
Prioritized Garbage Collection:
Explicit GC Support for Software Caches

Diogenes Nunez
Tufts University, USA
dan@cs.tufts.edu

Samuel Z. Guyer
Tufts University, USA
sguyer@cs.tufts.edu

Emery D. Berger
University of Massachusetts

Amherst, USA
emery@cs.umass.edu

Abstract
Programmers routinely trade space for time to increase per-
formance, often in the form of caching or memoization. In
managed languages like Java or JavaScript, however, this
space-time tradeoff is complex. Using more space translates
into higher garbage collection costs, especially at the limit of
available memory. Existing runtime systems provide limited
support for space-sensitive algorithms, forcing programmers
into difficult and often brittle choices about provisioning.

This paper presents prioritized garbage collection, a co-
operative programming language and runtime solution to
this problem. Prioritized GC provides an interface similar to
soft references, called priority references, which identify ob-
jects that the collector can reclaim eagerly if necessary. The
key difference is an API for defining the policy that governs
when priority references are cleared and in what order. Ap-
plication code specifies a priority value for each reference
and a target memory bound. The collector reclaims refer-
ences, lowest priority first, until the total memory footprint
of the cache fits within the bound. We use this API to imple-
ment a space-aware least-recently-used (LRU) cache, called
a Sache, that is a drop-in replacement for existing caches,
such as Google’s Guava library. The garbage collector auto-
matically grows and shrinks the Sache in response to avail-
able memory and workload with minimal provisioning in-
formation from the programmer. Using a Sache, it is almost
impossible for an application to experience a memory leak,
memory pressure, or an out-of-memory crash caused by soft-
ware caching.

1. Introduction
Software caching and garbage collection (GC) do not play
well together. The problem is that they embody conflict-
ing goals and tradeoffs. Caching aims to achieve the high-
est hit rate given a particular storage budget: the larger the
cache, the higher the hit rate. Unfortunately, most widely-
used garbage collection algorithms have a cost proportional
to live memory [10]. In this setting, the benefits of a larger
cache are less clear because improvements in hit rate are off-
set, to some degree, by additional GC costs. The penalty can
become particularly high if the cache starts competing with
the rest of the program for resources, increasing memory
pressure and GC overhead.

Figure 1 shows how the performance of a cache changes
as we vary the number of entries while keeping the over-
all heap size fixed. This benchmark uses Google’s Guava
caching library configured with a least-recently-used (LRU)
eviction policy. We measured the time it takes (Y-axis) to
serve a predefined sequence of requests under each cache
configuration (X-axis). Looking from left to right, the two
opposing trends are clearly visible. Larger caches have

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

T
im

e
 (

s
)

Number of cache entries

Total time
Mutator time

GC time

Figure 1: Competing tradeoffs: as cache size increases, miss
time goes down, but GC time goes up.

higher hit rates, incuring fewer misses and lowering mu-
tator time. At the same time, though, larger caches increase
GC time. At the far right, the cache occupies almost all of
available memory, increasing not only the per-GC cost, but
also the frequency of collection, causing GC time to domi-
nate total time. At the limit, the program runs out of memory
and crashes. Unbounded growth of caches (and related struc-
tures, such as indexes) is a primary cause of memory leaks
and performance problems in Java [14, 20].

The scenario above is a simple and controlled experi-
ment – real applications have much more complex behavior,
including multiple caches, possibly with different eviction
policies, different memory footprints, and different patterns
of locality, as well as significant non-cache data structures.
Getting the most out the available memory resources without
triggering memory pressure poses a significant challenge.

Existing runtime systems provide some mechanisms to
support memory-sensitive data structures, but they are sorely
lacking in ways to configure and control the policies that
govern these mechanisms. As an example, the Java runtime
provides soft references, which the garbage collector can
clear at its discretion to avoid running out of memory. A
common programming strategy is to store each cache entry
in a soft reference, allowing the collector to reclaim individ-
ual entries if necessary. The application, however, has little
or no control over when this process is triggered, or over
which soft references are cleared and in what order. Some
Java Virtual Machines (JVMs), such as HotSpot, use LRU-
like policies that are clearly designed for caches, but are too
coarse for complex applications where a single global policy
is not appropriate. In Section 2 we describe this problem in
more detail, and in Section 4 we show its effect on hit rate.

Not surprisingly, soft references are widely shunned. In
fact, the official documentation for the Android runtime li-
brary explicitly warns against using them for caches [11]:
“In practice, soft references are inefficient for caching. The
runtime doesn’t have enough information on which refer-
ences to clear and which to keep. Most fatally, it doesn’t
know what to do when given the choice between clearing a
soft reference and growing the heap. The lack of information
on the value to your application of each reference limits the
usefulness of soft references. References that are cleared too
early cause unnecessary work; those that are cleared too late
waste memory.” In Section 2 we present detailed empirical
measurements showing that these are real problems.

This paper presents prioritized garbage collection, an au-
tomatic memory management system designed to address
the deficiencies outlined above by providing explicit support
for software caches and other space-sensitive data structures.
The key idea is to enable better cooperation between the ap-
plication and the garbage collector. In our system, the col-
lector provides the mechanisms for measuring and enforc-
ing memory usage, while the application dictates the policies

that drive these mechanisms. The application and the collec-
tor cooperate through a simple API that is designed around
a new kind of reference object we call a PrioReference

(short for “priority reference”). It resembles a soft reference,
except that the application can specify both the global policy
(when to trigger eviction and how much memory to reclaim)
and the local policy (which priority references to clear and in
what order). Our paper makes the following contributions:

1. We quantify the performance problems of existing cache
implementations by driving them with a range of work-
loads across a range of sizes. Not surprisingly, choosing
a fixed cache size, particularly in terms of number of en-
tries, is brittle. We also demonstrate the limitations of soft
references as a mechanism for implementing these data
structures.

2. We present a new reference type called PrioReference

that allows application code to communicate the relative
value of not reclaiming its referent object (and transi-
tively, reachable objects). PrioReferences are grouped
into PrioSpaces, which specify the details of the total
memory limit and eviction policy for each group. A com-
mon configuration is one PrioSpace for each cache, but
the mapping is up to the application to decide.

3. We describe the design and implementation of a garbage
collector that enforces these policies. The key mechanism
is a modified closure phase that visits PrioReferences
in order from highest to lowest priority, stopping when
the target space bound is reached. Unmarked references
are implicitly evicted, and are reclaimed immediately by
the sweeper without touching them.

4. We present a space-sensitive cache, which we call a
Sache, built on our new API. The Sache supports LRU
and GreedyDual [5] eviction policies by changing the
way it computes the reference priorities. Our system al-
lows the user to set the target memory footprint in terms
of available memory, so the Sache expands and contracts
automatically to avoid memory pressure.

5. We report performance results obtained by driving a key-
value store with a range of workloads. We use representa-
tive workloads to systematically explore the performance
space and quantify the problems. We compare our cache
to Google’s Guava caching library on web traffic traces.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the problem in more detail and explores the
space of interactions between caches and garbage collection.
Section 3 describes the design and implementation of our
garbage collector mechanisms and the Sache data structure.
Section 4 presents Sache performance results and compares
them to traditional caches. Finally, Sections 5 and 6 review
related work and conclude.

