 6s | aw can be expressed as
— (2.1)
wherewi s the Weberod6s constant.

F e ¢ h n e rFechnerleaplainefl 1] the nonlinearity of human visual sensation as follows: in
order to produce incremental arithmetic steps in sensation, the light intensity must grow
geometrically.He proposed the following relationship between the light interi@fgtimulus)

and the hightness) (sensation):

6 - (2.2)
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whereY Ois the increment light that produces increm¥éitof sensation an@is a constant. The

Fechnerds | aw can then be expressed as:
6 L— (2.3)

where "Ms an arbitrary constant af@ is the absolute threshold of human eye [96].

2.2 The Logarithmic Image Processing (LIP) Model

The logarithmic image processing (LIP) modelai mathematical framework based on abstract
linear mathematics which provides a set of specific algebraic and functional operations that can
be applied to the processing of intensityages valued in a bounded rarjg6]. The LIP model

has proved to be consistent with the laws of the human visual system and has been successfully
applied to image processing applications like image enhancement, image restoratien, three

dimensional image reconstruction, edge detection and image segmentation.

In the LIP model, the brightness of an image is regarded as the intensity of light that passes
through a light filer with absorption functiofQ'@Q [21]. An absorption function is defined as

the percentage of incident light being absorbed by the litiat.fdourlin and Pinoli called this
function the gray tone function. The value of the gray tometion at spatial location@Q is

thus called the gray ton@hus an image can also be represented by the absorption function
which describes the opaciyf the light filter. Since the brightness of an image is usually
restricted taan interval (typically [0,255] for an-Bit image), then the grapne function is also
restrictedin thereal interval [0, M) Here, the value zero means that there is norpben, while

the value M corresponds to a totatlgpaque imagd-or an 8bit image, M is 256. Thereforéhe
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gray tone is also in that interval. Using the gray tlumetion, the addition of two images can be

performed byputting two light filters togethre The gray tone function can thus be expressed as:
CEE - AEEE (2.4)

Where/EHB) is the original image functiolg BE is the output gray tone function, andis the
maximum value of the rangeThe addition of two gray toneé and ¢ and the scalar
multiplication of & by a positive real numbér are defined in terms of the usual real function

operations as:

W w O W — (2.5)
S0 b 0 p @y (2.6)

If the gray tone functions are definede®( M) , t hen subtraction of gr
GOoh O — (2.7)

Using the subtractionp@ration, Jourlin and Pindl22] have proposed a definition of the contrast

between two neighboring pixels:

~
Q'

O BQ | AANQ Ol ETHQ (2.8)

This definition of cont r agourliniared Pinoti mgeipovecthat wi t
the set of gray tones defined o®(, Mvith operation$ and$ is a real vector space over the

real number field. As a result, the set of gray tone is closed under the above operations. This
ensures that the addition of two images, or the scalar multiplication of an image by a positive real

number, results in a newnage which is within the interval [0, M). This is very desirable for
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many image processing problems such as image enhancement, image restoration and image data
compression.Pinoli [2] has also proved that the real vector space is algebraically and

topologicall isomorphic to the real number space by the isomorphic transform given by:
* v gp - (2.9)
The inverse isomorphic transform is given by,
% O 08p ADB (2.10)

The isomorphic transform serves as a powerful tool for developing the LIP model and for
simplifying the analysis and the implementation of the LIP model based image processing

algorithms. For example the niplication of two graytones is given by:

~

NE W+ DB ® (2.11)

The LIP model has been successfully used for different types of image processing algorithms
like image enhancement, edge detatctand image restoration. J82], LIP methods are used to
enhance cervical smears for detection of cancerous cells, performing contraseerdrdrend

edge detection. If2] and[23], LIP has been used for various image processing applications like
noise removal, range control, and other methods for restoration and enhancement. LIP model has
also been xended for color images and is used for the enhancemenaramitted medical

imageq 24)].
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2.3The Parameterized Logarithmic Image Processing (PLIP) Model

The LIP model however has senimitations as discued in[10]. When two visually pleasing
images are added together, the output image may not be visually pleasing. When linear
arithmetic is used, added images are always brighter than the originals, which can result in
images that are overall too bright. When classid& arithmetic is used, added images are
always darker than the originals, which can result in images that are overall too dark. Ideally,
added images will be representative of the originals in terms of overall brightness without

unnaturally becoming tooadk or too bright. Panetta et al demonstrated this proiolé¢f0].

