
i 
 

   

 

HUMAN VISUAL SYSTEM BASED OBJECT DETECTION AND 

RECOGNITION AND INTRODUCTION OF LOGARITHMIC LOCAL 

BINARY PATTERNS FOR FACE RECOGNITION  

 

A thesis 

Submitted by  

Debashree Mandal 

In partial fulfillment of the requirements 

For the degree of  

Master of Science 

In Electrical Engineering 

Tufts University 

Date 

August 2012 

 

 

© 2012, Debashree Mandal, all rights reserved 

Adviser: Dr. Karen Panetta 



ii 
 

ABSTRACT 

 

This thesis aims at incorporating logarithmic image processing and the human visual response 

which is based on Weberôs law into various image processing applications. Human Visual 

System (HVS) has been used in this thesis for image decomposition. Specifically HVS based 

image decomposition has been applied towards the development of a novel framework for object 

detection and recognition systems. Also Logarithmic Image Processing (LIP) has been used 

towards the development of novel feature vectors. Logarithmic Image Processing (LIP) replaces 

the linear arithmetic (addition, subtraction, and multiplication) with a non-linear one, which 

more accurately characterizes the nonlinearity of computer image arithmetic and is consistent 

with the Weberôs Law and the saturation characteristics of the human visual system. Two 

systems have been developed. One of which detects eyes from facial images after performing 

morphological operations. It has been shown that extracting features from HVS decomposed 

images followed by a feature fusion results in a better rate of detection than when extracting 

features from the original image alone. This has also proved effective in images that have 

shadows near the eye region. This thesis also presents a novel approach to the problem of face 

recognition that combines the classical Local Binary Pattern (LBP) feature descriptors with 

image processing in the logarithmic domain and the human visual system. Particularly, we have 

introduced parameterized logarithmic image processing (PLIP) operators based LBP feature 

extractor.  We have also used the human visual system based image decomposition to extract 

features from the decomposed images and combine those with the features extracted from the 

original images thereby enriching the feature vector set and obtaining improved rates of 

recognition. Experiments have clearly shown the superiority of the proposed scheme over 

classical LBP feature descriptors. 
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CHAPTER 1 

INTRODUCTION  

1.1 Motivation  

 

In the past few decades there has been a tremendous growth in the field of image processing 

leading to the development of real time computer vision systems. Computer vision essentially 

aims at duplicating the effect of human vision by perceiving and understanding an image [1]. A 

human observer perceives an object by distinguishing it from its immediate background. One of 

the primary objectives of a computer vision system is to effectively mimic the visual response of 

the human eye. A human observer can easily detect an object from an image or video even under 

partial occlusion. For example if we consider the problem of facial recognition, weôll see that the 

task of identifying a person is not that difficult for a human. However the same task becomes 

extremely challenging for a computer vision system due to the absence of a unique 

representation of the object, which in this case is the face. Object detection and recognition 

algorithms are often applied for a myriad of practical purposes like crowd surveillance, entrance 

security, video context indexing, automatic detection of threat objects in airport security systems, 

finger print identification, detecting eyes to determine driver fatigue while driving a vehicle and 

many more. However the state of the art object detection and recognition algorithms do not take 

into account the non-linearity of the human visual response. The way in which a human observer 

perceives an object is extremely complex and largely depends on the background on which the 

object resides. From our day to day experience we know that in a very dark background, the 

slightest ray of light would cause a visual sensation whereas in a well-illuminated surrounding, 

that same small change might not cause a visual sensation. Moreover the visual response of the 
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eye is non-linear and hence an accurate simulation of the human visual system in image 

processing applications is an extremely challenging task. The logarithmic image processing 

(LIP) framework introduced in [2] replaces the linear arithmetic operations with a non-linear one 

which more accurately characterizes the response of the human eye. Inspired by the success of 

the LIP model towards various image processing applications like image enhancement, image 

restoration, image denoising and a simple but powerful texture descriptor, called Local Binary 

Pattern (LBP), we have proposed a system that does face recognition using novel modified 

logarithmic LBP operators. Also a mathematical formulation of the human visual system enables 

to decompose images. We have used this concept towards the development of a generic 

framework for object detection and recognition and have developed an eye detection system 

based on this framework. 

1.2 Objective 

 

The objective of this thesis is to apply logarithmic image processing and human visual system 

based image processing algorithms towards the development of object detection and recognition 

systems. This includes an in-depth study of the existing feature extraction algorithms to 

understand their advantages and disadvantages. A major part of the thesis has been devoted in 

understanding the role of human visual response in various image processing applications like 

edge detection, image decomposition, feature extraction, object detection and recognition. As 

mentioned in the previous section, the response of the human eye is extremely complex and 

depends largely on the background against which the object is visualized. Hence non-uniform 

illumination, shadows etc. present in image tend to affect the efficiency of image processing 

algorithms. Thus the aim was to apply logarithmic and HVS based processing and compare 
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results with classical approaches.  A major objective was to develop novel feature vectors that 

use the non-linear LIP framework for face recognition. This framework is consistent with the 

non-linear characteristics of the human visual system and hence our objective was to improve the 

robustness of facial recognition by utilizing the LIP framework.  

In summary the objectives are: 

¶ Applying human visual system based image processing towards edge detection, image 

decomposition, feature vectors extraction, development of object detection and 

recognition systems. 

¶ Analyzing the effect of different parameters for human visual system based image 

processing and parameter tuning for improved performance. 

¶ Development of human visual system based object detection and recognition systems and 

comparing their performance with traditional systems that do not take into account 

human visual system based image processing. 

¶ Development of novel feature vector that combines the classical Local Binary Pattern 

(LBP) feature descriptors with image processing in the logarithmic domain and the 

human visual system.  

1.3 Contributions 

 

The contributions are: 

¶ Introduction of human visual system (HVS) based image decomposition towards feature 

extraction from images. 



4 
 

¶ Introduction of a new framework involving human visual response based image 

decomposition for object detection and recognition systems. 

¶ An analysis of parameter selection in human visual system based image decomposition. 

¶ A literature review of the state of the art feature extraction algorithms from images. 