2. Problem
It is not easy to implement software caching in a garbage
collected language. One reason is that cache performance is
governed by a space-time tradeoff that is in direct opposition
to the tradeoff in garbage collection. Another reason is that
garbage collected languages provide poor support for imple-
menting any algorithm or data structure that is inherently
space sensitive. In this section, we discuss these issues in
detail, and present measurements that illustrate the problem.

The results below are obtained using JikesRVM version
3.1.2 [12]. While our benchmarks can run on any JVM, we
use JikesRVM for these experiments both because it can re-
port many detailed measurements, and because it allows di-
rect comparison with our new algorithm, which we imple-
mented in JikesRVM. Section 4 contains a detailed descrip-
tion of the experimental setup and methodology.

2.1 Existing cache implementations
Google’s Guava library is a widely-used infrastructure for
implementing software caches. It implements a simple
get/put interface for keys and values, and offers a variety
of eviction policies to manage the capacity of the cache.
Even with this library, however, there are several significant
challenges to obtaining good cache performance:
Choosing a cache size is difficult. The most straightforward
eviction trigger is capacity-based: the programmer chooses
the maximum number of entries (key-value pairs) that the
cache will hold. When the cache grows beyond this limit, it
evicts entries in least-recently-used order.

The challenge of this policy is how to choose a good size:
too small and the cache will underperform; too large and
the program will slow significantly or crash due to memory
pressure. In many cases, the cached values vary widely in
size, so the same set of entries could account for wildly
varying quantities of data.

One potential solution is to measure representative work-
loads during testing and configure the cache accordingly
(e.g., by assuming an average size key and value). Unfor-
tunately, this approach is brittle: unless the workload is ex-
tremely uniform and predictable, the number of entries is
not a reliable predictor of the memory footprint of the cache.
If actual workloads in deployment differ substantially, then
performance will suffer.
There is no easy way to measure memory footprint. To
handle these cases, Guava can manage cache capacity in
terms of an application-specific “weight”. The programmer
implements a weigh() method that can compute a weight
value for any entry. The weight method could, for example,
count the number elements in a container. Entries are evicted
in LRU order to keep the total weight under the limit. Exam-
ple code is shown in Figure 2.

Implementing an accurate weighing method, however, is
not always easy. Ideally, we would like to know the exact
size (in bytes) of each cached value. In the case of simple

Cache <Key , Graph > graphs = CacheBuilder.newBuilder ()
.maximumWeight (100000)
.weigher(new Weigher <Key , Graph >() {

public int weigh(Key k, Graph g) {
return g.vertices ().size();

}
}).build(

new CacheLoader <Key , Graph >() {
public Graph load(Key key) {

return createExpensiveGraph(key);
} });

Figure 2: Guava cache that stores graphs and uses a weighing
function to represent their size.

structures, such as strings, an accurate size is easy to com-
pute. Measuring the size of complex data structures is more
difficult. One problem is encapsulation: it might not be pos-
sible to access the hidden implementation of a class. Another
problem is structure sharing: when measured independently,
the shared substructures could be counted multiple times,
distorting the total weight.

One alternative is to explicitly measure the size of a data
structure at runtime using reflection. This is the approach
taken by JAMM, which is based on the JVM Tool Inter-
face [3]. While accurate, its cost is so high that it is not prac-
tical for use in production settings. For example, measuring
a data structure with 1 million objects can take 5 seconds of
wall clock time, and causes the benchmark to run over 100×
slower than the approach we propose here.
Eviction doesn’t work. The purpose of eviction is to control
cache memory use by freeing low-value entries. In a garbage
collected language, however, eviction does not achieve this
goal. The cache can remove entries and null out all refer-
ences to them, but the memory is not actually reclaimed un-
til a garbage collection occurs. Guava attempts to address
this problem by performing eviction lazily, but we have ob-
served cases where eviction actually makes memory pres-
sure worse. If the cache misses on a recently-evicted en-
try, then it will create a new one, resulting in two copies
in memory at the same time. A secondary effect, which we
show at the end of this section, is an increase in the alloca-
tion rate. One of our observations is that it only makes sense
to do eviction at collection time, when memory is actually
reclaimed.
Soft references don’t do the right thing. Recognizing that
caches can be a source of memory pressure, Guava also
offers the option of storing entries in soft references. The
Guava documentation claims that soft references are re-
claimed in LRU order when memory is tight. While this
policy is not required by the Java standard, we found that
Oracle’s HotSpot JVM does implement such a strategy [17].
It has two serious limitations, however: first, the policy is
hard-wired to LRU, and second, the LRU ordering is global
for all soft references. Large Java programs, such as web
applications, can have multiple caches, and the global LRU

key_8 179074

key_12 180434

key_1 150999

key_188 126021

key_2 154588

key_28 119220

...

Figure 3: Example trace file. The number associated with
each key determines the size of the data structure that is
stored as the value.

order is particularly problematic if these caches are accessed
with different frequencies. Entries in a less-frequently used
cache all wind up at the end of the LRU queue, resulting in
the entire cache being dumped. Figure 11(a) illustrated this
effect: the bigger the differences between the caches, the
worse the impact of the soft reference policy.

2.2 Exploring cache-GC interaction
To study these problems in detail, we implemented a simple
key-value store in Java that we can drive with a range of
workloads and under a range of conditions. Our goal is
to isolate cache performance and its interaction with the
garbage collector. In the context of a larger application, these
effects might be hard to separate from unrelated program
behavior.
Trace files. The input to the driver is a trace file that spec-
ifies the workload as a sequence of key-value requests. The
keys are just names, but the values represent data structures
of varying sizes. The goal is to model caching of data that
has a non-trivial structure (as opposed to strings, for exam-
ple). Real-world examples might include a parsed XML doc-
ument in tree form, or memoized computations in an opti-
mizing compiler. The trace file itself just specifies the size
of each tree in number of nodes. Figure 3 shows an example
fragment of a trace file.

We generate each trace file according to a set of parame-
ters: (1) number of unique keys, (2) minimum and maximum
sizes of the values, (3) the distribution of value sizes, (4) the
number of key requests (trace length), and (5) the temporal
distribution of keys in the trace.

The set of unique key/value pairs is generated by choos-
ing value sizes at random from a Pareto distribution. Many
kinds of workloads, including web requests and file ac-
cesses, have been found to follow this kind of power law
distribution [2, 7, 15]. The sequence of key requests is also
drawn from a Pareto distribution, which governs the tem-
poral locality of the trace. Here, higher alpha values create
more locality, and lower values spread out the distribution
more evenly. We use an alpha value of 0.1, which is on the
low end and requires caches to be larger to achieve a high hit
rate. The traces range in length from 10,000 to 50,000 key
requests, with 2000 to 5000 unique keys.