The parameterization of the LIP modelsnatroduced by Panetta et |lQ]. Each of the three
operations addition, subtraction and multiplication are parameterized separately in this model.
Measures of image enhancemgzh] are utilized to judge performance along with megnared

error measurements to determine the best paramdteis ensures that the PLIP operations

should not visually damage an image. The PLIP model can be summarized as:

W w O 0 — (2.12)
ng o Qb (2.13

WE W o o+ DB W (2.14
L) _0 &ep — (2.19
% O _0 8p AgB— (2.16

Where$ i s used as PLIP addition, &Uisused fouBLdPd f or

multiplication. Also,dandarethe grey tone pixel values and is the maximum value of the
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range, andl isa constant, 0 , Q0 , and_ 0 are all arbitrary functions. We use the linear

case, such that they are functions of the fype 00 O, whereo and6 are integers,

however any arbitrary function will workt is to be noted that the PLIP equations revert to the
classical case wherd pht p®dé &® 18 Also the PLIP arithmetic satisfies the
fundamental requirements ahimage processinffameworkand introduces a fifth constraint;

the frameworkmust notd a mage ei t her | mage,; i . e. when a
i mage, the out put Thupsarameters fordPLIP quohbe detectadgimshages .
enhancement measurgd)] and thebest values ob andd were experimentally determined to

be any combination such thatd hQO hbd & Q0 p Tt capd the best value 6f was

determined to be C.

PLIP operators were successfully utilized for image decomposition, image enhancement and
edge detection. In this thesis PLIP operators have been extended to extract features from images.
Specifically we have integrated PLIP operators with feature extrabidocal binary patterns

(LBP) and applied them towards face recognition.
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CHAPTER 3

HUMAN VISUAL SYSTEM (HVS) BASED IMAGE DECOMPOSITION AND EDGE
DETECTION

The way in which a human observer sees an object largely depend on the background on which
the object is located. One of the very first image processing applications which incorporated this
concept was edge detectiorelclassical edge detection algorithiike Sobel[26] [27], Roberts

[28], Prewitt[29], Canny[3(] [3]] in general have two broad steps: gradient image calculation
and thresholdingMost of the classical methods Wwithe exception of canny choose a single
global threshold for the entire image to detect the final edge map from the gradient image. If the
value of the threshold is too high, the final edge map may have less useful information. On the
other hand choosing very low threshold may result in false edges in the edge map. The canny
algorithm tries to solve the problem by performing an adaptive hysteresis thresholding with the
choice of two thresholds. Howevitre thresholdsalues are once again not dynamic aghain
constant for the entire imag&his poses a difficulty in edge detection on images that have
varying illumination or shadows in thermhreshold selection is a very important stepniage
processing algatims concerning segmentatioegige detectio and image decompositior\

variety of techniques have been proposed in this rd@2fd33]. In an ideal case, the histogram

has a deep and sharp valley between two peaks representing objects and background,
respectively, so that the threshold can be chosdreaidttom of this valleyHowever, for most

real pictures, it is often difficult to detect the valley bottom precisely, especially in such cases as
when the valley is flat and broad, imbued with noise, or when the two peaks are extremely
unequal in heightpften producing no traceable valléfhe weltknown Otsu method for image

segmentation chooses a threshold based on the image histogram somasgirtoze the
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separability of the resultant classes in gray levigi& choice of an appropriate threshold plays a

very important role in edge detection algorithms. An incorrect threshold may result in loss of
edges in the final edge map or may give rise to edges that are not in accord with the human
visual perceptionldeally the threshold should be based on the local background and should
adaptively change itself based on the background. In other words, the threshold selected should
be dynamic and locdB4] [35]. Probability models have been used in determining thresholds in

the canny edge detion algorithm[36]. Methods havealso been proposed for determining
adaptive threshold based in the image histogfad. | n t hi s chapter weol |
thresholding that is based on the way a human observer views an object. Human visual system
based thresholding results in an edge niagt is more in accord Wi how human eye

distinguishes objects from the background.