¶ Development of an eye detection system using human visual system based image 

decomposition and morphological image processing. The system introduces human visual 

system based image decomposition into an existing system and compares the 

performance with the original non-HVS based system. The system is tested using images 

having and non-uniform illumination and shadows near the eye region. It is shown that 

by suitably selecting parameters for HVS decomposition, the performance of the system 

surpasses that of the original system when testing images having non-uniform 

illumination.   

¶ Introduction of a novel approach to the problem of face recognition that combines the 

classical Local Binary Pattern (LBP) feature descriptors with image processing in the 

logarithmic domain. Novel logarithmic-LBP feature descriptors have been introduced  

¶ Introduction of parameterized logarithmic image processing (PLIP) operators based LBP 

feature extractor.  

¶ Introduction of human visual system based LBP operator, which is based on the Weberôs 

law. In this approach features extracted from the decomposed images are combined with 

the features extracted from the original images thereby enriching the feature vector set 

and obtaining improved rates of recognition. 
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1.4 Thesis plan and organization 

 

We start the thesis by presenting an overview of the non-linear LIP framework for image 

processing. Next we present an overview of the mathematical framework for human visual 

system based edge detection and image decomposition. The state of the art feature vector 

extraction algorithms are also studied. We then propose a novel framework for object detection 

and recognition that can be used to enrich the feature vector set by applying HVS based image 

decomposition.  We essentially developed two systems that detect objects from images based on 

human visual response. One of them detects eyes from facial images and we show the 

effectiveness of the system on images having non-uniform illumination. The second system does 

face recognition based on the novel logarithmic LBP based feature descriptors that have been 

introduced as a part of this thesis. 

Thesis Plan and Methodology 

¶ Review of the non-linear logarithmic framework for image processing. 

¶ Understanding the pros and cons of the conventional edge detection algorithms and 

understanding the motivation for using human visual system based image processing for 

edge detection. 

¶ Analyzing the role of parameter selection for HVS based image decomposition. 

¶ A literature review of the existing feature extraction algorithms from images. 

¶ Introduction of HVS based edge detection for edge based feature extraction from images. 

¶ Introduction of HVS based image decomposition for feature extraction from images. 

¶ Introduction of novel framework for human visual system based object detection and 

recognition 
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¶ Introduction of HVS based image decomposition for the development of eye detection 

system. Testing with images having shadows non-uniform illumination around the eyes 

region. 

¶ Novel approach to face recognition that combines the classical Local Binary Pattern 

(LBP) feature descriptors with image processing in the logarithmic domain and the 

human visual system.   

¶ Comparison of performance of facial recognition using modified LBP based feature 

extractors and classical LBP feature extractors using publicly available face databases. 

The remaining part of the thesis is organized as follows: Chapter 2 gives an overview of the 

logarithmic image processing framework. We will show how this framework is consistent with 

the non-linear and saturation characteristics of the human visual system. 

Chapter 3 gives an overview of the mathematical framework for human visual system based 

image decomposition. The effect of parameter selection on the algorithm is also presented. 

Chapter 4 presents a review of the state of the art feature extraction algorithms of images. A 

feature vector is essentially an n-dimensional vector of numerical features that represent some 

object in an image. Many algorithms in machine learning require a numerical representation of 

objects, since such representations facilitate processing and statistical analysis.  

Chapter 5 presents the novel framework for human visual system based object detection and 

recognition from images.  

In chapter 6 we present a novel eye detection system based on human visual system and 

morphological image processing. We show how incorporating human visual system based image 

decomposition improves the results of the original algorithm. We present results of our testing 
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and compare with the original system that does not involve human visual system based 

processing for eye detection. We also show that the algorithm is effective on images having non-

uniform illumination and shadows around the eye region. 

In chapter 7 we introduce a novel approach towards facial recognition that combines the classical 

Local Binary Pattern (LBP) feature descriptors with image processing in the logarithmic domain 

and the human visual system. We compare performance of face recognition system using the 

modified LBP operators and the classical LBP operators. We perform our experiments using 

publicly available face databases. 
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CHAPTER 2 

REVIEW OF LOGARITHMIC IMAGE PROCESSING  

 

Image processing involves the transformation of an image from one form into another. The result 

may be a new image or may take the form of an abstraction, parameterization, or a decision [3].  

Image processing includes many applications, such as image enhancement, edge detection, 

object recognition, and noise reduction. The most important aspect of an image processing 

technique is that the image processing framework must be physically consistent with the nature 

of the images and the mathematical rules and structures must be compatible with the information 

to be processed [4]. Jain [5] has clearly shown the interest and power of mathematics for image 

representation and processing. Granrath [6] has recognized that the human visual laws and 

models play an important role in image processing. Marr [7] has pointed out that, to develop an 

effective computer vision technique, the following three points must be considered: (1) what are 

the particular operations to be used and why? (2) How the images can be represented? And (3) 

what implementation structure can be used? Moreover, Schreiber [8] has argued that image 

processing is an application field and not a fundamental science. Thus an image processing 

framework must satisfy the following four main fundamental requirements [9] 

1. It is based on a physically (and/or psychophysically) relevant image formation model  

2. Its mathematical structures and operations are both powerful and consistent with the 

physical nature of the images, that is, with the image formation and combination laws 

3. Its operations are computationally effective  

4. It is practically fruitful in the sense that it enables to develop successful applications in 

real situations 
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Traditionally, image processing makes use of linear operations to manipulate images, but since 

computer arithmetic (computer addition, multiplication and others) is inherently a non-linear 

process, accuracy issues can arise [10]. As an example we can consider the addition of two 

images. In the digital world the addition of two images may produce ñout-of-rangeò problems, 

because a value above the saturation threshold (for example, for 8 bits, the maximum value 

would be 255) is likely to be obtained when two images are digitally added and is likely to be 

clipped causing a loss of information. Saturation of these values to the maximum often happens 

in digital image processing, but those extreme values are  actually never reached in natural 

images, since our retina, which acts as a natural sensor, works in a logarithmic mode  following 

the Fechnerôs Law [11]. Moreover linear operations typically do not yield results consistent with 

the physical phenomena [10]. 

