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ABSTRACT 

 

This thesis aims at incorporating logarithmic image processing and the human visual response 

which is based on Weber’s law into various image processing applications. Human Visual 

System (HVS) has been used in this thesis for image decomposition. Specifically HVS based 

image decomposition has been applied towards the development of a novel framework for object 

detection and recognition systems. Also Logarithmic Image Processing (LIP) has been used 

towards the development of novel feature vectors. Logarithmic Image Processing (LIP) replaces 

the linear arithmetic (addition, subtraction, and multiplication) with a non-linear one, which 

more accurately characterizes the nonlinearity of computer image arithmetic and is consistent 

with the Weber’s Law and the saturation characteristics of the human visual system. Two 

systems have been developed. One of which detects eyes from facial images after performing 

morphological operations. It has been shown that extracting features from HVS decomposed 

images followed by a feature fusion results in a better rate of detection than when extracting 

features from the original image alone. This has also proved effective in images that have 

shadows near the eye region. This thesis also presents a novel approach to the problem of face 

recognition that combines the classical Local Binary Pattern (LBP) feature descriptors with 

image processing in the logarithmic domain and the human visual system. Particularly, we have 

introduced parameterized logarithmic image processing (PLIP) operators based LBP feature 

extractor.  We have also used the human visual system based image decomposition to extract 

features from the decomposed images and combine those with the features extracted from the 

original images thereby enriching the feature vector set and obtaining improved rates of 

recognition. Experiments have clearly shown the superiority of the proposed scheme over 

classical LBP feature descriptors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 

In the past few decades there has been a tremendous growth in the field of image processing 

leading to the development of real time computer vision systems. Computer vision essentially 

aims at duplicating the effect of human vision by perceiving and understanding an image [1]. A 

human observer perceives an object by distinguishing it from its immediate background. One of 

the primary objectives of a computer vision system is to effectively mimic the visual response of 

the human eye. A human observer can easily detect an object from an image or video even under 

partial occlusion. For example if we consider the problem of facial recognition, we’ll see that the 

task of identifying a person is not that difficult for a human. However the same task becomes 

extremely challenging for a computer vision system due to the absence of a unique 

representation of the object, which in this case is the face. Object detection and recognition 

algorithms are often applied for a myriad of practical purposes like crowd surveillance, entrance 

security, video context indexing, automatic detection of threat objects in airport security systems, 

finger print identification, detecting eyes to determine driver fatigue while driving a vehicle and 

many more. However the state of the art object detection and recognition algorithms do not take 

into account the non-linearity of the human visual response. The way in which a human observer 

perceives an object is extremely complex and largely depends on the background on which the 

object resides. From our day to day experience we know that in a very dark background, the 

slightest ray of light would cause a visual sensation whereas in a well-illuminated surrounding, 

that same small change might not cause a visual sensation. Moreover the visual response of the 
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eye is non-linear and hence an accurate simulation of the human visual system in image 

processing applications is an extremely challenging task. The logarithmic image processing 

(LIP) framework introduced in [2] replaces the linear arithmetic operations with a non-linear one 

which more accurately characterizes the response of the human eye. Inspired by the success of 

the LIP model towards various image processing applications like image enhancement, image 

restoration, image denoising and a simple but powerful texture descriptor, called Local Binary 

Pattern (LBP), we have proposed a system that does face recognition using novel modified 

logarithmic LBP operators. Also a mathematical formulation of the human visual system enables 

to decompose images. We have used this concept towards the development of a generic 

framework for object detection and recognition and have developed an eye detection system 

based on this framework. 

1.2 Objective 

 

The objective of this thesis is to apply logarithmic image processing and human visual system 

based image processing algorithms towards the development of object detection and recognition 

systems. This includes an in-depth study of the existing feature extraction algorithms to 

understand their advantages and disadvantages. A major part of the thesis has been devoted in 

understanding the role of human visual response in various image processing applications like 

edge detection, image decomposition, feature extraction, object detection and recognition. As 

mentioned in the previous section, the response of the human eye is extremely complex and 

depends largely on the background against which the object is visualized. Hence non-uniform 

illumination, shadows etc. present in image tend to affect the efficiency of image processing 

algorithms. Thus the aim was to apply logarithmic and HVS based processing and compare 
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results with classical approaches.  A major objective was to develop novel feature vectors that 

use the non-linear LIP framework for face recognition. This framework is consistent with the 

non-linear characteristics of the human visual system and hence our objective was to improve the 

robustness of facial recognition by utilizing the LIP framework.  

In summary the objectives are: 

 Applying human visual system based image processing towards edge detection, image 

decomposition, feature vectors extraction, development of object detection and 

recognition systems. 

 Analyzing the effect of different parameters for human visual system based image 

processing and parameter tuning for improved performance. 

 Development of human visual system based object detection and recognition systems and 

comparing their performance with traditional systems that do not take into account 

human visual system based image processing. 

 Development of novel feature vector that combines the classical Local Binary Pattern 

(LBP) feature descriptors with image processing in the logarithmic domain and the 

human visual system.  

1.3 Contributions 

 

The contributions are: 

 Introduction of human visual system (HVS) based image decomposition towards feature 

extraction from images. 
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 Introduction of a new framework involving human visual response based image 

decomposition for object detection and recognition systems. 

 An analysis of parameter selection in human visual system based image decomposition. 

 A literature review of the state of the art feature extraction algorithms from images. 

 Development of an eye detection system using human visual system based image 

decomposition and morphological image processing. The system introduces human visual 

system based image decomposition into an existing system and compares the 

performance with the original non-HVS based system. The system is tested using images 

having and non-uniform illumination and shadows near the eye region. It is shown that 

by suitably selecting parameters for HVS decomposition, the performance of the system 

surpasses that of the original system when testing images having non-uniform 

illumination.   

 Introduction of a novel approach to the problem of face recognition that combines the 

classical Local Binary Pattern (LBP) feature descriptors with image processing in the 

logarithmic domain. Novel logarithmic-LBP feature descriptors have been introduced  

 Introduction of parameterized logarithmic image processing (PLIP) operators based LBP 

feature extractor.  

 Introduction of human visual system based LBP operator, which is based on the Weber’s 

law. In this approach features extracted from the decomposed images are combined with 

the features extracted from the original images thereby enriching the feature vector set 

and obtaining improved rates of recognition. 

 



5 
 

1.4 Thesis plan and organization 

 

We start the thesis by presenting an overview of the non-linear LIP framework for image 

processing. Next we present an overview of the mathematical framework for human visual 

system based edge detection and image decomposition. The state of the art feature vector 

extraction algorithms are also studied. We then propose a novel framework for object detection 

and recognition that can be used to enrich the feature vector set by applying HVS based image 

decomposition.  We essentially developed two systems that detect objects from images based on 

human visual response. One of them detects eyes from facial images and we show the 

effectiveness of the system on images having non-uniform illumination. The second system does 

face recognition based on the novel logarithmic LBP based feature descriptors that have been 

introduced as a part of this thesis. 

Thesis Plan and Methodology 

 Review of the non-linear logarithmic framework for image processing. 

 Understanding the pros and cons of the conventional edge detection algorithms and 

understanding the motivation for using human visual system based image processing for 

edge detection. 

 Analyzing the role of parameter selection for HVS based image decomposition. 

 A literature review of the existing feature extraction algorithms from images. 

 Introduction of HVS based edge detection for edge based feature extraction from images. 

 Introduction of HVS based image decomposition for feature extraction from images. 

 Introduction of novel framework for human visual system based object detection and 

recognition 
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 Introduction of HVS based image decomposition for the development of eye detection 

system. Testing with images having shadows non-uniform illumination around the eyes 

region. 

 Novel approach to face recognition that combines the classical Local Binary Pattern 

(LBP) feature descriptors with image processing in the logarithmic domain and the 

human visual system.   

 Comparison of performance of facial recognition using modified LBP based feature 

extractors and classical LBP feature extractors using publicly available face databases. 

The remaining part of the thesis is organized as follows: Chapter 2 gives an overview of the 

logarithmic image processing framework. We will show how this framework is consistent with 

the non-linear and saturation characteristics of the human visual system. 

Chapter 3 gives an overview of the mathematical framework for human visual system based 

image decomposition. The effect of parameter selection on the algorithm is also presented. 

Chapter 4 presents a review of the state of the art feature extraction algorithms of images. A 

feature vector is essentially an n-dimensional vector of numerical features that represent some 

object in an image. Many algorithms in machine learning require a numerical representation of 

objects, since such representations facilitate processing and statistical analysis.  

Chapter 5 presents the novel framework for human visual system based object detection and 

recognition from images.  

In chapter 6 we present a novel eye detection system based on human visual system and 

morphological image processing. We show how incorporating human visual system based image 

decomposition improves the results of the original algorithm. We present results of our testing 
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and compare with the original system that does not involve human visual system based 

processing for eye detection. We also show that the algorithm is effective on images having non-

uniform illumination and shadows around the eye region. 

In chapter 7 we introduce a novel approach towards facial recognition that combines the classical 

Local Binary Pattern (LBP) feature descriptors with image processing in the logarithmic domain 

and the human visual system. We compare performance of face recognition system using the 

modified LBP operators and the classical LBP operators. We perform our experiments using 

publicly available face databases. 
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CHAPTER 2 

REVIEW OF LOGARITHMIC IMAGE PROCESSING 

 

Image processing involves the transformation of an image from one form into another. The result 

may be a new image or may take the form of an abstraction, parameterization, or a decision [3].  

Image processing includes many applications, such as image enhancement, edge detection, 

object recognition, and noise reduction. The most important aspect of an image processing 

technique is that the image processing framework must be physically consistent with the nature 

of the images and the mathematical rules and structures must be compatible with the information 

to be processed [4]. Jain [5] has clearly shown the interest and power of mathematics for image 

representation and processing. Granrath [6] has recognized that the human visual laws and 

models play an important role in image processing. Marr [7] has pointed out that, to develop an 

effective computer vision technique, the following three points must be considered: (1) what are 

the particular operations to be used and why? (2) How the images can be represented? And (3) 

what implementation structure can be used? Moreover, Schreiber [8] has argued that image 

processing is an application field and not a fundamental science. Thus an image processing 

framework must satisfy the following four main fundamental requirements [9] 

1. It is based on a physically (and/or psychophysically) relevant image formation model  

2. Its mathematical structures and operations are both powerful and consistent with the 

physical nature of the images, that is, with the image formation and combination laws 

3. Its operations are computationally effective  

4. It is practically fruitful in the sense that it enables to develop successful applications in 

real situations 
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Traditionally, image processing makes use of linear operations to manipulate images, but since 

computer arithmetic (computer addition, multiplication and others) is inherently a non-linear 

process, accuracy issues can arise [10]. As an example we can consider the addition of two 

images. In the digital world the addition of two images may produce “out-of-range” problems, 

because a value above the saturation threshold (for example, for 8 bits, the maximum value 

would be 255) is likely to be obtained when two images are digitally added and is likely to be 

clipped causing a loss of information. Saturation of these values to the maximum often happens 

in digital image processing, but those extreme values are  actually never reached in natural 

images, since our retina, which acts as a natural sensor, works in a logarithmic mode  following 

the Fechner’s Law [11]. Moreover linear operations typically do not yield results consistent with 

the physical phenomena [10]. 

Thus image processing specific arithmetic operations were introduced to address the loss of 

information issue [12]. One attempt at resolving computer arithmetic issues was proposed by 

Ritter et al. The image algebra was designed to provide a mathematical framework to support 

implementation, comparison, and analysis of image processing transformations [13] [14]. It 

consists of a core set of 14 operations [15]. This image algebra has the standard point-wise 

addition, multiplication, and it focuses on developing operations to implement convolutions. 

Jourlin and Pinoli introduced the Logarithmic Image Processing (LIP) model [2] . The LIP 

model replaces the linear arithmetic (addition, subtraction, and multiplication) with a non-linear 

one, which more accurately characterizes the nonlinearity of computer image arithmetic. 

Moreover LIP model is consistent with the Weber’s Law and the saturation characteristics of the 

human visual system [16]. 
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2.1 Role of Human Vision in Image Processing 

 

The human visual perception plays an important role in image processing applications [6] [7]. 

However there exists a large gap between the strong ability of human vision to perform difficult 

perceptual tasks, such as pattern recognition or image correlation and the weakness of even 

sophisticated algorithms to successfully address such problems [17]. One of the major reason for 

this is that the human vision system is complex and still remains partially unknown or not known 

enough [17]. In this section we'll present a review of the two laws that formulate the human 

visual perception towards light intensity. 

Weber Law: Psychophysicist Weber [18] [19] established that the response to light intensity of 

the human visual system is non-linear. He argued that the human visual detection depends on the 

ratio, rather than the difference, between the light intensity values   and       , where    is 

the so-called “just noticeable difference,” which is the amount of light necessary to add to a 

visual test field of intensity value   such that it can be discriminated from a reference field of 

intensity value F. Weber’s law can be expressed as 

  

 
                                                                  (2.1) 

where   is the Weber’s constant. 

Fechner’s Law: Fechner explained [11] the non-linearity of human visual sensation as follows: in 

order to produce incremental arithmetic steps in sensation, the light intensity must grow 

geometrically. He proposed the following relationship between the light intensity   (stimulus) 

and the brightness   (sensation): 

    
  

 
                                                            (2.2) 



11 
 

where    is the increment light that produces increment    of sensation and   is a constant. The 

Fechner’s law can then be expressed as: 

     

    
                                                          (2.3) 

where     is an arbitrary constant and      is the absolute threshold of human eye [96]. 

2.2 The Logarithmic Image Processing (LIP) Model 

 

The logarithmic image processing (LIP) model is a mathematical framework based on abstract 

linear mathematics which provides a set of specific algebraic and functional operations that can 

be applied to the processing of intensity images valued in a bounded range [20]. The LIP model 

has proved to be consistent with the laws of the human visual system and has been successfully 

applied to image processing applications like image enhancement, image restoration, three-

dimensional image reconstruction, edge detection and image segmentation. 

In the LIP model, the brightness of an image is regarded as the intensity of light that passes 

through a light filter with absorption function        [21]. An absorption function is defined as 

the percentage of incident light being absorbed by the light filter. Jourlin and Pinoli called this 

function the gray tone function. The value of the gray tone function at spatial location       is 

thus called the gray tone. Thus an image can also be represented by the absorption function 

which describes the opacity of the light filter. Since the brightness of an image is usually 

restricted to an interval (typically [0,255] for an 8-bit image), then the gray tone function is also 

restricted in the real interval [0, M). Here, the value zero means that there is no absorption, while 

the value M corresponds to a totally opaque image. For an 8-bit image, M is 256. Therefore, the 
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gray tone is also in that interval. Using the gray tone function, the addition of two images can be 

performed by putting two light filters together. The gray tone function can thus be expressed as: 

                                                                        (2.4) 

Where        ) is the original image function,          is the output gray tone function, and   is the 

maximum value of the range. The addition of two gray tones   and  , and the scalar 

multiplication of   by a positive real number   are defined in terms of the usual real function 

operations as: 

         
  

 
                                                   (2.5) 

             
 ⁄                                           (2.6) 

If the gray tone functions are defined on (-∞,M), then subtraction of gray tones are given by  

       
   

    
                                                           (2.7) 

Using the subtraction operation, Jourlin and Pinoli [22] have proposed a definition of the contrast 

between two neighboring pixels: 

                                                              (2.8) 

This definition of contrast is consistent with the Weber’s law. Jourlin and Pinoli have proved that 

the set of gray tones defined on (-∞,M) with operations   and   is a real vector space over the 

real number field. As a result, the set of gray tone is closed under the above operations. This 

ensures that the addition of two images, or the scalar multiplication of an image by a positive real 

number, results in a new image which is within the interval [0, M). This is very desirable for 
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many image processing problems such as image enhancement, image restoration and image data 

compression. Pinoli [2] has also proved that the real vector space is algebraically and 

topologically isomorphic to the real number space by the isomorphic transform given by: 

               
 

 
                                                 (2.9) 

The inverse isomorphic transform is given by, 

          [       
  

 
 ]                                          (2.10) 

The isomorphic transform serves as a powerful tool for developing the LIP model and for 

simplifying the analysis and the implementation of the LIP model based image processing 

algorithms. For example the multiplication of two gray tones is given by: 

                                                            (2.11) 

The LIP model has been successfully used for different types of image processing algorithms 

like image enhancement, edge detection, and image restoration. In [22], LIP methods are used to 

enhance cervical smears for detection of cancerous cells, performing contrast enhancement and 

edge detection. In [2] and [23], LIP has been used for various image processing applications like 

noise removal, range control, and other methods for restoration and enhancement. LIP model has 

also been extended for color images and is used for the enhancement of transmitted medical 

images [24]. 
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2.3 The Parameterized Logarithmic Image Processing (PLIP) Model 

 

The LIP model however has some limitations as discussed in [10]. When two visually pleasing 

images are added together, the output image may not be visually pleasing. When linear 

arithmetic is used, added images are always brighter than the originals, which can result in 

images that are overall too bright. When classical LIP arithmetic is used, added images are 

always darker than the originals, which can result in images that are overall too dark. Ideally, 

added images will be representative of the originals in terms of overall brightness without 

unnaturally becoming too dark or too bright. Panetta et al demonstrated this problem in [10]. 

