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Abstract  

The adverse impact of extreme weather on human health is attracting substantial attentions of public 

health professionals, environmental scientists, and policy makers. This study uses time series analysis to 

investigate the direct effects of high ambient temperatures on the health of older residents in the 

Boston Metropolitan Statistical Area (MSA). This study has three goals: to investigate the seasonality of 

hospitalizations due to heat stroke (HSH), to describe the association between ambient temperature 

and HSHs; and to determine the independent effect of heat waves on HSHs in the presence of well-

pronounced seasonality. Medical records were abstracted form the Centers of Medicare and Medicaid 

Services from 1991 through 2006 and regressed against daily meteorological records using Poisson 

generalized linear regression model. The ambient temperature is positively correlated with HSHs, the 

relationship exhibits strong exponential growth when temperature exceeds a certain threshold point. 

The proposed transformation of daily temperature facilitates the capture of rapid increase in HSHs 

beyond the threshold. Six types of indicator variables were tested to determine the effects of heat 

waves and their lag structures. The seasonal peaks in HSHs follow the first heat wave each year. The 

final regression model includes terms for ambient temperatures transformed with respect to threshold 

points; the best indicator variable for heat waves adjusted for annual, seasonal and weekly fluctuations 

explains 56% variability in HSHs. The developed methodology for building and validating a regression 

model sensitive to local temperature features can be further extended to other locations and health 

outcomes. 
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1. Introduction 

1.1 General statement of the problem and its significance 

Increasing greenhouse gas emissions lead to a rise in average temperature, resulting in a more variable 

climate system [1-8]. Local events such as heat waves, elevated ambient temperatures, windstorms, 

droughts, and dust storms are the direct products of climate change, among which heat waves are 

considered the most threatening one [2, 9]. Elderly people are less capable of adapting to the variable 

temperatures and more vulnerable to extreme weather related illnesses, such as heat stroke [10, 11]. 

With the improvement of living standards and medical supports, the elderly population is increasing 

greatly both in size and proportion. Therefore, it is urgent to understand how heat events affect elderly 

populations, so that protective strategies can be better formulated.  

Studies of heat events and health outcomes have been conducted all over the world: Australia [12-14], 

Asia [15-17], Europe [18-33] , Latin America [34], and North America [9, 35-40]. Time series analysis [20, 

28, 35, 36, 38, 41-47] and case cross-over [34, 39, 48] studies are the most popular study designs. These 

published studies had some common findings: in each specific location, a “J-shaped” curve can be used 

to illustrate the relationship between temperature and negative health outcomes [23, 38, 39, 45-47, 49-

51]; for each location, there always exists a comfortable temperature region, within which there are 

fewer health risks.  When temperature exceeds a certain threshold, every additional degree in 

temperature may result in more health risks [35].   

This study firstly explains the seasonality of heat stroke related hospitalizations (HSHs) with calendar 

effects, which enables people to easily predict the timing, intensity and duration of HSHs and guide the 

planning of community events and daily life. Then this study investigates the association between 

ambient temperature and HSHs, and finds that there will be more health risks when temperature 

exceeds the (location-specific) temperature threshold. Applying the location-specific threshold points 
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and temperature transformations allows this study to extend the model to other locations. The 

Incidence Rate Ratio (IRR) of temperature exposure and HSHs are proposed as a function of the ambient 

temperature instead of a constant value, which highlights the role of threshold point in health risk. 

Lastly, this study proposes an indicator of heat wave for the Boston-Cambridge-Quincy MA NH 

Metropolitan Statistical Area (Boston MSA), which sufficiently concerns the local climate features, and 

finds that the annual peak of HSHs follows the first occurrence of the heat wave each year. Knowing the 

heat wave’s starting time will help the public plan accordingly. 

1.1.1 Health outcome 

Daily hospitalization records from 1991 to 2006 were purchased from the Centers of Medicare and 

Medicaid Services. This database covers 98% of the population who are 65 year-old or above in the U.S. 

This comprehensive dataset contains over 100 variables, including age, race, and gender of the patient’s; 

ZIP code and county FIPS code of residence; location of discharge (to home, skilled nursing facility, etc.); 

date of death if deceased; assigned medical procedures; total charge of the hospitalization; health 

condition at the time of discharge; and up to 10 diagnostic coding slots with their respective 

International classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) code. The study data 

were extracted for heat stroke related hospitalization (ICD-9-CM 992.0 – 992.9) (Table 1.1, the 2nd 

column), and there were 48,132 heat stroke related hospitalization cases in the U.S. from 1991 to 2006. 

The ZIP codes in the data allow for spatial aggregation up to the level of MSA, which the U.S. Office of 

Management and Budget defines as “a region that has at least one urbanized area of 5000 or more 

population, plus adjacent territory that has a high degree of social and economic integration with the 

core as measured by community ties”.  There were 701 HSHs in the Boston-Cambridge-Quincy, MA NH 

MSA from 1991 to 2006. As is shown in Table 1.1, the 3rd column, most HSHs were classified as 

unspecified heat exhaustion (992.5). The date of admission is recorded in the level of a calendar day, 

http://en.wikipedia.org/wiki/U.S._Office_of_Management_and_Budget
http://en.wikipedia.org/wiki/U.S._Office_of_Management_and_Budget
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which is adequate for modeling the effect of heat exposure as it can have lag effects on human health 

ranging from 2 to 20 days. The daily level data also allow for modeling the accumulated effects of heat 

exposure on human health. Moreover, the hospitalization peak time usually happens within a week; and 

the peak of HSHs and its date would be hard to discern if only weekly or monthly data were used.  

Table  1.1 The explanation of each ICD code (992.0-992.9) and cases 

ICD-9-CM code Description Cases 

992.0  Heat stroke and sunstroke 115 

992.1 Heat syncope 49 

992.2 Heat cramps 6 

992.3 Heat exhaustion, anhydrotic 40 

992.4 Heat exhaustion due to salt depletion 9 

992.5 Heat exhaustion, unspecified 465 

992.6 Heat fatigue, transient 2 

992.7 Heat edema 0 

992.8 Other specified heat effects 7 

992.9 Unspecified effects of heat and light 8 

 

The Boston-Cambridge-Quincy, MA NH MSA is the 10th most populated MSA in the  U.S., according to 

Census 2010. The total population was 4,552,402, consisted of 74.9%non-Hispanic White population, 9% 

Hispanic population, 7.4% non-Hispanic Black population, 7.1% Asian population and 1.6% other races 

population. The proportion of elderly population was 10.1%. The total area of this MSA is 4,674 mi2. 

1.1.2 Temperature exposure 

Temperature records of the Boston-Cambridge-Quincy MA NH MSA were obtained from the National 

Oceanographic and Atmospheric Administration (NOAA). This dataset includes maximum daily 

temperature, minimum daily temperature and mean daily dewpoint temperature. The daily 

temperature data were interpolated separately for these centroids of each zip code within the Boston-
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Cambridge-Quincy MA NH MSA one the same day using via inverse distance weighting method1. Only 

stations within 120 miles radius from each zip-code centroid were considered in the interpolation.  

1.2 Statement of hypotheses 

1) The HSHs demonstrate well-pronounced seasonality, and there are some annual variations in 

intensity and peak time. 

2) The ambient temperature highly influences the heat stroke related hospitalization, when ambient 

temperature exceeds a threshold, the HSHs will increase rapidly. 

3)   The heat wave independently affects HSHs in the presence of well-pronounced seasonality. 

1.3 Organization of this thesis 

Chapter 2 is the literature review. Chapter 3 explains the statistical features of HSHs. Chapter 4 

investigates the seasonality of HSHs. Chapter 5 investigates the association between temperature and 

HSHs. Chapter 6 analyzes the heat wave effect on HSHs. Chapter 7 is the study conclusion. Chapter 8 is 

the study discussion and future study direction.  

 

                                                           
1
 Inverse Distance Weighting (IDW) is a type of deterministic method for multivariate interpolation with a known 

scattered set of points. The assigned values to unknown points are calculated with a weighted average of the 
values available at the known points 
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1. Literature review 

2.1 Motivation 

A literature review about health outcomes due to heat events was done. The purpose of the review was 

to understand those studies systematically and thoroughly, and then to compare and contrast the study 

methods and findings. The literature review contained the health outcome selection, the exposure 

selection, the application of methodology, seasonality analysis, and the selection of distribution; 

moreover, focus was also put on the definition of the heat wave in various studies and locations. 

This literature review used the “Snowball” method to find articles on the topic about heat events and 

health outcomes. This study started with the paper “Ambient Temperature and Cardiorespiratory 

morbidity: A Systematic Review and Meta-analysis” [52] published in June 2012. Subsequent studies 

were then included in the review through tracing the references sections retrospectively. 

2.2 Outcome measurement 

There is considerable variability in the choice of health outcomes. The health outcomes are usually 

explained in terms of morbidity and mortality. The concept of heat-related morbidity has a wide 

coverage of health outcomes, including uncomfortable symptoms, the serious effects on skin or organ, 

and other life-threatening effects. Table 2.1 summarizes the heat exposure related health symptoms 

respectively. As is shown in Table 2.1, different types of health outcomes have different severities. This 

literature review found more studies on heat related mortality [2, 3, 9, 26, 36, 41, 42, 46, 53-55] than 

those on heat related morbidity [28, 44, 54-57]. The term morbidity in those studies mainly referred to 

the records of emergency department visits, registry or hospital admission. Using morbidity as the 

measurement of health outcome can guarantee adequate sample sizes and wider coverage of health 

outcomes. However, the term morbidity contains quite a wide range of symptoms and conditions,  some 

of which may not be serious enough to require medical attention [23]. Since we only utilized 
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hospitalization records in this study, modeling of the exact morbidity are not fully achievable. The 

studies on mortality explain the most severe health outcome, but the mortality cases only take up a 

limited proportion of health outcomes related to a certain cause, therefore utilizing the mortality as the 

measurement of health outcome in a regression model may limit the sample size, affecting the model 

quality. In addition, the study on mortality may not give widely applicable suggestions for health 

protection. 

The classification of underlying causes of diseases also significantly affects the study conclusions. 