Thus image processing specific arithmetic operations were introduced to address the loss of 

information issue [12]. One attempt at resolving computer arithmetic issues was proposed by 

Ritter et al. The image algebra was designed to provide a mathematical framework to support 

implementation, comparison, and analysis of image processing transformations [13] [14]. It 

consists of a core set of 14 operations [15]. This image algebra has the standard point-wise 

addition, multiplication, and it focuses on developing operations to implement convolutions. 

Jourlin and Pinoli introduced the Logarithmic Image Processing (LIP) model [2] . The LIP 

model replaces the linear arithmetic (addition, subtraction, and multiplication) with a non-linear 

one, which more accurately characterizes the nonlinearity of computer image arithmetic. 

Moreover LIP model is consistent with the Weberôs Law and the saturation characteristics of the 

human visual system [16]. 
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2.1 Role of Human Vision in Image Processing 

 

The human visual perception plays an important role in image processing applications [6] [7]. 

However there exists a large gap between the strong ability of human vision to perform difficult 

perceptual tasks, such as pattern recognition or image correlation and the weakness of even 

sophisticated algorithms to successfully address such problems [17]. One of the major reason for 

this is that the human vision system is complex and still remains partially unknown or not known 

enough [17]. In this section we'll present a review of the two laws that formulate the human 

visual perception towards light intensity. 

Weber Law: Psychophysicist Weber [18] [19] established that the response to light intensity of 

the human visual system is non-linear. He argued that the human visual detection depends on the 

ratio, rather than the difference, between the light intensity values Ὂ and Ὂ  ῳὊ, where ῳὊ is 

the so-called ñjust noticeable difference,ò which is the amount of light necessary to add to a 

visual test field of intensity value Ὂ such that it can be discriminated from a reference field of 

intensity value F. Weberôs law can be expressed as 

ὡ                                                                (2.1) 

where ὡ is the Weberôs constant. 

Fechnerôs Law: Fechner explained [11] the non-linearity of human visual sensation as follows: in 

order to produce incremental arithmetic steps in sensation, the light intensity must grow 

geometrically. He proposed the following relationship between the light intensity Ὂ (stimulus) 

and the brightness ὄ (sensation): 

Ўὄ Ὧ
Ў

                                                            (2.2) 
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where ЎὊ is the increment light that produces increment Ўὄ of sensation and Ὧ is a constant. The 

Fechnerôs law can then be expressed as: 

ὄ Ὧǋ                                                           (2.3) 

where  Ὧǋ is an arbitrary constant and Ὂ  is the absolute threshold of human eye [96]. 

2.2 The Logarithmic Image Processing (LIP) Model 

 

The logarithmic image processing (LIP) model is a mathematical framework based on abstract 

linear mathematics which provides a set of specific algebraic and functional operations that can 

be applied to the processing of intensity images valued in a bounded range [20]. The LIP model 

has proved to be consistent with the laws of the human visual system and has been successfully 

applied to image processing applications like image enhancement, image restoration, three-

dimensional image reconstruction, edge detection and image segmentation. 

In the LIP model, the brightness of an image is regarded as the intensity of light that passes 

through a light filter with absorption function ὪὭȟὮ [21]. An absorption function is defined as 

the percentage of incident light being absorbed by the light filter. Jourlin and Pinoli called this 

function the gray tone function. The value of the gray tone function at spatial location ὭȟὮ is 

thus called the gray tone. Thus an image can also be represented by the absorption function 

which describes the opacity of the light filter. Since the brightness of an image is usually 

restricted to an interval (typically [0,255] for an 8-bit image), then the gray tone function is also 

restricted in the real interval [0, M). Here, the value zero means that there is no absorption, while 

the value M corresponds to a totally opaque image. For an 8-bit image, M is 256. Therefore, the 
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gray tone is also in that interval. Using the gray tone function, the addition of two images can be 

performed by putting two light filters together. The gray tone function can thus be expressed as: 

ÇÉȟÊ  -  Æ ÉȟÊ                                                    (2.4) 

Where Æ ÉȟÊ ) is the original image function, Ç ÉȟÊ  is the output gray tone function, and - is the 

maximum value of the range. The addition of two gray tones ὥ and ὦ, and the scalar 

multiplication of ὥ by a positive real number  are defined in terms of the usual real function 

operations as: 

ὥṥὦ ὥ ὦ                                                     (2.5) 

ṧὥ   ὓ ὓ ρ ὥ
ὓ                                         (2.6) 

If the gray tone functions are defined on (-Ð,M), then subtraction of gray tones are given by  

ὥ Ὸ ὦ ὓ
 

                                                           (2.7) 

Using the subtraction operation, Jourlin and Pinoli [22] have proposed a definition of the contrast 

between two neighboring pixels: 

ὧὪȟὫ ÍÁØὪȟὫῸ ÍÉÎ ὪȟὫ                                    (2.8) 

This definition of contrast is consistent with the Weberôs law. Jourlin and Pinoli have proved that 

the set of gray tones defined on (-Ð,M) with operations ṥ and ṧ is a real vector space over the 

real number field. As a result, the set of gray tone is closed under the above operations. This 

ensures that the addition of two images, or the scalar multiplication of an image by a positive real 

number, results in a new image which is within the interval [0, M). This is very desirable for 
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many image processing problems such as image enhancement, image restoration and image data 

compression. Pinoli [2] has also proved that the real vector space is algebraically and 

topologically isomorphic to the real number space by the isomorphic transform given by: 

•ὥ  ὓȢὰὲρ                                                  (2.9) 

The inverse isomorphic transform is given by, 

‰ ὥ  ὓȢρ ÅØÐ                                           (2.10) 

The isomorphic transform serves as a powerful tool for developing the LIP model and for 

simplifying the analysis and the implementation of the LIP model based image processing 

algorithms. For example the multiplication of two gray tones is given by: 

ὥṧὦ  • •ὥȢ•ὦ                                          (2.11) 

The LIP model has been successfully used for different types of image processing algorithms 

like image enhancement, edge detection, and image restoration. In [22], LIP methods are used to 

enhance cervical smears for detection of cancerous cells, performing contrast enhancement and 

edge detection. In [2] and [23], LIP has been used for various image processing applications like 

noise removal, range control, and other methods for restoration and enhancement. LIP model has 

also been extended for color images and is used for the enhancement of transmitted medical 

images [24]. 
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2.3 The Parameterized Logarithmic Image Processing (PLIP) Model 

 

The LIP model however has some limitations as discussed in [10]. When two visually pleasing 

images are added together, the output image may not be visually pleasing. When linear 

arithmetic is used, added images are always brighter than the originals, which can result in 

images that are overall too bright. When classical LIP arithmetic is used, added images are 

always darker than the originals, which can result in images that are overall too dark. Ideally, 

added images will be representative of the originals in terms of overall brightness without 

unnaturally becoming too dark or too bright. Panetta et al demonstrated this problem in [10]. 