The parameterization of the LIP model was introduced by Panetta et al [10]. Each of the three 

operations addition, subtraction and multiplication are parameterized separately in this model. 

Measures of image enhancement [25] are utilized to judge performance along with mean-squared 

error measurements to determine the best parameters. This ensures that the PLIP operations 

should not visually damage an image.  The PLIP model can be summarized as: 

         
  

    
                                                            (2.12) 

 

          
   

       
                                                             (2.13) 

 

                                                                         (2.14) 

 

                   
 

    
                                                    (2.15) 

 

             [      (
  

    
)
 
 ⁄
]                                             (2.16) 

 

Where   is used as PLIP addition, Θ is used for PLIP subtraction and   is used for PLIP 

multiplication. Also,   and   are the grey tone pixel values and   is the maximum value of the 
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range, and   is a constant.     ,     , and      are all arbitrary functions. We use the linear 

case, such that they are functions of the type              , where   and   are integers, 

however any arbitrary function will work. It is to be noted that the PLIP equations revert to the 

classical case when                  Also the PLIP arithmetic satisfies the 

fundamental requirements of an image processing framework and introduces a fifth constraint; 

the framework must not damage either image; i.e. when a “good” image is added to a “good” 

image, the output must be a “good” image. The parameters for PLIP can be selected using image 

enhancement measures [10] and the best values of   and   were experimentally determined to 

be any combination such that                           and the best value of   was 

determined to be      . 

PLIP operators were successfully utilized for image decomposition, image enhancement and 

edge detection. In this thesis PLIP operators have been extended to extract features from images. 

Specifically we have integrated PLIP operators with feature extraction by local binary patterns 

(LBP) and applied them towards face recognition.  
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CHAPTER 3 

HUMAN VISUAL SYSTEM (HVS) BASED IMAGE DECOMPOSITION AND EDGE 

DETECTION 

 

The way in which a human observer sees an object largely depend on the background on which 

the object is located.  One of the very first image processing applications which incorporated this 

concept was edge detection. The classical edge detection algorithms like Sobel [26] [27], Roberts 

[28], Prewitt [29], Canny [30] [31] in general have two broad steps: gradient image calculation 

and thresholding. Most of the classical methods with the exception of canny choose a single 

global threshold for the entire image to detect the final edge map from the gradient image. If the 

value of the threshold is too high, the final edge map may have less useful information. On the 

other hand choosing a very low threshold may result in false edges in the edge map. The canny 

algorithm tries to solve the problem by performing an adaptive hysteresis thresholding with the 

choice of two thresholds. However the thresholds values are once again not dynamic and remain 

constant for the entire image. This poses a difficulty in edge detection on images that have 

varying illumination or shadows in them. Threshold selection is a very important step in image 

processing algorithms concerning segmentation, edge detection and image decomposition. A 

variety of techniques have been proposed in this regard [32] [33]. In an ideal case, the histogram 

has a deep and sharp valley between two peaks representing objects and background, 

respectively, so that the threshold can be chosen at the bottom of this valley. However, for most 

real pictures, it is often difficult to detect the valley bottom precisely, especially in such cases as 

when the valley is flat and broad, imbued with noise, or when the two peaks are extremely 

unequal in height, often producing no traceable valley. The well-known Otsu method for image 

segmentation chooses a threshold based on the image histogram so as to maximize the 
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separability of the resultant classes in gray levels. The choice of an appropriate threshold plays a 

very important role in edge detection algorithms. An incorrect threshold may result in loss of 

edges in the final edge map or may give rise to edges that are not in accord with the human 

visual perception. Ideally the threshold should be based on the local background and should 

adaptively change itself based on the background. In other words, the threshold selected should 

be dynamic and local [34] [35]. Probability models have been used in determining thresholds in 

the canny edge detection algorithm [36]. Methods have also been proposed for determining 

adaptive threshold based in the image histogram [37]. In this chapter we’ll discuss adaptive 

thresholding that is based on the way a human observer views an object. Human visual system 

based thresholding results in an edge map that is more in accord with how human eye 

distinguishes objects from the background.  

3.1 Review of the Human Visual  Phenomenon 

The human visual system (HVS) [38] is responsible for transferring data into information 

received by the viewer. The manner in which human eyes respond to visual stimulus is extremely 

complex and non-linear [39]. The received information is characterized by attributes like 

brightness, edge information, color shades etc. Brightness is actually a psychological sensation 

associated with the amount of light stimulus entering the eye. Brightness perceived is not a 

simple function of the intensity. Due to the great adaptive ability of the eye, human eye cannot 

measure the absolute brightness rather it measures the relative brightness. The relative brightness 

is an observer's feeling of difference in the grayness between the objects. This phenomenon can 

be observed even in our day to day experience. In a very dark room, even the slightest glimpse of 

light ray can cause a visible sensation in the eye whereas in a well illuminated room, the same 

amount of light may remain unnoticed. In other words, on a dark surface, human eye will be able 
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to detect small changes whereas on a bright surface, the change has to be of a substantial amount 

for the human eye to detect it. Also the sensitivity of the human eye to additive white noise 

depends on the background. Eyes are more sensitive to random noise in smooth areas of an 

image than in busy areas with a lot of texture or details. This is the underlying principle which 

guides the visual sensation of the human eye.  The term contrast is used to emphasize the 

difference in luminance of objects [38] [40]. The perceived grayness of a surface depends on its 

local background and the perceived contrast remains constant if the ratios of contrasts between 

object and local background remain constant. The contrast   refers to the ratio of difference in 

luminance of an object    and its immediate surrounding   .  Mathematically the contrast is 

given by, 

   
|     |

  
  

  

  
                                                          (3.1) 

The visual increment threshold (or just noticeable difference) is defined as the amount of light 

    necessary to add to a visual field of intensity   such that it can be discriminated from a 

reference field of the same intensity  . At low light intensities, near absolute visual threshold, 

the luminance increment threshold is constant; then with increasing intensity, the threshold 

converges asymptotically to Weber behavior, i.e.,        . This type of behavior is exhibited in 

brightness incremental threshold for white broad-band spectra and monochromatic narrow-band 

spectra [16]. 

The characteristic response of the human eye is presented in Figure 3.1. The characteristic curve 

is represented in the                plane. The Weber behavior is generally expressed by the 

unit slope of the logarithmic curve [40]. The preceding region with slope 1/2 is known as the De 

Vries-Rose region. It has been shown that if the central visual processor behaves as an optimum 
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probabilistic detector, the incremental visual threshold follows the square root law, i.e. 

      √ . However, in the actual case this rule is followed in a small restricted region. The 

dashed curve shows the deviation from the Weber's law. This represents the saturation region. 

Though this behavior is not quite commonly exhibited by the retinal cone, yet we can expect this 

type of behavior in some restricted cases. 

 

Figure 3.1: The Increment Threshold     as a function of Reference Intensity B 

 

Hence it is evident that the variation of        against      in the De Vries-Rose region is 

slower than that in the Weber region. Therefore the discrimination ability of the human eye in 

the De Vries-Rose region is greater than that in the Weber region [41] [42] [43]. The possible 

reason for this deterioration in discrimination ability can be attributed to inherent visual 

nonlinearity. 

To derive a mathematical model representing the inherent non-linearity of the human eye, we 

approximate the curve represented in Figure 3.1 by a piecewise linear curve as shown in Figure 

3.2.  
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Figure 3.2: Linear approximation of the Increment Threshold        as a function of Reference 

Intensity      

 

The threshold values in the De Vries-Rose region, the Weber region and the saturation region are 

defined by the linear equations (3.2), (3.3) and (3.4) respectively [38] [44].  

       
 

 
                                                                 (3.2) 

                                                                          (3.3) 

                                                                          (3.4) 

Where   ,    and    are constants. 

Therefore, when the brightness value of an object is higher (or lower) than its surrounding or 

background or a reference intensity   by an amount     , it corresponds to a point on or above 

the curve (Figure 3.2) and the object will appear either brighter (or darker). 
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The demarcations between the various regions are not so sharp and distinct. But for the sake of 

simplicity it is assumed that the De Vries-Rose region extends from    to   , the Weber region 

extends from    to    and the saturation region extends beyond   . The value of   

corresponding to           is assumed to be     for        . Therefore, 

           for                                                               (3.5) 

Let    and    be the maximum values of      and   respectively. The value of the parameter    

which is the maximum difference in the image can be obtained by, 

      (      )             . The values of the      can then be expressed in terms of     

as, 

         for                                                               (3.6) 

and         
    for                                                          (3.7) 

where             ,      
    

    
    

Since the slope of the Weber region is 1, the ratio 
   

 
 remains fairly constant over the entire 

Weber region with a value approximately equal to       (
   

 
)
   

. Hence from Equation 3.3 

we can determine the value of     as 

     
   

 
  

 

   
(
   

 
)
   

                                                    (3.8) 

At point (     ) on the graph, both Equations 3.2 and 3.3 are satisfied. Therefore the value of    

can be deduced as, 
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        √      (3.9) 

Similarly, at point (     ) on the graph, both Equations 3.3 and 3.4 are satisfied. Therefore the 

value of    can be deduced as, 

    
  

   
                                                                 (3.10) 

Hence the minimum values of the increment threshold for the different regions are given by, 

    √ 
 

   
(
   

 
)
   

√     in the De Vries-Rose region,                       (3.11) 

     
 

   
(
   

 
)
   

 in the Weber region,                             (3.12) 

       

   
(
   

 
)
   

 

   
  in the saturation region,                             (3.13) 

Equations 3.11, 3.12 and 3.13 thus give the minimum visual increment thresholds that are 

required to distinguish an object from its immediate background. Hence for a pixel with 

intensity   , we should have 

 either,         √ 
 

   
(
   

 
)
   

√   ,    when                              (3.14a) 

or,          
 

   
(
   

 
)
   

    when                                     (3.14b) 

 or,             

   
(
   

 
)
   

 

       
,    when                                 (3.14c) 

where     |    | 
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for the point    to be treated as an edge pixel in the image. The gradient    can be approximated 

by any of the edge detection algorithms. Thus HVS thresholding will decompose the image into 

four component images. These four component images can be subjected to any image processing 

algorithm and fused together to achieve better performance. The background intensity image B 

can be obtained by taking the local mean at each and every point in the image and is given by 

[11], 

       [  p  (
p

 
 ∑          

 

 
 ∑       

 
 )       ]  p               (3.14d) 

Here   x,y  represents the background intensity at each pixel and   x,y  is the input image. Q 

represents all the pixels that are directly left, right, up and down of the pixel and  ’ is all of the 

pixels diagonally one pixel away. Also   and   are constants. Let us assume that the input image 

is        and the gradient image is        . Then the four HVS based sub-images are given by, 

                                     
       

√      
                     (3.15a) 

                                     
       

      
                      (3.15b) 

                                
       

       
                             (3.15c) 

                                                                    (3.15d) 

3.1.1 Image Decomposition based on HVS 

In this section we present the results of image decomposition by applying HVS based non-

linearity. Figure 3.3 shows a grayscale image having varying background intensities. According 

to Figure 3.2, the background image (which can be derived by taking the local background in 
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each and every point in the image) can be divided into four sub-images according to their 

intensities based on the HVS. Figure 3.4 shows the different background images in the different 

regions. In Figure 3.5 we show the ideas expressed in Equation 3.14 (a-c). The gradient of an 

image pixel (i.e. the difference between the pixel intensity with its immediate background) is 

now a function of the background intensity also. Hence four different sub-images are possible in 

the four regions according to the human visual response. 

 

Figure 3.3: Original Grayscale Image  

 

Figure 3.4: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region 
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Figure 3.5: HVS based Gradient in (a) Weber region (b) De Vries-Rose Region (c) Saturation 

region and (d) Dark region 

 

Figure 3.6: (a) Original Image, HVS based Images in (b) Weber Region (c) De Vries-Rose 

Region (d) and Saturation region, (e) Remaining image pixels (Other region) and (f) Result of 

arithmetic addition of (b), (c), (d) and (e) 
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We show the decomposition of an image into four sub-images according to the human visual 

non-linearity according to Equation 3.15 (a-d). Figure 3.6 shows the HVS based decomposition 

of an image and how the result after the four sub-images are fused together using arithmetic 

addition. 

3.1.2 HVS based edge detection 

In this section we’ll show examples of edge detection based on HVS. The goal of HVS is to 

decompose the image into different regions based on background intensity and then apply a 

threshold that is based on the background intensity. Four different edge maps are obtained based 

on the background intensity. The edge maps are then fused to get the final HVS based edge map. 

Figure 3.6 and 3.7 shows the edge extraction examples using HVS based edge detection. 

 

Figure 3.6.1: Original Image  
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Figure 3.6.2: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region 

 

Figure 3.6.3: HVS based Gradient in (a) Weber region (b) De Vries-Rose Region (c) Saturation 

region and (d) Dark region 
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Figure 3.6.4: Edge map obtained by HVS  

 

 

Figure 3.7: (a) Original Images (b) Results of edge detection by HVS 
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3.2 Parameter Selection for HVS  

Two sets of parameters dictate the edge detection and image decomposition algorithms using 

HVS. The alpha parameter set determine the boundaries of the different regions in HVS 

decomposition. The parameter beta determines the vertical height of the visual increment 

threshold curve given in Figure 3.2. In this section of the thesis we will discuss the experimental 

results obtained by alpha and beta variation and their effect on the edge detection and image 

decomposition algorithms. We’ll present the effects of parameter variation on both synthetic and 

natural images. 

3.2.1 Alpha variation 

The alpha parameters determine the boundary of the different regions for HVS based image 

decomposition as it is evident from Equations 3.6 and 3.7. The Weber region is given the 

maximum weightage and hence this region is the largest compared to the other regions in the 

HVS based image decomposition. The typical values chosen for alpha parameters are:       , 

       and        for edge detection and      ,        and        for image 

decomposition. The selection of alpha values depends on the application itself and the values 

need to be adjusted depending on how much weightage needs to be placed on the individual 

regions. For example if an image has areas of shadows, the span of the De-Vries Rose region is 

increased. However, the Weber region gets the maximum weightage almost always. 

We present in this section the results of HVS based image decomposition for 2 sets of values of 

the alpha parameter for a constant value of the parameter beta. 
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Figure 3.8: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region for       ,        and        

 

Figure 3.9: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region for       ,        and        
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In Figure 3.8, the majority of the information lies in the Weber region as the Weber region is the 

largest in this case. In Figure 3.9, the amount of information in the Weber region is much 

reduced due to the reduced weightage in this region. Figure 3.10 and 3.11 shows the edge map 

obtained corresponding to the alpha values in Figure 3.8 and 3.9. 

 

Figure 3.10: Edge map corresponding to       ,        and        

 

Figure 3.11: Edge map corresponding to       ,        and        

 

Figure 3.11 has lost some edge information in the saturation region, whereas the edges 

corresponding to the other regions remain unaffected. HVS based thresholding is based on the 

underlying principle that the visual increment threshold increases with the increase of the 

background intensity and the rate of change depends on the region in which the background 
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intensity belongs. The rate of change is the highest in the saturation region followed by the 

Weber, De-Vries Rose and the dark regions. Hence alpha variation has less effect on edge 

detection by HVS. Experimentally it has been found that giving the maximum weightage to the 

Weber region yields best results. 

3.2.2 Beta variation 

Beta is the thresholding parameter for HVS based image processing algorithms. We recollect the 

equations (3.2), (3.3) and (3.4) here and see that each of the equations is in the form of the linear 

equation       , where   is the slope and   is the intercept. The constants   ,    and    

determine the magnitude of the positive intercept. If the intercept is positive, then increasing its 

value shifts the straight line up. The constants   ,    and    are derived from the parameter beta 

and hence if beta is increased, the visual increment threshold curve moves in the direction of 

positive y-axis thereby increasing the threshold for HVS decomposition.  

Effect of beta variation for edge detection 

The choice of the parameter beta plays a very important role in edge detection by HVS. A very 

low value of beta may result in false edges appearing in the edge map. Increasing the value of 

beta to a great extent may result in loss of edges. The value of beta also depends on the choice of 

the image.  The effect of beta variation is illustrated below. We fix the alpha parameter values at 

      ,        and        giving the maximum weightage to the Weber region. 
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Figure 3.12: Effect of beta variation on edge map 

 

From figure 3.12 we can see that as the value of beta increases, there is loss of edge in the high 

intensity regions because as the background intensity increases, the rate of change of threshold 

also increases. Thus we see that synthetic images need a very low value of beta.  