Execution. Our driver initializes the cache, reads the trace
and sends the cache a sequence of get and put operations.
Its behavior is configured using several parameters: (1) size
of the cache (number of entries for Guava), (2) the max heap
size, and (3) the cost of a miss. The miss cost models the time
to fetch data from a remote source or recompute it, which
is proportional to the size of the resulting data. In these
experiments the miss cost only represents the time it would
take to transmit the data over a 10MB/s network connection.
Higher miss costs (for example, modeling a more expensive
computation or a database query) would only exaggerate the
shape of our graphs. The trace is processed as follows:

1. For each key in the trace, call Cache.get(K).

2. If it misses, the driver uses the value number in the
trace file to construct a tree of the given size. It delays
execution for a time proportional to the size of the tree
and the miss cost. It then stores the key and value (tree)
in the cache using Cache.put(K,V).

3. If it hits, the cache returns the associated tree data struc-
ture. The driver performs a modest computation on the
tree that visits all the nodes.

Measurements. We record several measurements for each
complete run of a trace file:

• Total time, mutator time, and GC time (with GC time
broken down into sub-categories).

• Hit and miss rate, as well as time spent servicing misses
• Number of garbage collections
• Total memory allocation

2.3 Guava performance
The three graphs in Figure 4 are typical of the performance
we see for a traditional cache implementation. For these
experiments, we vary the capacity of the cache from 100 to
1000 entries (the X axis) and measure the time to process the
entire trace (Y axis). The heap size is fixed at 115MB. We
show mutator (application) time, GC time, and total time.
The three graphs differ in the sizes (in bytes) of the cached
values, which affects both the memory footprint of the cache
and the cost of a cache miss:

• Figure 4(a) shows the performance on a trace with small-
sized values (10K to 50K bytes). In this case, the total
time continues to drop all the way out to 1000 entries,
suggesting that the cache could probably accommodate
more before incurring a memory cost.

• Figure 4(b) shows the same graph for medium-sized
value (50K to 100K bytes). It exhibits the typical “bowl”
shape for the total time, which is explained by the oppos-
ing curves of the miss cost (going down) and GC time
(going up). Miss costs are accounted for in the mutator
time. GC costs at the right edge go up steeply because

(a) Workload of small values (10K-50K)

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

T
im

e
 (

s
)

Number of cache entries

Total
Mutator

GC

(b) Workload of medium values (50K-100K)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000

T
im

e
 (

s
)

Number of cache entries

Total
Mutator

GC

(c) Workload of large values (100K-200K)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

T
im

e
 (

s
)

Number of cache entries

Total
Mutator

GC

Figure 4: Guava performance under three workloads: choos-
ing a good number of entries is difficult.

the cache is approaching the maximum heap size and
causing memory pressure.

• Figure 4(c) shows the results for larger values (100K to
200K bytes). Under this workload, only a narrow range
of cache sizes is usable. Too few and the miss costs are
huge; too large and the cache runs out of memory.

Looking at other metrics provides futher insight into this
behavior. At the left of the graph (when the number of
entries is small) several factors are hurting performance.
First, the number of misses is higher, incurring the cost of
“fetching” (rebuilding) the value. Second, evictions are more
frequent, filling up memory with garbage. Third, rebuilding
the values increases total allocation costs. Figure 5 plots
the total amount of allocation for a run of the trace under
different cache sizes. The smaller sizes cause a significantly
higher allocation rate.

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000

A
llo

c
a
ti
o
n
 (

M
B

)

Number of cache entries

Guava allocation

Figure 5: Undersizing a cache (left side) incurs the cost of
more misses as well as the cost of increased allocation.

These results suggest that bounding a cache unnecessarily
when more memory is available can lead to performance
degradations that are nearly as great as having a cache that is
too large. In fact, we conclude that it does not make sense to
evict entries at all if there is sufficient memory to hold them.

3. Prioritized Garbage Collection
In this section, we introduce new runtime support for soft-
ware caches and other space-sensitive data structures. The
primary goal is to provide an effective mechanism for imple-
menting eviction policies that take into account both mem-
ory utilization (which only the garbage collector knows) and
the relative value of cache entries (which only the applica-
tion knows).

3.1 API
Prioritized garbage collection is a cooperative technique,
so the central feature of our system is an API that allows
application code to communicate directly with the garbage

collector. Our API is modeled after Java reference objects,
which already play a similar role. Each reference object
points to a single target referent, and the particular type of
reference object chosen tells the collector how to treat the
referent – typically, it specifies when the referent can be
reclaimed even if it is still reachable. For example, the Java
garbage collector will clear a WeakReference to an object
when there are no other ordinary (strong) references to it.
Since the application is not aware of when collection occurs,
it discovers that a reference has been cleared only when it
attempts to get the referent and the result is null.

3.1.1 PrioReference

class PrioReference <T> extends
java.lang.ref.Reference <T>

{
// -- Constructor: the new reference belongs
// to the given space
PrioReference(T obj , PrioSpace <? super T> space);

// -- Get the referent
public T get();

// -- Get and set the priority
void setPriority(int new_prio);
int getPriority ();

// -- Inquire about the memory footprint
bool hasGCSize ();
int getGCSize ();

}

Figure 6: A priority reference holds a single referent with
a given priority. The application can also inquire about the
total amount of memory reachable through this reference.

Following this model, a priority reference is a new ref-
erence type that may be cleared by the collector in or-
der to bound memory use, but only after all other ref-
erences of lower priority have already been cleared. The
PrioReference class definition is shown in Figure 6. Each
PrioReference has a priority value, which is simply an in-
teger – higher values represent higher priorities. The appli-
cation is free to choose and change this value in any way. In
our cache implementation (below), for example, each cached
value is held in a PrioReference, and we implement LRU
eviction by ensuring that the most recently hit entry has the
highest priority.

The getGCSize() method allows the application to find
out the total memory footprint of all objects reachable only
through this reference. Ordinarily, this information is diffi-
cult or inefficient to compute, but our collector computes it
as part of its normal marking phase, incurring little over-
head. It needs to know this information in order to deter-
mine whether the size bound has been exceeded, so we opt to
make it available to the application as well. The only caveat
is that it is only computed at GC time, and so it is not guaran-
teed to be fresh or even computed at all. The hasGCSize()
method asks whether or not the collector has computed the

size. Once getGCSize() is called, the flag is reset until the
next collection.

In Section 3.3, we describe the details of how size infor-
mation is computed and used in the collection algorithm.

3.1.2 PrioSpace
In order to support multiple independent caches, priority ref-
erences are grouped into priority spaces, each with its own
memory bound. The PrioSpace class definition is shown in
Figure 7. PrioSpaces are not spaces in the memory man-
agement sense, but rather a collection of references that are
considered together. The collector considers each priority
space separately, evicting the lowest priority references until
the total memory footprint reachable from the remaining ref-
erences is smaller than the target bound. At the lowest level,
this bound is expressed in bytes, but our API also allows it
to specified as a fraction of total memory or as a fraction
of available memory, which can change dynamically as the
program runs.

In a typical configuration, each cache would be managed
in its own PrioSpace, but this one-to-one mapping is not
required. For example, we can emulate SoftReferences by
placing all PrioReferences in one PrioSpace and asso-
ciating the priority of a reference with when the program last
uses a reference.