The parameterization of the LIP model was introduced by Panetta et al [10]. Each of the three 

operations addition, subtraction and multiplication are parameterized separately in this model. 

Measures of image enhancement [25] are utilized to judge performance along with mean-squared 

error measurements to determine the best parameters. This ensures that the PLIP operations 

should not visually damage an image.  The PLIP model can be summarized as: 

ὥṥὦ ὥ ὦ                                                              (2.12) 

 

ὥ ɡ ὦ Ὧὓ
 

                                                             (2.13) 

 

ὥṧὦ  • •ὥȢ•ὦ                                                       (2.14) 

 

•ὥ  ‗ὓȢὰὲρ                                                     (2.15) 

 

‰ ὥ  ‗ὓȢρ ÅØÐ                                              (2.16) 

 

Where ṥ is used as PLIP addition, Ū is used for PLIP subtraction and ṧ is used for PLIP 

multiplication. Also, ὥ and ὦ are the grey tone pixel values and ὓ is the maximum value of the 
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range, and  is a constant. ὓ , Ὧὓ , and ‗ὓ  are all arbitrary functions. We use the linear 

case, such that they are functions of the type ὓ   ὃὓ  ὄ, where ὃ and ὄ are integers, 

however any arbitrary function will work. It is to be noted that the PLIP equations revert to the 

classical case when ὃ ρȟ ρ ὥὲὨ ὄ πȢ Also the PLIP arithmetic satisfies the 

fundamental requirements of an image processing framework and introduces a fifth constraint; 

the framework must not damage either image; i.e. when a ñgoodò image is added to a ñgoodò 

image, the output must be a ñgoodò image. The parameters for PLIP can be selected using image 

enhancement measures [10] and the best values of ὃ and ὄ were experimentally determined to 

be any combination such that ὓȟὯὓȟὥὲὨ ‗ὓ   ρπςφ and the best value of  was 

determined to be   ς. 

PLIP operators were successfully utilized for image decomposition, image enhancement and 

edge detection. In this thesis PLIP operators have been extended to extract features from images. 

Specifically we have integrated PLIP operators with feature extraction by local binary patterns 

(LBP) and applied them towards face recognition.  
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CHAPTER 3 

HUMAN VISUAL SYSTEM  (HVS) BASED IMAGE DECOMPOSITION AND EDGE 

DETECTION  

 

The way in which a human observer sees an object largely depend on the background on which 

the object is located.  One of the very first image processing applications which incorporated this 

concept was edge detection. The classical edge detection algorithms like Sobel [26] [27], Roberts 

[28], Prewitt [29], Canny [30] [31] in general have two broad steps: gradient image calculation 

and thresholding. Most of the classical methods with the exception of canny choose a single 

global threshold for the entire image to detect the final edge map from the gradient image. If the 

value of the threshold is too high, the final edge map may have less useful information. On the 

other hand choosing a very low threshold may result in false edges in the edge map. The canny 

algorithm tries to solve the problem by performing an adaptive hysteresis thresholding with the 

choice of two thresholds. However the thresholds values are once again not dynamic and remain 

constant for the entire image. This poses a difficulty in edge detection on images that have 

varying illumination or shadows in them. Threshold selection is a very important step in image 

processing algorithms concerning segmentation, edge detection and image decomposition. A 

variety of techniques have been proposed in this regard [32] [33]. In an ideal case, the histogram 

has a deep and sharp valley between two peaks representing objects and background, 

respectively, so that the threshold can be chosen at the bottom of this valley. However, for most 

real pictures, it is often difficult to detect the valley bottom precisely, especially in such cases as 

when the valley is flat and broad, imbued with noise, or when the two peaks are extremely 

unequal in height, often producing no traceable valley. The well-known Otsu method for image 

segmentation chooses a threshold based on the image histogram so as to maximize the 
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separability of the resultant classes in gray levels. The choice of an appropriate threshold plays a 

very important role in edge detection algorithms. An incorrect threshold may result in loss of 

edges in the final edge map or may give rise to edges that are not in accord with the human 

visual perception. Ideally the threshold should be based on the local background and should 

adaptively change itself based on the background. In other words, the threshold selected should 

be dynamic and local [34] [35]. Probability models have been used in determining thresholds in 

the canny edge detection algorithm [36]. Methods have also been proposed for determining 

adaptive threshold based in the image histogram [37]. In this chapter weôll discuss adaptive 

thresholding that is based on the way a human observer views an object. Human visual system 

based thresholding results in an edge map that is more in accord with how human eye 

distinguishes objects from the background.  

3.1 Review of the Human Visual  Phenomenon 

The human visual system (HVS) [38] is responsible for transferring data into information 

received by the viewer. The manner in which human eyes respond to visual stimulus is extremely 

complex and non-linear [39]. The received information is characterized by attributes like 

brightness, edge information, color shades etc. Brightness is actually a psychological sensation 

associated with the amount of light stimulus entering the eye. Brightness perceived is not a 

simple function of the intensity. Due to the great adaptive ability of the eye, human eye cannot 

measure the absolute brightness rather it measures the relative brightness. The relative brightness 

is an observer's feeling of difference in the grayness between the objects. This phenomenon can 

be observed even in our day to day experience. In a very dark room, even the slightest glimpse of 

light ray can cause a visible sensation in the eye whereas in a well illuminated room, the same 

amount of light may remain unnoticed. In other words, on a dark surface, human eye will be able 
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to detect small changes whereas on a bright surface, the change has to be of a substantial amount 

for the human eye to detect it. Also the sensitivity of the human eye to additive white noise 

depends on the background. Eyes are more sensitive to random noise in smooth areas of an 

image than in busy areas with a lot of texture or details. This is the underlying principle which 

guides the visual sensation of the human eye.  The term contrast is used to emphasize the 

difference in luminance of objects [38] [40]. The perceived grayness of a surface depends on its 

local background and the perceived contrast remains constant if the ratios of contrasts between 

object and local background remain constant. The contrast ὅ refers to the ratio of difference in 

luminance of an object ὄ and its immediate surrounding ὄ.  Mathematically the contrast is 

given by, 

ὅ  
ȿ ȿ

 
Ў

                                                          (3.1) 