 

Figure 3.13: Effect of beta variation on edge map 
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The effect of change of beta is also noticed in the image of “Lena”. At low values of beta, false 

edges appear in the images. A value of .02 for the parameter gives the best edge map in this case. 

As the value of beta is increased further, edges are lost. Thus for natural images the value of beta 

should be kept at mid-range (0.01 – 0.06). 

Effect of beta variation for image decomposition 

In this section we analyze the effect of beta variation on image decomposition. From equation 

3.15 (a) through (d), it is evident that the images in the four HVS decomposed regions are 

complementary and the original image can be retrieved by adding the four regions together. The 

Weber, De-Vries Rose and Saturation regions represent areas in the image when the gradient 

magnitude is perceivable by the human eye. These regions collectively represent the high 

frequency regions in an image. The fourth region or the “Other” region represents the low 

frequency region where the gradient magnitude remains constant according to the human eye. 

The thresholding parameter beta controls the amount of information to be placed in the Other 

region as compared to the information to be placed on the high frequency regions. A low value 

of beta place less information in the Other region whereas a high value places more information 

in the Other region compared to the Weber, De-Vries Rose and Saturation regions. This is useful 

when we are using the Other region alone in certain applications. We’ll fix the alpha parameter 

values at       ,        and        and show the effect of changing the values of the 

parameter beta. We’ll select three value of beta; a value equal to 0.002 in the low range; 0.02 in 

the mid-range; and 0.2 in the high-range. 
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Figure 3.14: HVS decomposed images in (a) Weber Region (b) De-Vries Rose Region (c) 

Saturation region and (d) Other region for beta = 0.002. 

 

Figure 3.15: HVS decomposed images in (a) Weber Region (b) De-Vries Rose Region (c) 

Saturation region and (d) Other region for beta = 0.02. 
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Figure 3.15: HVS decomposed images in (a) Weber Region (b) De-Vries Rose Region (c) 

Saturation region and (d) Other region for beta = 0.2. 

 

Range of beta Typical Values Applications 

Low 0.001 – 0.005 Edge detection in synthetic images 

Medium 0.02 – 0.06 

Edge detection in natural images, edge based 

feature extraction from natural images and 

other applications involving the gradient 

image. 

High 0.2-0.4 

Amount of gradient information to be retained 

is really low. Not used much  

Table 3.1: Summary of beta values 

Table 3.1 summarizes the typical values of beta for different applications. 
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CHAPTER 4 

REVIEW OF FEATURE EXTRACTION FROM IMAGES 

 

Computer vision techniques are widely used nowadays to address real world problems that 

involve processing of voluminous image data requiring massive computing efforts and high level 

of processing accuracy. Such requirements are addressed using sophisticated form of image 

processing applications. Computer vision systems are applied to solve complex object 

recognition and classification problems in medical and security applications. For example, object 

recognition techniques are used in medical applications for breast and prostate cancer detection. 

Such applications use MRI scan images of the patients and assist the medical team to identify the 

presence of tumors. A medical tumor classification system provides useful information about the 

tumor’s nature, malignity etc. and help the medical team to plan effective diagnosis procedures. 

In security and automatic surveillance systems computer vision techniques are widely used to 

identify threat objects like guns or other weapons from scanned images. Face detection and 

recognition systems are heavily based on the computer vision techniques. Detecting eyes from 

facial images is another application where these techniques are applied. It has been found that a 

majority of car accidents are caused by driver fatigue. Hence automated systems have been 

developed that can track the eyes of the driver in subsequent frames of images and warn the 

driver in case the eyes remain closed for a subsequent amount of time. Pedestrian detection for 

security surveillance is also based on computer vision techniques. All these methods are 

fundamentally based on training the system based on the application and then characterize a new 

object based on the training set.  Ideally the raw image can be used to train the system. However 

considering the typical size of a two dimensional or three dimensional images, this would result 

in a huge volume of data that would render the system impractical for real time applications. 
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Hence suitable object characterization techniques are used widely to reduce the parameters 

needed to characterize an object. 

In computer vision applications, feature extraction is used widely as a method of object 

characterization. A human observer can easily identify and classify objects in an image from his 

experience and past knowledge gathered over the years. For example a human observer can 

easily identify a face in an image even under the influence of shadow or partial occlusion. 

However the task becomes extremely challenging for an automated computer vision application. 

Hence objects are generally represented as a vector of numerical features called the feature 

vector. Each of the values in the vector is called a feature and describes a specific aspect of the 

object. For instance, a feature may describe an object’s physical properties like area, perimeter, 

volume, surface areas and so on. The primary goal behind this object representation technique is 

to reduce the dimensionality of the problem by generating a compressed object representation 

that will result in less processing efforts and memory requirements. The efficiency of the 

classification process is controlled by the quality of the feature vectors. Several feature vector 

methods are available to address recognition and classification problem. Feature vectors can be 

based on the binary edge map, gradient image or simply the intensity values in the image. It has 

been found that the selection of feature vectors used also depend widely on the application in 

which they are used.  

Object detection and recognition systems often fuse more than one feature vector algorithms for 

efficient detection and recognition. In this chapter will discuss some of the state of the art feature 

vector extraction algorithms. 
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4.1 The Cell Edge Distribution (CED) 

The Cell Edge Distribution (CED) [45] [46] [47] [48] [49] is method of edge based feature 

extraction from an image. The image is first subjected to edge detection for extracting edge maps 

in the horizontal, vertical, diagonal and anti-diagonal directions. Here we have used HVS for 

obtaining the directional edge maps. In the next step each edge map is divided in 16 equal 

rectangular or square cells of equal size depending on the size of the image. Feature maps are 

generated by counting the number of edge pixels per cell. Thus each directional edge map 

generates a vector of sixteen feature values. The feature maps generated in the horizontal, 

vertical, diagonal and anti-diagonal directions are concatenated together to formulate a 64 bit 

feature vector.  

The CED method of feature extraction consists of the following steps: 

1. Get the input image in grayscale 

2. Apply directional kernels for extracting gradients in the horizontal, vertical, diagonal and 

anti-diagonal directions 

3. Threshold the 4 gradient images for extracting the 4 directional edge maps using HVS 

4. Divide each of the edge maps into 16 cells 

Cell1 Cell2 Cell3 Cell4 

Cell5 Cell6 Cell7 Cell8 

Cell9 Cell10 Cell11 Cell12 

Cell13 Cell14 Cell15 Cell16 
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5. Count the edge flags in each of the cells. Thus each of the edge maps will give rise to a 

16 element feature vector.  

6. Fuse the four 16-element feature vectors to get the final feature vector consisting of 64 

elements.  

The size of the directional gradients can be chosen based on application. Typically 3X3 or 5X5 

kernels are used. Threshold can be chosen to global or local. Human Visual System based 

thresholding has been applied for our experiments. The CED method for feature extraction is 

easy to implement and works well for security applications for gun or liquid bottle detection. 

This has also been for face detection by fusion of CED with other feature vectors like the 

Principal Projected Edge Distribution (PPED) described in the next section of this chapter.  

 

Figure 4.1: Schematic Diagram of the CED feature extraction algorithm 
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Figure 4.2.1: Original example image  

 

Figure 4.2.2: CED feature vector extracted from image in Figure 4.2.1. Edge maps obtained by 

HVS edge detection 
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4.2 The Principal Projected Edge Distribution (PPED) 

The principal projected edge distribution (PPED) [45] [46] [49] [50] is another approach towards 

edge based feature extraction in images. PPED feature vectors are often fused with the CED 

feature vectors for object characterization. They combined feature vector has been used for face 

extraction from images. Like the CED feature vector, PPED also starts by extracting the 

directional edge maps based on HVS from the images. Once again human visual system based 

thresholding is used for obtaining the edge maps. However in this case the feature maps are 

divided in the same direction as that of the edge. The horizontal edge map, for example, is cut 

along the rows; the vertical edge map is cut along the columns and so on. The edge flags in the 

cells are then collected from the projected divisions and concatenated as before to get the final 64 

element feature vector. 

The Mojette transform [51] is a discrete version of the Radon transform which gives projections 

of an image along different orientations. A projection image defines the image nature at a 

specific angle. A projection oriented at an angle    for an image   is given by, 

              ∑ ∑                   
  
    

  
                              (4.1) 

where    is related to    and    by           (
  

  
) and      is the Kronecker delta function 

which is 1 for     and 0 otherwise. A projection sums the pixel value of pixels which cross the 

line            for every combination of   and  . The Mojette transform is the set of 

projections for   predetermined projection angles. PPED feature extraction is essentially the 

Mojette transform with                for a horizontal edge map,                for a vertical 

edge map,                for a +45 degree edge map, and                 for a -45 degree 
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edge map, except that PPED feature extraction counts the number of edge pixels in some specific 

number (depending on the size of the image) of rows along the orientation direction of an edge 

map rather than every row along the orientation direction of an edge map. 

The steps involved in the PPED feature vector extraction algorithm can be summarized as 

follows: 

1. Get the input image in grayscale 

2. Apply directional kernels for extracting gradients in the horizontal, vertical, diagonal and 

anti-diagonal directions 

3. Threshold the 4 gradient images using HVS for extracting the 4 directional edge maps  

4. Divide the image depending on the edge orientation 

5. Count the number of edge flags in each division to generate the feature vectors from the 

individual edge maps. 

6. Concatenate the feature vectors generated in step 5 to get the combined PPED feature 

vector. 

The PPED feature vector extraction algorithm however restricts the input image to be a square 

image. 
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Figure 4.3: Schematic Diagram of the PPED feature extraction algorithm 

 

Figure 4.4: PPED feature vector extracted from image in Figure 4.2.1. Edge maps obtained by 

HVS 
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4.3 Feature Fusion using CED and PPED 

As it has been mentioned in the previous section, the CED and PPED feature vectors are often 

fused together for object characterization. CED feature extraction is generally more robust than 

PPED feature extraction. However, PPED feature vectors contain very useful information, 

especially when using smaller windows. With that said, the minimum window size on which 

CED can be performed is 4x4 and the minimum window size on which PPED can be performed 

is 16x16 simply due to the nature of the divisions. A simple strategy for fusion that has been 

used for face detection combines the 2 feature vectors together to form 128 element feature 

vector. An alternative way of feature fusion has been proposed in [52]. It has been used for 

feature extraction is security applications like gun detection. The only difference between the 

CED and PPED methods is the shape and arrangement of the divisions in which edge pixels are 

counted in. A desirable way of fusing these two feature vectors should be such that the desirable 

properties of both of the feature vectors are retained. The shape and arrangement of the divisions 

in which edge pixels are counted in has been illustrated in Figure 4.5. This type of feature 

extraction method incorporates the qualities of CED and PPED simultaneously. CED feature 

extraction is performed on the majority of the edge map since it is generally a more robust 

method, and a modified PPED feature extraction is performed on a smaller window located in 

the center of the edge map where it will work more effectively. 
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Figure 4.5: Schematic Diagram of the CED-PPED feature extraction algorithm 

 

Figure 4.6: Combined CED-PPED feature vector extracted from image in Figure 4.2.1. Edge 

maps obtained by HVS 
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4.4 Histogram of Oriented Gradients (HOG) 

The histogram of oriented gradients (HOG) [53] [54] [55] [56] [57] is a method of feature 

extraction that is based on the gradient of the image. HOG is based on the Edge Orientation 

Histograms (EOH) [58]. The basic idea of EOH is to get the edge orientation angles from the 

gradient image and then compute the histogram of the orientation angles. The orientation 

analysis gives robustness to lighting changes whereas the histogram gives translational 

invariance. HOGs are computed on a dense grid of uniformly spaced cells and they use 

overlapping local contrast normalizations for improved performance.  

HOG algorithm for feature extraction is implemented by dividing the image window into small 

spatial regions (“cells”), for each cell accumulating a local 1-D histogram of gradient directions 

or edge orientations over the pixels of the cell. The combined histogram entries form the 

representation. For better invariance to illumination, shadowing, etc., it is also useful to contrast-

normalize the local responses before using them. This can be done by accumulating a measure of 

local histogram energy over somewhat larger spatial regions (“blocks”) and using the results to 

normalize all of the cells in the block. The normalized descriptor blocks are known as the HOG 

descriptors. The HOG representation has several advantages. It captures edge or gradient 

structure, and it does so in a local representation with an easily controllable degree of invariance 

to local geometric and photometric transformations: translations or rotations make little 

difference if they are much smaller that the local spatial or orientation bin size. The HOG 

algorithm is one of the state of the art methods for human detection in various surroundings. 
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Figure 4.7: Schematic diagram of the HOG feature extraction algorithm 

 

The steps involved in the HOG feature extraction algorithm can be summarized as follows: 

1. Get the input image and convert it to grayscale 

 

2. Compute the gradient image: Gradients can be computed by using Gaussian smoothing 

followed by spatial filtering of the image with any of the discrete derivative operators. 

 

3. Spatial/Orientation Binning: In this step each pixel calculates a weighted vote for an edge 

orientation histogram channel based on the orientation of the gradient element centered 

on it, and the votes are accumulated into orientation bins over local spatial regions (cells). 

Cells can be either rectangular or radial. The orientation bins are evenly spaced over 

          (unsigned gradient) or           (signed gradient).The vote is a function of 

the gradient magnitude at the pixel, either the magnitude itself, its square, its square root, 

or a clipped form of the magnitude representing soft presence/absence of an edge at the 

pixel. 

 

4. Normalization over HOG descriptor blocks: Gradient strengths vary over a wide range 

owing to local variations in illumination and foreground-background contrast. Hence 

effective local contrast normalization is essential for good performance. The HOG 
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descriptor blocks are obtained by grouping cells into larger spatial blocks and contrast 

normalizing each block separately. The final descriptor is the vector of all components of 

the normalized cell responses from all of the blocks in the detection window. Typically 

blocks are also overlapped. Two classes of block geometries are usually used, square or 

rectangular ones partitioned into grids of square or rectangular spatial cells (R-HOGs), 

and circular blocks (C-HOGs) partitioned into cells in log-polar fashion. The different 

block normalization schemes that are generally used for HOG descriptors include      

    ,                and        . Let   be the un-normalized vector. Then its 

    norm is given by ‖ ‖  where          . The          normalization is 

 
 ‖ ‖     ⁄   where   is a small constant.          normalization is given by  

 
√ ‖ ‖ 

      
⁄  .          norm is given by  

√ ‖ ‖     
⁄  .        is     

     followed by clipping (limiting maximum values of )   to 0.2). 

 

Figure 4.8: Representation of the HOG feature descriptor algorithm 
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Figure 4.9: (a) Original Image (b) Gradient Magnitude (c) Gradient Angle (d) Gradient vector at 

each point retains the features of the facial image (e) 36-element HOG Feature vector extracted 

from one R-HOG block. 

Complete feature vector is obtained by concatenating the feature vectors for each block. The 

number of blocks depends on the size of the image, the number of cells in the block and the 

amount of overlapping allowed between the adjacent blocks. 

4.5 Local Binary Patterns (LBP) 

Local Binary Patterns (LBP) is an image feature [59] based on the intensity values in the image. 

LBPs were originally used as a texture descriptor in an image. However they can be extended for 

describing facial features and have been applied successfully for face recognition [60] [61] [55] 

[56]. It is highly discriminative and is invariant to monotonic gray level changes. LBPs have also 

been used successfully for face recognition. 

The LBP operator assigns a label to every pixel of an image by thresholding a 3x3-neighborhood 

of each pixel with the center pixel value and considering the result as a binary number. Then the 

histogram of the labels can be used as a texture descriptor.  
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Figure 4.10: Basic LBP operator  

 

The neighborhoods of the LBP operator can be various sizes. The local neighborhood can be 

defined as a set of sampling points evenly spaced on a circle centered at the pixel to be labeled. 

Thus any radius and any number of sampling points can be used for feature description. Bilinear 

interpolation is used when a sampling point does not fall in the center of a pixel. The 

neighborhoods are represented using the notation       where   denotes the set of points on a 

circle of radius  .  

 

Figure 4.11: Circular (8, 1), (16, 2) and (8, 2) neighborhood 

 

An extension to the original LBP operator is the uniform local binary patterns. A local binary 

pattern is called uniform if the binary pattern contains at most two bitwise transitions from 0 to 1 

or vice versa when the bit pattern is considered circular. For example, the patterns 00000000 (0 

transitions), 01110000 (2 transitions) and 11001111 (2 transitions) are uniform whereas the 

patterns 11001001 (4 transitions) and 01010011 (6 transitions) are not. In the computation of the 
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LBP histogram, uniform patterns are used so that the histogram has a separate bin for every 

uniform pattern and all non-uniform patterns are assigned to a single bin. This is due to the fact 

that uniform patterns account for about 90 % of all patterns when using the (8, 1) neighborhood 

and for around 70 % in the (16, 2) neighborhood. Therefore, little information is lost by 

assigning all non-uniform patterns to a single arbitrary number. Since only 58 of the 256 possible 

8 bit patterns are uniform, this enables significant space savings when building LBP histograms. 