3.1 Review ofthe Human Visual Phenomenon

The human visual system (HV$38] is responsible foitransferring data into information
received by the viewelthe manner in which human eyes respond to visual stimulus is extremely
complex and notinear [39]. The received information is characterized by attributes lik
brightness, edge information, color shades Btightness is actually psychological sensation
associatedvith the amount of light stimulusntering the eyeBrightness perceived is not a
simple function of the intensitypue tothe great adaptive abiy of the eye, human eye cannot
measuraghe absolute brightnegsither it measures the relative brightnédse relative brightness

is an observer's feeling of differencetive graynessetween the objectIhis phenomenon can

be observed even in our dimyday experiencen a very dark room, even the slightest glimpse of
light ray can cause a visible sensation in the eye whereas in a well illuminated room, the same

amount of light may remain unnoticed. In other words, on a dark surface, human eyeahbikb
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to detect small changes whereas on a bright surface, the change has to be of a substantial amount
for the human eye to detect Also the sensitivity of the human eye to additive white noise
depends on the background. Eyes are more sensitive to random noise in smooth areas of an
image than in busy areas with a lot of texture or detéiiss is the underlying principle which
guidesthe visual sensation of the human ey&he term contrast is used to emphasize the
difference in luminance of obgts[38] [40]. The perceived gyaess ofa surface depends on its

local background and the perceived contrast remains constant if the ratios of contrasts between
object andocal background remain constafhe contrast refers to the ratio of difference in
luminance of an objead and its immediate surroundigg. Mathematically the contrast is

given by,

an
an
|

(3.1)

The visual increment threshold (or just noticeable difference) is defined as the amount of light
Y8 necessary to add to a visual field of intengitguch that it can be discriminated fram
reference field of the same intengity At low light intensities, near absolute visual threshold,
the luminance increment threshold is constant; then with increasing intensity, the threshold
converges asymptotically to Weber behavior, ¥8.,| 6. This type of behavior is exhibited in
brightness incremental threshold for white brtathd spectra and monochromatic nartmamd

spectrd 16].

The characteristic response of the human eye is presented in Figurbecharacteristic curve
is representeth thed ¢éY& 0 it ¢ "@ane. The Webebehavior is generally expressed by the
unit slope of the logarithmic curjdQ]. The preceding region with slope 1/2 is known as the De

Vries-Rose region. It has beshown that if the central visual processor behaves as an optimum
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probabilistic detector, the incremental visual threshold follows the square root law, i.e.

Y8 | W8. However, in the actual case this rule is followed in a small restricted region. The
dashed curve shows the deviation from the Weber's law. This represents the saturation region.
Though this behavior is not quite commonly exhibited by the retinal cone, yet we can expect this

type of behavior in some restricted cases.

LogAB T

Incremental ]
threshold !
(arbitrary Saturation "
unit) ]

/\?eber Region
Slope =1

De Vries-Rose Region

=" Slope =112

LogB (arbitrary unit)

Figure 31: The Increment Threshom as a function of Reference Intensity B

Hence it is evident that the variation @f¢Y® againstd £ "@othe De VriesRose region is
slower than that inhie Weber region. Therefore théscrimination ability of thehuman eye in
the De VriesRose region is greater than that in the Weber regl@h[42] [43]. The possible
reason for this detenigion in discrimination ability can be attributed to inherent visual

nonlinearity.