The visual increment threshold (or just noticeable difference) is defined as the amount of light 

Ўὄ  necessary to add to a visual field of intensity ὄ such that it can be discriminated from a 

reference field of the same intensity ὄ. At low light intensities, near absolute visual threshold, 

the luminance increment threshold is constant; then with increasing intensity, the threshold 

converges asymptotically to Weber behavior, i.e., Ўὄ  ὄ. This type of behavior is exhibited in 

brightness incremental threshold for white broad-band spectra and monochromatic narrow-band 

spectra [16]. 

The characteristic response of the human eye is presented in Figure 3.1. The characteristic curve 

is represented in the ὰέὫЎὄ ὺί ὰέὫὄ plane. The Weber behavior is generally expressed by the 

unit slope of the logarithmic curve [40]. The preceding region with slope 1/2 is known as the De 

Vries-Rose region. It has been shown that if the central visual processor behaves as an optimum 
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probabilistic detector, the incremental visual threshold follows the square root law, i.e. 

Ўὄ  Ѝὄ. However, in the actual case this rule is followed in a small restricted region. The 

dashed curve shows the deviation from the Weber's law. This represents the saturation region. 

Though this behavior is not quite commonly exhibited by the retinal cone, yet we can expect this 

type of behavior in some restricted cases. 

 

Figure 3.1: The Increment Threshold ЎἌἢ as a function of Reference Intensity B 

 

Hence it is evident that the variation of ὰέὫЎὄ  against ὰέὫὄ in the De Vries-Rose region is 

slower than that in the Weber region. Therefore the discrimination ability of the human eye in 

the De Vries-Rose region is greater than that in the Weber region [41] [42] [43]. The possible 

reason for this deterioration in discrimination ability can be attributed to inherent visual 

nonlinearity. 

To derive a mathematical model representing the inherent non-linearity of the human eye, we 

approximate the curve represented in Figure 3.1 by a piecewise linear curve as shown in Figure 

3.2.  
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Figure 3.2: Linear approximation of the Increment Threshold ἴἷἯЎἌἢ as a function of Reference 

Intensity ἴἷἯἌ 

 

The threshold values in the De Vries-Rose region, the Weber region and the saturation region are 

defined by the linear equations (3.2), (3.3) and (3.4) respectively [38] [44].  

ὰέὫЎὄ  zὰέὫὄὰέὫὑ                                                     (3.2) 

ὰέὫЎὄ ὰέὫὄὰέὫὑ                                                         (3.3) 

ὰέὫЎὄ ςz  ὰέὫὄὑ                                                         (3.4) 

Where ὑ, ὑ and ὑ are constants. 

Therefore, when the brightness value of an object is higher (or lower) than its surrounding or 

background or a reference intensity ὄ by an amount Ўὄ , it corresponds to a point on or above 

the curve (Figure 3.2) and the object will appear either brighter (or darker). 
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The demarcations between the various regions are not so sharp and distinct. But for the sake of 

simplicity it is assumed that the De Vries-Rose region extends from ὼ to ὼ, the Weber region 

extends from ὼ to ὼ and the saturation region extends beyond ὼ. The value of ὄ 

corresponding to ὰέὫὄ ὼ  is assumed to be ὄ  for Ὥ ρȟςȟσ. Therefore, 

ὼ  ὰέὫὄ  for Ὥ ρȟςȟσ                                                       (3.5) 

Let ὼ and ὄ be the maximum values of ὰέὫὄ and ὄ respectively. The value of the parameter ὄ 

which is the maximum difference in the image can be obtained by, 

" ÍÁØὢὼȟώ ῸÍÉÎ ὼὢȟὣ . The values of the ὼᴂί can then be expressed in terms of  ὼ 

as, 

ὼ  ὼ for Ὥ ρȟςȟσ                                                       (3.6) 

and  ὄ  ὄ for Ὥ ρȟςȟσ                                                  (3.7) 

where π    ρ,  π    ρ 

Since the slope of the Weber region is 1, the ratio 
Ў

 remains fairly constant over the entire 

Weber region with a value approximately equal to Ϸ έὪ 
Ў

. Hence from Equation 3.3 

we can determine the value of  ὑ as 

 ὑ  
Ў

 
Ў

                                                    (3.8) 

At point (ὼȟώ) on the graph, both Equations 3.2 and 3.3 are satisfied. Therefore the value of ὑ 

can be deduced as, 
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ὼ  ὰέὫὑ   ὼ  ὰέὫὑ Č  ὼ ÌÏÇ Č ὰέὫὄ ÌÏÇ Č ὑ  ὑ ὄ    (3.9) 

Similarly, at point (ὼȟώ) on the graph, both Equations 3.3 and 3.4 are satisfied. Therefore the 

value of ὑ can be deduced as, 

ὑ                                                                   (3.10) 

Hence the minimum values of the increment threshold for the different regions are given by, 

Ўὄ Ѝὄ
Ў

ὄ   in the De Vries-Rose region,  ὄ ὄ  ὄ            (3.11) 

Ўὄ ὄ
Ў

 in the Weber region, ὄ ὄ  ὄ                   (3.12) 

Ўὄ ὄ
Ў

  in the saturation region, ὄ  ὄ                      (3.13) 