To indicate the usage of two-transition uniform patterns, the superscript    is added to the LBP 

operator notation. Hence the LBP operator with a 2 pixel radius, 8 sampling points and uniform 

patterns is known as       
  .   

As mentioned previously, LBPs have been used successfully for face description. The LBP 

feature descriptor is used to build several local descriptors within the facial image. These local 

descriptors are then combined to yield a global feature descriptor of the face. Feature descriptors 

build in this way are more robust towards pose and illumination variation. 

The basic idea behind constructing LBP feature descriptors can be summarized as follows: 

1. The image is converted to gray scale and then divided into smaller number of rectangular 

blocks 

 

Figure 4.12: Facial Image divided into 3X3 and 6X6 blocks 
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2. Extract texture descriptors from each region independently. Therefore if the image is 

divided into   regions,    local histograms are obtained. Let   be the size of each local 

LBP histogram, and then the combined LBP feature vector has the size    . Thus with 

the spatially enhanced histogram, a description of the image on three different levels of 

locality is obtained.  The LBP labels for the histogram contain information about the 

patterns on a pixel-level, the labels are summed over a small region to produce 

information on a regional level and the regional histograms are concatenated to build a 

global description of the face. 

 

Figure 4.13: (a) Gray scale image (b) LBP coded image (c)        
   feature descriptor for (a) 

 

4.6 Feature Extraction Based on Morphological Image Processing 

Mathematical morphology [62] is a powerful tool to extract useful feature from images [63] [64]. 

In this section we describe the process of extracting eyes from facial images using morphological 

image processing [65]. The basis for eye extraction lies in the fact that eyes are mostly circular in 

shape and hence image morphology can be applied to the binary edge map resulting in blob like 
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features on the face. Those blobs can later be classified as eyes depending on certain criteria. 

Morphological image processing can be binary or grayscale and is heavily based on the concepts 

of set theory. A binary image can be viewed as a bi-valued function of   and  . Morphological 

theory views a binary image as the set of its foreground (1-valued pixels) and background (0-

valued pixels). Hence set operations like union and intersection can be directly applied to the 

binary images. Dilation and erosion are the basic morphological operations. Dilation is the 

operation that grows or thickens objects in a binary image. The specific manner and the extent of 

the thickening are however controlled by the shape of the structuring element. Mathematically, 

dilation of a binary image   by a structuring element   can be represented as, 

      |( ̂)
 
                                                            (4.2) 

Where   is the empty set and   represents the translations of  .  

 

Figure 4.14: Original Binary Image and its dilated version 

Morphological erosion is the opposite process of dilation. Erosion essentially shrinks or thins 

objects in a binary image. Mathematically the operation of erosion can be represented as  

      |        
                                                      (4.3) 

Hence the erosion of   by a structuring element   is the set of all structuring element origin 

locations where the translated   has no overlap with the background of    
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Figure 4.15: Original Binary Image and its eroded version 

In many image processing applications the fundamental morphological operations of dilation and 

erosion are often combined together. The process of “opening” an image will smooth the edges, 

break narrow block connectors and remove small protrusions. “Closing” an image will also 

smooth edges but will fuse narrow blocks and fill in holes. The morphological operation of 

opening is simply erosion of   by   followed by dilation of the result by  . Mathematically 

opening can be represented as,  

                                                                 (4.4) 

The reverse of this process is morphological closing. The morphological operation of closing is 

dilation of   by   followed by erosion of the result by  . The process can be represented 

mathematically as, 

                                                                    (4.5) 

 

Figure 4.16: (a) Original Binary Image (b) Result after opening (c) Result after closing 

 

A combination of various morphological operations can be used to extract blob like features. 

There are essentially two broad steps in extracting eyes from facial images using morphology: 
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(1) Extraction of blob like features (2) Classification of the blobs as eyes. Image is first 

converted to grayscale followed by HVS based edge detection. The result is a binary edge map 

which is then subjected to a series of morphological operations after which the image essentially 

consists of several blobs. Morphological dilation is used to enhance the eyes region edges. The 

image is dilated twice to get the holes in eyes filled. Disk shape structuring element is used in 

this case due to the circular nature of the eyes. After this step, eyes become filled regions. 

However, sometime small holes are left inside the eye region which can be filled using 

morphological hole filling. During the dilation phase, some unwanted edges are also enhanced. 

To remove these unwanted edges, the image is eroded three times. The classification step then 

classifies these blobs as eyes based on certain criteria described in Chapter 6. 

 

Figure 4.17: Schematic diagram for blob extraction algorithm 

 

 

Figure 4.18.1: (a) Original Image (b) Edge Map by HVS (c) Image after morphological 

processing (d) Classification of blobs 
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Figure 4.18.2: (a) Original Image (b) Edge Map by HVS (c) Image after morphological 

processing (d) Classification of blobs 

 

Binary morphology is based on the binary edge map of the input image. Hence we’ll analyze the 

effect of the use of different edge detectors in the process. Specifically we’ll analyze the results 

using the Canny, Sobel and HVS base edge detector. The canny edge detector uses two 

thresholds to do the final edge labeling on the gradient image. This brings out more details in the 

image. However the details may not be compatible with the human perception of edges. These 

are more related to the texture on the image. Another difficulty arises when we apply 

morphological operations on a canny edge map. Due to dilation, the detailed regions get 

connected and it is difficult to find distinct blobs representative of the eye. Two eyes get 

connected resulting in one big connected component instead of two distinct eyes corresponding 

to the two eyes. Thus the distinct features of the eyes are lost in this case. The results using 

default thresholds for the canny edge detector are shown in Figure 4.19. Adjusting the threshold 

may improve the results for one particular image. However it is very difficult to choose a single 

best threshold that will work for all the images in the database. 
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Figure 4.19: (a) Original Image (b) Edge map using the canny edge detector (c) Image after 

morphological operations 

 

 

Figure 4.20: Comparison of results using the Canny edge detector with custom threshold values 

(Low Threshold = .08; High Threshold = 0.2) 

 

The results are better using the sobel edge detector and the HVS based edge detector. The default 

sobel edge detector in this case outperforms the canny edge detector. The results using the sobel 

edge detector is shown in Figure 4.21. The same set of images is preprocessed using an HVS 

edge detector and the results are shown in Figure 4.22.  
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Figure 4.21: (a) Original Images (b) Edge maps using the default sobel edge detector (c) Images 

after Morphological Operations 

 

 

Figure 4.22: (a) Original Images (b) Edge maps using the HVS edge detector (c) Images after 

Morphological Operations 

 

4.7 Feature Extraction by Principal Component Analysis (PCA) 

The Principal Component Analysis (PCA) is a useful statistical technique that has been widely 

used in applications like face recognition, image compression and pattern recognition in high 

dimensionality data [66] [67] [68] [69] [70]. PCA is a way of identifying patterns in data and 
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expressing the data in a way as to highlight their similarities and differences. Once the patterns 

within the data have been recognized, the task of data compression becomes easier without the 

loss of significant information. Hence PCA is widely used for image compression. In this thesis, 

PCA is used as a technique for face recognition from images. The main idea of using PCA for 

face recognition is to express the large 1-D vector of pixels constructed from 2-D facial image 

into the compact principal components of the feature space. This is called eigenspace projection. 

Eigenspace is calculated by identifying the eigenvectors of the covariance matrix derived from a 

set of facial images. A 2-D facial image can be represented as 1-D vector by concatenating each 

row (or column) into a long thin vector. A 2-D facial image can be represented as 1-D vector by 

concatenating each row (or column) into a long thin vector. Let us assume that we have M 

vectors of size N (= rows of image X columns of image) representing a set of images. If      

represent the pixel values then the vector    can be represented as, 

                  
                                                         (4.7) 

The images are mean centered by subtracting the mean image from each image vector. Let   

represent the mean image. 

   
 

 
 ∑   

 
                                                                (4.8) 

Let    represent the mean centered image, then 

                                                                      (4.9) 

The objective of PCA based feature extraction is to find a set of      which have the largest 

possible projections onto each of the     . In other words, our aim is to find a set of M 

orthonormal vectors    for which the following quantity 
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 ∑    

    
  

                                                    (4.10) 

is maximized with the orthonormality constraint  

  
                                                                   (4.11) 

Now       and       are given by the eigenvectors and eigenvalues of the covariance matrix, C. 

                                                                 (4.12) 

Where W is the matrix formed by placing the column vectors       side by side. The size of C in 

this case is NXN, which is enormous. Hence it is not practical to solve for the eigenvectors and 

eigenvalues of C directly. From the principles of linear algebra we know that the vectors       

and the scalar       can be obtained by solving for the eigenvectors and eigenvalues of the MXM 

matrix    . Let     and     be the eigenvectors and eigenvalues of     respectively, then we 

have 

                                                                (4.13) 

Multiplying both sides by W, we have 

                )                                              (4.14) 

Hence the first M eigenvectors     and eigenvalues     of     are       and    respectively.  

The eigenvectors corresponding to nonzero eigenvalues of the covariance matrix produce an 

orthonormal basis for the subspace within which most image data can be represented with a 

small amount of error. The eigenvectors are sorted from high to low according to their 

corresponding eigenvalues. The eigenvector associated with the largest eigenvalue is one that 
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reflects the greatest variance in the image and the smallest eigenvalue is associated with the 

eigenvector that finds the least variance. They decrease in exponential fashion, meaning that the 

roughly 90% of the total variance is contained in the first 5% to 10% of the dimensions. The 

projection of facial image onto        dimensions is thus, 

                                                                      (4.15) 

Where       
   , and    is the i

th
 coordinate of the facial image in the new space obtained by 

PCA. The vectors       are also images and hence they are called eigenimages or eigenfaces and 

they represent the feature space onto which the training and test images can be projected. 

The face database used for our experiments is obtained from AT&T Laboratories, Cambridge. It 

contains ten different images of each of 40 distinct subjects. For some subjects, the images were 

taken at different times, varying the lighting, facial expressions (open/closed eyes, smiling/not 

smiling) and facial details (glasses/no glasses). All the images were taken against a dark 

homogeneous background with the subjects in an upright, frontal position (with tolerance for 

some side movement). Figure 4.23 shows five of the training subjects. 

 

Figure 4.23: Training images from AT&T Laboratories, Cambridge 
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Figure 4.24: Mean facial image 

 

Figure 4.25: (a) Grayscale Image (b) Mean Subtracted Image 

 

 

Figure 4.24: Top 20 Eigenfaces from the database 
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CHAPTER 5 

HUMAN VISUAL SYSTEM BASED OBJECT DETECTION AND RECOGNITION 

 

A typical object detection and recognition application in general has three phases: namely, 

training, testing and classification. In the training phase, depending on the application, a training 

database is constructed containing images of objects that are of interest in the application. 

Usually along with the objects of interest, a separate set of images are also considered which 

consists of objects that are not of interest in the application however which can be present in the 

images along with the object of interest. For example is we consider a detection system which is 

used to detect pair of eyes from facial images, then eyes are categorized as the objects of interest 

in the application. A facial image also has other facial parts like nose; lips; ears etc. and these 

objects are not of interest in the application. A feature vector generation method is then applied 

to the training database for extracting feature vectors from the training images. Sometimes more 

than one feature extraction technique are employed and the feature vectors extracted from each 

step are then fused together to get a more robust representation of the object. 

In the testing phase, the test image is gathered using image acquisition techniques. Depending on 

the application and method of acquisition, the image may be subjected to preprocessing activities 

like noise suppression or contrast enhancement. Feature vectors are then extracted from the test 

image and compared with the feature vectors obtained in the training images. The method for 

extracting feature vectors needs to be consistent throughout the process. In other words the same 

set of feature vectors should be used in the training and the actual testing phases. 

In the classification phase, the feature vectors obtained from the test image are compared with 

the feature vectors extracted in the training database and classified according to their similarity 
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with feature vectors from the training database. The schematic diagram of a typical object 

detection system is shown in Figure 5.1. 

 

Figure 5.1: Schematic Diagram of a typical Object Detection System 

 

5.1 Generic Framework for HVS based Object Detection and Recognition 

In this thesis we propose a novel architecture for human visual system based object detection 

and recognition. Human visual system based image decomposition is incorporated into the 

different phases of the typical object detection and recognition system. Figure 5.2 shows the 
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schematic diagram for HVS based object detection and recognition system. The blocks bordered 

in green shows the additional HVS based processing incorporated in the generic architecture. 

 

Figure 5.2: Schematic Diagram of Object Detection System incorporating HVS based image 

decomposition 

 

In the training phase, we decompose the training images into HVS based sub-images and extract 

feature vectors from each of them. The feature vectors thus obtained are weighed and are 

combined together, a process referred to as feature fusion. Feature fusion can be done using 

arithmetic, logical or even logarithmic addition. In our experiments for detecting eyes from 

facial images, we have used arithmetic and logical operations for feature fusion and have 
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obtained comparable results. Feature fusion can also be accomplished using concatenation of 

the features obtained from the different HVS based sub-regions. 

In testing phase the test image undergoes HVS based decomposition and feature extraction from 

each of the sub-images followed by the feature fusion step. From our experiments we have 

found that majority of the information about images taken under good lighting conditions, tend 

to be concentrated in the Weber region of HVS. Hence we often combine the De-Vries Rose 

and the saturation regions with the Weber region and then extract feature vectors from the 

combined region. Also instead of extracting features from the image containing the “remaining 

image pixels”, the original image can be used.  

The classification phase classifies the feature vectors obtained from the test images by 

comparing them with feature vectors obtained from the training images. Classification can be 

based on a set of rules applied to the feature vectors obtained in the test image. This method has 

been used in the eye detection system described in Chapter 6. In more generic terms 

classification consists of comparing feature vectors from the training and testing database and 

then taking a decision depending on the similarity of the training and testing feature vectors. 

The similarity is usually found by using a classifier. The classifier used in this type of 

classification can be nearest-neighbor classifiers using Manhattan or Euclidean distances or can 

be more sophisticated form of classifiers like the Support Vector Machine (SVM) or Neural 

Networks. In our experiments for modified LBP based face recognition discussed in chapter 7, 

we have used nearest-neighbor classification approach. 
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CHAPTER 6 

HUMAN VISUAL SYSTEM BASED EYE DETECTION 

 

Detection of eyes from facial images is a crucial aspect in many image processing applications 

like face recognition/detection, driver behavior analysis or gaze estimation for understanding 

human behavior. It has been found that majority of traffic accidents are caused due to driver’s 

drowsiness [71].  Hence automated systems are now developed that can track the eye of the 

driver in subsequent frames to detect the state of the eye (open/close) and warn the driver in 

case the eyes remain closed for a considerable amount of time. Another important application 

involves gaze estimation for security and surveillance purposes.  

Several methods for eye detection have been proposed. In majority of them, face detection is 

performed as a preprocessing step prior to detecting the eyes. It has been observed that eyes 

possess strong horizontal edges. Hence often directional image vectors are projected 

horizontally to detect the local minima which correspond to the y-coordinates of the eyes [72]. 

Also the pupils are generally darker than the surrounding facial region. Some facial feature 

extraction algorithm searches for local gray minima within segmented facial regions [73]. 

Applications have been developed which takes into account the circular structure of the eye. 

Artificial circular templates are often built and the correlation coefficient is calculated between 

the template and the eye image[74] [75]. Hough transform has also been used for eye detection 

since it can detect shapes like circle or ellipse [76]. 

In this chapter we present an algorithm for eye detection which is based on extracting blobs 

from facial image using morphological image processing and then classifying the blobs as eyes. 
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This human visual system based algorithm is based on the generic framework for object 

detection introduced in Chapter 5.  

6.1 Flow Diagram for Human Visual System Based Eye Detection 

The flow diagram of the human visual system based eye detection is presented in Figure 6.1. The 

blocks bordered in green shows the additional processing steps for incorporating HVS based 

image decomposition. 

 

Figure 6.1: Schematic Diagram for Eye detection Based on (a) HVS based Image Decomposition 

and Morphological Image Processing (b) non-HVS based processing 
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Eyes are generally represented as circular structures and hence the objective of eye detection 

algorithm is to look for circular features in the facial image. Morphological operations are 

usually performed on binary images. In this algorithm, the decomposed images in the different 

regions are converted to binary images by applying the Sobel edge detector. Since the algorithm 

processes binary images after the edge detection step, this algorithm is computationally efficient 

and is suited applications where hardware utilization is a constraint. Further, the training 

database is not required in this case because eyes are represented as circular structures on the 

binary image. Hence the objective is to find blob like features from the image after 

morphological operations. 

The algorithm takes in an input image and converts it to grayscale. An example input image and 

its grayscale version is shown in Fig. 6.2(a). It is assumed that the input image satisfies the 

flowing conditions: 

 The image is a head-shoulder image. 

 Both eyes are visible. 

 The head is tilted by not more than 45 degrees 

 The eyes are not closed 

The different steps involved in the eye detection algorithm are described below: 

6.1.1 Image Decomposition 

The 2-dimensional image is first subjected to HVS based decomposition resulting in four 

images; in the Weber region, De-Vries Rose region, Saturation region and the “Other” region. 