Published studies have discussed both all-cause diseases and diseases with specific ICD codes. The 

published studies applied the all-cause [26, 58, 59], coronary [58, 60, 61], cardiovascular [37, 49, 50, 58, 

62-69] and respiratory diseases [30, 42, 49, 50, 67, 70, 71] as the health outcome measurements and  

only two studies [55, 56] in this review referred to direct health outcomes (ICD-9-CM 992.0 – 992.9) of 

heat events. Different health outcome extracting criteria have various pros and cons. Applying all-cause 

mortality or morbidity as health outcomes can avoid bias created by misclassification of causes; 

however, it may weaken the correlation between heat events and health outcomes. Applying the 

mortality due to chronic diseases as health outcomes can examine the heat effects on vulnerable people 

[9, 25, 26, 30, 42, 50, 67, 71], but the harvesting effect [21, 45, 72] will create bias when quantifying the 

temporal relationship between heat events and health outcomes. Applying the direct health outcomes 

of heat events can help to understand the independent adverse influence of heat effect, but the sample 

size of heat related diseases may affect the statistical significance of a study. 
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Table  2.1 Definitions of heat exposure outcomes and their ICD codes (Data sources are cited in Appendix 1 and 2) 

Outcomes Symptoms ICD-9-CM code 

Heat stroke and sunstroke                         
(Heat apoplexy; 
 Heat pyrexia; 
 Ictus Solaris; 
 Siriasis; 
 Thermoplegia) 

•Hot, dry skin or profuse sweating  
•Hallucinations  
•Chills  
•Throbbing headache  
•High body temperature  
•Confusion/dizziness  
•Slurred speech  

992.0 

Heat syncope (Heat collapse) 
•Light-headedness  
•Dizziness  
•Fainting 

992.1 

Heat cramps 
•Muscle pain or spasms usually in 
the abdomen, arms, or legs 

992.2 

Heat exhaustion, anhydrotic                   
(Heat prostration due to water 
depletion)                                  

•Heavy sweating  
•Extreme weakness or fatigue  
•Dizziness, confusion  
•Nausea  
•Clammy, moist skin  
•Pale or flushed complexion  
•Muscle cramps  
•Slightly elevated body 
temperature  
•Fast and shallow breathing 

992.3 

Heat exhaustion due to salt 
depletion  (Heat prostration due to 
salt (and water) depletion) 

992.4 

Heat exhaustion, unspecified 992.5 

Heat fatigue, transient  992.6 

Heat edema  992.7 

Other specified heat effects  992.8 

Unspecified effects of heat and light  992.9 
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2.2.1 Vulnerability  

Vulnerability refers to the inability to withstand the effects of a hostile environment. People are 

vulnerable to heat exposure when their physiologic mechanisms for heat loss fail to work, keeping heat 

from being dissipated through radiation into the air  or evaporation in the form of perspiration [73]. The 

vulnerability to heat can be explained at both the community and individual levels. Identifying 

vulnerable groups in the community level is an important social and health issue, because the 

vulnerability is correlated with the housing design, the social economic status of a community. The 

vulnerability can be explained from both disproportionate exposure and intrinsic biological conditions 

such as age, gender or health conditions [31, 34, 38, 39, 74]. Immobilization keeps people from looking 

for a cooler place when exposed to heat; thus elderly people in nursing homes are under this type of 

threat. It is reported that the elderly are one of the subpopulations at highest risk during heat events [9, 

10, 36, 39] , for they have weaker thermoregulatory mechanisms, take other medications, potentially 

live in social isolation, and are confined to bed [9, 18, 73], thus those communities with high elderly 

populations may require additional attentions.  In addition, people living in regions with higher 

temperature have different physiological responses to heat due to cultural and social adaptive behaviors 

[4, 74]. To an individual, when body temperature rises, the blood flow generally shifts from the vital 

organs to underneath the skin’s surface in an effort to cool down [11]. Inadequate thermoregulation 

may occur when too much blood is diverted, putting increased stress on the heart and lungs [11]. 

Increased blood viscosity, elevated cholesterol levels associated with higher temperatures, and a higher 

sweating threshold may also trigger severe heat-related disease or even mortality [11].  A reduced 

thermoregulatory capacity combined with a diminished ability to detect changes in body temperature 

may even increase the elderly population’s vulnerability to heat [74]. 

This study selected twenty populated cities with wide spatial coverage across the U.S. (Figure 2.1), 

collecting the demographic and meteorological information from Wikipedia and Current Results (data 
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sources are cited in Appendix 3 and 4.). In Figure 2.2, the x and y-axes stand for the annual low and high 

temperatures of each city, the size of a bubble is proportional to the number  of elderly people (65 and 

over) (2010 Census data) of each city. The cities with a large group of elderly people may be more 

vulnerable to heat, like New York and Chicago. 

 

Figure  2.1 The geographic locations of the 20 big cities selected in our study 
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Figure  2.2 The elderly population and temperature features of 20 big cities in the U.S. 

The Figure 2.2 indicates that neither temperature features nor the number of elderly people alone can 

sufficiently explain the heat vulnerability of a city. The city of Chicago and the city of Columbus have 

very similar temperature features, but Chicago has been more seriously challenged by heat exposure 

than Columbus has [54, 55]. San Francisco, Los Angeles and San Diego have similar elderly population 

conditions and are all located along the seashore, but their heat risks vary greatly in terms of intensity 

and severity [44, 56, 57]. Jacksonville, San Antonio, Houston, Austin and Phoenix are much warmer than 

Philadelphia, and they have similar elderly populations, but the warmer cities are reported to have less 

vulnerability to heat than Philadelphia [38, 64, 75], because the adaption and acclimatization also 

directly affect people’s vulnerability to heat. Generally, people in cooler regions tend to be more 

vulnerable to heat. 
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The Centers for Disease Control and Prevention (CDC) defines heat exposure as “leaving the whole or 

part of the body uncovered or unprotected from heat conditions”, which is the direct cause of health 

outcomes.  

One measurement of heat exposure is the ambient temperature, while different types of temperatures 

were applied in published studies. Mean temperature [23, 60, 64] , minimum [24, 57] and maximum 

temperatures [12, 24] are straightforward and simple temperature indicators. For patients suffering 

from cardiovascular and respiratory diseases [60, 76], diurnal temperature range can be used as a risk 

factor. Some other studies used bio-meteorological indices such as apparent temperature [44, 49] and 

humidex [77]. The combination of air temperature and humidity is a better explanation of the effect of 

heat exposure on the human body, but it remains difficult to identify a single variable’s impacts on 

health [78]. There exists no absolutely superior temperature measurement so far [79]. The widely used 

exposure measurements [2, 35, 44, 49, 77-80] are summarized in Table 2.2.  
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Table  2.2 Types of temperature exposure cited from previous studies 

Single measurement Composed measurement Other indexes 

Ambient Temperature [79]  
Apparent Temperature2 
(combination of  temperature and 
dew-point temperature) [44, 49, 79] 

Minimum Mortality 
Threshold temperature 
(MMT) 4  [2] 

Skin Temperature [79] 
Minimum Temperature index            
( high night- time temperature) [78] 

Physiological equivalent 
temperature (PET)3 [80] 

Maximum Temperature [78] 
Heat index  (air temperature and 
humidity) [77, 78]  

Minimum Temperature [78] 
Humidex1   (temperature and 
moisture content) [35, 79] 

  

Average Daily Temperature [79] 
 

  

Outdoor Temperature [79]     

 
1. Humidex (Canadian Centre for Occupational Health and Safety 2009) 

                                                                               (1.1) 

                
 

       
 

 

                            
                                                            (1.2) 

2.  Apparent temperature  

                                                                       (1.3) 

3. Physiological equivalent temperature (PET): the air temperature at which, in a typical indoor setting 
(without wind and solar radiation), the heat budget of human body is balanced with the same core and 
skin temperature as under the complex out door conditions to be assessed. 

4. Minimum mortality threshold (MMT): temperature with the lowest average mortality rates for a given 
city. 
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The heat wave effect is a sub topic of heat exposure measurement. There are three elements to 

characterize a heat wave: duration, intensity and timing. The heat wave is generally defined according to 

these elements: 1) duration: a single day [31, 32, 43, 81] or consecutive days’ climate conditions [5, 10, 

13, 17, 20, 31, 77, 78]; 2) intensity: absolute temperature metric or relative (percentile) temperature 

threshold for a certain location [5, 13, 17, 20, 31, 32, 43, 77, 78, 81] ; 3) timing: specific seasons and 

periods of time [5, 13, 18, 21, 23, 54, 56, 82, 83] (Table 2.3 shows some definitions of heat wave in 

published studies). In most cities, the longer duration and the higher the intensity of heat events, the 

more severe the observed health outcomes [5, 31], but the exact effects of heat event’s intensity and 

length vary from one location to another. This study will work out the most explanatory indicator of 

heat wave for the Boston MSA.  
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Table  2.3 Definitions of heat wave cited from published studies 

Heat wave definition (Criteria) Reference 
Study location(city/region, country) 

and time 

August, 2003 (timing) 
S. Vandentorren 2006 
[18] 

France (August 8 - August 13) 

Hottest summer ever observed in 
this area (timing) 

J Kyselý 2004 [21] Czech Republic (1982-2000) 

Summer 2003 (timing) P Michelozzi 2004 [83] Rome, Italy (June-August, 2003) 

June, 2003 (timing) B Cerutti 2006 [82] Ticino, Switzerland (2003) 

 July 29 to  August 3, 1995 
(timing) 

RS Kovats 2004 [23] 
Greater London, UK ( April 1,1994 - 1 
March 31, 2000) 

Any day on which the maximum 
temperature exceeded 36.5 °C 
(density) 

J Diaz 2002 [43] 
Madrid Autonomous Region (Jan 1, 
1986 - Dec 31, 1997) 

The dates of the first and last 
reported heat-related deaths in 
California associated with the 
2006 heat wave (timing) 

Knowlton K 2009 [56] 
California, USA (July 15 -August 1, 
2006) 

July 13 through 19,1995 (timing) Semenza JC  1999 [54] Chicago, US (1995) 