Equations 3.11, 3.12 and 3.13 thus give the minimum visual increment thresholds that are 

required to distinguish an object from its immediate background. Hence for a pixel with 

intensity ὄ, we should have 

 either,      Ўὄ Ѝὄ
Ў

ὄ ,    when     ὄ ὄ  ὄ                (3.14a) 

or,      Ўὄ ὄ
Ў

    when     ὄ ὄ  ὄ                       (3.14b) 

 or,      Ўὄ  ὄ
Ў

    
,    when     ὄ ὄ                       (3.14c) 

where Ўὄ  ὄ ὄ 
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for the point ὄ to be treated as an edge pixel in the image. The gradient Ўὄ can be approximated 

by any of the edge detection algorithms. Thus HVS thresholding will decompose the image into 

four component images. These four component images can be subjected to any image processing 

algorithm and fused together to achieve better performance. The background intensity image B 

can be obtained by taking the local mean at each and every point in the image and is given by 

[11], 

ὄx,y=  pṧ
p

2
ṧВ Xi,jṥ Q ṧВ Xk,l

Q
' ṥX(x,y)ṧp               (3.14d) 

Here Bx,y represents the background intensity at each pixel and Xx,y is the input image. Q 

represents all the pixels that are directly left, right, up and down of the pixel and Qô is all of the 

pixels diagonally one pixel away. Also Ð and Ñ are constants. Let us assume that the input image 

is ὢὼȟώ and the gradient image is ὢᴂὼȟώ. Then the four HVS based sub-images are given by, 

Ὅάρ ὢὼȟώ Ὢέὶ     ὄ ὄὼȟώ  ὄ  Ǫ 
ȟ

ȟ
 ὑ                 (3.15a) 

Ὅάς ὢὼȟώ Ὢέὶ     ὄ ὄὼȟώ  ὄ  Ǫ 
ȟ

ȟ
 ὑ                  (3.15b) 

Ὅάσ ὢὼȟώ Ὢέὶ     ὄ ὄὼȟώ Ǫ 
ȟ

ȟ
 ὑ                         (3.15c) 

Ὅάτ ὢὼȟώ Ὢέὶ ὥὰὰ ὶὩάὥὭὲὭὲὫ ὴὭὼὩὰί                                 (3.15d) 

3.1.1 Image Decomposition based on HVS 

In this section we present the results of image decomposition by applying HVS based non-

linearity. Figure 3.3 shows a grayscale image having varying background intensities. According 

to Figure 3.2, the background image (which can be derived by taking the local background in 
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each and every point in the image) can be divided into four sub-images according to their 

intensities based on the HVS. Figure 3.4 shows the different background images in the different 

regions. In Figure 3.5 we show the ideas expressed in Equation 3.14 (a-c). The gradient of an 

image pixel (i.e. the difference between the pixel intensity with its immediate background) is 

now a function of the background intensity also. Hence four different sub-images are possible in 

the four regions according to the human visual response. 

 

Figure 3.3: Original Grayscale Image  

 

Figure 3.4: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region 
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Figure 3.5: HVS based Gradient in (a) Weber region (b) De Vries-Rose Region (c) Saturation 

region and (d) Dark region 

 

Figure 3.6: (a) Original Image, HVS based Images in (b) Weber Region (c) De Vries-Rose 

Region (d) and Saturation region, (e) Remaining image pixels (Other region) and (f) Result of 

arithmetic addition of (b), (c), (d) and (e) 
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We show the decomposition of an image into four sub-images according to the human visual 

non-linearity according to Equation 3.15 (a-d). Figure 3.6 shows the HVS based decomposition 

of an image and how the result after the four sub-images are fused together using arithmetic 

addition. 

3.1.2 HVS based edge detection 

In this section weôll show examples of edge detection based on HVS. The goal of HVS is to 

decompose the image into different regions based on background intensity and then apply a 

threshold that is based on the background intensity. Four different edge maps are obtained based 

on the background intensity. The edge maps are then fused to get the final HVS based edge map. 

Figure 3.6 and 3.7 shows the edge extraction examples using HVS based edge detection. 

 

Figure 3.6.1: Original Image  
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Figure 3.6.2: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region 

 

Figure 3.6.3: HVS based Gradient in (a) Weber region (b) De Vries-Rose Region (c) Saturation 

region and (d) Dark region 



28 
 

 

Figure 3.6.4: Edge map obtained by HVS  

 

 

Figure 3.7: (a) Original Images (b) Results of edge detection by HVS 
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3.2 Parameter Selection for HVS  

Two sets of parameters dictate the edge detection and image decomposition algorithms using 

HVS. The alpha parameter set determine the boundaries of the different regions in HVS 

decomposition. The parameter beta determines the vertical height of the visual increment 

threshold curve given in Figure 3.2. In this section of the thesis we will discuss the experimental 

results obtained by alpha and beta variation and their effect on the edge detection and image 

decomposition algorithms. Weôll present the effects of parameter variation on both synthetic and 

natural images. 

3.2.1 Alpha variation  

The alpha parameters determine the boundary of the different regions for HVS based image 

decomposition as it is evident from Equations 3.6 and 3.7. The Weber region is given the 

maximum weightage and hence this region is the largest compared to the other regions in the 

HVS based image decomposition. The typical values chosen for alpha parameters are: ρ πȢρ, 

ς πȢσ and ρ πȢω for edge detection and  ρ π, ς πȢρ and ρ πȢω for image 

decomposition. The selection of alpha values depends on the application itself and the values 

need to be adjusted depending on how much weightage needs to be placed on the individual 

regions. For example if an image has areas of shadows, the span of the De-Vries Rose region is 

increased. However, the Weber region gets the maximum weightage almost always. 

We present in this section the results of HVS based image decomposition for 2 sets of values of 

the alpha parameter for a constant value of the parameter beta. 
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Figure 3.8: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region for Ȣ, Ȣ and Ȣ 

 

Figure 3.9: HVS based background images in (a) Weber region (b) De Vries-Rose Region (c) 

Saturation region and (d) Dark region for ♪ Ȣ, ♪ Ȣ and ♪ Ȣ 
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In Figure 3.8, the majority of the information lies in the Weber region as the Weber region is the 

largest in this case. In Figure 3.9, the amount of information in the Weber region is much 

reduced due to the reduced weightage in this region. Figure 3.10 and 3.11 shows the edge map 

obtained corresponding to the alpha values in Figure 3.8 and 3.9. 