The image decomposition in accordance with the human visual response has been discussed in 

Chapter 3 of this thesis. 
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6.1.2 Edge Detection 

Binary morphology has been used in the algorithm to extract blob like features from the facial 

images. Each of the images is subjected to edge detection in the next step. In our experiments the 

Sobel edge detector has been used. The canny edge detector tends to bring out more details in the 

image using 2 threshold values. When we apply morphological operations on a canny edge map, 

due to dilation, the detailed regions get connected and it is difficult to find distinct blobs 

representative of the eye. 

6.1.3 Morphological Operations 

The binary edge maps are subjected to morphological operations namely dilation, hole filling and 

erosion. Dilation grows or thickens objects in a binary image. Hence morphological dilation has 

been used in this case to enhance the eyes region edges. The image is dilated twice using circular 

structuring elements of radius 4. It would be shown later that there is a dependency of the size of 

the structuring element used on the size of the image. If the average size of the facial images in 

the database is around 450 X 350, then using a structuring element of radius 4 gives best results. 

The edges near the eyes thicken and holes in the eyes get filled after this step. To make sure no 

holes remain in the eye region, an additional step of hole filling is incorporated. During the 

dilation phase, some unwanted edges are also enhanced. To remove these unwanted edges, the 

image is eroded three times. Fig 6.2(b), 6.2(c) and 6.2(d) shows the results of morphological 

dilation and erosion in the Weber, “Other” and Saturation region. The De-Vries Rose region does 

not contain any useful information and hence not shown. 
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6.1.4 Fusion 

The morphologically processed images in the different regions of the human visual response are 

then fused using arithmetic operations. Logical addition can also be used in this case since the 

images after morphological operations are binary images. From our experiments we have seen 

that for well illuminated images, majority of the information lies in the Weber and Other region 

of the image. Hence the De-Vries Rose and the Saturation regions can be excluded from 

processing thereby reducing the computational overhead. However for images that have non-

uniform illumination and regions of shadows around the eyes, we need to use all the 

components. It has been found from our experiments that HVS based image decomposition can 

be used to extract more information from images having shadows by increasing the span of the 

De-Vries Rose region. In images having non-uniform illumination, the region near the eyes tends 

to get darker. The rate of increase of threshold in the De-Vries Rose region is slower compared 

to the Weber region and hence this region along with the Weber and "Other" is used to extract 

blobs from images having non-uniform illumination. After morphological operations, the 

resultant binary image contains blobs which need to be classified as eyes. Fig 6.2(e) (left) shows 

the result after fusion. 

6.1.5 Classification 

 In the classification step, the blobs detected are classified as eyes. This is based on the following 

set of rules applied sequentially to the binary image obtained after morphological operations: 

 The aspect ratios (width/height) of the blobs corresponding to the eyes regions are 

between upper and lower thresholds. The typical thresholds chosen for our experiments 

are 0.8 and 8.  
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 The orientation angle of eyes is not greater than 45 degrees. This can be done by 

choosing a threshold to restrict the vertical and horizontal positions of the eyes. 

 Size of both eyes is comparable. Here we assume that the ratio of the size of the blobs 

corresponding to the eyes should be between 0.4 and 2.5. 

 Depending on the size of the image, the distance between the two eyes should lie between 

a minimum and maximum threshold value. 

 Also if we assume that the input is a facial image, an additional condition can be imposed 

which states that the eyes should not be close to the border of the image. This condition 

reduces the rate of false positives in detection. 

The final result is shown in Fig 6.2(e) (right). 
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Figure 6.2: (a) Original Image and its grayscale version (b) Result after dilation and erosion in 

the Weber region (c) Result after dilation and erosion in the “Other” region (d) Result after 

dilation and erosion in the Saturation region, (e) Image after fusion (left) and Final Result (right) 
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6.2 Results and Discussion 

6.2.1 Tests using good images 

The algorithm is tested using the MATLAB Image Processing Toolbox. The algorithm has been 

tested using PICS facial database (PICS, 2003: Psychological Image Collection at Stirling, 

available from <http://pics.psych.stir.ac.uk/>, University of Stirling Psychology Department). 92 

images were selected from the database where the images were taken under regular illumination 

condition. In addition to the images from the database, we have also used test images of the 

members of SIMLAB. The facial images are mostly frontal facial images and some of the 

subjects had glasses on. In addition to the well-illuminated images, we have taken 70 pictures 

from the database where the images had non-uniform illumination and shadows around the eye 

region. As mentioned previously, the regions surrounding the eyes tend to get darker when the 

images have varying illumination. The De-Vries Rose region of HVS has been extended for 

testing these images and results have been compared with non-HVS processing. 

Figure 6.3 shows some of the results using images having good illumination. Table 6.1 and 6.2 

show the percentage accuracy and compare the HVS based method with the original non HVS 

based algorithm. We compare at two stages of the algorithm: the blob like feature extraction 

stage and the final eye extraction stage after classification of eyes. 

The alpha and beta parameters for HVS decomposition have been determined experimentally. 

For images having good illumination, the optimum parameter values are          

                   . We have also showed the variation of the feature extraction rate (after 

blob extraction and before classification) with the parameter beta which is the thresholding 

parameter for HVS decomposition. The plot is given in Figure 6.4. 
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Figure 6.3: Experimental Results using well-illuminated images 

 

METHOD TOTAL IMAGES 

CORRRECT 

DETECTION 

PERCENTAGE 

ACCURACY 

HVS Based  92 86 93.4 

Non-HVS 92 74 80.4 

Table 6.1: Comparison of Detection Rate in Feature Extraction Step 
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METHOD TOTAL IMAGES 

CORRRECT 

DETECTION 

PERCENTAGE 

ACCURACY 

NUMBER OF 

FALSE POSITIVES 

HVS Based  92 80 86.9 6 

Non-HVS 92 68 73.9 7 

Table 6.2: Comparison of Detection Rate in the final Eye Detection Step 

The false positives are reduced by applying an additional constraint that there is only one pair of 

eye in the facial image. If we remove this constraint, the number of false positives increase to 19 

for HVS based processing and 15 for non-HVS based processing. 

 

Figure 6.4: Variation of the rate of change of blob extraction rate vs. the HVS thresholding 

parameter Beta: The results outperforms non-HVS based processing for a range of beta from .03-

.09 
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6.2.2 Tests using Images having Non-Uniform Illumination and shadows around Eye 

regions 

We used 70 images having non-uniform illumination from the same database. In this case we 

increased the span of the De-Vries Rose region of HVS by alpha-parameter variation.  

In images having non-uniform illumination, the region surrounding the eyes tends to have 

shadows. The De-Vries Rose region has a lower threshold compared to the Weber and Saturation 

regions of HVS and hence this region tends to bring out information from regions having darker 

backgrounds. HVS based image decomposition also helps in detection of eyes from images that 

have varying illumination across different parts of the image. While the De-Vries Rose region 

has more information about the darker background regions, the well-illuminated regions are still 

captured in the Weber and Other regions. Figure 6.5 shows an example. Table 6.3 compares the 

rates of detection using HVS based and non-HVS based processing on images with non-uniform 

illumination. Figure 6.6 and 6.7 show experimental results using HVS and non-HVS based 

processing. 
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Figure 6.5: (a) Results after morphological operations in the Weber Region, (b) Results after 

morphological operations in the De-Vries Rose Region, (c) Results after morphological 

operations in the “Other” Region, (d) Fusion of (a), (b) and (c), (d) Final Result (e) Results after 

morphological processing with non-HVS method, (f) Final result without HVS decomposition 

 

The optimum values of the HVS parameters used for testing these images are:           
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Figure 6.6: Experimental Results using HVS based processing on images having Non-Uniform 

Illumination and shadows around the eye regions 

 

 

Figure 6.7: Experimental Results using Non-HVS based processing on images having Non-

Uniform Illumination and shadows around the eye regions 
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METHOD TOTAL IMAGES 

CORRRECT 

DETECTION 

PERCENTAGE 

ACCURACY 

HVS Based  70 37 53 

Non-HVS 70 14 20 

Table 6.3: Comparison of Detection Rate in the final Eye Detection Step using Images having 

Non-Uniform Illumination and shadows around the eye regions 

 

6.2.3 Tests on an Image after introducing Shadows and Tint 

We have manually introduced shadows and tint in a facial image before eye detection. Figure 6.8 

shows the results of HVS based algorithm and compares the performance with the non-HVS 

based algorithm. Under perfect illumination, both of them work very well. However under 

differential lighting conditions, the non-HVS based processing fails to detect the pair of eyes. 
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Figure 6.8: Test on image after introducing shadows and tint: HVS based processing detects eyes 

successfully 

 

6.2.4 Tests on an Image where Subjects have Glasses on 

The feature extraction algorithm does not function properly when subjects have their glasses on. 
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Figure 6.8: (a) Original Image (b) Feature extraction after non-HVS based processing (c) Feature 

Extraction after HVS based processing 

 

Both HVS and non-HVS based processing fail to extract blob-like features corresponding to the 

eyes in presence of glasses. 

6.2.5 Tests on Image having Multiple Faces 

 

Figure 6.9: (a) Original Image having 2 faces (b) Results after feature extraction through HVS 

based processing (c) Final Result after HVS based processing (d) Final Result after non-HVS 

based processing 
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Figure 6.9 shows an image having 2 faces on a more or less uniform background. Both HVS and 

non-HVS based processing works well under such circumstances. However if there are multiple 

faces on a background that is non-uniform (for example images taken outdoor) face detection 

needs to be added as a preprocessing step for both HVS and non-HVS based processing. 

6.2.6 Tests on Image taken with Cell Phone Camera 

 

Figure 6.10: (a) Original image taken with cell phone camera (b) Feature extraction using non-

HVS based processing (c) Feature Extraction by HVS based processing (d) Final Result using 

HVS based processing 

Figure 6.10 shows an image taken with cell phone camera and shows the final result using HVS 

based processing. 

6.2.7 Effect of the Size of the Structuring Element 

Morphological image processing operations are performed by using a structuring element. A 

structuring element is basically a predefined shape which is used to probe an image drawing 

conclusions on how this shape fits or misses the shapes in the image. In this case the shapes in 

the image that are of interest to us are circular blob like features. Hence the size of the 

structuring element needs to be chosen properly so that after morphological operations, only the 

blobs corresponding to the eyes remain. The database of images used for our experiments have 

average size of 450 X 350. Disk shaped structuring elements of size 4 gives optimum 
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performance in this case. If the input test images have sizes that largely differ from the average 

size, blobs corresponding to the eyes may not be detected. Hence input images are resized. 

 

Figure 6.11: (a) Original Image having size 78 X 78 (b) Morphological operations on (a) with 

structuring element having size 4 (c) Morphological operations on (a) after resizing image to size 

450 X 350 (d) Original Image having size 2592 X 1936 (e) Morphological operations on (d) with 

structuring element having size 4 (f) Morphological operations on (d) after resizing image to size 

450 X 350 

 

6.3 Execution Time and Memory Usage 

In this section we compare the execution time and the memory usage of the HVS vs. the non-

HVS based approach. The following table compares the time of execution for eye detection 

using 92 test images 

Processing Time HVS Processing Time non-HVS 

395 seconds 100 seconds 

Table 6.4: Comparison of the execution time for HVS vs. non-HVS approach 
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Thus we see that using the HVS-based system, the processing time required for detecting eyes 

from 92 test images is about 4 times than using the non-HVS based approach. This happens due 

to the fact that, in the HVS based approach four images are used in place of one in the original 

approach. This also implies that the CPU and memory usage will be 4 times than while using the 

original non-HVS based approach. For example, if the non-HVS based approach requires “N” 

ALU operations (addition, subtraction etc.), the non-HVS based approach would require “4N” 

ALU operations. Hence we see that there is a tradeoff involved in using the HVS based approach 

against the original approach. However since the four images from HVS based image 

decomposition can be processed independent of one another, distributed systems can be use and 

parallel processing can be leveraged. 

6.4 Limitations 

In this section we present the limitations of the eye detection algorithm. We found that when the 

subjects have their glasses on, both the HVS and the non-HVS based approaches fail to detect 

the features using morphological image processing. Another difficulty arises when there are 

multiple faces present in the image. We have shown examples where we have two facial images 

against a more or less uniform background and seen that using this method we can detect the 

eyes. However when there are multiple faces present against a heterogeneous background (for 

example when images are taken against trees, houses etc.), morphological feature extraction does 

not work so well. Hence we propose a face recognition step as a pre-processing step for the 

algorithm.  

We also showed the effect of the size of the structuring element. Hence image resizing is another 

preprocessing step that needs to be included in this algorithm.  
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Another limitation arises when using the images that have non-uniform illumination and 

shadows near the eye region. Though using our approach has resulted in significant improvement 

in the detection rate, further improvement is possible. We propose a preprocessing step using the 

different image enhancement algorithms. 

6.5 Summary 

In this section we summarize the observations and discuss the pros and cons of the HVS based 

algorithm for eye detection: 

 This algorithm runs faster compared to template matching algorithms using sophisticated 

classifiers like support vector machines or artificial neural networks. Also by classifying 

eyes as circular blobs, we can exclude the training database thereby reducing system 

overhead. We have performed experiments using support vector machine classifiers and 

found that the number of false positives can be huge if the templates representing non-eye 

regions are not exhaustive enough. It is really hard to reduce the false positive rate such 

methods. 

 The algorithm performs better than the non-HVS based processing on images having 

non-uniform illumination and shadows around the eye regions. 

 The feature extraction based on HVS outperforms the results using non-HVS based 

processing. 
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CHAPTER 7 

FACE RECOGNITION BASED ON LOGARITHMIC LOCAL BINARY PATTERNS 

 

Automatic face analysis which includes, e.g., face detection, face recognition, and facial 

expression recognition has become a very active topic in computer vision research and 

considered as one of the fundamental problems in computer vision [77]. Face recognition has 

many applicable areas like identification, face classification, or sex determination. The most 

useful applications contain crowd surveillance, video content indexing, personal identification, 

entrance security, etc. Face recognition often becomes a difficult problem because of the 

generally similar shape of faces combined with the numerous variations between images of the 

same face. A key issue in face analysis is finding efficient descriptors for face appearance. The 

human visual system can identify faces even under degraded viewing conditions like viewpoint, 

illumination, facial expression, occlusion, disruption due to accessories and so on [78]. However, 

automated face recognition is not yet able to achieve comparable results because measuring the 

similarity between two faces is based on the conventional measures of image similarity, such as, 

Euclidean metric or Normalized correlation. The key challenges in facial recognition are  

1. A large variability in facial appearance of the same person which is caused by variations 

of facial pose, illumination, and facial expression  

2. High dimensionality of data and small sample size which happens due to the lack of 

reference images to train face templates.  

In real-life applications, the enrollment procedure has to be fast and is generally done once. The 

few available training data are usually not enough to cover the intra-personal variability of the 

face. Hence a key issue in face recognition is finding efficient descriptors for facial appearance 
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[79]. Zhao et.al presents an extensive survey of the different approaches for face recognition in 

[80]. 

7.1  Face Recognition: Existing Methods 

Currently, many holistic approaches have been used as facial feature descriptors. One of the 

methods that yield promising results on frontal face recognition is the principal component 

analysis (PCA), where facial images are expressed as a subset of their eigenvectors, and hence 

called eigenfaces [66]. Another well-known method for face recognition is the Fisherface 

approach [81] [82]. The Fisherface approach for face recognition is based on linear discriminant 

analysis (LDA). LDA extracts the most discriminant features of a facial image by using a set of 

projection vectors to project the sample to form minimum within-class scatter and maximum 

between-class scatter.  

Holistic methods are however sensitive to the variations of pose, illumination etc. Hence local 

descriptors of faces have gained wide popularity. One of the first face descriptors based on 

information extracted from local regions is the eigenfeatures method proposed by Pentland et al. 

[83]. In this approach the features are obtained by performing PCA to local face regions 

independently. Another approach is the Local Feature Analysis [84] in which kernels of local 

spatial support are used to extract information about local facial components. Elastic Bunch 

Graph Matching (EBGM) [85] describes faces using Gabor filter responses in certain facial 

landmarks and a graph describing the spatial relations of these landmarks. The original Local 

Binary Pattern (LBP) operator was introduced by Ojala et al. as texture descriptor in an image 

[59]. In 2004, Ahonen, Hadid, and Pietikainen extended the LBP features for facial recognition 

[61]. The LBP operators use both shape and texture information to represent face images. In this 
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approach, a facial image is divided into small regions from which the LBP histograms are 

extracted and concatenated into a single feature histogram efficiently representing the face image 

[77]. The LBP operator has proven to be highly discriminative and is invariant to monotonic 

gray-level changes. Another advantage of the LBP operator is its computational efficiency 

making it suitable for demanding image analysis tasks.    