To derive a mathematical model representing the inherelinearity of the human eye, we
approximate the curve represented in Figure 3.1 by a piecewise linear curve as shown in Figure

3.2.
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Slope =2
Saturation

logABr

<— ! Slope=1
Weber Region

Slope =0 —

: \ De Vries-Rose Region

Y | B R s

w

logB

Figure 3.2: Linear approximation of the Increment ThresholdA as a function of Reference
Intensityi | "HA

The threshold values in the De VrARB®se region, the Weber region and the saturation region are

defined by the linear equatior.2), (3.3) and @.4) respectivel\j38] [44].

0 EY®) -z aé Qb EUQ (3.2)
a YR  a € Q& £0°Q (3.3)
AEYE® ¢z aé (3.4)

WhereU ,0 and0 are constants.

Therefore, when the brightness value of an object is higher (or lower) than its surrounding or
background or a reference intensityoy an amount Y& , it corresponds to a point on or above

the curve (Figur8.2) and the object will appear either brighter (or darker).
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The demarcations between the various regions are not so sharp and distinct. But for the sake of
simplicity it is assumed that the De VriB®se region extends from to w, the Weber region
extends from®w to w and the saturation region extends beyandThe value of 6

corresponding té ¢ "Q6® is assumed to b& for'Q plgfo. Therefore,
w & £6°Qfor'Q pltio (3.5)

Letw and0 be the maximum values af ¢ "@dd6 respectivelyThe value of the parametér
which is the maximum difference in the image can be obtained by,
" Aoy d E Loy . The values of theyde can then be expressed in termscof

as,

® | oforQ pltiv (3.6)
and o | 6 forQ plgho (3.7)
wherett | | p, U | p

Since the slope of the Weber region is 1, o ~_ remains fairly constant over the entire
Weber region with a value approximately equdl ko ¢ 0 — . Hencefrom Equation 3.3

we can determine the value of as

|
|

(3.8)

At point (@ fw ) on the graph, both Equations 3.2 and 3.3 are satidfietefore the value af

can be deduced as,
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O G&Q -0 af - 1 1€ -aeQ 1 1-€C 0 O 6 (3.9)
Similarly, at point( ) on the graph, both Equations 3.3 and 3.4 are satisfied. Therefore the

value ofu can be deduced as,
(3.10)

Hence the minimum values of the increment threshold for the different regions are given by,
(3.11)

/6 6 inthe De VriesRose region 6 6 0

Y6 6 —
5 6 (3.12)

<

in the Weber regiard

<

V& 6 — L — in the saturation regio®, 0 (3.13)

Yo
Equations 3.11, 3.12 and 3.13 thus gthe minimum visual incremerthresholds that are

required to distinguish an object from its immediate backgrotdehce for a pixel with

intensityd , we should have
either, Y6 B — 1 6 , when 6 6 06 (3.14a)
or, ¥ 6— 1 when & 6 6 (3.14b)
or, ¥ & — - —— when 6 6 (3.14¢)
whereYd 6 6
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for the pointd to be treated as an edge pixel in the image. gradien’® can be approximated

by any of the edge detection algorithiibus HVS thresholding will decompose the image into

four component images. These four component images can be subjeamgdrtageprocessing
algorithm and fused together to achieve better performdiee background intensity image B

can be obtained by taking the local mean at each and every point in the image and is given by

[11],

N IT

0 x,%y p$ =8 BoXi ,§j -85 BoXk, B X(x5Wp) (3.144d)

HereB x , yepresents the background intensity at each pixelXamd, is the input image. Q
represents all the pixels that are directly
pixels diagonally one pixel away. AldbandNare constantd et us assume that the input image

is & ofto and the gradient imagedsadto . Then the four HVS based sithages are given by,

5¢

Op GdH0Eis b 6 Q—= U (3.15a)
O G 0Eis  ddd 6 Q—- 0 (3.15b)
O GRS 6 i Q—— ¥ (3.15¢)
0a 6 6ty "¢ B d EQ 4 QY QB Q4 | (3.159