A time span of at least five days 
of which each day has a 
maximum temperature of at least 
25°C and of which at least three 
days reach a maximum 
temperature of at least 30°C 
(duration and density) 

S Hajat 2002 [20] Great London, UK (1976-1996) 

Three or more consecutive days 
with Humidex above 40°C 
(duration and density) 

Mastrangelo G 2007 
[77] 

Veneto Region,  Italy (June 1 - August 
31, 2002-2003) 

Periods of 2 or 4 or more days of 
continuous temperatures more 
than 98.5th, 99th, or 99.5th 
percentile of the community’s 
temperature distribution 
(duration and density) 

GB Anderson 2009 
[10] 

107 US communities (198-2000) 

With a daily minimum 
temperature higher above 99th 
percentile (duration and density) 

Medina-Ramón M  
2007 [81] 

50 cities ,US (1989-2000) 
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Periods of at least two days with 
Tappmax exceeding the 90th 
percentile of the monthly 
distribution or periods of at least 
two days in which Tmin exceeds 
the 90th percentile and Tappmax 
exceeds the median monthly 
value (duration and density) 

D’Ippoliti D 2010 [31] 
Europe (Athens,Barcelona, 
Budapest,London,Milan,Munich,Paris,
Rome,Valencia) (1990-2004) 

A minimum of 2 or 4 consecutive 
days with temperature above 
98th,99th or 99.5th percentile of 
daily temperature in whole 
dataset (duration and density) 

Shakoor Hajat 2006 
[78] 

London,UK(1976-2003), 
Budapest,Hungary(1970-2000),  
Milan,Italy(1985-2002) 

Apparent temperatures 
exceeding 40.6°C  
 (duration and density) 

Smoyer KE 1998 [32] St. Louis, Missouri,US,(1980 - 1995) 

More than 2 consecutive days 
with daily mean temperature at 
or above 98th percentile for the 
warm season in each city  
(duration, density and timing) 

Ji-Young Son 2012 [17] 
Seoul,Bushan,Incheon, 
Daegu,Daejeon,Gwangju, 
Ulsan,Overall;Korea,(2000-2007) 

Summer with temperatures often 
exceeding 40°C     
(duration, density and timing) 

AL Hansen 2008  [13] 
Adelaide, Australia (January 1, 1995 - 
December 31, 2006) 

More than 2 days with 
temperature above 95th 
percentile for the community for 
1May through 30 September 
(duration, density and timing) 

Anderson GB 2011 [5] 43 cities, US (1987-2005) 



16 
 

The lag effect [34, 45, 49] explains the association between exposure over previous days and health 

effect on a particular day. The lag effect of heat exposure plays a big role in detecting the occurrence 

time of heat events related diseases, because the adverse health outcome of heat exposure may not 

appear instantly. The length of the lag ranges from one day to a month [25, 44, 50, 61, 64, 66, 84], with 

shorter lags during warmer seasons and longer lags during cooler seasons [25, 61, 64]. The lengths of 

the lag also vary according to different types of diseases. For example, a study [50] showed that the 

majority of hospital admissions for respiratory and cardiovascular diseases happened following the 

sharp increase in temperature in 0 to 3 days; and a 7-day’ lag was applied to assess the impact of 

temperature on hospital admissions for cardiovascular diseases [57]. This study will select the length of 

lag according to the heat wave definition and considering the accumulated effect of heat.  

2.4 Methodology 

2.4.1 Trend analysis 

Trend analysis aims at extracting an underlying pattern of behavior in a time series. Identifying the trend 

of the heat related disease can indicate its variation over long time, because it is hard to conclude 

whether there exists a definitive upward or downward trend of heat related diseases. On one hand, the 

potential global warming [81] trend may result in an elevated ambient temperature and increase the 

intensity and frequency of heat events; therefore there would be more heat related diseases over time. 

On the other hand, the improving technical support, such as the air conditioning system or housing 

design, may better protect human health from the fluctuation in climate conditions. 

The actual trend of heat related disease is likely to be determined by the comprehensive competition 

between climate condition and human acclimation. Studies [7, 51, 85] in Europe predicted that around 2 

Centigrade warming would occur in the next half century, but the populations’ acclimatization to heat 

are regarded to be incomplete so far [81], thus the warmer climate will threaten human health. The 
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potential acclimatization mechanisms comprise physiological, infrastructural and technological 

acclimations (e.g. air conditioning and heating system) [85, 86], as well as proper prevention 

mechanisms (e.g. heat wave warning system etc.). Some studies hypothesized that the mortality 

associated with warm and humid days would systemically decline over decades [87, 88] due to technical 

improvements and acclimation [38, 67, 89] . The ultimate impact of climate change will depend upon 

the extent of population adaptation and the effectiveness of implementation [6, 8, 87, 90].  

2.4.2 Association between temperature exposure and health outcomes 

The association between temperature exposure and health outcomes [9, 34, 45, 47, 51, 72] can be 

graphically illustrated by a J-shaped curve, quantitatively explained by the relative risk, and temporally  

demonstrated by the harvesting effect. 

The association between temperature exposure and health outcomes can be illustrated as a J-shaped 

curve. These J-shaped curves are characterized by their local climate features, while their patterns are 

similar. There always exists a comfortable zone for each location, within which heat related diseases are 

less likely to happen [38-40, 46, 47, 59, 91]. Another element of a J-shaped curve is the threshold point. 

Studies [23, 26, 49, 50] working on heat events related health outcomes in multiple cities found that 

there is an upper temperature threshold point for each city, beyond which there will be more health 

risks. A case-crossover study [55] which took the year 1994 as the reference year and the year 1995 as 

the case year, looked at the 1995’s heat disaster in Chicago, pointing out in the reference year, heat 

related emergency department visits were not significantly correlated with ambient temperature, while 

in the case year, the heat related emergency visits were highly correlated with ambient temperature, 

because the ambient temperature usually exceeded the threshold. This finding explains the significance 

of threshold point in health outcomes. Figure 2.3 was adopted from a study conducted from 1973-1994, 

in Boston, Chicago, New York, Philadelphia, Baltimore, Washington DC, Charlotte, Atlanta, Jacksonville, 
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Tampa and Miami [38].  The threshold points vary greatly from the north to the south and from inland 

cities to coastal cities. 

The association between temperature and its negative health effects can be mitigated by technical 

strategies [4, 92] and affected by other social economic factors [4, 38, 47, 73, 87, 89, 93] . As is shown in 

Figure2.4, the relative risk for each location may not necessarily increase along with the increase of 

maximum temperature, because the relative risk is affect by other factors such as people’s 

acclimatization, social status, educational levels, medication, and health conditions [4, 38, 74].  

 

Figure 2.3 Temperature-mortality relative risk functions for 11 US cities, 1973–1994. Northern cities: Boston, Massachusetts; 
Chicago, Illinois; New York, New York; Philadelphia, Pennsylvania; Baltimore, Maryland; and Washington, DC. Southern 
cities: Charlotte 

 

The relative risk is the ratio of two risks with the same health outcome but different exposure statuses, 

which quantifies the association between temperature exposure and health outcomes. Table 2.4 

summarizes the relative risk of elevated temperature and the duration of heat wave [34, 36, 38, 39, 44-

46, 57, 77, 81, 90].  
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Table  2.4 Summary of the relative risk of health outcomes cited from previous studies 

Location(city/region, 
country) and time 

 Relative Risk (95% CI) Reference 

20 US metropolitan 
areas, seasonal 
analysis 1992 

Per 10°F, 1.15 (1.07-1.24), 1.10 (0.96-1.27), 
1.08(0.92-1.26), 1.08 (1.02-1.15), and 1.01 (0.92-
1.11) mortality in the Southwest, Southeast, 
Northwest, Northeast, and Midwest (Mean daily 
temperature per 10°F adjusted for dew point 
temperature). 

Basu 2005 [36] 

3 California regions, 
1983-1998 

3 °C decrease in maximum temperature or a 3 °C 
increase in minimum temperature (1.06-1.11) 
for acute myocardial infarction and congestive 
heart failure, (1.10-1.18) for stroke. 

Ebi 2004 [57] 

9 California counties, 
May to September 
1999-2003 

Per 10°F increase in mean temperature, 2.3 (1.0-
3.6) mortality. 

Basu 2008 [44] 

Veneto Region, Italy, 
June 1 to August 31 in 
2002 and 2003 

1.16 (1.12, 1.20) hospitalization for heat disease, 
1.05(1.03, 1.07) for respiratory diseases with 
each additional day of heat wave duration. 

Mastrangelo 2007 
[77] 

43 US cities, 1987-2005 

3.74% (2.29–5.22%) increase in mortality during 
heat waves compared with non-heat wave days. 
Every 1°F increase in heat wave intensity 2.49% 
increase in mortality.  Every 1-day increase in 
heat wave duration 0.38% increase in mortality. 
5.04% (3.06–7.06%) increase in mortality during 
the first heat wave of the summer ; 2.65% ( 
1.14–4.18%) increase in mortality during later 
heat waves, compared with non-heat wave days. 

Anderson 2008 [90] 

50 US cities in cold 
(November to March) 
and warm (May to 
September) seasons 

5.74 (3.38-8.15) mortality for extreme heat 
(Binary variable as extreme heat (range 22-
32°C)). 

Medina-Ramon 2007  
[81] 

Sao Paulo, Brazil, 
Santiago, Chile and 
Mexico City, Mexico, 
1998-2002 

2.69% (-2.06, 7.88) mortality for Santiago, 6.51% 
(3.57, 9.52) for Sao Paulo and 3.22% (0.93, 5.57) 
for Mexico City (Same day apparent temperature 
compared with days at 75th percentile). 

Bell 2008 [34] 
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15 European cities, 
April-September 1990-
2000 (5-11 years 
depending on data 
availability for city) 

1°C increase above threshold 3.12 (0.60-5.72) 
mortality in Mediterranean and 1.84 (0.06-3.64) 
in north continental region (Maximum apparent 
temperature (threshold 29.4°C Mediterranean 
cities and 23.3°C north-continental cities)). 

Baccini 2008 [45] 

11 Eastern US cities, 
1973-1994 

Per 10°F above minimum mortality 
temperature (65.2-90.3°F) (1.4-6.7) mortality. 