7.2 Schematic Diagram of a Facial Identification System 

A facial identification system has been developed as a part of this thesis to assess the 

performance of the novel feature descriptors. An identification system essentially recognizes a 

person by checking the entire template database for a match. It involves a “one to many” search. 

The system will make a match and subsequently identify the person or it will fail to make a 

match. Enrolment or training is the first stage of face recognition. The objective of the enrolment 

is to register the person into the system database. In the enrolment phase, the image of a person is 

captured by a sensor to produce a raw digital representation. The raw digital representation is 

then further processed by a feature extractor to generate a set of distinguishable features, called a 

template and stored in the system [78]. In the identification phase, features are extracted from the 

test image and compared with the features from the database. The result is either an enrolled 

user’s identity or a warning message such as “person not identified”. Schematic diagram of such 

a system has been shown in Figure 7.1. 
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Figure 7.1: Schematic Diagram of a Facial Identification System 

 

7.3 Local Binary Pattern (LBP) Feature Descriptors 

The local binary pattern (LBP) operator, introduced by Ojala et al. [59], is a powerful local 

descriptor for describing image texture and has been used in many applications such as industrial 

visual inspection, image retrieval, automatic face recognition and detection. LBP texture 

descriptors can be used to build several local descriptors of the face and combine them to form a 

global feature. This approach was motivated by two reasons [59]: (1) the increasing popularity of 

local feature-based or hybrid approaches to face recognition [84] [86] due to their robustness 

against variations in pose or illumination than holistic methods and (2) tendency of holistic 

texture descriptors to average over the facial image area thereby loosing information about 

spatial relations. The basic LBP is a window based feature extractor where the texture descriptor 

is computed based on the neighborhood. The basic LBP operator has been discussed in section 

4.5 of this thesis. It assigns a binary value to every neighboring pixel by thresholding it with 

respect to the central pixel. We assume that our input is an     8-bit gray-level image, which 

can be represented as an     matrix  , each of whose elements satisfy             . At a 
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given pixel position      , the LBP operator is defined as an ordered set of binary comparisons 

(comparison implies calculation of the distance between the pixel intensities calculated by taking 

the arithmetic difference of pixel intensities) between the center pixel       and its surrounding 

pixels. Then the histogram of the labels can be used as a texture descriptor. 

A histogram of the labeled image         can be defined as: 

    ∑                                                          (7.1) 

Where n is the number of different labels produced by the LBP operator and 

      {
           
             

                                                    (7.2) 

This histogram contains information about the distribution of the local micro-patterns, such as 

edges, spots and flat areas, over the whole image and hence can be used to statistically describe 

image characteristics [87]. For more efficient face representation however, the facial image is 

divided into regions and feature descriptors are extracted from each region independently. 

Therefore if the image is divided into   regions,   local histograms are obtained. Let   be the 

size of each local LBP histogram, and then the combined LBP feature vector has the size    . 

Thus with the spatially enhanced histogram, a description of the image on three different levels 

of locality is obtained.  The LBP labels for the histogram contain information about the patterns 

on a pixel-level, the labels are summed over a small region to produce information on a regional 

level and the regional histograms are concatenated to build a global description of the face. 

7.3.1 Uniform Local Binary Patterns 
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An extension to the original LBP operator is the uniform local binary patterns. A local binary 

pattern is called uniform if the binary pattern contains at most two bitwise transitions from 0 to 1 

or vice versa when the bit pattern is considered circular. For example, the patterns 00000000 (0 

transitions), 01110000 (2 transitions) and 11001111 (2 transitions) are uniform whereas the 

patterns 11001001 (4 transitions) and 01010011 (6 transitions) are not. In the computation of the 

LBP histogram, uniform patterns are used so that the histogram has a separate bin for every 

uniform pattern and all non-uniform patterns are assigned to a single bin. This is due to the fact 

that uniform patterns account for about 90 % of all patterns when using the (8, 1) neighborhood 

and for around 70 % in the (16, 2) neighborhood. Therefore, little information is lost by 

assigning all non-uniform patterns to a single arbitrary number. Since only 58 of the 256 possible 

8 bit patterns are uniform, this enables significant space savings when building LBP histograms. 

To indicate the usage of two-transition uniform patterns, the superscript u2 is added to the LBP 

operator notation. Hence the LBP operator with a 2 pixel radius, 8 sampling points and uniform 

patterns is known as        
  . 

7.3.2 Rotation Invariant Local Binary Patterns 

Another variant of the LBP operators designed originally for texture description is the rotation 

invariant local binary patterns [62]. The        operator produces    different output values. 

When the image is rotated, the gray values in the neighborhood will move along the perimeter of 

the circle surrounding the center pixel. Consequently the value of the LBP operators changes 

when the image is rotated. To remove the effect of rotation, this variant of LBPs were introduced 

in [62] as 

      
      [   (        ) |                                        (7.3) 
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Where           performs a circular bitwise right shift on a   bit number     times as shown in 

the schematic diagram below. So basically by applying bitwise right shifts, the goal is to find the 

pattern that has the maximum number of zeros in the most significant bits. 

 

Rotation invariant patterns are often used in conjunction with the uniform patterns so that the 

length of the feature vector can be reduced. 

7.4 Classifiers 

An object detection and recognition system typically consists of 3 phases: training, testing and 

classification. The face recognition problem involves identifying a face from the database. The 

training facial images are preregistered in the system. Feature vectors are extracted from the 

training facial images and stored in the system. In the testing phase, feature vectors are extracted 

from the test image and compared with the feature vectors existing in the database. The test 

facial image is identified based on its similarity with images in the database. Usually, in face 

recognition, there are a number of face classes (representing individual person) and a few 

training images per class. Hence instead of using sophisticated classifier, a nearest-neighbor 

classification approach is used. The different types of dissimilarity measures that can be used are 

[83]: 
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Histogram Intersection: 

        ∑                                                           (7.3) 

Log-likelihood statistic: 

         ∑                                                       (7.4) 

Chi square statistic    

         ∑
        

 

      
                                                        (7.5) 

Where S and M are the normalized histograms to be compared. 

For most of our experiments, the chi square distance statistic has been used since it is an 

effective measure of similarity between a pair of histograms. Since the face is divided into 

smaller regions, these regions can be weighted differently depending on their contribution. 

Psychophysical findings indicate that some features like the eyes play more important role in 

human face recognition than others in terms of extra-personal variance [61]. The weighted chi 

square statistic is thus, 

         ∑   
            

 

          
                                              (7.6) 

Where the indices   and   refer to the      bin corresponding to the      local region and    

is the weight for the region  . The weights can be determined by the methodology described in 

[84]. Here the training set is classified using one of the sub regions of the image at a time and the 

weights were assigned based on the rate of recognition. That is if the sub-region yielded a greater 
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rate of recognition, the weight associated with that region is selected to be higher than the others. 

The weights are however selected without utilizing an actual optimization procedure. 

7.5 Logarithmic-LBP and PLIP-LBP Based Face Recognition 

In this paper we have introduced two new types of LBP operators:  

a) Logarithmic-LBP operators and  

b) PLIP-LBP operators using the original image intensities and after applying logarithmic 

transform.  

Further, 

c) A third approach to LBP feature extraction has been introduced based on HVS image 

decomposition following the generic architecture introduced in this thesis. Figure 7.2 

shows the LBP coded images after applying different types of LBP operators. 

 

Figure 7.2: (a) Original Image and LBP coded images using (b) Classical LBP operator, (c) 

Logarithmic-LBP operator, (d) PLIP-LBP using original image intensities, (e) PLIP-LBP after 

logarithmic transform and (f) Logarithmic LBP on Weber image 
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From our experiments it has been found that the De-Vries Rose and the Saturation regions of 

HVS decomposition do not contain much useful information. Hence these regions are often fused 

with the Weber region. We refer to this fused region as the “Weber” image. 

7.5.1 Logarithmic LBP Feature Descriptors 

Logarithmic-LBP feature descriptors are introduced as a part of this thesis. In this approach 

instead of using the raw image pixels, a logarithmic transform is applied on the image and the 

then the LBP features are extracted in the logarithmic domain. Let        be the input image 

then the image in the logarithmic domain is given by: 

           [      (
      

   (      )
)
 

        ]                               (7.7) 

Where   is the parameter. In our experiments we have used several values of this parameter and 

obtained the results. The LBP feature extractor is then applied in the logarithmic domain to 

extract the LBP feature vectors. Uniform LBPs are used for face recognition as they outperform 

the other variants of LBP available. Here     is a small number to avoid error in presence of 

zero image intensities. We have used feature fusion using this parameterized approach where the 

histograms generated from different values of the parameter alpha are concatenated to obtain an 

improvement in the average rate of recognition. Figure 7.3a show the classical LBP features 

extracted from the original image and the logarithmic-LBP features extracted after applying 

logarithmic transform to the image intensities. The value of   used here is 2. 
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Figure 7.3a: (a) The original image, the LBP coded image and the LBP feature vector extracted 

from the original image; (b) Image after logarithmic transform, the logarithmic-LBP coded 

image and the extracted logarithmic-LBP feature vector 

The flow diagram for face recognition based on logarithmic-LBP is shown in figure 7.3b. 

 

Figure 7.3b: Schematic Diagram: Log-LBP based face recognition 
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7.5.2 PLIP-LBP Feature Descriptors 

In PLIP-LBP based feature descriptor, PLIP operations have been introduced while extracting 

the LBP feature extractors. The PLIP operators are consistent with the Weber's law and the 

saturation characteristics of the human visual system. The classical LBP operator assigns a label 

to every pixel of an image by thresholding a specified neighborhood of each pixel with the center 

pixel value and considering the result as a binary number. In PLIP-LBP, the calculation of the 

distance between the pixel intensities has been replaced by taking PLIP difference instead of the 

arithmetic difference. These operators are applied both on the original image intensities as well 

as after applying a logarithmic transform to the image intensities. 

Hence the thresholding can now be defined in terms of the PLIP operators as: 

                      
               

            
                                (7.8) 

Where        is the center image pixel and          refers to the image pixels defined by the 

neighborhood. For example, for        
  ,   will range from 1 to 8. The value of the parameter 

     is chosen to be equal to 256. Figure 7.4a shows the PLIP-LBP coded image and the 

feature extracted by applying PLIP-LBP using the original image intensities and after applying 

logarithmic transform. 
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Figure 7.4a: (a) PLIP- LBP coded image and the PLIP-LBP feature vector extracted from the 

original image; (b) PLIP-LBP coded image after logarithmic transform and the extracted feature 

vector 

 

Figure 7.4b: Schematic Diagram: PLIP-LBP based face recognition 
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7.5.3 Logarithmic-LBP Feature Descriptors Based on HVS Image Decomposition 

HVS based image decomposition is applied in this paper for extracting LBP histograms from the 

Weber image. LBP histograms obtained from the Weber image is concatenated with the LBP 

histogram obtained from the original image in the logarithmic domain following the generic 

architecture described in chapter 5. Thus the feature vector set can be expanded with the same set 

of training images thereby improving the rate of recognition.  This method is particularly useful 

when the number of registered images per subject is less. Using HVS decomposition, we can 

expand the feature set using the same set of enrolled/training images. Using parameterization 

provides the added advantage of choosing different parameters for the original and the Weber 

images while extracting features. The parameters are chosen so as to give the best individual 

performances and hence a fusion of the features results in improved rates of recognition. 

Figure 7.5a show the classical LBP features extracted from the Weber image and the 

logarithmic-LBP features extracted after applying logarithmic transform to the Weber image 

intensities. Since the De-Vries Rose and the Saturation regions of HVS do not contain significant 

information, we fuse these to images with the image from the Weber region and refer to the 

fused image as the Weber image. The value of   used here is 0.8. 
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Figure 7.5a: (a) The Weber image, the LBP coded Weber image and the LBP feature vector 

extracted from the Weber image; (b) Weber Image after logarithmic transform, the LBP coded 

Weber image after logarithmic transform and the extracted LBP feature vector 

 

Figure 7.5b: Schematic Diagram: HVS-LBP based face recognition 
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Figure 7.6 shows the different types of modified LBP operators introduced in this thesis. The 

original image intensities are shown by the leftmost image in figure 7.6 (a) and (c). The images 

in (b) and (a) are derived after logarithmic transform of (a) after applying equation 7.7 and figure 

7.6 (e) is the Weber image obtained from (a). 

 

Figure 7.6: (a) The classical LBP operator (b) Logarithmic LBP operator (c) PLIP-LBP operator 

using the original image intensities (d) PLIP-LBP operators after applying logarithmic transform 

(e) Logarithmic LBP extracted from the Weber image 

 

Thus the common steps of the algorithms used can be summarized as follows:  

 Step 1:  Input Image   

 Step 2:  Apply a Preprocessing algorithm for illumination normalization or noise 

reduction 

 Step 3:  Apply a modified LBP operator  
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 Step 4:  Extract Local feature  

 Step 5:  Apply a classification procedure (Histogram intersection or the Chi square 

statistic) 

7.6 Simulation and Results using AT&T Laboratories face database 

To evaluate the performance of the proposed algorithm, AT&T Laboratories, Cambridge 

database were used.  This database available in public domain and contains ten different images 

of each of 40 distinct subjects. For some subjects, the images were taken at different times, 

varying the lighting, facial expressions (open/closed eyes, smiling/not smiling) and facial details 

(glasses/no glasses). All the images were taken against a dark homogeneous background with the 

subjects in an upright, frontal position (with tolerance for some side movement). 

 Two sets of experiments have been performed. In the first set, the first 5 images for each 

subject is used for training and registering and the remaining 5 images are used as test 

images. 

 In the second set, 5 randomly chosen images are used for training and registration and the 

remaining 5 images are used for testing. 

 Further, the number of images registered for a subject is varied from 1 to 5. Evidently the 

highest recognition rate is obtained when the number of registered images per subject is 5 

and lowest when the number of registered images is 1. 

7.6.1 Using Uniform LBP feature descriptors and Chi-square distance statistic  

Uniform LBP feature descriptors are used in this section for feature extraction. Using uniform 

LBPs can reduce the size of the feature vector used and hence results is faster computations. 

Each facial image in the database has a size of 112X92. The image is divided into 16 equal 
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blocks of size 28X23. LBP features are extracted from each of these blocks and concatenated to 

form the final feature vector for the facial image. For a uint8 image 58 of the 256 possible 8 bit 

patterns are uniform and the non-uniform patterns are all put in the 59th bin. Hence the total 

length of the feature vector is 59*16 = 944. Chi-square distance statistic has been used for 

majority of our experiments. However we have also explored the use of other classifiers like 

histogram intersection or the log-likelihood statistic. 

Registered 

training images 

per subject 

Using classical 
LBP 

Using Log-LBP 
with α   

Using Log-LBP 
with α 1 

Using Log-LBP 
with α 1.5 

Using Log-LBP 
with α 0.9 

Using Log-LBP 
with α 0.8 

Number of 
images registered 

= 5 

96.5 97 96.5 99 95 96 

Number of 
images registered 

= 4 

93 95.5 96 95 94.5 92 

Number of 
images registered 

= 3 

88 91.5 91.5 91.5 91.5 88.5 

Number of 

images registered 
= 2 

83.5 89.5 85.5 85 88.5 85.5 

Number of 

images registered 
= 1 

72 77.5 75 76 74 75 

Table 7.1: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP taking 

first 5 images per subject for training and remaining 5 images for testing. Using uniform LBP 

taking 8 points on a circular neighborhood of radius 1 and chi-square distance statistic 

 

Table 7.1 shows the comparison of the rate of recognition using different values of the parameter 

α. From the above table it is found that when α     there is an improved recognition rate under 

all testing conditions. Also it is evident that when all 5 images per subject are used for training, 

then α   1.5 can attain a recognition rate of 99% out of the  00 testing images. We observe that a 

while with the value of 1.5 we can attain a recognition rate of 99% using all registered images, 

the average rate of recognition remains a bit higher with α    . Thus we introduce feature fusion 

after extracting logarithmic LBP using different values of alpha. Specifically we fuse the features 

for α   1.5, 1.8 and  , and compare the results with the classical L P. The results are given in 
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Table 7.2. It is evident that the average rate has recognition has improved now for all testing 

conditions. 

Registered training images per subject Using classical LBP Using fused logarithmic L P with α 1.5, 

α 1.8 and α   

 

Number of images registered = 5 96.5 98.5 

Number of images registered = 4 93 96.5 

Number of images registered = 3 88 93 

Number of images registered = 2 83.5 90 

Number of images registered = 1 72 79.5 

Table 7.2: Comparison of the rate of recognition of classical LBP vs. fused logarithmic LBP 

taking first 5 images per subject for training and remaining 5 images for testing. Using uniform 

LBP taking 8 points on a circular neighborhood of radius 1 and chi-square distance statistic 

 

We also performed tests by selecting randomly 5 images for training and the remaining 5 for 

testing. Results are given in table 7.3. Here value of α   3 gives the highest recognition rate 

under most of the testing conditions. 