3.1.1 Image Decomposition based on HVS

In this section we present the results of image decomposition by applying HVS based non
linearity. Figure 3.3 shows a grayscale image having varying background intensdoesding

to Figure 3.2, the background image (which can be derived by taking the local background in
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each and every point in the image) can be divided into fowinsages according to their
intensities based on the HVS. Figure 3.4 shows the differekgttamd images in the different
regions.In Figure 3.5 we show the ideas expressed in Equation &4 The gradient of an
image pixel (i.e. the difference between the pixel intensity with its immediate background) is

now a function of the backgroundemsity also. Hence four different subages are possible in

the four regions according to the human visual response.

-

Figure 3.3: Original Grayscale Image

(k)
()

(&)
]
Figure 3.4: HVS based background images in (a) Weber region (b) DeR&#esRegion (c)

Saturaion region and (d) Dark region
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Figure 3.5: HVS based Gradient in (a) Weber region (b) De \R@se Region (c) Saturation
region and (d) Dark region

Figure 3.6: (a) Original Image, HVS based Images in (b) Weber Region (c) DeRdses
Region (d) andaturation region, (e) Remaining image pixels (Other region) and (f) Result of
arithmetic addition of (b), (c), (d) and (e)
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We show the decomposition of an image into four-isudges according to the human visual
noninearity according to Equation 3.15-@ Figure 3.6 shows the HVS based decomposition
of an image and how the result after the four-sniiges are fused together using arithmetic

addition.

3.1.2 HVS based edge detection

I n this section weoll show exampl e#VSasto ed ge
decompose the image into different regions based on background intensity and then apply a
threshold that is based on the background interisiyr different edge maps are obtained based

on the background intensity. The edge maps are then twggd the final HVS based edge map.

Figure 3.6and 3.7shows the edge extractiemamples using HVS based edge detection.

Figure 3.6.1: Original Image
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Figure 3.6.2: HVS based background images in (a) Weber region (b) DeRasesRegion (c)
Saturation region and (d) Dark region

(k)

Figure 3.6.3: HVS based Gradient in (a) Weber region (b) De-YRise Region (¢) Saturation
region and (d) Dark region
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Figure 3.7: (a) Original Images (b) Results of edge=ction by HVS
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3.2 Parameter Selection for HVS

Two sets of parameters dictate the edge deteetnmhimage decompositicagorithis using

HVS. The alpha parameter set determine the boundafigke different regions in HVS
decomposition. The parameter beta determines the vertical height of the visual increment
threshold curve given in Figure 3.2. In this sectibthe thesisve will discusshe experimental
results obtained by alpha and betiation and their effect on the edge detectma image
decompositioralgorithms. We 6 | | p r ed pammetevahation en fodthesgnthetic and

natural images.

3.2.1 Alpha variation

The alpha prameters determine the boundary of the different region$lVS based image
decomposition as it is evident from Equations 3.6 and Bié Weber region is given the
maximum weightage and hence this region is the largest compared to the other regions in the
HVS based image decompositidrhe typical values ches for alpha parameters ar@ 1@,

| ¢ T® and| p T for edge detection andp T | ¢ T and| p T for image
decomposition. The selection of alpha values depends on the application itself and the values
need to be adjusted depending on how much weightage needs to be placed on the individual
regions. For example if an image has areas of shadows, thefstiee DeVries Rose region is

increased. However, the Weber region gets the maximum weightage almost always.

We present in this section the resultddS based image decomposition for 2 sets of values of

the alpha parameter for a constant value opdrameter beta.
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) )
(c] (d)

Figure 3.8: HVS based background images in (a) Weber region (b) DeRbsesRegion (c)
Saturation region and (d) Dark region for 8, 8 and 8

() )]
(c) (d)

Figure 3.9: HVS based background images in (a) Weber region (b) DeRbsesRegion (c)
Saturation region and (d) Dark region for 8,) 8 and» 8
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In Figure 3.8, the majority of the information lies in the Weber region as the Weber region is the
largest in this case. In Figure 3.9, the amount of information in the Weber region is much

reduced due to the reduced weightage in this region. Figure 8dlB.A1 shows thedge map

obtained corresponding tbe alpha values in Figure 3.8 and 3.9.