Curriero 2002 [38] 

Bologna, Milan, Rome, 
Turin, 1997- 2003 

(Odds ration) 1.34 (1.27, 1.42) mortality (30°C 
mean apparent temperature relative to 20°C). 

Stafoggia 2006 [39] 

4 Italian cities, June to 
September, 2003- 2004 
and reference period 
(Roma, Torino, Milano: 
1995-2002 and 
Bologna: 1996-2002) 

1°C above threshold 3.2 (1.9-4.6), 5.0 (3.8-6.1), 
5.4 (4.3-6.5), 3.8 (2.5-5.0) mortality for Bologna, 
Milano, Roma, and Torino, respectively (Daily 
maximum apparent temperature thresholds (28-
32°C)). 

Michelozzi 2006 [46] 

 

 

Figure  2.4 The vulnerability of 10 US cities (The data are cited from study [38]: the sizes of bubbles are proportional to their 
populations in 1980; the bubble’s darkness is adjusted according the value of the relative risk, which is the average slope of 
the J-shaped curve of each city in Figure 2.3) 
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Comparing Figure 2.4 and Figure 2.1, this study found that the temperature-mortality relative risk was 

determined by many factors, such as climate patterns and demographics. For example, in Figure 2.4, 

Chicago and New York have similar population conditions but their relative risks vary greatly. 

Washington DC and Baltimore have almost identical weather patterns but their relative risks still differ 

from each other. 

Another temporal feature of negative health outcome is the harvesting effect, which is an immediate 

increase in mortality followed by a decrease in mortality among vulnerable people. Some studies [33, 

40, 54-56, 64, 67, 72, 82, 94] focusing on a harvesting effect found that  despite the increase of death 

was consistent with the extreme temperature, the exposure to heat was not the real underlying cause 

of death. The exact harvesting effect on morbidity has not been fully understood so far. 

2.4.3 Time series analysis  

A time series is a sequence of observations ordered in time. The distinguishable feature of time series 

analysis is the explicit recognition of the importance of the observations’ order. Time series analysis is 

useful for identifying seasonal variations, like extreme weather events. Time series method has been 

widely used in temperature-morbidity related studies [23, 24, 41, 49, 64], applying morbidity counts or 

rates as the health outcomes and different types of temperature measured at corresponding intervals as 

the exposure indicators. The daily data was applied more commonly, though weekly or monthly data 

were also used in some studies [20, 23, 26]. Results are often presented as the change in health 

outcomes with per unit change in temperature. 

The Poisson regression through generalized additive models (GAM) [10, 27, 37, 38, 47] or generalized 

linear models (GLM) [16, 47, 66] were widely applied to assess the relationship between temperature 

and morbidity, by adjusting trend effects, seasonality and other periodicity varying factors [14, 61, 64]. 
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Some studies indicated summer or winter and warm or cold seasons to stratify their analyses in order to 

remove seasonal patterns included in the data [12, 50, 66, 70]. 

Time series analysis is also a powerful tool to investigate the health effects of air pollutants [3, 16, 35, 

66, 70, 71] and their interactions with temperature. The conclusions about the relationship between air 

pollution, high temperature and health effects are currently inconclusive. 

2.5 Seasonality of heat related disease 

The seasonality is generally defined as systematic, or repetitive, periodic fluctuations in a variable within 

the course of a year [95]. Specifically, the disease seasonality is the periodic surge in disease incidence 

over the course of a year. Adequate understanding of seasonality can improve the accuracy of 

forecasting systems. Seasonal patterns vary according to types of diseases, locations and subpopulations 

of interest. 

Disease seasonality is characterized by the timing, magnitude and duration [95]. The timing is measured 

by the position of the maximum and minimum points on the seasonal curve, while the magnitude is 

correlated with the maximum and minimum values on the seasonal curve.  The duration is defined by a 

shape of a seasonal pattern which reflects how fast a temporal curve reaches its peak and declines to 

nadir over a course of a full cycle. 

The seasonality of a certain disease is correlated with other natural processes. Generally, meteorological 

factors appear to be critically linked to seasonal patterns of a disease. In fact, the periodicities of 

environmental factors and disease incidences may not perfectly synchronize and the difference between 

the time point in which exposure and disease incidence peak is called the lag. 

The occurrence of a heat related disease is naturally and directly correlated with ambient temperature 

and summer seasons, but duration of heat wave is much shorter than the length of a summer season. In 

addition, there may be some lags between the occurrence of heat wave and the occurrence of negative 
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health outcomes. Therefore, it is necessary to independently discuss the seasonality of heat related 

disease. 

The calendar reflects the cyclic rhythm of nature and synchronizes with social events. Therefore, 

describing the seasonality of heat related disease with a calendar can give suggestions on the planning 

of social events, on the operation of engineering facilities and on the special medical preparations for 

social events during the hot periods of the year. 

2.6 Selection of distribution 

The distribution is the probability of a particular value or value range of a variable. The health outcomes 

are mainly explained as either hospitalizations or mortality counts in past studies, and both of them are 

discrete count data.  Many studies assumed that their health outcome data [3, 20, 64, 81] followed a 

Poisson distribution and very few studies applied negative binomial distribution to explain their data 

[22]. It is worth pointing out that the software development limits the selection and application of 

certain distributions in practice. Selecting a certain distribution without verifications may affect the 

width standard error and significance level of the estimate coefficients for a regression model; therefore 

this study will evaluate the selection of statistical distribution in detail.  

2.7 Problem discussion and the goal of this study 

2.7.1 Selection of study location  

The study location is the Boston-Cambridge-Quincy MA NH Metropolitan Statistical Area (Boston MSA). 

Selecting a location with a standard and official definition can facilitate the comparability and 

applicability of the study conclusion. What’s more, the metropolitan statistical area represents the 

principal population center, which is the prerequisite for study significance.  Boston’s cold winters and 

susceptibility to hot, humid summers [35] make it an exemplary location to investigate the association 
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between high ambient temperature and its negative health effects. As is shown in Figure1.5, the areas in 

light blue in the map stand for the Boston MSA. 

 

Figure 2.5 The map of study location (Data source: GIS online database. Other states surrounds Massachusetts are in light 
grey; the State of Massachusetts is mapped in light purple and the Boston-Cambridge-Quincy MSA is mapped in light blue) 

2.7.2 Selection of health outcome 

The hospitalization is an appropriate health outcome to analyze in order to detect the negative effect of 

heat events, though other health outcomes are also epidemiologically meaningful. The strengths of 

utilizing the hospitalization as the measurement of health outcomes are: 1) the hospitalization can cover 

more cases than mortality, thus the correlation between ambient temperature and hospitalization is 

expected to be more statistically significant; 2) the record of hospitalization is readily accessible, and our 

familiarity with it allows for a better understanding of the data quality, reliability and potential bias.  

This study extracted hospitalizations with diagnostic codes ICD-9-CM 992.0 – 992.9 from 1991 to 2006 

from the CMS database. ICD-9-CM 992.0 – 992.9 explains the health effects of heat and light. Diseases 

such as burns (ICD-9-CM 940.0 – 949.5), disease of sweat glands due to heat (ICD-9-CM 705.0 – 705.9), 
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malignant hyperpyrexia following anesthesia (ICD-9-CM 995.86) and sunburn (ICD-9-CM 692.71, 692.76 

– 692.77) were not included. Selecting hospitalization records with ICD-9-CM 992.0 – 992.9 as health 

outcome is expected to provide large enough sample sizes and help investigate a significant correlation 

between heat events and their direct health outcomes.  

2.7.3 Selection of exposure measurement  

In this study, both daily maximum and minimum temperatures are applied as predictors of exposure, 

though they are highly correlated. The estimate coefficients for these two indicators are in the same 

order of magnitude and quite close to each other, and can be explained as the weights given to these 

two variables, therefore a weighted average daily temperature is applied in the regression model. The 

weighted average daily temperature is a more accurate measurement of daily temperature exposure 

than arithmetic average temperature, because the maximum temperature and minimum temperature 

are good indicators of the daytime and nighttime exposures respectively; and the proportions of 

people’s daytime temperature exposure and their nighttime temperature exposure are not identical.  

2.7.4 Selection of statistical method  

This study is about building up a regression model of the daily hospitalization counts over 16 years (1991 

–2006). Time series analysis was used to adjust the linear trend effect, yearly effect, seasonality, 

weekday effect and to investigate the effects of ambient temperature on HSHs. 

Regression method is an integral part of time series analysis, and mostly deals with linear models and 

continuous values. However, in real-life cases, some records are not continuous and a linear model is no 

longer appropriate. Therefore, it is necessary to extend a linear model to a generalized linear model 

(GLM) which has a conditional distribution from exponential family of the response variable, a linear 

function of explanatory variables, and a link function transforming the expectation of the response 
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variable to the linear predictor. The GLM is applied to detect the relationship between heat related 

hospitalization counts and ambient temperature in this study. 
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2. Statistical features of hospitalization records  

In probability theory, the distribution is defined by its sets of possible values and the probability 

assigned to each of those possible values, and each specific family of distribution can help understand 

different processes and   reveal and estimate information conveyed by the data. 

3.1 Discrete distribution 

A discrete distribution is described by a set of random variables that take only finite set of values. A 

discrete probability distribution comes into play when there are a finite number of discrete possible 

events.  

Count response models are a subset of discrete response models, aiming at explaining the number of 

occurrences, or counts, of an event. Two examples of count models are the Poisson and negative 

binomial model. 

3.1.1 Poisson model  

The Poisson distribution is a discrete probability distribution that describes the probability of observing a 

given number of events in a fixed interval of time or space if these events occur with a known average 

rate and independent of the time since the last event. 

The Poisson distribution defines a probability distribution function for non-negative counts or outcomes. 

The Poisson distribution for the number of occurrences of the event, with density  

  [   ]  
     

  
     (3.1) 

Where   is the number of events in a unit interval of time or in a unit distance              is the 

intensity or rate parameter.  