Registered 

training 

images per 
subject 

Using classical 

LBP 

Using Log-

LBP with α   

Using Log-

L P with α 1 

Using Log-

LBP with 

α 1.5 

Using Log-

LBP with 

α 0.9 

Using Log-

LBP with 

α 0.8 

Using Log-

L P with α 3 

Number of 

images 

registered = 5 

95 94 94.5 95.5 96.5 95.5 97 

Number of 

images 

registered = 4 

94 94.5 93.5 94.5 96.5 96 95.5 

Number of 
images 

registered = 3 

91 90.5 
 

91 
 

90.5 
 

93.5 
 

92 
 

93.5 
 

Number of 
images 

registered = 2 

83.5 85.5 86.5 84 88.5 86.6 89 

Number of 

images 
registered = 1 

73.5 81.5 80 78.5 79 77 79.5 

Table 7.3: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP taking 

randomly chosen 5 images per subject for training and remaining 5 images for testing. Using 

uniform LBP taking 8 points on a circular neighborhood of radius 1 and chi-square distance 

statistic 

 

Table 7.4 compares the recognition rate using the Weber image of the HVS. In this case, an 

alpha value of 0.8/0.9 results in a better rate of recognition though there isn't a significant 

difference using the classical LBP and the log-LBP.  
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Registered 

training 
images per 

subject 

Using 

classical 
LBP 

Using Log-

LBP with 
α   

Using Log-

LBP with 
α 1 

Using Log-

LBP with 
α 1.5 

Using Log-

LBP with 
α 0.9 

Using Log-

LBP with 
α 0.8 

Using Log-

LBP with 
α 0.5 

Using Log-

LBP with 
α 0.  

Number of 

images 
registered = 5 

93.5 93.5 92 93 93.5 94 93.5 92 

Number of 

images 
registered = 4 

93 94 90.5 92.5 92.5 92.5 93 92.5 

Number of 

images 

registered = 3 

88.5 88.5 88 88.5 89 88 88 88 

Number of 

images 

registered = 2 

84.5 83.5 83.5 83.5 83 82 81 82 

Number of 
images 

registered = 1 

69.5 68.5 69 69.5 69.5 70 69.5 70 

Table 7.4: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP on Weber 

image taking first 5 images per subject for training and remaining 5 images for testing. Using 

uniform LBP taking 8 points on a circular neighborhood of radius 1 and chi-square distance 

statistic 

 

Thus using log-LBP feature extraction on the Weber image alone does not result in the 

improvement of the recognition rate. Hence the log-LBP features extracted from the Weber 

image are fused with the log-LBP features extracted from the original image. One of the 

advantages of using a parameterized logarithmic transform is that we can choose different values 

of α while extracting features from the original and the Weber image. The values are chosen so 

as to give the maximum possible rate of recognition when applied independently on the original 

and the Weber image. From table 7.5 it is evident that fused log-LBP using HVS results in a 

better rate of recognition under all training conditions. The parameter α is selected as   when 

doing a logarithmic transform of the original image and a value equal to 0.8 is selected when 

extracting the log-LBP feature vectors from the Weber image for the initial testing 

configurations i.e. using the first 5 images for each subject for training and using the remaining 5 

images for testing. For the second testing configuration where randomly selected 5 images were 

used for training and the remaining 5 images were used for testing, the parameter α is selected as 

2 when doing a logarithmic transform of the original image and a value equal to 0.8 is selected 
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when extracting the log-LBP feature vectors from the Weber image because these values 

individually result into a high recognition rates when compared to other values of the parameter. 

Registered training images 

per subject 

Testing configuration #1         

Using classical LBP 

Testing configuration #1 

Using fused Log-LBP 

with α   for the original 
image and α 0.8 for the 

Weber image 

Testing configuration #2 

Using classical LBP 

Testing configuration #2 

Using fused Log-LBP 

with α 3 for the original 
image and α 0.8 for the 

Weber image 

Number of images 

registered = 5 

96.5 98.5 95 97.5 

Number of images 

registered = 4 

93 96.5 94 95 

Number of images 

registered = 3 

88 93 91 92.5 

Number of images 

registered = 2 

83.5 88.5 83.5 88 

Number of images 

registered = 1 

72 78 73.5 79.5 

Table 7.5: Comparison of the rate of recognition of classical LBP vs. fused log-LBP (log-LBP 

feature vector from the original image is fused with the log-LBP feature vector obtained from the 

Weber image).Test configuration #1 takes first 5 images per subject for training and last 5 

images for testing. Test configuration #2 takes randomly selected 5 images per subject for 

training and remaining 5 images for testing. Using uniform LBP taking 8 points on a circular 

neighborhood of radius 1 and chi-square distance statistic 

 

Registered training images per 
subject 

Using classical LBP Using PLIP-LBP Using PLIP-LBP after 
applying logarithmic 

transform with α   

Number of images registered = 5 96.5 96.5 97.5 

Number of images registered = 4 93 93 95.5 

Number of images registered = 3 88 88.5 92 

Number of images registered = 2 83.5 84 90 

Number of images registered = 1 72 71.5 79.5 

Table 7.6: Comparison of the rate of recognition of classical LBP vs. PLIP-LBP taking first 5 

images per subject for training and remaining 5 images for testing. Using uniform LBP taking 8 

points on a circular neighborhood of radius 1 and chi-square distance statistic 

 

 
Registered training images per 

subject 

Using classical LBP Using PLIP-LBP Using PLIP-LBP after 

applying logarithmic 

transform with α 3 

Number of images registered = 5 95 95 97 

Number of images registered = 4 94 94 95.5 

Number of images registered = 3 91 91 94 

Number of images registered = 2 83.5 83.5 89 

Number of images registered = 1 73.5 73 79.5 

Table 7.7: Comparison of the rate of recognition of classical LBP vs. PLIP-LBP taking randomly 

selected 5 images per subject for training and remaining 5 images for testing. Using uniform 

LBP taking 8 points on a circular neighborhood of radius 1 and chi-square distance statistic 

 

We have also used PLIP operators for computing the distance between the intensities of the 

image pixels in LBP. Tables 7.6 and 7.7 compare the recognition rates using PLIP-LBP. 
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Figure 7.7: Comparison of average recognition rate taking first 5 images per subject for training 

and remaining 5 images for testing. Using uniform LBP with Chi-square statistic 

Figure 7.7 compares the average rate of recognition using different LBP operators. The average 

rate of recognition is calculated by taking the average of the recognition rates under different 

testing conditions that is by varying the number of registered training images from 1 to 5. 

Similarly figure 7.8 compares the average rate when taking randomly selected 5 images for 

making the training database and remaining 5 images for testing. 

 

Figure 7.8: Comparison of average recognition rate taking randomly selected 5 images per 

subject for training and remaining 5 images for testing. Using uniform LBP with Chi-square 

statistic 
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7.6.2 Using Uniform LBP feature descriptors and Histogram Intersection statistic 

Although chi-square distance statistic has been used for most of our experiments, we have also 

explored the results using other classifiers like the histogram intersection and the log-likelihood 

statistic. While comparable results have been obtained using the histogram intersection statistic, 

using the log-likelihood statistic for recognition however the recognition rates have been found 

to be lower (83.5 % compared to 96.5% using the chi-square distance statistic). Table 7.8 

compares the rates of recognition using the histogram intersection statistic. 

Registered 
training images 

per subject 

Using classical 
LBP 

Using Log-LBP 
with α   

Using Log-LBP 
with α  .5 

Using PLIP-LBP Using PLIP-LBP 
after applying 

logarithmic 

transform with 
α   

Using PLIP-LBP 
after applying 

logarithmic 

transform with 
α  .5 

Number of 

images registered 
= 5 

95 96.5 97 94.5 96 97 

Number of 

images registered 

= 4 

90 92.5 93 90 92.5 93 

Number of 

images registered 

= 3 

86 86.5 88 86 87 88.5 

Number of 

images registered 

= 2 

82 81.5 84.5 82 82.5 84 

Number of 
images registered 

= 1 

71.5 71.5 72.5 71.5 71.5 72.5 

Table 7.8: Comparison of the rates of recognition using the histogram intersection distance 

statistic using different types of LBP operators. First 5 images are used for training and the 

remaining 5 images for testing. Using uniform LBP taking 8 points on a circular neighborhood of 

radius 1 
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Figure 7.9: Comparison of average recognition rate taking first 5 images per subject for training 

and remaining 5 images for testing. Using uniform LBP with histogram intersection statistic 

7.6.3 Using Uniform LBP feature descriptors and weighted Chi-square statistic 

The weighted chi-square statistic associates different weights to the LBP histograms obtained 

from the sub-blocks in the image. We placed more weightage to the eyes and mouth than the 

remaining portions of the face while doing the classification. We present the results in this 

section. We show that out modified LBP operators outperforms the performance of the classical 

LBP operators using different types of classifiers. The results also show the consistency in 

performance of the modified LBP operators developed as a part of this thesis. 

Registered 

training images 

per subject 

Using classical 
LBP 

Using Log-LBP 
with α   

Using Log-LBP 
with α 1.5 

Using Log-LBP 
with α 1.8 

Using Log-LBP 
with α 2.2 

Number of 

images registered 

= 5 

95 97 95 97.5 95 

Number of 
images registered 

= 4 

91.5 96 91.5 95 94.5 

Number of 

images registered 

= 3 

85.5 91 87.5 90.5 90.5 

Number of 
images registered 

= 2 

80 87.5 82.5 85 87 

Number of 

images registered 
= 1 

65.5 74 72.5 74.5 75 

Table 7.9: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP taking 

first 5 images per subject for training and remaining 5 images for testing. Using uniform LBP 

taking 8 points on a circular neighborhood of radius 1 and weighted chi-square distance statistic 
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We also combine the feature extracted using different values of the parameter alpha and fuse the 

feature vectors.  

Registered training images per subject 
Using classical 

LBP 

Using fused logarithmic 

L P with α 1.5, α 1.8 

and α   
 

Using fused logarithmic 

L P with α 2.2, α 1.8 

and α   
 

Number of images registered = 5 95 98 97.5 

Number of images registered = 4 91.5 95.5 95 

Number of images registered = 3 85.5 92 91 

Number of images registered = 2 80 87 87 

Number of images registered = 1 65.5 74 77 

Table 7.10: Comparison of the rate of recognition of classical LBP vs. fused logarithmic LBP 

taking first 5 images per subject for training and remaining 5 images for testing. Using uniform 

LBP taking 8 points on a circular neighborhood of radius 1 and chi-square distance statistic 
 

We have also applied HVS based decomposition and fused the feature extracted from the 

original and the Weber images. 

Registered training images per subject Using classical LBP Using fused Log-L P with α   for the 

original image and α 0.8 for the Weber 
image 

Number of images registered = 5 95 97.5 

Number of images registered = 4 91.5 97 

Number of images registered = 3 85.5 91.5 

Number of images registered = 2 80 86.5 

Number of images registered = 1 65.5 73.5 

Table 7.11: Comparison of the rate of recognition of classical LBP vs. fused log-LBP (log-LBP 

feature vector from the original image is fused with the log-LBP feature vector obtained from the 

Weber image) taking first 5 images per subject for training and last 5 images for testing. Using 

uniform LBP taking 8 points on a circular neighborhood of radius 1 and weighted chi-square 

distance statistic 

 

Finally a comparison of the classical LBP with PLIP-LBP operators is presented. 

Registered training images per 

subject 

Using classical LBP Using PLIP-LBP Using PLIP-LBP after 

applying logarithmic 

transform with α   

Number of images registered = 5 95 95 97.5 

Number of images registered = 4 91.5 91.5 95.5 

Number of images registered = 3 85.5 85.5 90.5 

Number of images registered = 2 80 80.5 86.5 

Number of images registered = 1 65.5 66 74 

Table 7.12: Comparison of the rate of recognition of classical LBP vs. PLIP-LBP taking first 5 

images per subject for training and remaining 5 images for testing. Using uniform LBP taking 8 

points on a circular neighborhood of radius 1 and weighted chi-square distance statistic 
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Figure 7.10: Comparison of average recognition rate taking first 5 images per subject for training 

and remaining 5 images for testing. Using uniform LBP with weighted Chi-square statistic 

 

7.6.4 Using Rotation Invariant LBP features with Weighted Chi-square statistic 

We have also performed experiments with the rotation invariant LBP feature descriptors. Using 

the classical rotation invariant LBPs for feature extraction results in the decrease or recognition 

rates compared to the uniform LBPs. However using our modified LBP operators, the 

recognition rates, though slightly less as compared to the modified uniform LBPs, are 

comparable. This proves the consistency of our proposed feature vectors. A summary of results 

have been presented in this chapter. 

Registered training 

images per subject 

Using classical 

LBP 

Using Log-LBP 

with α   

Using Log-LBP 

with α 1.8 

Using Log-LBP 

with α  .  

Using Log-LBP 

with α 2.5 

Using Log-LBP 

with α 1.9 

Number of images 

registered = 5 
86 93 95.5 93.5 95 94.5 

Number of images 

registered = 4 
83 90 92.5 92 90.5 92 

Number of images 

registered = 3 
77 87 88 88 86 88 

Number of images 

registered = 2 
73 84 84 84.5 82.5 83.5 

Number of images 

registered = 1 
62 75 72.5 72 72 69.5 

Table 7.13: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP taking 

first 5 images per subject for training and remaining 5 images for testing. Using rotation 

invariant LBP taking 8 points on a circular neighborhood of radius 2 and weighted chi-square 

distance statistic 
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A feature fusion taking the best values of alpha yields the following results. 

Registered training images per subject 
Using classical 

LBP 

Using fused logarithmic 

L P with α 2.2, α 1.8 

and α   
 

Number of images registered = 5 86 96 

Number of images registered = 4 83 93.5 

Number of images registered = 3 77 91.5 

Number of images registered = 2 73 87 

Number of images registered = 1 62 77 

Table 7.14: Comparison of the rate of recognition of classical LBP vs. fused logarithmic LBP 

taking first 5 images per subject for training and remaining 5 images for testing. Using rotation 

invariant LBP taking 8 points on a circular neighborhood of radius 2 and weighted chi-square 

distance statistic 

 

 

7.6.5 Using Rotation Invariant LBP features with non-weighted Chi-square 

statistic 

Rotation invariant LBPs are also used with the non-weighted Chi-square distance statistic. In this 

section we present some of the results comparing the performances of the classical and the 

modified LBP operators. 

Registered training images per 

subject 

Using classical LBP Using PLIP-LBP Using PLIP-LBP after 

applying logarithmic 
transform with α 1.8 

Number of images registered = 5 87.5 87.5 95.5 

Number of images registered = 4 83.5 83.5 93.5 

Number of images registered = 3 78.5 78.5 89 

Number of images registered = 2 76.5 77 86 

Number of images registered = 1 64 64.5 76 

Table 7.15: Comparison of the rate of recognition of classical LBP vs. PLIP-LBP taking first 5 

images per subject for training and remaining 5 images for testing. Using rotation invariant LBP 

taking 8 points on a circular neighborhood of radius 2 and chi-square distance statistic 

 

We present the results using HVS decomposition and feature extraction in Table 7.16 
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Registered training images per subject Using classical LBP Using fused Log-L P with α 1.8 for the 

original image and α 0.8 for the Weber 
image 

Number of images registered = 5 87.5 94.5 

Number of images registered = 4 83.5 94 

Number of images registered = 3 78.5 89 

Number of images registered = 2 76.5 86.5 

Number of images registered = 1 64 73.5 

Table 7.16: Comparison of the rate of recognition of classical LBP vs. fused log-LBP (log-LBP 

feature vector from the original image is fused with the log-LBP feature vector obtained from the 

Weber image) taking first 5 images per subject for training and last 5 images for testing. Using 

rotation invariant LBP taking 8 points on a circular neighborhood of radius 2 and chi-square 

distance statistic 

 

7.6.6 Using Rotation Invariant Uniform LBP with Chi-square distance statistic 

The rotation invariant LBPs can be uniform. In this case all the non-uniform patterns are placed 

in a single bin and the uniform patterns are placed in their respective bins. We have used the Chi-

square distance statistic to obtain the relative performance of our modified LBP operators with 

respect to the classical LBP operators. 

Registered training images per 

subject 

Using classical 

LBP 

Using Log-LBP 

with α   

Using Log-LBP 

with α 1.8 

Using Log-LBP 

with α  .  