Figure 3.10: Edge map correspondingto 8, 8 and 8

Figure 3.11: Edge map correspondingto 8, ) 8 and) 8

Figure 3.11 has lost some edge information in the saturation region, whereas the edges
corresponding to the other regions remain unaffed¢tds based thresholding is based on the
underlying principle that the visual increment threshold increases withnthease of the
background intensity and the rate of change depends on the region in which the background
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intensity belongs. The rate of change is the highest in the saturation region followed by the
Weber, DeVries Rose and the dark regiortdence alpha ariation has less effect on edge
detection by HVSExperimentally it has been found that giving the maximum weightage to the

Weber region yields best results.
3.2.2 Beta variation

Beta is the thresholding parameter for HVS based image processing algovitamezollect the
equationq3.2), (3.3 and @.4) here and see that each of the ¢igms is in the form of the linear
equationdy & @ @ whered is the slope andis the interceptThe constants , 0 ando
determine the magnitude of the positimeercept. If the intercept is positive, then increasing its
value shifts the straight line up. The constants0 andu are derived from the parameter beta

and hence if beta is increased, the visual increment threshold curve moves in the direction of

positive yaxis thereby increasing the threshfddHVS decomposition.

Effect of beta variation for edge detection

The choice of the parameter beta plays a very important role in edge detection by HVS. A very
low value of beta may result in false edges appearing in the edge map. Incteasmtue of

beta to a great extent may result in loss of edges. The valutaddlbe depends on the choice of

the image.The effect of beta variation is illustrated below. We fix the alpha parameter values at

| p T, ¢ T@and p TOgiving the maximum weightage to the Weber region.
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Beta =.004

Figure 3.12: Effect of beta variation odge map

Beta = 006 Bets = 01

From figure 3.12 we can see that as the value of beta incrédasesis loss of edge in the high
intensity regions because as the background intensity increases, the rate of change of threshold

also increased.hus we see that synthetic image®d a very low value of beta.

Beta =.02

Figure 3.13: Effect of beta variatiam edge map
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The effect of change of beta is also noticed in the imageloe na 6. At | ofalseval ues
edges appear in the images. A value of .02 for the parameter gives teddeestap in this case.
As the value of beta is increased further, edges areTlogs for natural images the value of beta

should be kept at michnge (0.01 0.06).

Effect of beta variation foimage decomposition

In this section we analyze the effect of beta variation on image decomposition. From equation

3.15 (a) through (d), it is evident that the images in the U6 decomposed regions are
complementary and the original image can be retrieved by adding theefpons together. The

Weber, DeVries Rose and Saturation regions represent areas in the image when the gradient
magnitude is perceivable by the human eye. These regions collectively represent the high
frequency regions in an image. The fourth regiontdne A Ot her 6 regi on r ef
frequency region where the gradient magnitude remains constant according to the human eye.
The thresholding parameter beta controls tim®wnt of information to be placed in the Other

region as compared to the infornaat to be placed on the high frequency regions. A low value

of beta place less information in the Other region whereas a high value places more information

in the Other region compared to the Weber;\Dies Rose and Saturation regions. This is useful
whenwe are using the Other region alone in cer
values atp T1®,| ¢ T@® and| p T@oand show the effect of changing the values of the
parameter betaVe 6 | | sel ect takalueegquavt@d.002cthe oW rafge; 0.62;in

the midrange; and 0.2 in the higlange.
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Figure 3.14: HVS decomposed images in (a) Weber Region (Mxies Rose Region (c)
Saturation region and (d) Other region for beta = 0.002.

(b)

(d)

Figure 3.15: HVS decomposed images in (a) @dbegion (b) Dé&/ries Rose Region (c)
Saturation region and (d) Other region for beta = 0.02.
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Figure 3.15: HVS decomposed images in (a) Weber Region (hMries Rose Region (c)
Saturation region and (d) Other region for beta = 0.2.