3.2 Measuring Memory Footprint
The job of our collector is to bound the total memory foot-
print of each priority space by keeping as many high-priority
entries as will fit in the available space, and freeing the rest.
In order to do this job the collector must be able to accu-
rately measure the memory footprint of each entry, as well as
its contribution to the total memory footprint of the priority
space. There are several factors that complicate this compu-
tation. First, entries may consist of complex, pointer-based
data structures, so it is not sufficient to measure only the
size of the object directly pointed to by the priority refer-
ence. Second, we need to properly handle shared structures

class PrioSpace <T>
{

// -- Create a priority space with a specific
// target size in bytes
PrioSpace(int bound);

// -- Create an adaptive size priority space
// expressed in terms of percentage of the heap ,
// either as fraction used or a fraction free.
PrioSpace(float fraction , bool used_or_free);

// -- Get the actual memory footprint of the whole
// space after GC
bool hasGCSize ();
int getGCSize ();

}

Figure 7: A priority space holds a set of priority references
and governs their lifetime collectively under single policy.

to avoid counting them multiple times. Third, we need to
account for fragmentation to make sure that the sum of the
sizes properly reflects the actual fraction of total memory
used.

3.2.1 Fragmentation
Many kinds of memory allocators can suffer from fragmen-
tation, in which small chunks of memory become unusable,
taking away from the total available. Fragmentation is a con-
cern for our algorithm because it could cause us to underesti-
mate the total memory cost of a set of objects. Traditionally,
fragmentation is divided into two categories: internal and
external [19]. Our algorithm can easily account for internal
fragmentation, but external fragmentation is more complex,
as discussed below. In general, though, fragmentation has
not been found to be a major problem for dynamic memory
management [13].

Internal fragmentation is created when the allocator re-
serves more memory than is requested for an object in order
to comply with alignment, padding, or size restrictions. For
example, our current implementation uses a free list alloca-
tor with fixed size classes, so all small objects must be al-
located into one of the 51 possible size denominations. Ob-
jects that do no fit perfectly are allocated in the next size
up, leaving some number of bytes unused. Luckily, internal
fragmentation is easy to account for: whenever the algorithm
needs the size of an object, denoted size(o) in this section,
we use the allocated size, which includes unused padding, if
any.

External fragmentation is created when sequences of allo-
cations and deallocations leave unused memory in between
objects. Unlike internal fragmentation, our algorithm cannot
directly account for external fragmentation because it can-
not determine if a given unused fragment should be charged
to any particular priority space (or none at all). As a result,
our algorithm views all free space as available for non-cache
objects, potentially reducing the usable free space by the
amount of the fragmentation. In practice, the free list allo-
cator in MMTk has been observed to have low fragmenta-
tion [4], but if it became a problem we could change the
underlying allocator or collection algorithm, both of which
are largely orthogonal to our technique. There is no reason
we could not use a compacting collector, for example.

3.2.2 Reachability
If we consider only the memory used by the objects immedi-
ately pointed to by each priority reference, computing size is
easy and requires little additional collector machinery. How-
ever, many data structures have complex internal structure.
Even strings typically consist of two objects: a string ob-
ject and a character array. From a memory use standpoint, it
makes sense for the size of a string to include the size of its
character array.

We therefore define the total memory footprint of a pri-
ority space as the sum (in bytes) of the sizes of all objects

transitively reachable only from the priority references in
that space. We purposely exclude any objects that are also
reachable from roots because clearing the associated priority
references will not cause them to become garbage. In other
words, we exclude the parts of the memory footprint that the
priority space cannot control.

3.2.3 Structure Sharing
The size computation has algebraic properties that are cru-
cial to ensuring we meet the target memory bound. If the
size computed for a particular referent o is size(o), the total
size of a set of objects S should be given by the following
formula:

size(S) =

|S|∑
i=0

size(oi)

While the formula seems obvious, consider the case where
two priority references share some internal structure. We
need to be careful that common objects are only counted
once. Otherwise, the sum of the sizes could overestimate
the total memory footprint. Our algorithm guarantees this
property by visiting each object only one time (see algorithm
below for details), but this choice affects the measured sizes
of the individual entries. For example, if two structures with
roots o1 and o2 share a common object p, only one of their
sizes will account for p – the one that is traced first. In this
case, o2 will not consider any objects reachable from p. Let
o\p represent the objects only reachable from o. Then the
sizes of o1 and o2 are as follows:

size(o1) = size(o1\p) + size(p)

size(o2) = size(o2\p)

The sum, however, still accurately reflects how much
memory is actually in use by all of the priority references
together:

size(o1) + size(o2) = size(o1\p) + size(p) + size(o2\p)

The property above is crucial to our enforcement mechanism
because it means we can trace a sequence of cache entries
in any order, and the running sum of their sizes at any
point represents how much memory would be occupied if
all remaining entries were evicted.

To see why tracing the sequence in order is important,
consider an extreme example in which three small entries,
o1, o2, and o3, each of size K bytes alone, share a large
common structure of size L bytes. Visiting the references
in order will cause o1 to have size L +K, and o2 and o3 to
have size K. If the space bound is less than L it might be
tempting to evict only o1. This choice will not achieve the
expected space savings because o2 and o3 hold references
to the shared state so only K bytes will be recovered. If we

inspect them in order, though, we can see that the bound is
reached during tracing of o1, and all three entries need to be
evicted in order to get below target size L.

A similar issue exists for structures shared between pri-
ority spaces, although we consider this case to be more
unusual. At each collection, the PrioSpace learns the to-
tal memory footprint of its PrioReferences. Consider the
case where two PrioSpaces hold PrioReferences to the
same data o with memory footprint of K. bytes At first,
we may consider that the total memory footprint of both
PrioSpaces includes those K bytes. However, we use the
marking bit to measure o, implying we can only measure
o once per collection. While each collection processes all
PrioSpaces, only the first PrioSpace to measure those K
bytes and add it to their total memory footprint. Any other
space will regard o as a structure in use elsewhere in the pro-
gram and pass over it.

3.3 Collection Algorithm
The Prioritized Garbage Collector is built on a standard full-
heap mark/sweep collector. The algorithms are amenable,
however, to any tracing collector, including copying collec-
tors and generational collectors. The reason that we focus on
pure mark/sweep is that caches are highly non-generational
data structures: none of the entries are short-lived, and under
LRU, entries must sit in the cache for some time before they
become the least-recently used and are evicted. In addition,
this collector performs full-heap collections more frequently,
so eviction policies built on it run more frequently.

Our collection algorithm is based on two key ideas:

• We reorder heap tracing so that we can visit specific
regions of the heap graph based on their reachability
– specifically, the regions reachable from priority refer-
ences. No significant additional work is required, so this
overhead is very low. This technique has been used by
other systems to check heap properties using the garbage
collector [1].

• We introduce bounded marking, in which the garbage
collector traces a region until a condition is met (for
example, the memory bound is reached); then it sim-
ply stops marking and nulls out potential dangling point-
ers. Unmarked objects are reclaimed immediately by the
sweeper without being touched again.