Number of images registered = 5 83.5 94 94 94 

Number of images registered = 4 80 91.5 91 92 

Number of images registered = 3 76.5 88.5 86.5 89.5 

Number of images registered = 2 71.5 84 82.5 86.5 

Number of images registered = 1 60 73 73 73.5 

Table 7.17: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP taking 

first 5 images per subject for training and remaining 5 images for testing. Using rotation 

invariant uniform LBP taking 8 points on a circular neighborhood of radius 2 and chi-square 

distance statistic 

 

Registered training images per subject 
Using classical 

LBP 

Using fused logarithmic 

L P with α 2.2, α 1.8 

and α   
 

Number of images registered = 5 83.5 96 

Number of images registered = 4 80 94 

Number of images registered = 3 76.5 90 

Number of images registered = 2 71.5 86 

Number of images registered = 1 60 75 

Table 7.18: Comparison of the rate of recognition of classical LBP vs. fused logarithmic LBP 

taking first 5 images per subject for training and remaining 5 images for testing. Using rotation 

invariant uniform LBP taking 8 points on a circular neighborhood of radius 2 and chi-square 

distance statistic 
 



116 
 

Registered training images per 

subject 

Using classical LBP Using PLIP-LBP Using PLIP-LBP after 

applying logarithmic 
transform with α 2.2 

Number of images registered = 5 83.5 83.5 94 

Number of images registered = 4 80 79.5 92 

Number of images registered = 3 76.5 76.5 89.5 

Number of images registered = 2 71.5 71.5 86 

Number of images registered = 1 60 60 72.5 

Table 7.19: Comparison of the rate of recognition of classical LBP vs. PLIP-LBP taking first 5 

images per subject for training and remaining 5 images for testing. Using rotation invariant 

uniform LBP taking 8 points on a circular neighborhood of radius 2 and chi-square distance 

statistic 

 
Registered training images per 

subject 
Using classical LBP Using fused Log-L P with α 2.2 

for the original image and α 0.8 

for the Weber image 

Using fused Log-L P with α 2.2 
for the original image and α 1 

for the Weber image 

Number of images registered = 5 83.5 95 95.5 

Number of images registered = 4 80 91.5 92.5 

Number of images registered = 3 76.5 88.5 89 

Number of images registered = 2 71.5 83 82.5 

Number of images registered = 1 60 71.5 71.5 

Table 7.20: Comparison of the rate of recognition of classical LBP vs. fused log-LBP (log-LBP 

feature vector from the original image is fused with the log-LBP feature vector obtained from the 

Weber image) taking first 5 images per subject for training and last 5 images for testing. Using 

rotation invariant uniform LBP taking 8 points on a circular neighborhood of radius 2 and chi-

square distance statistic 

 

 
 

Figure 7.11: Comparison of average recognition rate taking first 5 images per subject for training 

and remaining 5 images for testing. Using rotation invariant uniform LBP with Chi-square 

statistic 

 

 

65

70

75

80

85

90

Average Rate of Recognition 

Average Rate of

Recognition



117 
 

7.7 Simulation and Results using the Yale face database 

We have also performed experiments using the Yale face database. This database is also 

available publicly and consists of 15 subjects each having 11 images. For simplicity we have 

taken first 5 images per subject for training and the next 5 images for testing. We have used Chi-

square distance statistic for performing classification. 

Registered training images per 
subject 

Using classical 
LBP 

Using Log-LBP 
with α 1 

Using Log-LBP 
with α 1.2 

Using Log-LBP 
with α 0.9 

Number of images registered = 5 96 98.67 96 98.67 

Number of images registered = 4 96 97.33 96 97.33 

Number of images registered = 3 96 97.33 96 97.33 

Number of images registered = 2 96 97.33 94.67 97.33 

Number of images registered = 1 89.33 87 85.33 85.33 

Table 7.21: Comparison of the rate of recognition of classical LBP vs. logarithmic LBP taking 

first 5 images per subject for training and next 5 images for testing. Using uniform LBP taking 8 

points on a circular neighborhood of radius 1 and chi-square distance statistic 

 

Thus we see that the performance of our feature vectors is consistent across different databases 

and using different classification methods. We have also used HVS decomposition to obtain an 

enhanced feature vector set. The results obtained are presented in table 7.22. 

Registered training images per subject Using classical LBP Using fused Log-L P with α 1 for the 

original image and using features from the 
Weber image directly 

Number of images registered = 5 96 98.67 

Number of images registered = 4 96 100 

Number of images registered = 3 96 100 

Number of images registered = 2 96 100 

Number of images registered = 1 89.33 85.34 

Table 7.22: Comparison of the rate of recognition of classical LBP vs. fused log-LBP (log-LBP 

feature vector from the original image is fused with the LBP feature vector obtained from the 

Weber image) taking first 5 images per subject for training and next 5 images for testing. Using 

uniform LBP taking 8 points on a circular neighborhood of radius 1 and chi-square distance 

statistic 

 

We also present the results using the PLIP-LBP operators. 
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Registered training images per 

subject 

Using classical LBP Using PLIP-LBP Using PLIP-LBP after 

applying logarithmic 
transform with α 1 

Number of images registered = 5 96 96 98.67 

Number of images registered = 4 96 96 97.33 

Number of images registered = 3 96 96 97.33 

Number of images registered = 2 96 96 96 

Number of images registered = 1 89.33 89.33 87 

Table 7.23: Comparison of the rate of recognition of classical LBP vs. PLIP-LBP taking first 5 

images per subject for training and next 5 images for testing. Using uniform LBP taking 8 points 

on a circular neighborhood of radius 1 and chi-square distance 
 
 

Figure 7.12 summarizes the results. 

 
 
Figure 7.12: Comparison of average recognition rate taking first 5 images per subject for training 

and nest 5 images for testing. Using uniform LBP with Chi-square statistic 

 
 

7.8 Examples of Recognition 

In this section we present some examples of face recognition using the AT&T and the Yale face 

database using the modified LBP operators. We compare with face recognition using the 

classical LBP operators. 
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Figure 7.13: Comparison of face recognition using classical and logarithmic LBP using 5 images 

for training from AT&T face database 

 

Figure 7.14: Comparison of face recognition using classical and PLIP-LBP using 3 images for 

training from AT&T face database 
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Figure 7.15: Comparison of face recognition using classical and HVS-LBP using 1 image for 

training from AT&T face database 

 

Figure 7.16: Comparison of face recognition using classical and HVS-LBP using 4 images for 

training from Yale face database 

 

Figures 7.13 to 7.16 show the missed recognitions using classical LBP and how using the 

modified LBP operators, true recognitions can be obtained. 
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7.9 Analysis and Discussion 

In this section we’ll discuss the results presented in section 7.6 and 7.7. In section 7.6 we have 

used different variants of LBP in conjunction with different types of classifiers. From the results 

it can be seen that using the modified LBP operators, improved rates of recognition have been 

obtained as compared to the classical LBP operators using different LBP variants and different 

classifiers.   

Table 7.25 compares the performances of the modified LBP operators. The classifier is constant 

here and the chi-square distance statistic is used here. 

Registered training 

images per subject 

Using uniform 

fused logarithmic 
L P with α 1.5, 

α 1.8 and α   

 

Using uniform HVS-

L P with α   for the 
original image and 

α 0.8 for the Weber 

image 

Using uniform 

PLIP-LBP after 
applying 

logarithmic 

transform with α   

Using rotation 

invariant uniform 
Log-L P with α   

Using rotation 

invariant PLIP-
LBP after applying 

logarithmic 

transform with 
α 1.8 

Number of images 

registered = 5 

98.5 98.5 97.5 
94 

95.5 

Number of images 
registered = 4 

96.5 96.5 95.5 
91.5 

93.5 

Number of images 

registered = 3 

93 93 92 
88.5 

89 

Number of images 
registered = 2 

90 88.5 90 
84 

86 

Number of images 

registered = 1 

79.5 78 79.5 
73 

76 

Table 7.24: Comparison of the rate of recognition for the modified LBP operators using Chi-

square distance statistic 

 

Thus we see that using the uniform LBP results is better rates of recognition when compared to 

the rotation invariant or the rotation invariant uniform LBP. Comparing columns 1, 2 and 3 we 

see that fused Log-LBP and HVS-LBP shows comparable performance. Using uniform LBP also 

helps to reduce the dimensionality of the feature vector and hence results in faster computations. 

Rotation invariant LBPs have found to perform well for texture classification, however uniform 

LBPs have performed well for face recognition. However we also show that the modified LBP 

operators are more or less consistent across different LBP variants. 
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We’ll now compare the performances using different types of nearest neighbor classification 

approaches. The log-likelihood statistic usually fails to perform as good as the other 

classification approaches for LBP based face recognition (83.5 % compared to 96.5% using the 

chi-square distance statistic). In table 7.25 we compare the performances using the different 

nearest neighbor classifiers. 

Registered 
training images 

per subject 

Using uniform 

fused 
logarithmic LBP 

with α 1.5, 

α 1.8 and α   
and chi-square 

distance statistic 

 

Using uniform 
HVS-LBP with 

α   for the original 

image and α 0.8 
for the Weber 

image and chi-

square distance 
statistic 

 

Using uniform 
Log-LBP with 

α  .5 and 

histogram 
intersection 

distance statistic 

Using uniform 
PLIP-LBP after 

applying 

logarithmic 
transform with 

α  .5 and 

histogram 
intersection 

distance statistic 

Using uniform 

HVS-LBP with 

α   for the 
original image 

and α 0.8 for 

the Weber 
image and 

weighted chi-

square distance 
statistic 

Using uniform 
Log-LBP with 

α   and 

weighted chi-
square distance 

statistic 

Number of images 

registered = 5 
98.5 98.5 97 97 97.5 97 

Number of images 
registered = 4 

96.5 96.5 93 93 97 96 

Number of images 

registered = 3 
93 93 88 88.5 91.5 91 

Number of images 
registered = 2 

90 88.5 84.5 84 86.5 87.5 

Number of images 

registered = 1 
79.5 78 72.5 72.5 73.5 74 

Table 7.25: Comparison of the rate of recognition for the modified LBP operators across 

different classifiers 

 

Thus from the results presented in table 7.25 we see that the non-weighted chi-square distance 

usually results in a better average rate of recognition when we are taking into account all testing 

configurations. The weights in this case were chosen so as to give more weight to the region near 

the eyes or mouth. A more structural approach can be used while determining the weights. The 

training set can be classified using one of the sub regions of the image at a time and the weights 

can be assigned based on the rate of recognition. That is if the sub-region yielded a greater rate 

of recognition, the weight associated with that region is selected to be higher than the others. 

Thus we can conclude that using uniform log-LBP or the uniform HVS-LBP along with the chi-

square distance statistic gives the best rate of recognition among all other approaches. 
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7.10 Execution Time and Memory Usage 

The execution time for different LBP operators are presented in table 7.26. For computing the 

total time of execution, 200 test images were run through the system using uniform LBP feature 

vectors. 

Processing Time Classical LBP 
Processing Time fused Log-

LBP 
Processing Time PLIP-LBP Processing Time HVS-LBP 

32.7 seconds 53.2 seconds 51.7 51.4 

Table 7.26: Comparison of the execution time for different types of LBP operators 

Thus we see that using the modified LBP operators, the time of execution is about 1.5 times that 

taken by the classical LBP operator. There is a computational overhead involved while doing 

logarithmic transform. Also in the fused LBP approaches, features are extracted from multiple 

images at the same time. For example when using the HVS based approach, the LBP features are 

extracted using the original image and the Weber image thereby taking twice the memory than 

the classical approach in the feature extraction stage. Thus if there are “N” ALU operations 

involved in the feature extraction step, then HVS-L P would require “ N” ALU operations and 

fused log-L P using three values of the parameter alpha would require “3N” ALU operations. 

However since extraction of feature vectors from these different images are independent of one 

another, parallel processing can be leveraged using distributed systems. 

7.11 Summary 

In this section we summarize the ideas presented in this chapter: 

 Three types of novel feature extraction methods have been introduced in this chapter. 

 Using all three modified LBP operators we have shown how better recognition rates can 

be obtained as compared to the classical LBP feature extraction algorithm. 
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 Our modified L P operators are based on the Weber’s law and the saturation 

characteristics of the human visual system 

 We have tested using two different configuration of the training set and obtained 

comparable performances. 

 We have also varied the number of enrolled images per subject and obtained improved 

average rates of recognition. 

 Thus by incorporating the human visual response and the logarithmic image processing 

framework which emulates the human visual characteristics we have obtained improved 

feature vectors that can be applied towards a variety of practical applications like face 

recognition. 
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CONCLUSION 

A new framework for object detection and recognition has been introduced in this thesis. It has 

been shown how HVS based image processing can be successfully applied towards image 

processing applications like edge detection, feature extraction, object detection and recognition. 

Feature fusion has been incorporated in the framework. It can be concluded that by decomposing 

image based on the human visual sensitivity, more information can be extracted out of the image. 

Two systems have been developed which take into account HVS based image decomposition and 

thereby have a better rate of detection and recognition compared to the non-HVS based systems. 

In case of eye detection, decomposing an image also helps when the regions near the eyes have 

shadows or when one of the eyes is darker than the other. This is because HVS based 

decomposition takes into account the background intensity of the individual image pixels when 

choosing the thresholds for different HVS regions. Thus darker and lighter regions of the image 

have different thresholds which tend to bring out the pertinent details in a more effective manner.  

Three novel approaches to the problem of face recognition have also been introduced. We have 

combined the classical LBP with logarithmic image processing and the human visual system and 

introduced PLIP-LBP feature extractors. Computer simulations have shown that all these 

modified LBP operators can improve the rate of recognition. For example recognition rates as 

high as 99%, 97% and 98.5% were obtained using logarithmic LBP, PLIP-LBP in logarithmic 

domain and HVS based LBP respectively as compared to 96.5% using the classical LBP operator 

using the AT&T Laboratories face database. We have also varied the number and configuration 

of images used for registration and obtained improved average rates of recognition using the 

modified LBP operators. Two types of classifiers were used for our experiments and we have 

found that the modified LBP operators result in improved recognition rates in either case. This 
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shows the robustness of these operators. We have used rectangular regions of the same size; 

however regions of different sizes and shapes can also be used. The simplicity of these operators 

and their robustness against variations in facial expression, aging, illumination and alignment 

make them suitable for real time applications.  We also anticipate that the developed 

methodology can be extended to several other object detection and recognition tasks. Thus in 

summary the contributions made in this thesis are 

 Introduction of generic framework for HVS based object detection and recognition 

 Development of eye detection system  

 Introduction of novel logarithmic LBP feature descriptors 

 Development of face recognition system based on logarithmic LBP and HVS LBP feature 

descriptors 

Experiments have shown that comparable performance can be obtained using the log-LBP and 

the HVS-LBP feature descriptors. We have also shown that uniform LBP along with the chi-

square distance statistic yields the best performance among all the LBP variants used. 
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FUTURE WORK 

 

In this thesis we have introduced a novel framework for HVS based object detection and 

recognition that also incorporates the logarithmic framework. This framework can be extended 

for any system to increase the robustness. 

We have developed two systems based on this generic framework. For eye detection we showed 

how we can use HVS based image decomposition to improve the rate of detection especially 

from images that have non-uniform illumination and shadows. While doing feature fusion using 

logical addition, we placed equal weights to all the HVS based regions. Theoretically we can 

associate different weights to each of the regions before doing the logical fusion of the feature 

vectors. From our experiments we have seen that the De-Vries Rose and the Saturation regions 

of HVS do not contain much useful information. Hence while doing feature fusion, lower 

weights can be associated with these regions as compared to the Weber region. Thus we can 

develop a weighted HVS based eye detection system.  

The second system that we developed as part of this thesis is a face recognition system based on 

logarithmic local binary patterns. Three approaches have been introduced for feature extraction 

from images. Recognition rates have been considerably improved using the logarithmic LBP and 

HVS-LBP approach. Hence theoretically we can fuse these different modified LBP feature 

vectors towards the development of a more robust system. One of the difficulties that arise from 

fusion of multiple feature vectors is that the dimensionality of the feature vector increases. Hence 

we also propose to apply a dimensionality reduction technique after doing the feature fusion.    

A future endeavor would be to integrate the eye detection and the facial recognition systems 

together. Specifically, the eye detection can be added as an additional validation step after the 
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performance of face recognition. Using our system for eye detection, the eyes can be extracted 

from the facial images and a further validation step can be performed using the eyes recognition.   

In [88], sparse signal representation has been used to address the problem of face recognition. It 

has been shown that if the sparsity in the recognition problem is properly harnessed, the choice 

of the features is no longer critical provided the number of features is sufficiently large and the 

sparse representation is correctly computed. It is shown that under this framework, the choice of 

the feature space is no longer critical because even random features can be used to recover sparse 

representation and hence can be used to classify test images. A comparison of the proposed 

approach with this approach can be done and a voting scheme can be developed using 

recognitions from both of these methods. 
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APPENDIX A  

Publications 

 Debashree Mandal, Karen Panetta and Sos Agaian, “Human Visual System Inspired 

Object Detection and Recognition”, IEEE International Conference on Technologies for 

Practical Robot Applications (TePRA), April 23-24, 2012 

 Debashree Mandal, Karen Panetta and Sos Agaian, “Face Recognition Based on 

Logarithmic Local Binary Patterns”, IS&T/SPIE Electronic Imaging 2013: Image 

Processing: Algorithms and Systems XI (Conference EI109), February 3 – 7,  2013 
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