The expectation (Equation 3.2) and variance (Equation 3.3) of a Poisson distribution are equal to   , 

which is one of the characteristics of a Poisson distribution.  
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 [ ]                       (3.2) 

   [ ]                   (3.3) 

The regression method is an analysis process, which utilizes an equation to relate the mean response of 

a variable to a set of explanatory variables. As is explained in part 2.7.4, the Generalized Linear model 

(GLM) is a generalization of ordinary linear regression that allows for response variables to have an 

exponential distribution. The GLM generalizes a linear regression by allowing the linear model to be 

related to the response variable via a link function and by allowing the magnitude of the variance of 

each measurement to be a function of its predicted value. The term “Poisson regression model” in the 

following chapters is referred to a GLM with response variables coming from a Poisson distribution. 

For count data, the Poisson regression model is considered to be the base count response regression 

model [96]. A key assumption of the Poisson regression model is that the variance equals the mean. 

However, the actual data often exhibit overdispersion, with a variance larger than the mean.  

Overdispersion might be due to unobserved heterogeneity: the data may be generated from mixture 

distributions; and it might be due to violation of the assumption of independence of events which is 

implicit in the Poisson process. Overdispersion may cause standard errors of the estimates to be 

underestimated, thus a variable may appear to be a significant predictor while it is in fact not.  

Another limitation of the application of the Poisson model is that real-life count data have far more 

zeros than expected by the Poisson model’s distributional assumptions. The negative binomial model is 

expected to deal with overdispersed data, while the hurdle model and the zero-inflated model are 

expected to cope with the dataset with excess zeros. 

3.1.2 Negative binomial model  

The negative binomial distribution is a discrete probability distribution describing the number of 

successes in the sequence of Bernoulli trials before a specified numbers of failures occur. The name 
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“negative binomial” comes from applying the general form of the binomial theorem with a negative 

exponent. The negative binomial distribution can be seen as an extension of the Poisson model that 

allows for a greater variance.  

There are two methods to derive negative binomial distribution: 1) the negative binomial distribution 

can be arisen as a gamma mixture of Poisson distribution; 2) the negative binomial probability function 

can be thought of as the probability of observing y failures before the rth  success in a series of Bernoulli 

trials. 

  [   ]  
      

       
 

     

           (3.4) 

where   is the mean value and   is the shape parameter.  

The negative binomial distribution allows the expectation (Equation 3.5) and variance (Equation 3.6) to 

be different. That’s why the purpose of negative binomial model is assumed to deal with overdispersed 

Poisson data. 

 [ ]            (3.5) 

 [ ]     
  

 
   (3.6) 

The negative binomial distribution is a member of the two-parameter exponential family, and was not 

considered suitable for entry into the mainstream family of GLM because of the complexity of the 

ancillary parameter [97], and until 1989 McCullagh and Nelder recognized that the negative binomial 

distribution could be considered in a GLM. 

3.1.3 Hurdle model (zero altered models)  

The hurdle model, developed by Mullahy in 1986, is capable of dealing with excess zero counts, which 

are not allowed by the distributional assumptions of a Poisson model and negative binomial model [96, 
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97]. A hurdle model is to partition a model into two parts: 1) a binary process generating positive counts 

and zero counts; 2) a process generating only positive counts. There have been nine commonly used 

hurdle models: the binary part modeled by logit, probit, or complementary loglog, and the count part 

modeled using Poisson, geometric, or negative binomial. The notion of hurdle comes from considering 

the data as being generated by a process that commences generating positive counts only after crossing 

a zero barrier or hurdle. Until the hurdle is crossed, the process generates a binary response. The nature 

of the hurdle is left unspecified, but may simply be considered as the data having a positive count. In 

this case, the hurdle is crossed if a count is greater than zero. 

3.1.4 Zero-inflated (Poisson) model 

Like the hurdle model, the zero-inflated model introduced by Lambert in 1992 provided another 

approach to accounting for excess zero counts [96, 97]. Like the hurdle mode, the zero-inflated model 

also considers two distinct sources of zeros: 1) generated from individuals who do not enter the 

counting process; 2) generated from individuals who do enter the counting process but result in a zero 

outcome. The zero-inflated Poisson model assumes that some zeros occur through a Poisson process, 

but others are not even eligible to have the event occur. Therefore there are two processes at work: one 

is to determine whether the individual is eligible for a non-zero response, and the other that is to 

determine the count of that response for eligible individuals. The tricky part is that both processes can 

result in a zero count, so it is hard to distinguish the coming process of zeros. The zero-inflated Poisson 

model simultaneously fits two separate regression models. One is a logistic or probit model that models 

the probability of being eligible for a non-zero count. The other models the size of that count. 

Unlike the hurdle model, the zero-inflated model provides for the modeling of zero counts using both 

binary and count processes. The hurdle model separates the modeling of zeros from the modeling of 

counts, entailing that only one process generates zeros.  
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Zero inflated models should be tested to determine whether they are statistically different from their 

base model (i.e. Poisson or negative). A Vuong test will be applied to evaluate the model, whether the 

data are Poisson, negative binomial or if the excess zeros come from a different generating process. 

3.2 Statistical features of actual data 

3.2.1 Statistical features of the raw data 

It is helpful to investigate the distribution of actual data by plotting them on a histogram of daily 

hospitalizations counts (Figure 3.1). Random Poisson values were generated using the mean values of 

the actual data and its subsets, in order to compare how much the actual data derive from the data set 

following a Poisson distribution.  
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Table 3.1 The summary of statistical features of actual data and simulated data 

  data Mean Median Variance 
Standard 
deviation 

Skewness Kurtosis Var/mean 

whole 
data 
(5844) 

actual  0.12 0 0.46 0.68 15.56 370.00 3.83 

simulated 0.13 0 0.12 0.36 2.75 7.11 0.92 

counts>=1 
(426) 

actual  1.65 1 3.84 1.96 6.12 48.16 2.33 

simulated 1.55 1 1.48 1.22 0.76 0.46 0.95 

counts>=3 
(49) 

actual  5.45 4 16.3 4.04 2.51 6.22 2.99 

simulated 5.31 5 5.13 2.27 0.12 -0.80 0.97 

counts>=5  
(20) 

actual  8.50 7 24.3 4.93 1.51 1.06 2.85 

simulated 8.65 8.5 12 3.47 0.65 0.00 1.39 

Figure 3.1 Numbers of cases on a given day 
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From the table 3.1 above, this study summarizes the features of hospitalization data below: 

 They are highly skewed to the right; the skewness is as high as 15.56. This phenomenon is 

closely related to the 5417 zeros in the dataset, which takes up 92.7% of the data. When 

excluding the zero counts, the skewness value became smaller, but it still greater than the 

theoretical value of a Poisson distribution. The proportion of extremely high HSHs is small, while 

its magnitude is great, which can be explained by the long-tailed shape of the histogram in 

Figure 3.1. 

 The Kurtosis value is extremely high (as high as 370), which can be explained by the large 

proportion of zeros. The kurtosis of the sub- dataset with more than 3 counts is a negative value, 

which indicates that the distribution of this sub-dataset shows a rectangle shape instead of a 

sharp peak. 

 The actual data’s variance is much greater than the mean value, which provides evidence of 

overdispersion phenomena. A negative binomial model may handle the overdispersion better 

than a Poisson model. 

 The hospitalizations have more zeros that can be explained by a Poisson model. A zero-inflated 

(Poisson) model may be an alternative to explain the excess zeros. 

 The smaller the sample size, the less stable the data might be: the mean value of twenty Poisson 

data is smaller than the variance. 

3.2.2 Statistical features of the transformed data 

Taking logarithm  transformations of HSHs data with different bases (i.e. log10(), ln(), log2())to test 

whether the dataset can be stabilized,  whether the transformed data set can be better fitted by a 

certain distribution and whether one base works better than the others. For the whole data set, a 

constant (i.e. 1) has been added to the raw records (Table 3.2) to mathematically avoid the zeros in the 

logarithm transformations.  The transformation formulae are log2(x+1), log2(x+1), and ln(x+1). 
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Table  3.2 The summary of statistical features of transformed data 

  days Mean Median Variance 
Standard 
deviation 

Skewness Kurtosis Var/mean 

log2(x+1) 5844 0.091 0 0.128 0.400 4.837 29.700 1.410 

Ln(x+1) 5844 0.063 0 0.061 0.200 4.837 29.700 0.970 

log10(x+1) 5844 0.028 0 0.012 0.100 4.837 29.700 0.430 

log2(x) 426 0.388 0 0.61 0.800 2.282 5.453 1.570 

Ln(x) 426 0.269 0 0.293 0.500 2.282 5.453 1.090 

log10(x) 426 0.117 0 0.055 0.200 2.282 5.453 0.470 

log2(x) 49 2.213 2 0.551 0.700 1.310 1.116 0.250 

Ln(x) 49 1.534 1.390 0.265 0.500 1.310 1.116 0.170 

log10(x) 49 0.666 0.600 0.050 0.200 1.310 1.116 0.080 

log2(x) 20 2.920 2.810 0.450 0.700 0.980 -0.300 0.150 

Ln(x) 20 2.020 1.950 0.220 0.500 0.980 -0.300 0.110 

log10(x) 20 0.880 0.850 0.040 0.200 0.980 -0.300 0.050 
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 From the table above, this study finds the whole data set and the subset with one count and 

more, may be fitted by a Poisson distribution after natural log transformation, because their 

mean values and variances are quite close. However, the equidispersion feature cannot be 

found in other subsets of data. 

The data set has excess zeros and I predict that not a single distribution can completely explain 

the sources of zeros included in the dataset. Thus, the zero-inflated Poisson model or hurdle 

model may be an alternative. 

 The natural log-transformed data may be better fitted by a Poisson distribution than the raw 

dataset. This tells us that the application of a GLM for detecting the relationship between 

temperature and HSHs is more appropriate than a simple liner model. 

  When daily hospitalization counts are greater than three, and the data’s mean and variance is 

quite different, this study predicts the sample size is also a factor that affects the stability of the 

data set. 

 This study finds another interesting phenomenon; the skewness and Kurtosis values are 

constant no matter what kinds of transformations have been taken. This study cannot find 

evidences from the theoretical formula to support the “transformation-free” feature of 

skewness and Kurtosis.  