The key to our algorithm is that it does not explicitly free
low priority references to satisfy the memory bound; rather,
it protects high priority references (by marking them) until
the memory footprint grows to the bound. Once the bound
is reached, the algorithm ceases to mark any other objects in
the priority space. With a small amount of fixup to avoid dan-
gling pointers, the remaining low priority references will be
reclaimed immediately by the sweeper. This approach guar-
antees that the memory bound will be respected (see reason-
ing below). A secondary benefit is that the collector does not

need to touch the evicted objects, which might improve CPU
cache performance, although we do not measure this effect
here.

To ensure that the collector counts only objects reachable
solely from the priority space, we reorder the phases of the
collector as follows:

Phase (1): Compute exact target sizes (in bytes) for priority
spaces that are specified in fractional terms. For
example, if a priority space specifies its bound as
20% of the total heap, the collector uses computes
0.2 ∗ heapsize as the bound.

Phase (2): Premark all PrioReference objects held by the
PrioSpace.

Phase (3): Perform a complete mark over transitive closure
from the root references. This process will stop
at each PrioReference, so the only objects that
will remain unmarked are either garbage or are
reachable only through a priority reference.

Phase (4): Revisit each PrioReference in priority order,
from highest to lowest, and perform a transitive
closure starting at its referent object. During this
phase, the collector computes a running sum of
the object sizes. If the total size hits the memory
bound for the space then this phase ends imme-
diately. Since it visits the priority references in
order, the remaining unmarked instances must all
be lower priority.

Phase (5): Any PrioReferences with unmarked referents
are nulled out (the pointer to the referent is set to
null).

Phase (6): If Phase (3) ended early, it could leave part of a
data structure marked, with outgoing pointers to
unmarked objects. To preserve memory safety the
collector also nulls out all potentially dangling
pointers as well as the priority reference contain-
ing this partial structure – in effect, evicting the
entire structure.

Phase (7): Evicted objects are garbage, and can be immedi-
ately reclaimed by the sweeper.

Notice that since the collector is doing the work, eviction
only occurs at GC time. But this makes sense: we cannot
assess the global memory situation until GC time, and we
don’t have an effective way to recycle memory in between
GCs.

Partial eviction. Phase (5) of the algorithm handles the
case in which bounded marking stops part-way through a
data structure, leaving pointers from marked objects to un-
marked objects. In order to preserve memory safety, this
phase nulls out all of these references. In addition, we null
out the PrioReference itself, which makes even the par-
tially marked portion of the structure unreachable.

There is a case, however, in which a program could
observe a partially evicted structure. We believe this case
would be rare, however, since it only happens under very
specific conditions. If the program creates a weak reference
to an object in the cache, and that object is part of the marked
portion of the partially evicted structure, then our JVM will
preserve the weak reference and the object it points to. This
weak reference will be cleared at the next GC, since the
strong reference from the cache entry is now unreachable,
but there is a brief period where the program could follow
the weak reference and find a structure with null fields in
unexpected places.

We have not been able to find a satisfactory and perfor-
mant solution to this problem. If a program cannot toler-
ate partial eviction, however, our implementation provides
a switch that forces eviction only at cache entry boundaries
– that is, when the space limit is reached, the mark phase
continues until the current entry is completely marked. The
downside of this option is that it allows the cache to grow be-
yond the size limit. In practice, however, we find that it only
hurts performance when cache entries are very large (100’s
of KB each) and keeping the extra objects is a substantial
burden on memory resources.

3.4 Overheads
3.4.1 Runtime Overhead
Phase (3) of the algorithm above requires the collector to
visit PrioReference objects in priority order. In our cur-
rent implementation, the PrioSpace class keeps its prior-
ity references in a max heap, so that common operations are
O(logN) time. This cost, however, is paid every time the pri-
ority of a reference changes: the priority space must re-insert
it into the heap. It is possible that in some configurations
the total cost of these inserts would exceed the cost of sim-
ply sorting the list immediately before garbage collection.
In practice, we have not observed a significant performance
penalty.

3.4.2 Space Overhead
Each PrioSpace stores its PrioReferences in a max heap,
which is implemented as an array. Furthermore, we arrange
the PrioSpaces into a linked list in the VM, using an extra
reference in each PrioSpace to point to the next one. So, if we
have N PrioReferences spread across K PrioSpaces,
then the total space overhead is N + K references, in ad-
dition to the space required for each PrioReference and
PrioSpace instance.

3.5 Sache: A Space-aware Cache
Using these mechanisms, we implemented a space-aware
cache that we call a Sache. The interface to the Sache is
essentially the same as the Guava LRU cache, and it can be
used as a drop-in replacement. An overview of the Sache
class is shown in Figure 8.

class Sache <K,V> extends HashMap <K,
PrioReference <V>> {

protected long highest_priority;
protected PrioSpace <V> priospace;

public Sache(long maxSize);

public boolean put(K key , V value);
public V get(K key);
public V remove(K key);

private void update ();
}

Figure 8: Interface for Sache space-aware cache

As with a cache built around a HashMap, we can put key-
value pairs in, get a value using a key, and remove a value
using a key. The Sache stores all values in PrioReference

objects, so that the collector can measure and evict them
as necessary. The Sache increments the highest priority

value as necessary to ensure that the most recently hit value
has the highest priority. The methods work as follows:
Constructor: create an empty hash map and an empty
PrioSpace with the given space bound maxSize. We also
support a version that specifies the size as a fraction of avail-
able memory.
get(K): If there is an entry in the map for the given key, up-
date the priority on its PrioReference to highest priority

(incrementing if necessary) and return the referent value. If
not, return null.
put(K, V): Create a new PrioReference in the Sache’s
priority space with the value V as the referent and give it the
highest priority. Store the pair of key K and priority reference
in the hash map.
remove(K): If there is an entry in the map for the given
key, remove it from the map and remove the corresponding
PrioReference.
update: Periodically scan the hash map looking for entries
that have null values in their PrioReferences, indicat-
ing that they were evicted by the garbage collector. This
method runs when the program accesses the Sache after a
collection and does not interact with the PrioSpace. Since
the collector already evicted the PrioReferenes from the
PrioSpace, we can complete this operation in O(N), where
N is the number of entries in the Sache.

It is possible to add collector support to remove an entry
from the Sache whenever the collector decides to evict its
corresponding PrioReference. In particular, we can ma-
nipulate the Sache’s outgoing pointers directly. This would
improve the performance of the update operation. However,
we decided against this to provide a more general reference
type versus a cache-specific reference type.

3.6 Adaptive Sizing
The Sache is an efficient and effective bounded-size cache
supported directly by the garbage collector. The problem
remains, however, of how to choose its size. As we show
in Section 4, choosing a fixed size, measured as a fraction
of total bytes in the heap, yields good performance across
a range of workloads for our simple key-value store. Many
applications that use caching, however, are not just key-
values stores – they have other computations going on that
are competing for resources. For example, looking at the
results we might choose a Sache sized to occupy about half
of the heap. If other parts of the program need the other half,
however, the resulting memory pressure will cause massive
GC overhead.