Range of beta Typical Values Applications

Low 0.001i 0.005 Edge detection in synthetic images

Edge detection in natural images, edge ba

feature extraction from natural images an

Medium 0.02i 0.06
other applications involving the gradient
image.
Amount of gradient information to be retaing
High 0.20.4

is really low. Not used much

Table 3.1: Summary of beta values

Table 3.1 summarizes the typical values of beta for different applications.
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CHAPTER 4

REVIEW OF FEATURE EXTRACTION FROM IMAGES

Computer visiontechniques are widely used nowadays to address real world problems that
involve processing of voluminous image data requiring massive computing efforts and high level
of processing accuracy. Such requirements are addressed using sophisticated form of image
processing applications. Computer vision systems are applied to solve complex object
recognition and classification problems in medical and security applications. For example, object
recognition techniques are used in medical applications for breast@stdtp cancer detection.

Such applications use MRI scan images of the patients and assist the medical tegmifyahe
presence of tumor#& medical tumor classification system provides useful informadimout the
tumor 6s nat ur e helpnha inaedigahteamyo plart effectiveadmgnosis procedures.

In security and automatic surveillance systems computer vision techniques are widely used to
identify threat objects like guns or other weapons from scanned images. Face detection and
recognitionsystems are heavily based on the computer vision techniques. Detecting eyes from
facial images is another application where these techniques are applied. It has been found that a
majority of car accideas are caused by driver fatigue. Hence automatectragshave been
developed that can track the eyes of the driver in subsequent frames of images and warn the
driver in case the eyes remain closed for a subsequent amount oP&destrian detection for
security surveillance is also based on computer visemhniques.All these methods are
fundamentally based on training the system based on the application mctidhecterize a new

object based on the training sddeally the raw image can be used to train the system. However
considering the typical stzof a two dimensional or three dimensional images, this would result

in a huge volume of data that would render the system impractical for real time applications.
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Hence suitable object characterization techniques are used widely to reduce the parameters

needed to characterize an object.

In computer vision applications, feature extraction is used widely as a method of object
characterizationA human observer can easily identify and classify objects in an image from his
experience and past knowledge gathered over the yearsexample a human observer can
easily identify a face in an image even under the influence of shadow or partial occlusion.
However the task becomes extremely challenfimg@n automated computer vision application.
Hence objects are generally represénés a vector of numerical features called the feature
vector.Each of the values in the vector is called a feature anttidesa specific aspect of the
object. For instance, a featureyna d es cr i b e a npropdrtieseliketaea pepneters i ¢ a |
volume, surface areas asd on. The primary goal behitkis object representation technique is

to reduce the dimensionalityf the problem bygenerating a compressed object representation
that will result in less processing effortend memory requirement3.he efficiency of the
classifcation process is controlled ige quality of the feature vectorSeveral feature vector
methods are available to addressognition and classificatioproblem.Feature vectors can be
based on the binary edge map, gradierage or simply the intensity values in the image. It has
been found that the selection of feature vectors used also depend widely on the application in

which they are used.

Object detection and recognition systems often fuse more than one featurealgaritrms for
efficient detection and recognitiolm this chapter will discuss some of the state of the art feature

vector extraction algorithms.
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4.1 The Cell Edge Distribution (CED)

The Cell Edge Distribution (CEDM45] [46] [47] [48] [49] is method of edge based feature
extraction from an image. The image is first subjectestlitge detection for extracting edge maps

in the horizontal, vertical, diagonal and aditigonal directionsHere we have used HVS for
obtaining the directionaldge mapsin the next step each edge map is divided in 16 equal
rectangular or square cells of equal size depending on the size of the eatyge maps are
generated by counting the number of edge pixels per cell. Thus each directional edge map
generate a vector of sixteen feature values. The feature maps generated in the horizontal,
vertical, diagonal and antliagonal directions are concatenated together to formulate a 64 bit

feature vector.