 

Figure 3.10: Edge map corresponding to Ȣ, Ȣ and Ȣ 

 

Figure 3.11: Edge map corresponding to ♪ Ȣ, ♪ Ȣ and ♪ Ȣ 

 

Figure 3.11 has lost some edge information in the saturation region, whereas the edges 

corresponding to the other regions remain unaffected. HVS based thresholding is based on the 

underlying principle that the visual increment threshold increases with the increase of the 

background intensity and the rate of change depends on the region in which the background 
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intensity belongs. The rate of change is the highest in the saturation region followed by the 

Weber, De-Vries Rose and the dark regions. Hence alpha variation has less effect on edge 

detection by HVS. Experimentally it has been found that giving the maximum weightage to the 

Weber region yields best results. 

3.2.2 Beta variation 

Beta is the thresholding parameter for HVS based image processing algorithms. We recollect the 

equations (3.2), (3.3) and (3.4) here and see that each of the equations is in the form of the linear 

equation ώ άὼ ὧ, where ά is the slope and ὧ is the intercept. The constants ὑ, ὑ and ὑ 

determine the magnitude of the positive intercept. If the intercept is positive, then increasing its 

value shifts the straight line up. The constants ὑ, ὑ and ὑ are derived from the parameter beta 

and hence if beta is increased, the visual increment threshold curve moves in the direction of 

positive y-axis thereby increasing the threshold for HVS decomposition.  

Effect of beta variation for edge detection 

The choice of the parameter beta plays a very important role in edge detection by HVS. A very 

low value of beta may result in false edges appearing in the edge map. Increasing the value of 

beta to a great extent may result in loss of edges. The value of beta also depends on the choice of 

the image.  The effect of beta variation is illustrated below. We fix the alpha parameter values at 

ρ πȢρ, ς πȢσ and ρ πȢω giving the maximum weightage to the Weber region. 
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Figure 3.12: Effect of beta variation on edge map 

 

From figure 3.12 we can see that as the value of beta increases, there is loss of edge in the high 

intensity regions because as the background intensity increases, the rate of change of threshold 

also increases. Thus we see that synthetic images need a very low value of beta.  

 

Figure 3.13: Effect of beta variation on edge map 



34 
 

The effect of change of beta is also noticed in the image of ñLenaò. At low values of beta, false 

edges appear in the images. A value of .02 for the parameter gives the best edge map in this case. 

As the value of beta is increased further, edges are lost. Thus for natural images the value of beta 

should be kept at mid-range (0.01 ï 0.06). 

Effect of beta variation for image decomposition 

In this section we analyze the effect of beta variation on image decomposition. From equation 

3.15 (a) through (d), it is evident that the images in the four HVS decomposed regions are 

complementary and the original image can be retrieved by adding the four regions together. The 

Weber, De-Vries Rose and Saturation regions represent areas in the image when the gradient 

magnitude is perceivable by the human eye. These regions collectively represent the high 

frequency regions in an image. The fourth region or the ñOtherò region represents the low 

frequency region where the gradient magnitude remains constant according to the human eye. 

The thresholding parameter beta controls the amount of information to be placed in the Other 

region as compared to the information to be placed on the high frequency regions. A low value 

of beta place less information in the Other region whereas a high value places more information 

in the Other region compared to the Weber, De-Vries Rose and Saturation regions. This is useful 

when we are using the Other region alone in certain applications. Weôll fix the alpha parameter 

values at ρ πȢρ, ς πȢσ and ρ πȢω and show the effect of changing the values of the 

parameter beta. Weôll select three value of beta; a value equal to 0.002 in the low range; 0.02 in 

the mid-range; and 0.2 in the high-range. 
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Figure 3.14: HVS decomposed images in (a) Weber Region (b) De-Vries Rose Region (c) 

Saturation region and (d) Other region for beta = 0.002. 

 

Figure 3.15: HVS decomposed images in (a) Weber Region (b) De-Vries Rose Region (c) 

Saturation region and (d) Other region for beta = 0.02. 
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Figure 3.15: HVS decomposed images in (a) Weber Region (b) De-Vries Rose Region (c) 

Saturation region and (d) Other region for beta = 0.2. 

 

Range of beta Typical Values Applications 

Low 0.001 ï 0.005 Edge detection in synthetic images 

Medium 0.02 ï 0.06 

Edge detection in natural images, edge based 

feature extraction from natural images and 

other applications involving the gradient 

image. 

High 0.2-0.4 

Amount of gradient information to be retained 

is really low. Not used much  

Table 3.1: Summary of beta values 

Table 3.1 summarizes the typical values of beta for different applications. 
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CHAPTER 4 

REVIEW OF FEATURE EXTRACTION FROM IMAGES  

 

Computer vision techniques are widely used nowadays to address real world problems that 

involve processing of voluminous image data requiring massive computing efforts and high level 

of processing accuracy. Such requirements are addressed using sophisticated form of image 

processing applications. Computer vision systems are applied to solve complex object 

recognition and classification problems in medical and security applications. For example, object 

recognition techniques are used in medical applications for breast and prostate cancer detection. 

Such applications use MRI scan images of the patients and assist the medical team to identify the 

presence of tumors. A medical tumor classification system provides useful information about the 

tumorôs nature, malignity etc. and help the medical team to plan effective diagnosis procedures. 

In security and automatic surveillance systems computer vision techniques are widely used to 

identify threat objects like guns or other weapons from scanned images. Face detection and 

recognition systems are heavily based on the computer vision techniques. Detecting eyes from 

facial images is another application where these techniques are applied. It has been found that a 

majority of car accidents are caused by driver fatigue. Hence automated systems have been 

developed that can track the eyes of the driver in subsequent frames of images and warn the 

driver in case the eyes remain closed for a subsequent amount of time. Pedestrian detection for 

security surveillance is also based on computer vision techniques. All these methods are 

fundamentally based on training the system based on the application and then characterize a new 

object based on the training set.  Ideally the raw image can be used to train the system. However 

considering the typical size of a two dimensional or three dimensional images, this would result 

in a huge volume of data that would render the system impractical for real time applications. 
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Hence suitable object characterization techniques are used widely to reduce the parameters 

needed to characterize an object. 