3.3 Potential applications of discrete distribution  

3.3.1 Potential application of Poisson model 

Poisson regression is the base count response regression model and it is quite natural to start with 

Poisson regression, when discussing the hospitalization counts. However, the actual data may violate 

the assumptions of the Poisson Model. The actual data are highly skewed to the right and the number of 
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zeros included in the data is more those can be explained by a Poisson model. The equidispersion 

assumption of a Poisson distribution would be violated. The overdispersed data may be better fitted by 

a negative binomial model. The excess zeros may be fitted by other mixed models such as the hurdle or 

zero-inflated model. This study starts regression analyses with a Poisson regression model. 

3.3.2 Potential application of negative binomial model 

Theoretically, the overdispersed data could be better fitted by a negative binomial model. However, 

published studies applied Poisson regression models to explain their data far more frequently than a 

negative binomial regression model. I don't think that those actual data can successfully support all the 

assumptions of a Poisson distribution [97]: 1) The probability of observing a single event over a small 

interval is approximately proportional to the size of that interval; 2) The probability of two events 

occurring in the same narrow interval is negligible; 3) The probability of an event occurring within a 

certain interval does not change over different intervals; 4) The probability of an event occurring in one 

interval is independent of the probability of an event occurring  in any other non-overlapping interval. If 

either of these last two assumptions is violated, the extra variation (overdispersion) will take place.  The 

availability of software support may limit the selection and application of certain distributions in practice. 

Fewer software programs support the negative binomial regression; what’s worse their performances 

cannot guarantee the model quality. Maybe that’s why a negative regression model was applied less 

frequently.  This study compares the Poisson and negative binomial models step by step and explains 

their performances in the R software environment.  

3.3.3 Potential application of hurdle model  

The hurdle model may better accommodate the dataset with excess zeros than a Poisson model can 

explain. The application of a hurdle model means assuming that the big set of zero hospitalization comes 

from a separate distribution, therefore the hurdle model may better fit our actual data mathematically. 
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The zero and non-zero counts explain the probability of occurrence of HSHs. When considering the 

causal factor of heat stroke related hospitalizations, the hurdle can be illustrated as a temperature 

threshold: no hospitalization will occur if temperature is below this threshold. In other words, the 

distribution from which the hospitalizations come was determined by the ambient temperature 

conditions, thus a hurdle model might be a biologically acceptable alternative. There are two challenges 

to applying the of hurdle model: 1) it is hard to verify which distribution to use on a certain day: 2) there 

is a lack of adequate software support. This study applied hurdle regression package in R software, even 

though this package has some bugs that greatly affect the model quality. 

3.3.4 Potential application of zero-inflated model 

The zero inflated models apply the same logic as a hurdle model to categorize the counts into zero and 

non-zero parts, and try to explain the sources of zeros. Detecting the sources of zeros in actual data is a 

theoretical challenge.  Actually, we can never know the real distribution of actual data, thus this study 

still regards the zero-inflated model as a mathematical method to improve the regression model.  

This study applied the hurdle and zero-inflated models to conduct regression analyses using the same 

combination of predictors as that in a Poisson model to check how much improvement could be 

achieved with the application of the mathematical tools. 
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3. The time series analysis of hospitalizations and calendar effects  

4.1 Background  

Time series analysis is a powerful tool for detecting the variation of health outcomes according to time. 

A time series can be decomposed into three elements: 1) Trend: long term movements of the mean; 2) 

Seasonal effects: cyclical fluctuations related to the calendar; 3) Weekday and holiday: the effect of daily 

life on heat stroke related hospitalizations (HSHs); and 4) Residuals: other random and systematic 

fluctuations. 

This chapter aims to explain the time series of heat stroke related hospitalizations (1991 to 2006) with 

calendar information to test the hypothesis: whether or not the HSHs demonstrate an evident trend, 

well-pronounced seasonality, or some annual variations in intensity and peak time. 

4.2 Methodology 

Regression analysis is an integral part of time series analysis. The ordinary linear regression relates the 

mean response of a variable to a set of explanatory variables by means of a linear equation. In many 

cases, the linear regression is based on the assumption of data’s normality and independence.  As is 

explained in Chapter 3, the HSHs are non-normal, highly skewed and zero-excessed, thus applying the 

ordinary linear regression may lead to highly inaccurate results. The challenge may be resolved by 

extending the generalized linear model methodology to time series analysis. 

The generalized Linear Model (GLM), introduced by Nelder and Wedderburn (1972), hypothesizes that 

the response variable of the model has the variance that is reflected by a member of the single-

parameter exponential family of probability distribution [96-98]. The GLM can be understood as an 

extension of the linear modeling process which allows models to be fitted to data following non-normal 

distributions, such as the Poisson and Binomial distributions. A GLM is consisted of three components: a 

probability distribution from the exponential family, a linear predictor; and a link function which 
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associates the mean of the distribution to the linear predictor [98]. The GLM relaxes the requirement of 

equality or constancy of variances that is required for the hypothesis test in traditional linear models 

and is particularly useful when the errors are not normally distributed and the variance is not constant.  

In this chapter, this study conducts time series analysis of HSHs, from Jan 1st 1991 to Dec 31st 2006, using 

a generalized linear model with both Poisson and Negative binomial distribution with the adjustment for 

calendar effects (i.e. the linear trend, the year effect, the seasonality, and the weekday effect).  

4.3 Calendar effects 

A calendar is a system of organizing units of time for the purpose of reckoning time over extended 

periods. The principal astronomical cycles form the astronomical bases of a calendar’s unit: 1) year: 

based on the revolution of the Earth around the Sun; 2) month: based on the revolution of the Moon 

around the Earth; 3) day: based on the rotation of Earth on its axis. 

The seasonality of HSHs (ICD-9-CM 992.0 – 992.9) can be explained by calendar information: the linear 

(long-term) trend, the year effect, the harmonic terms of seasonality, and the weekday and holiday 

effects. Both Poisson and negative binomial distributions are compared in those following steps. 

The Poisson Generalized Linear Regression Model with calendar effects is explained in Equation 4.1: 

                                                                                     (4.1) 

In Equation 4.1:    is the daily hospitalization count from Jan 1st, 1991 to Dec 31st 2006;    is the date of 

the hospitalization record; β0 is the intercept for the regression model; β1 is the coefficient for the linear 

trend; β2 is the vector of coefficients for the year effect; β3 is the vector of coefficients for the 

seasonality; β4 is the vector of coefficients for the weekday and holiday effects. 

All data analyses were conducted with R 12.5.2. Statistical significance was based on α=0.05. 

4.3.1 Linear trend 
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A trend reflects the properties of a time series at the highest level of aggregation for a given period. The 

simplest form is linear trend, which is described as a straight line along the points in a time series plot. In 

this study, the linear trend is expressed as the sequence of day from January 1st, 1991 to December 31st 

2006, 5844 days in total. The sequence variable ranging from 1 to 5844 was added to the regression 

model (Equation 4.2), the linear trend term is expected to minimize the residual deviance. 

                              (4.2) 

 

 

Table 4.1 The estimate coefficients of the indicator of linear trend 

  Model 
Estimate 

(   ) 
Std.Error P-value 

Null 
deviance 

Residual 
deviance 

Explained 
variability 

AIC 

day Poisson -0.0001 2.25E-05 0.0002 4139.3 4124.9 0.35% 5085.1 

size=5844 
Negative 
binomial 

-7.93E-05 3.47E-05 0.0223 1366.4 1360.8 0.41% 3929.6 

  

 

Figure 4.1 The time series plot of daily HSHs from Jan. 1
st

  1991 to Dec. 31
st

  2006 
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Figure 4.2 The time series plot of yearly HSHs from 1991 to 2006 

 

 As is shown in Table 4.1, the estimate coefficients for the linear term are close to zero, which indicate 

that choosing January 1st, 1991 as the reference day, the daily hospitalizations exhibits very weak 

downward trend. In Figure 4.1, it is hard to visualize an evident trend for the 16 years’ HSHs on the daily 

basis. The heat stroke related hospitalization counts vary greatly when aggregated to the year level 

(Figure 4.2). It is more proper to add an indicator variable of each year to the daily based regression 

model than conducting the analyses on the year level, because the yearly aggregation will greatly mask 

the seasonality of HSHs in the time course of a year and shrink the sample size. 

4.3.2 Year effect  

The analysis of year effect is a good adjustment for systematic fluctuation. As is shown in Figure 4.2, 

HSHs show evident yearly variation when they are aggregated to year level, therefore it is necessary to 

have an indicator of each year to describe the yearly variation which may be brought by some unknown 

systematic errors.   
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                                       (4.3) 

Dummy variables of year 1991-2005 (i.e. taking year 2006 as the reference year) were added to the daily 

based regression model (Equation 4.3), where “1” represents the presence of the year of interested and 

“0” represents this year’s absence. In Table 4.2, the signs of estimate coefficients for each year are not 

uniform (i.e. both negative and positive signs exist), which indicate that there is no monotonic upward 

or downward trend for heat stroke related hospitalizations even on year level. Dummy variables of years 

indicate some potential yearly systematic errors and trend effect, even though this study is unable to 

detect those bias right now.    

 

Table  4.2 The estimate coefficients of the regression models with the indicator of year effect 

  Poisson Model Negative Binomial Model 

  Estimate Std.Error P-value Estimate Std.Error P-value 

constant -1.7973  0.1291  < 2e-16  -1.7973   0.2085 < 2e-16  

1991 0.2149 0.1732 0.2147 0.2149 0.2888 0.4568 

1992 -0.9273 0.2415 0.0001 -0.9273 0.3342 0.0055 

1993 0.2149 0.1732 0.2147 0.2149 0.2888 0.4568 

1994 -0.0953 0.1867 0.6098 -0.0953 0.2971 0.7485 

1995 0.1601 0.1754 0.3613 0.1601 0.2901 0.5811 

1996 -0.738 0.2262 0.0011 -0.738 0.3232 0.0224 

1997 -0.6061 0.2167 0.0052 -0.6061 0.3168 0.0557 

1998 -0.9671 0.2452 8.03E-05 -0.9671 0.337 0.0041 

1999 -0.2108 0.1926 0.2737 -0.2108 0.3008 0.4835 

2000 -1.3973 0.2887 1.30E-06 -1.3973 0.3697 0.0002 

2001 -0.2525 0.1948 0.195 -0.2525 0.3022 0.4036 

2002 0.2281 0.1727 0.1864 0.2281 0.2885 0.4291 

2003 -1.8000 0.3416 1.36E-07 -1.8000 0.4124 1.27E-05 

2004 -1.3327 0.2814 2.17E-06 -1.3327 0.364 0.0003 

2005 -0.3414 0.1998 0.0875 -0.3414 0.3055 0.2638 

Null deviance 4139.3 1483.9 

Residual deviance 3941.4 1386.7 

Variability explain by the model 4.78% 6.55% 

AIC 4929.5 3870.4 
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As is highlighted in Table 4.2, the year 1992, 1998, 2000, 2003, and 2004 have greater estimate 

coefficients, which indicate that these years’ hospitalizations are sharply different from their previous 

years. The great negative sign indicates a sharp decrease in HSHs from the previous year, while the great 

positive sign indicates a sharp increase in HSHs comparing with the previous year on the year level. 