The CED method of feature extraction consists ofdhewing steps:

1. Getthe inputimage in grayscale

2. Apply directional kernels for extracting gradients in the horizontal, vertical, diagonal and
antidiagonal directions

3. Threshold the 4 gradient images for extracting&lurectional edge mapsing HVS

4. Divide each of the edge maps into 16 cells

Celll | Cell2 | Cell3 | Cell4

Cell5 | Cell6 | Cell7 | Cell8

Cell9 | Cell10| Cell1l| Cell12

Cell13| Cell14| Cell15| Cell16
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5. Count the edge flags in each of the cellsus each of the edge maps will give rise to a

16 element feature vector.

6. Fuse the four 1-@lement feature vectors to get the final feature vector consisting of 64

elements.

The size of the directional gradierdan be chosen based on application. Typically 3X3 or 5X5

kernels are used. Threshold can be chosen to global or local. Human Visual System based

thresholding has been applied for our experiments. The CED method for feature extraction is

easy to implementral works well for security applications for gun or liquid bottle detection.

This has also been for face detection by fusion of CED with other feature vectors like the

Principal Projected Edge Distribution (PPED) described in the next section of thisrchapte
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Figure 4.1: Schematic Diagram of the CED feature extraction algorithm
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Figure 4.2.1: Original example image
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Figure 4.2.2: CED feature vector extracted from image in Figure 4.2.1. Edge maps obtained by
HVS edge detection
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4.2 The Principal Projected Edge Distribution (PPED)

The principal projected edge distribution (PPEEG] [46] [49] [50] is another approach towards

edge based feature extraction in imadg@BED feature vectors are often fused with the CED
feature vectors for object characterization. They combined feature vector has betor tesssl
extraction from images. Like the CED feature vector, PPED also starts by extracting the
directional edge mapsased on HVSrom the imagesOnce again human visual system based
thresholding is used for obtaining the edge m&fswvever in this caséhe feature maps are
divided in the same direction as that of the edge. The horizontal edge map, for example, is cut
along the rows; the vertical edge map is cut along the columns and so on. The edge flags in the
cells are then collected from the projecthvisions and concatenated as before to get the final 64

element feature vector.

The Mojette transforni51] is a discrete version of the Radon transform which gives projections
of an image along different orientation& projection image efines the image nature at a

specific angleA projection oriented at an anglefor an imag€Qs given by,

ni €rQ0 B B QWuYo @ o (4.1)

where—is related tay andfq by — OAT — andY o is the Kronecker delta function

which is 1 for&d p and 0 otherwiseA projection sums the pixel value of pixels which cross the
line ® & "G for every combination ofQandd The Mojette transform is the set of
projections for'Opredetermined projection aeg. PPED feature extraction éssentially the
Mojette transform withry M pht for a horizontal edge mapi) M mip for a vertical

edge map,n M plp for a+45 degree edge map, anyl M ph p for a-45 degree
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edge map, except that PPED feature extraction counts the number of edge giele Bpecific
number (depending on the size of the imagejpuafs along the orientation direction of an edge

map rdher than every row along the orientation direction of an edge map.

The steps involved in the PPED feature vector extraction algorithm can be summarized as

follows:

1. Getthe input image in grayscale

2. Apply directional kernels for extracting gradients in biwgizontal, vertical, diagonal and
antidiagonal directions

3. Threshold the 4 gradient imagesing HVSfor extracting the 4 directional edge maps

4. Divide the image depending on the edge orientation

5. Count the number of edge flags in each division to gen#ratéeature vectors from the
individual edge maps.

6. Concatenate the feature vectors generated in step 5 to get the combined PPED feature

vector.

The PPED feature vector extraction algorithm however restricts the input image to be a square

image.
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Figure4.3: Schematic Diagram of the PPED feature extraction algorithm

Figure 4.4: PPED feature vector extracted from image in Figure 4.2.1. Edge maps obtained by
HVS
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