Our solution is to adaptively size the Sache according
to available memory. Our current policy is simple: at each
garbage collection we choose a Sache size that ensures a
minimum amount of free memory (if possible). Other poli-
cies are certainly possible, and we discuss some of them in
the future work section.

To ensure a free memory reserve of size R bytes, we need
to know the size of the heap (H bytes), and the total live size
of all the data not in the Sache (L). Using this information,
the maximum size of the Sache is set to H − (L+R).

We can efficiently recompute this value at every garbage
collection, growing or shrinking the Sache adaptively. Phase
2 of our algorithm visits all objects not in the Sache, so
we can augment it to also compute their total size, which
is L. Before Phase 3 starts, we compute the target bound
for the Sache, and the algebraic properties of the bounding
mechanism guarantee that evicted entries will leave at least
R bytes free.

4. Results
In this section, we evaluate how prioritized garbage collec-
tion helps overcome the conflicting space-time tradeoffs of
software caching and automatic memory management. Note
that there is nothing particularly innovative about our core
caching algorithm or data structure. The Sache is essentially
just a hash map. The difference is in how it manages provi-
sioning – specifically, how it manages the number of entries
in the hash map. Given a fixed configuration, it performs
almost identically to the Google Guava cache on a given
workload. What we show here is that with support from the
collector, the Sache can automatically vary its configuration
to make the best use of available memory regardless of the
characteristics of the workload. In addition, it can adapt on-
line to changes in memory use or workload.

4.1 Experiments
We evaluate our system using two caching applications:
a key-value store driven by the same synthetic workloads
presented in Section 2, and a web caching implementation
driven by real traces of web traffic. Since the Sache API is

almost identical to the Guava LRU cache API, we can easily
switch between cache implementations in each benchmark
system. We show results for the following experiments:

• First, we repeat the experiments shown in Section 2 us-
ing a Sache configured with a range of fixed sizes (non-
adaptive). Specifying the size in terms of memory foot-
print instead of number of entries is robust across a range
of workloads.

• Second, we enable the adaptive sizing algorithm for the
Sache and show that it can dynamically shrink or grow
the Sache in response to changing memory demands in
other parts of the program.

• Third, we test the two cache implementations under a
real workload of web traffic. Software caches perform the
work of the central data structure in a web cache (some-
thing similar to memcached). This application is chal-
lenging to implement in a garbage-collected language,
since the goal is to cache as much as possible.

4.2 Methodology
We implemented our GC mechanisms in JikesRVM version
3.1.2 as a modification to the stop-the-world mark/sweep
collector. The Sache itself is implemented at the applica-
tion level. We have also incorporated these mechanisms
into a generational collector, but it provides little benefit
for cache-heavy applications because caches are so strongly
non-generational. In addition, the generational collector de-
lays computation of the size information and enforcement
of the eviction policies, since these mechanisms cannot be
implemented properly for partial collections.

Building and running. We build JikesRVM in the Fast-
Adaptive configuration (for performance). The Guava ex-
periments are run on an unmodified version of JikesRVM
to avoid incurring any possible penalty related to prioritized
GC. All experiments are run on a machine with dual 2.8GHz
Xeon X5660 processors (X64) with a total of 12GB of main
memory running Ubuntu Linux kernel 3.2.0.

We run each configuration only one time, but due to the
length of the traces (tens of thousands) small fluctuations
in the cost of any individual cache operation or garbage
collection are averaged out. In addition, the performance
differences we highlight are orders of magnitude greater than
experimental noise, and in many cases it is the difference
between running to completion or crashing with an out-of-
memory error.

4.3 Non-adaptive Sache
Figure 9 shows the performance of a Sache under the same
workloads as the Guava cache. We measure the size as a
percentage of the heap instead of a maximum number of
entries. Each graph has three curves: one for mutator time,
one for GC time, and another for total time.

(a) Workload of small values (10K-50K)

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

s
)

Percent of heap

Mutator
GC

Total

(b) Workload of medium values (50K-100K)

 0

 20

 40

 60

 80

 100

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

s
)

Percent of heap

Mutator
GC

Total

(c) Workload of large values (100K-200K)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

s
)

Percent of heap

Mutator
GC

Total

Figure 9: Sache performance under three different work-
loads. While absolute performance varies, compared to the
Guava cache the space-time tradeoff is relatively indepen-
dent of the workload. The Sache makes the best use of the
available space.

• Figure 9(a) shows the performance on the trace with
small-sized values. The total time is a bowl shape, but
the minimum occurs early on at a limit 10% of the heap
size. Afterwards, the mutator time remains steady until
65%.

• Figure 9(b) shows the performance on the trace with
medium-sized values. The minimum of the bowl is not
present on the graph. Just like the graph with small-
sized values, the Sache peaks heavily towards the end,
dominated by garbage collection cost.

• Figure 9(c) shows the same graph for larger values. The
Sache continues to function even when using 75% of
the heap. This comes at the cost of increased garbage
collections.

All three graphs have the same shape. The mutator time
is about the same until after 60% of the heap is reserved for
the Sache. Recall that the Sache limit is only enforced at a
collection. Therefore, the Sache holds more values and more
hits occur. The application does not rebuild values, lowering
the mutator cost. On the other hand, the Guava caches have
to rebuild many items at when we have a low limit on the
number of entries.

Despite the Sache using a lot of memory prior to GC,
the GC curve starts low and peaks towards the end. The
prioritized GC frees elements of the Sache as soon as it
observes the limit would be exceeded. This leaves much less
garbage in the heap than simply evicting the value from the
Sache outside of GC.

Figure 10 compares the above results with the graphs for
Guava in Section 2. To directly compare them, we plot the
Sache with the average number of entries after a garbage col-
lection. Recall that prioritized GC only enforces the bound at
a collection, so the Sache actually grows larger in between
collections. These numbers are approximately the memory
bound of the Sache divided by the average size of the values
in the trace.

We see that the shapes of the curves between Guava and
the Sache are about the same. The key difference is that
Sache curves represent the same set of configuration options
– 10% of the heap on the low end and 80% of the heap on
the high end. A programmer could choose a Sache capacity
of 40% and be able to achieve good performance regardless
of the workload. The three labeled points on the graph show
how this choice leads to different numbers of entries under
the different workloads.

Looking at the small workload, the Guava’s curve is about
flat while the Sache’s extends further out and eventually
starts to move upward. The Sache utilizes as much memory
as it can before the limit is enforced. This allows the lower
end limits of 5% to perform better than the hard limit of 1500
entries on Guava.

Looking at the larger values, the Guava cache fits less
than 600. The size limit on the Sache and prioritized GC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000

T
im

e

Number of entries

Guava large
Sache large

Guava medium
Sache medium

Guava small
Sache small

Sache 40% capacity

318.022

1897.884
641.234

Figure 10: Comparing Sache and Guava LRU on three work-
loads: the performance is very similar, but the three Sache
curves represent the same configuration choices. The high-
lighted points represent a Sache set to 40% of the heap,
which easily accommodates all three workloads by using
different numbers of entries.

allow the Sache to handle a mix of sizes. In particular, the
collector frees values that the Sache will not keep because of
the size limit. This also allows the Sache to hold more items
than the Guava cache can, by prioritizing smaller values.