4.3.3 Seasonality 

The seasonality of a disease refers to the systematic periodic fluctuations in disease counts within the 

course of a year. Like other diseases, the seasonality of heat stroke related disease can also be 

characterized by the timing, magnitude and duration of a seasonal increase.  The analysis conclusion of 

seasonality is greatly influenced by the selection of temporal resolution. The use of daily time series 

enables the investigation of significant differences in the seasonal peaks of disease. The effective 

analysis of seasonality also requires data collected over a long period with sufficient frequency.  A 

parametric analysis using harmonic regression method is conducted below. Generally, harmonic 

regression helps reveal the point in time when a seasonal curve reaches its maximum; absolute and 

relative amplitudes of the peak; and the duration of a seasonal increase with a defined shape of a curve. 

                                                       (4.4) 

In Equation 4.4, π is the constant; ω is the frequency-sequence of the day divided by the number of 

cycles. This study uses 365.25 as the number of cycle in order to consider the effect of a leap year. The 

terms           and           model the annual oscillation cycle, while the           and 

          model the half-year oscillation cycle. 
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Table  4.3 The estimate coefficients of regression models with the indicator of harmonic term 

  Poisson Model Negative Binomial Model 

  Estimate Std.Error P-value Estimate Std.Error P-value 

          -2.30E+00 1.06E-01  < 2e-16 -2.0396 0.114  < 2e-16 

          -3.22E-01 6.77E-02 1.99E-06 -0.2121 0.084 0.0116 

Null deviance 4139.3 2037.4 

Residual deviance 3198.7 1466.8 

Variability explain by the model 22.72% 28.01% 

AIC 4160.8 3472.1 

  Poisson Model Negative Binomial Model 

  Estimate Std.Error P-value Estimate Std.Error P-value 

          1.2059 0.0689  < 2e-16 1.1653 0.089  < 2e-16 

          0.5064 0.0604  < 2e-16 0.4574 0.0823 2.68E-08 

Null deviance 4139.3 1662.4 

Residual deviance 3685.4 1426.1 

Variability explain by the model 10.97% 14.21% 

AIC 4647.6 3725.1 

  Poisson Model Negative Binomial Model 

  Estimate Std.Error P-value Estimate Std.Error P-value 

          -1.6062 0.1003 1.39E-10 -1.591 0.1068 < 2e-16 

          0.1014 0.1141 < 2e-16 0.0756 0.1177 0.521 

          0.7511 0.0809  < 2e-16 0.6979 0.0944 1.44E-13 

          0.5554 0.0866  < 2e-16 0.4825 0.0988 1.03E-06 

Null deviance 4139.3 2142.8 

Residual deviance 3067.7 1462.9 

Variability explain by the model 25.89% 31.73% 

AIC 4033.8 3397.5 

 

When          ,        ,           and           are applied together, the seasonality of heat 

stroke related hospitalizations can be depicted at high significance level. The next step is to test the 

weekday and holiday effects on hospitalizations. 

Using the estimates of the amplitude and the phase angle can express the proposed characteristics of 

the seasonality, such as the magnitude and the peak time [67]: 

The average maximum value on the seasonal curve of HSHs: 
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   {    }     {    }  (4.5) 

The average minimum value on the seasonal curve of HSHs: 

   {    }     {    }  (4.6) 

The average peak timing, the position of the maximum point on the seasonal curve of HSHs: 

                 (4.7) 

In Equation 4.5, 4.6, and 4.7,   and    are the estimated coefficients for the terms           

and         ,       
    

  
 

    where       when       and      otherwise;      

              ⁄   , with  
 

 
   

 

 
 .  

Table  4.4 The characteristics of seasonality estimated by the amplitude and the phase angle 

  Poisson Model Negative binomial  Model 

    -3.1767  -3.0343  

Average maximum value  1.0227 1.0110  

Average minimum value  0.0041 0.0062  

Average peaking time (Julian day/Date)  191/July 9th  189/July 7th   

 

From Table 4.4, this study finds that the regression model with harmonic terms (e.g.          

and          ) cannot explain the actual magnitude of HSHs. The estimated average peak time is July 

9th, which can explained as the average peak time for the 16 years, because this is the overall model for 

the 16 years’ records without including information about year variations and the estimate coefficients 

are adjusted by all 16 years’ records. 

The regression model with           and            was run for each year separately in order to 

detect the more accurate peak time and intensity for each year. As is explain in Table 4.5, the annual 

peak time and intensity vary greatly from one year to another. 
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Table  4.5 The annul peak and intensity of HSHs estimated by regression models for each year 

Year Julian day Date Minimum value Maximum value 

1991 198 17-Jul 0.0006 0.9455 

1992 184 3-Jul 0.0090 0.1781 

1993 190 9-Jul 0.0023 0.8361 

1994 182 1-Jul 0.0018 0.6075 

1995 193 12-Jul 0.0091 0.6441 

1996 104 14-Apr 0.0338 0.1441 

1997 187 6-Jul 0.0121 0.2563 

1998 199 18-Jul 0.0006 0.2613 

1999 186 5-Jul 0.0000 1.0044 

2000 166 15-Jun 0.0013 0.1469 

2001 198 17-Jul 0.0059 0.4362 

2002 190 9-Jul 0.0001 1.0642 

2003 192 11-Jul 9.04E-08 0.1813 

2004 204 23-Jul 0.0058 0.1198 

2005 190 9-Jul 0.0069 0.3828 

2006 201 20-Jul 0.0044 0.6029 
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4.3.4 Weekday and holiday effects 

A week is defined based on days and also the standard time period used for cycles of work days and rest 

days, therefore a week can be explained as the link between natural phenomena and daily life. The 

weekday effects may have substantial and multifaceted effects on the public’s health, especially in the 

U.S., because a majority of the holidays in the US have floating dates: they occur on the same day of the 

week each year. Holidays are usually correlated with influx of travel around long weekends and changes 

of regular food consumption patterns. Take the example in Massachusetts: the Patriots’ Day, the 3rd 

Monday in April; there is a Marathon race on that day, when the temperature turns to be warmer in 

April.  All the above factors may result in the increase in heat stroke and dehydration cases that day. 

                                                  (4.8) 

Dummy variables of Monday to Saturday were added to the daily based regression model and Sunday is 

selected as the reference day.  

 

Table  4.6 The estimate coefficients of the regression models with the indicator of weekday effect 

  Poisson Model Negative Binomial Model 

  Estimate Std.Error P-value Estimate Std.Error P-value 

Monday 0.2231 0.2196 0.3100 0.2231 0.143 0.1187 

Tuesday 0.2763 0.2186 0.2060 0.2763 0.1414 0.0507 

Wednesday 0.1659 0.2208 0.4530 0.1659 0.1448 0.2522 

Thursday 0.1464 0.2212 0.5080 0.1514 0.1455 0.3142 

Friday -0.0126 0.2250 0.9550 -0.0126 0.1512 0.9334 

Saturday 0.0660 0.2231 0.7680 0.0660 0.1483 0.6566 

Null deviance 4139.3 1362.2 

Residual deviance 4132 1359.2 

Variability explain by the model 0.18% 0.22% 

AIC 5102.2 3942.2 
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The P-values of each estimate coefficients are close and none of these weekdays is more statistically 

significant than the other days. The weekday effect does not significantly affect the HSHs, because the 

heat stroke related diseases are so acute and urgent that other social factors cannot influence the “see 

doctor decision”. 

Some holidays have fixed dates, like New Year’s Day (Jan 1st ), Labor Day (June 19th), Independence Day 

(July 4th ),  Veterans Day  (Nov 11st ), and Christmas Day (Dec 25th). This study adds dummy variables for 

each of these fixed holidays to test whether the holiday effect can explain the occurrence of HSHs. 

This study tested and found that the dummy variable of fixed holidays are statistically significant, but 

only 0.3% variability in hospitalizations can be explained. In fact, it is not worth adding indicators of fixed 

holidays, because HSHs are unlikely to occur in November, December and January, and the HSHs 

occurring in June and July can be explained by the seasonality and temperature exposure (in next 

chapter). 

4.4 Results 

The regression models with the calendar effects (the linear trend, the year effect, the seasonality, and 

the weekday effect) can explain around 30% variability in the HSHs.  