In computer vision applications, feature extraction is used widely as a method of object 

characterization. A human observer can easily identify and classify objects in an image from his 

experience and past knowledge gathered over the years. For example a human observer can 

easily identify a face in an image even under the influence of shadow or partial occlusion. 

However the task becomes extremely challenging for an automated computer vision application. 

Hence objects are generally represented as a vector of numerical features called the feature 

vector. Each of the values in the vector is called a feature and describes a specific aspect of the 

object. For instance, a feature may describe an objectôs physical properties like area, perimeter, 

volume, surface areas and so on. The primary goal behind this object representation technique is 

to reduce the dimensionality of the problem by generating a compressed object representation 

that will result in less processing efforts and memory requirements. The efficiency of the 

classification process is controlled by the quality of the feature vectors. Several feature vector 

methods are available to address recognition and classification problem. Feature vectors can be 

based on the binary edge map, gradient image or simply the intensity values in the image. It has 

been found that the selection of feature vectors used also depend widely on the application in 

which they are used.  

Object detection and recognition systems often fuse more than one feature vector algorithms for 

efficient detection and recognition. In this chapter will discuss some of the state of the art feature 

vector extraction algorithms. 

 



39 
 

4.1 The Cell Edge Distribution (CED) 

The Cell Edge Distribution (CED) [45] [46] [47] [48] [49] is method of edge based feature 

extraction from an image. The image is first subjected to edge detection for extracting edge maps 

in the horizontal, vertical, diagonal and anti-diagonal directions. Here we have used HVS for 

obtaining the directional edge maps. In the next step each edge map is divided in 16 equal 

rectangular or square cells of equal size depending on the size of the image. Feature maps are 

generated by counting the number of edge pixels per cell. Thus each directional edge map 

generates a vector of sixteen feature values. The feature maps generated in the horizontal, 

vertical, diagonal and anti-diagonal directions are concatenated together to formulate a 64 bit 

feature vector.  

The CED method of feature extraction consists of the following steps: 

1. Get the input image in grayscale 

2. Apply directional kernels for extracting gradients in the horizontal, vertical, diagonal and 

anti-diagonal directions 

3. Threshold the 4 gradient images for extracting the 4 directional edge maps using HVS 

4. Divide each of the edge maps into 16 cells 

Cell1 Cell2 Cell3 Cell4 

Cell5 Cell6 Cell7 Cell8 

Cell9 Cell10 Cell11 Cell12 

Cell13 Cell14 Cell15 Cell16 
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5. Count the edge flags in each of the cells. Thus each of the edge maps will give rise to a 

16 element feature vector.  

6. Fuse the four 16-element feature vectors to get the final feature vector consisting of 64 

elements.  

The size of the directional gradients can be chosen based on application. Typically 3X3 or 5X5 

kernels are used. Threshold can be chosen to global or local. Human Visual System based 

thresholding has been applied for our experiments. The CED method for feature extraction is 

easy to implement and works well for security applications for gun or liquid bottle detection. 

This has also been for face detection by fusion of CED with other feature vectors like the 

Principal Projected Edge Distribution (PPED) described in the next section of this chapter.  

 

Figure 4.1: Schematic Diagram of the CED feature extraction algorithm 
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Figure 4.2.1: Original example image  

 

Figure 4.2.2: CED feature vector extracted from image in Figure 4.2.1. Edge maps obtained by 

HVS edge detection 
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4.2 The Principal Projected Edge Distribution (PPED) 

The principal projected edge distribution (PPED) [45] [46] [49] [50] is another approach towards 

edge based feature extraction in images. PPED feature vectors are often fused with the CED 

feature vectors for object characterization. They combined feature vector has been used for face 

extraction from images. Like the CED feature vector, PPED also starts by extracting the 

directional edge maps based on HVS from the images. Once again human visual system based 

thresholding is used for obtaining the edge maps. However in this case the feature maps are 

divided in the same direction as that of the edge. The horizontal edge map, for example, is cut 

along the rows; the vertical edge map is cut along the columns and so on. The edge flags in the 

cells are then collected from the projected divisions and concatenated as before to get the final 64 

element feature vector. 

The Mojette transform [51] is a discrete version of the Radon transform which gives projections 

of an image along different orientations. A projection image defines the image nature at a 

specific angle. A projection oriented at an angle — for an image Ὢ is given by, 

ὴὶέὮȟ ὦ  В В ὪὯȟὰЎὦ Ὧή ὰὴ                           (4.1) 

where — is related to ὴ and ή by  —  ÔÁÎ  and Ўὦ is the Kronecker delta function 

which is 1 for ὦ ρ and 0 otherwise. A projection sums the pixel value of pixels which cross the 

line ὦ ὰὴ  Ὧή for every combination of Ὧ and ὰ. The Mojette transform is the set of 

projections for Ὅ predetermined projection angles. PPED feature extraction is essentially the 

Mojette transform with ὴȟή  ρȟπ for a horizontal edge map, ὴȟή  πȟρ for a vertical 

edge map, ὴȟή  ρȟρ for a +45 degree edge map, and ὴȟή  ρȟρ for a -45 degree 
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edge map, except that PPED feature extraction counts the number of edge pixels in some specific 

number (depending on the size of the image) of rows along the orientation direction of an edge 

map rather than every row along the orientation direction of an edge map. 

The steps involved in the PPED feature vector extraction algorithm can be summarized as 

follows: 

1. Get the input image in grayscale 

2. Apply directional kernels for extracting gradients in the horizontal, vertical, diagonal and 

anti-diagonal directions 

3. Threshold the 4 gradient images using HVS for extracting the 4 directional edge maps  

4. Divide the image depending on the edge orientation 

5. Count the number of edge flags in each division to generate the feature vectors from the 

individual edge maps. 

6. Concatenate the feature vectors generated in step 5 to get the combined PPED feature 

vector. 

The PPED feature vector extraction algorithm however restricts the input image to be a square 

image. 
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Figure 4.3: Schematic Diagram of the PPED feature extraction algorithm 

 

Figure 4.4: PPED feature vector extracted from image in Figure 4.2.1. Edge maps obtained by 

HVS 

 


















































































































































