4.4 Multiple Caches
One of the problems with soft references is that they are
managed by the JVM using a single global policy. Even if
that policy happens to be the right one (e.g., LRU) treating
all soft references as equal can lead to very bad performance.
Consider, for example, a program with two caches. If one
cache is accessed less often than the other then its entries will
tend to appear towards the end of the global soft reference
LRU queue. When memory is tight, many more of its entries
will be reclaimed regardless of their value to the application
(i.e., regardless of the miss cost).

We measure this effect directly using the following ex-
periment: we run two caches simultaneously and have both
serve requests from our largest trace, but at different frequen-
cies. One cache processes N requests for every request the
other cache processes. We also use a larger heap size to mea-
sure the effect of having more memory available. We run this
experiment on the Hotspot VM with Guava caches using soft
references and no explicit size limit or eviction policy. We
do this to measure the effectiveness of HotSpot’s soft refer-
ence eviction policy alone. We also run the experiment on
our modified VM with two Saches, each configured to use
20% of the heap. We use the LRU policy for each Sache’s
PrioSpace to match Hotspot’s policy for removing soft ref-
erences. Hit rates are reported as a number between 0 and 1.
We report the difference between hit rates on the same scale.
Figure 11 presents the results of this experiment.

(a) Guava Caches with Soft References

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

R
a

ti
o

 o
f

C
a

c
h

e
 H

it
 R

a
te

s

Heap Size (MB)
Freq = 1
Freq = 2

Freq = 3
Freq = 4

Freq = 5
Freq = 6

Freq = 7
Freq = 8

Freq = 9
Freq = 10

(b) Saches with PrioReferences

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

R
a

ti
o

 o
f

C
a

c
h

e
 H

it
 R

a
te

s

Heap Size (MB)
Freq = 1
Freq = 2

Freq = 3
Freq = 4

Freq = 5
Freq = 6

Freq = 7
Freq = 8

Freq = 9
Freq = 10

(c) Maximum Hit Rate of the Caches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

H
it
 R

a
te

Heap Size (MB)
Soft Reference PrioReference

Figure 11: Hit rates can drop dramatically when soft ref-
erences are used for two caches working at different fre-
quencies. Prioritized garbage collection keeps the hit rates
of both caches relatively close by managing their resources
separately.

Figure 11a shows the results for soft references running
on HotSpot, which clearly reflect the global LRU policy. The
X-axis shows the heap size; the Y-axis shows the ratio of the
measured hit rate to the maximum hit rate. As the difference
between the access frequencies of the two caches grows, the
hit rate of the slower cache drops significantly. Its entries
appear to be less valuable because they are less frequently
accessed, so the soft reference eviction policy removes them
first. The effect is more pronounced in smaller heaps because
the soft reference policy is more aggressive. In the worst case
(10-to-1 frequency difference), the hit rate is only 1/4 of its
potential, but the degradation at just a 2-to-1 difference is
very significant as well.

Figure 11b shows the same results for prioritized garbage
collection. The hit rates of the two Saches differ by at most
5% because the PrioSpaces manage their references sepa-
rately, so the VM does not clear the PrioReferences in the
less frequently used cache regardless of what is going on in
the higher frequency cache.

Finally, Figure 11c shows the maximum hit rate (in abso-
lute terms) for both the Guava cache with soft references and
the Sache with PrioReferences. As expected, with no com-
peting memory demands, the two systems perform almost
identically. Note that for Figures 11b and 11c, the Sache does
not have data for 10MB and 20MB. Since VM objects share
heap space with Java applications in JikesRVM, we needed
30MB to start running the experiment without running out
of memory.

4.5 Adaptive Sache
The purpose of the adaptive sizing algorithm is to allow the
cache to respond to changes in the available resources. Our
goal is to prevent the cache from competing with other ap-
plication data structures, causing unnecessary memory pres-
sure.

For these experiments, we modified our benchmark to
build a separate large data structure that grows as the trace is
processed. Each experiment is divided into three phases: dur-
ing the first 1/3 of the trace, no extra memory is used; during
the middle 1/3, the program starts growing the non-cache
data structure, consuming more and more memory; during
the last 1/3 of the trace, the program slowly dismantles the
structure, allowing the collector to alleviate the pressure.

We ran our medium-sized-objects trace through the key-
value store using both the Sache and Guava LRU cache.
For the Sache, the adaptive algorithm is configured to target
a 50% memory reserve. This value corresponds to a heap
two times the live size, which is a good target for perfor-
mance [10]. We size the Guava cache using the data col-
lected in Figure 4(b): the best size for this workload appears
to be around 350 entries. We fix the heap at 115MB, as in
the earlier experiments.

Figure 12 shows the total time, mutator time, and GC
time. Unsuprisingly, the Sache and the Guava cache ex-
hibit similar performance as long as memory is plentiful.

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80

T
im

e
 (

m
s
)

Memory pressure (MB)

Guava LRU
Sache

(a) Total time

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80

M
u
ta

to
r

T
im

e
 (

m
s
)

Memory pressure (MB)

Guava LRU
Sache

(b) Mutator time

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

G
C

 T
im

e
 (

m
s
)

Memory pressure (MB)

Guava LRU
Sache

(c) GC time

Figure 12: Performance of Sache vs Guava LRU cache un-
der increasing memory pressure: our adaptive sizing algo-
rithm shrinks the Sache to avoid triggering massive GC over-
head. At 77MB, the application with the Guava LRU cache
crashes.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

G
C

 T
im

e
 (

m
s
)

GC number

Guava LRU
Sache

Figure 13: GC time over a single run: without the ability
to adapt, cache and non-cache structure compete, triggering
costly GCs.

As memory pressure increases, however, the Guava cache
competes with non-cache structures in memory, and GC
costs skyrocket. When memory pressure exceeds 77MB,
the Guava implementation crashes. The Sache automati-
cally shrinks to ensure sufficient free memory, resulting in a
smooth curve and no crashes.

Figure 13 provides some insight into this behavior. It
shows the GC time for each collection during a single run of
the benchmark. As expected, in the Guava implementation,
once the non-cache structure begins to grow, each GC be-
comes much more expensive. In addition, memory scarcity
triggers more frequent GCs. With the adaptive Sache, the GC
time is flat: the algorithm guarantees that the cache will not
cause the live size to exceed the target reserve.

4.6 Web Caching Workload
The heart of a web caching application, such as memcached,
is a key-value cache like the ones we describe here. We
adopted the techniques for testing web caches and applied
them to our cache implementations. We use the BU 272
trace, a record of real web traffic, to drive the caches, and
measure performance as above[7]. It consists of 15K entries
requesting a total of 72MB of web data. Figure 14 shows the
performance of the Guava cache across a range of numbers
of entries. The Sache is a flat line, since it chooses its own
size.

5. Related Work
5.1 Reference Types
Hayes introduced Ephemerons to determine unreachable ob-
jects in key-property lists instead of using a list with a weak
key and strong value [9]. This capability allows entries with
dead keys to be removed from the list and properly deleted.
We expect items in a cache to be reachable only from the
cache. Therefore, removing stale objects is not a priority. In-

0 100 200 300 400 500 600 700 800 9002400

2450

2500

2550

2600

2650

2700

2750

Ti
m
e
(m

s)

Guava Sache

Figure 14: Performance of the Sache and Guava cache on
real web traffic traces across a range of cache sizes.

stead, we remove elements that cause our structure to exceed
its limit.

5.2 Programs Acting on Resource Limits
There has been considerable work on caching for web traffic.
The Greedy-Dual algorithm takes into account the amount
of time to obtain a page as well as the size of the page to
determine its eviction [5]. The cached objects are text doc-
uments, so their size can be easily measured. Our system
allows these kinds of eviction policies to be used in general
software caches, where measuring the size of a cached struc-
ture is non-trivial.

Yang and Mazières describe resource containers for
Haskell that bound the memory usage of untrusted code
[21]. Exceeding the limit of the container kills the accom-
panying thread. A Sache is a more general structure which
allows the program to choose what action to take when mem-
ory bounds are exceeded. In principle, it could also be used
to implement a similar security policy.

Czajkowski and von Eicken introduced an interface for
programmers to monitor the resources used by threads in
a Java program [8]. Furthermore, they allow programmers
to implement their own reaction to threads exceeding their
resource limits. They use bytecode rewriting to track heap
memory usage for each thread. In contrast, we track a list
of known objects and use the garbage collector to both track
memory usage and enforce the limits. In addition, our tech-
nique uses general heap reachability to define bounded struc-
tures, rather than thread ownership.

JAMM uses JVMTI to traverse the heap and compute the
size of data structures [3]. This approach is flexible and pow-
erful, but very slow. A large data structure can require sec-
onds of runtime to size (according to the documentation). By
piggybacking on the garbage collector, we can perform the
same measurement with almost no performance overhead.

The tradeoff, however, is that we cannot compute sizes at
arbitrary points during execution.

Price, Rudys, and Wallach divide a process into tasks
and used the garbage collector to track how much memory
is attributed to each task [18]. Our work expands on this
by allowing arbitrary data structures to be tracked and by
providing a way to enforce a size limit.

5.3 Using GC to Assist Running Programs
O’Neill and Burton presented simplifiers as a way to im-
prove the performance of a program [16]. Objects can
add a simplify() method that the garbage collector invokes
when the collector traces over it. The Data Structure Aware
Garbage Collector lets the program denote which objects are
internal nodes for data structures [6]. It uses this information
to improve garbage collection for these structures and there-
fore overall performance. Our work uses the GC to allow
programs to run when they would run out of memory in nor-
mal execution. Furthermore, we can traverse and modify the
structures without editing those structures’ code.

6. Conclusions and Future Work
This paper presents a new approach to managing the con-
flicting tradeoffs between software caching and garbage col-
lection. The key to our approach is widening the interface be-
tween the application and the runtime system in order to in-
crease cooperation and break the tradeoffs. Caches are repre-
sentative of a broader class of resource-sensitive data struc-
tures and algorithms that are not well served by existing col-
lection algorithms. Our ongoing work is to look carefully at
the particular needs of these applications and provide ways
for them to be more effectively served by the runtime system
to improve performance and robustness. We also are looking
into how to divide available heap space amongst multiple
PrioSpaces and therefore multiple Saches.

Acknowledgments
Emery Berger was supported by NSF grant CCF-1439008.

References
[1] Edward E. Aftandilian and Samuel Z. Guyer. GC assertions:

Using the garbage collector to check heap properties. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 235–244.
ACM, 2009.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang,
and Mike Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMETRIC-
S/PERFORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS
’12, pages 53–64, 2012.

[3] Jonathan Bellis. Jamm. https://github.com/jbellis/jamm.

[4] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKin-
ley. Myths and realities: the performance impact of garbage

collection. In Proceedings of the International Conference on
Measurements and Modeling of Computer Systems, pages 25–
36, 2004.

[5] Pei Cao and Sandy Irani. Cost-aware www proxy caching
algorithms. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems on USENIX Symposium on
Internet Technologies and Systems, pages 18–18, 1997.

[6] Nachshon Cohen and Erez Petrank. Data structure aware
garbage collector. In Proceedings of the 2015 ACM SIGPLAN
International Symposium on Memory Management, ISMM
2015, pages 28–40, New York, NY, USA, 2015. ACM.

[7] Carlos Cunha, Azer Bestavros, and Mark Crovella. Charac-
teristics of WWW client-based traces. Technical Report BU-
CS-95-010, Computer Science Department, Boston Univer-
sity, Boston, MA, USA, 1995.

[8] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A
resource accounting interface for Java. In Proceedings of
the 13th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
’98, pages 21–35, 1998.

[9] Barry Hayes. Ephemerons: A new finalization mechanism.
SIGPLAN Not., 32(10):176–183, October 1997.

[10] Matthew Hertz and Emery D. Berger. Quantifying the per-
formance of garbage collection vs. explicit memory manage-
ment. In OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming, sys-
tems, languages, and applications, pages 313–326, New York,
NY, USA, 2005. ACM.

[11] Google Inc. SoftReference — Android Developers, 2016 (Ac-
cessed March 23, 2016).

[12] Jikes RVM. IBM, 2005. http://jikesrvm.sourceforge.net.

[13] Mark S. Johnstone and Paul R. Wilson. The memory frag-
mentation problem: Solved? In Proceedings of the 1st Inter-
national Symposium on Memory Management, pages 26–36,
1998.

[14] Nick Mitchell and Gary Sevitsky. Leakbot: An automated and
lightweight tool for diagnosing memory leaks in large Java ap-
plications. In ECOOP 2003 - Object-Oriented Programming,
17th European Conference, Darmstadt, Germany, July 21-25,
2003, Proceedings, pages 351–377, 2003.

[15] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s
law. Contemporary Physics, 2005.

[16] Melissa E. O’Neill and F. Warren Burton. Smarter garbage
collection with simplifiers. In Proceedings of the 2006
Workshop on Memory System Performance and Correctness,
MSPC ’06, pages 19–30, New York, NY, USA, 2006. ACM.

[17] Oracle. SoftReference (Java Platform SE 6), 2015.

[18] David W. Price, Algis Rudys, and Dan S. Wallach. Garbage
collector memory accounting in language-based systems. In
Proceedings of the 2003 IEEE Symposium on Security and
Privacy, SP ’03, pages 263–, Washington, DC, USA, 2003.
IEEE Computer Society.

[19] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles. Dynamic storage allocation: A survey and critical

review. In International Workshop on Memory Management,
pages 1–116, September 1995.

[20] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Roun-
tev. LeakChaser: Helping programmers narrow down causes
of memory leaks. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Imple-

mentation, PLDI ’11, pages 270–282, 2011.

[21] Edward Z. Yang and David Mazières. Dynamic space limits
for Haskell. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, PLDI ’14, pages 588–598, New York, NY, USA, 2014.
ACM.