When putting all the calendar effects variables into the same model, the dummy variables of each year 

lose their significance, because those predictors are not independent and convey overlapping 

information.
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Table  4.7 The estimate coefficients of the regression models with the indicator of calendar effects 

    Poisson Model Negative Binomial Model 

  Predictors Estimate Std.Error P-value Estimate Std.Error P-value 

Linear trend day 0.0003 0.0017 0.8359 -0.0004 0.0018 0.8149 

Year effect 

1991 2.1110 9.1273 0.8170 -2.0987 9.7466 0.8295 

1992 0.8460 8.5205 0.9209 -2.7911 9.0982 0.7590 

1993 1.8599 7.9106 0.8141 -1.7536 8.4478 0.8356 

1994 1.4238 7.3028 0.8454 -1.9131 7.7991 0.8062 

1995 1.5530 6.6943 0.8165 -1.4097 7.1497 0.8437 

1996 0.5310 6.0877 0.9305 -1.7653 6.5010 0.7860 

1997 0.5348 5.4793 0.9222 -1.9 5.8526 0.7454 

1998 0.0479 4.8729 0.9922 -2.1756 5.2056 0.6760 

1999 0.6782 4.2628 0.8736 -1.3819 4.5553 0.7616 

2000 -0.6322 3.6613 0.8629 -2.1414 3.9117 0.5841 

2001 0.3843 3.0476 0.8997 -0.8921 3.2588 0.7843 

2002 0.7389 2.4392 0.7619 -0.521 2.6114 0.8419 

2003 -1.4152 1.8564 0.4459 -2.2291 1.9895 0.2625 

2004 -1.0716 1.2484 0.3907 -1.4778 1.3425 0.2710 

2005 -0.2086 0.6398 0.7444 -0.4187 0.7084 0.5545 

Seasonality 

          -1.6043 0.1001  < 2e-16 -1.5874 0.1068  < 2e-16 

          0.1429 0.2323 0.5385 0.0271 0.2438 0.9113 

          0.7518 0.0809  < 2e-16 0.6877 0.0937 2.13E-13 

          0.5697 0.1112 3.02E-07 0.4356 0.1260 0.0005 

Weekday 
effect 

Monday 0.2230 0.1430 0.1190 0.1465 0.2003 0.4646 

Tuesday 0.2761 0.1414 0.0508 0.2469 0.1976 0.2115 

Wednesday 0.1664 0.1448 0.2506 0.1823 0.1993 0.3605 

Thursday 0.1476 0.1455 0.3104 -0.0395 0.2059 0.8478 

Friday -0.0115 0.1512 0.9394 -0.1701 0.2103 0.4185 

Saturday 0.0658 0.1483 0.6573 0.0451 0.2033 0.8245 

Analysis 

Null deviance 4139.3 2297.7 

Residual deviance 2863.1 1477.6 

Variability explain by the model 30.83% 35.69% 

AIC 3873.3 3351.7 
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This study superimposed the predicted daily time series of hospitalization for each year with the overall 

regression model for 16 years, and the intensity of HSHs shows strong annual variability (Figure 4.3). 

Year 1991, 1993, 1995 and 2002 are predicted to have high hospitalization intensity. The predicted 

average peak time is July 9th.  The predicted intensity exhibited an almost 7-fold difference between the 

severest year 1995 and the least severe year 2003. 

By superimposing the predicted daily time series of HSHs for each year using the separate regression 

model each year, this study investigates the variability in annual intensity and peak time (Figure 4.4).

 

 

 

 

 

 

 

 

 

 

 

Figure  4.3 Superimposed daily time series of HSHs for elderly people (1991-2006) as predicted from the overall 
regression model for 16 years with calendar effects 
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Figure  4.4 Superimposed daily time series of HSHs for elderly people (1991-2006) as predicted from the separate 
regression models for 16 years with calendar effects 
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Evaluating the accuracy of the prediction with calendar effects from 1) timing: the average peak time of 

each year is July 9th, and the predicted peak time of each year using separate regression model for each 

year ranging from April to July, while the actual peak time of each year varies ranging from June to 

August; 2) magnitude: the predicted absolute magnitudes of hospitalizations are smaller than 1, which 

greatly derivate from the actual magnitudes; the predicted relative magnitudes:  the magnitude ratio of 

the highest year 1995 to the lowest year  2003 is 7:1; while the actual magnitude ratio of the highest 

year 2002 to the lowest year 2003 is 7.6:1; 3)duration: the predicted duration of HSHs is as long as the 

whole month, while the actual duration of HSHs  is less than a week. Calendar information alone cannot 

provide enough information to predict the accurate hospitalization date and the actual numbers of HSHs 

either. 

4.5 Conclusion 

The HSHs don’t demonstrate an evident long term trend, but do show strong seasonality and annual 

variations in intensity and peak time. Calendar effects can explain 30% of the variability in HSHs and 

regression models for each separate year can provide important information to describe the annual 

peak time of HSHs. The calendar effects cannot sufficiently explain the intensity and duration of HSH, 

because the calendar effect cannot provide adequate biological and physiological information to explain 

the mechanism of heat related disease. The calendar information is the most straightforward predictors 

of HSHs, but not their real underlying factors. The dummy variables of fixed holidays are not included in 

the final model, because the information expressed by the dummy variable is incorporated by other 

variables. In fact, it is still necessary to give heat warnings on holidays, especially if there are some 

celebration events outdoors in summer seasons.  

This chapter supports the hypothesis that the HSHs demonstrate well-pronounced seasonality, and 

there are some annual variations in intensity and peak time. Next chapter will explain and analyze the 
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temperature effects on HSHs.  Temperature effects are the direct measurements of heat exposure and 

can also provide information to discuss the lag effect and the accumulated heat effect on human health. 
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4. The association between ambient temperature and heat stroke related hospitalization 

5.1 Background  

Being aware of the calendar effects’ inadequacy in the explanation of heat stroke related 

hospitalizations (HSHs), this chapter evaluates the impact of ambient temperature on HSHs, testing the 

hypothesis that the ambient temperature highly influences the heat stroke related hospitalization, when 

ambient temperature exceeds a threshold, the HSHs will increase rapidly. 

Projected climate change scenarios lead to a more variable temperature system [81] , two of whose 

manifestations are the increasing ambient temperatures and heat wave effects.  Human beings have a 

strong physiological capability of adjusting exterior heat effects, but human beings have limited 

tolerance of the amount of heat exposure and feel uncomfortable outside the temperature range of 17-

30 ˚C [93]. High temperature causes the clinical syndromes of heat stroke, heat exhaustion, heat 

syncope, and heat cramps. Elderly people have limited heat regulation ability and cannot sufficiently 

cope with the variation in temperature; therefore they are more vulnerable to the variation ambient 

temperature than healthy adults.  

Understanding the relationship between high ambient temperature and its negative effects on human 

health can assist predicting the influence of climate change on human health in a big scenario, and can 

provide more information for public health interventions; moreover can guide allocating material and 

facilities for vulnerable subgroups. 

5.2 Methodology 

This chapter aims to explain the association between ambient temperature and HSHs. This study uses 

generalized linear regression analysis of time series data from 1991 to 2006 to quantitatively illustrate 

the ambient temperature-HSHs association for the Boston-Cambridge-Quincy MA NH Metropolitan 
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Statistical Area (Boston MSA). This study also assesses the selection of predictor variables, the lag effect 

and the transformation of temperature in following sections. 

5.3 Statistical features of daily temperature 

The Gaussian (bell-shaped) distribution is the most commonly used continuous distribution because 

most phenomena are a result of many forces, like the daily temperature is the comprehensive result of 

particles’ motion. The Central Limit Theorem states that any large sum of independent, identically 

distributed random variables are approximately Normal. In a long period of time, daily temperature can 

be regarded as a random variable though it principally correlates with a series of complicated physical 

and chemical reactions.  

5.3.1 The distribution of daily temperature 
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 Figure  5.1 The distribution density plot of daily maximum temperature 

Figure  5.2 The distribution density plot of daily minimum temperature 
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Table  5.1 the summary of statistical feature of temperature 

 
Maximum 

temperature (°C) 
Minimum 

temperature(°C) 
Mean 

temperature (°C) 

Total days 5844 5844 5844 

Mean 15.46 5.07 10.26 

Variance 103.20 85.68 90.69 

Standard Deviation 10.16 9.26 9.52 

Minimum -14.28 -22.62 -17.70 

Maximum 36.54 24.75 30.63 

25th  percentile 7.07 -1.71 2.83 

50th  percentile 15.78 5.04 10.41 

75th  percentile 24.27 12.82 18.56 

95th  percentile 30.42 18.89 24.40 

98th  percentile 32.26 20.50 25.84 

99th  percentile 33.40 21.35 26.83 

Skewness -0.14 -0.21 -0.18 

Kurtosis -0.98 -0.72 -0.88 
 

5.4 Analysis of the temperature-hospitalization association 

As is explained in Chapter 2.4.2, the ambient temperature directly affects human health and the 

occurrence of adverse health outcomes may occur several days follow the increase in temperature. This 

study uses a generalized linear model with Poisson distribution or Negative binomial distribution to 

explain the association between daily ambient temperature, lag effect and HSHs on the MSA level 

(Equation 5.1). 

                                           (5.1) 

where   is daily HSHs;   is the date from January 1st, 1991 to December 31st 2006; β0 is the intercept for 

the regression model, β1 is the coefficient for daily minimum temperature; β2 is the coefficient for daily 

maximum temperature; β3 is vector of coefficients for lag effect.  All regression analyses were conducted 

using R (Version 12.5.2) and the statistical significance was based on α=0.05. 
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5.4.1 Tmin and Tmax 

The ambient temperature is the straightforward measurement of heat exposure, while there has been 

no superior type of temperature measurement so far. This study applies both the daily minimum (Tmin) 

and maximum temperature (Tmax) in the same regression model, even though they are highly correlated. 

This study tests and finds that the estimate coefficients for daily maximum and minimum temperature 

are of the same order of magnitude and are close, thus coefficients can be explained as the weight 

assigned to these two parameters. Applying both the daily maximum and minimum temperature in the 

same model allows the utilizing of “a weight-averaged daily temperature” to conduct regression 

analysis. Moreover, the daily maximum and minimum temperatures can be explained as the daytime 

temperature and the nighttime temperature respectively, therefore the weights before them can 

illustrate the different proportions of people’s exposure to daytime and nighttime temperatures 

accordingly. 

                                  (5.2)
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Table 5.2 summary of the regression model with maximum and minimum temperatures 

Model Poisson Model Negative binomial Model 

 Variables Estimate Std.Error P-value Estimate Std.Error P-value 

Tmax 0.1708 0.0127  < 2e-16       

Tmin 0.0770 0.0132  < 2e-16       

Null deviance 4139.3   

Residual deviance 2543.1   

Variability explain by the model 38.56%   

AIC 3505   

  Estimate Std.Error P-value Estimate Std.Error P-value 

Tmax -0.2765 0.0434 1.79E-10 -0.2612 0.0444 3.92E-09 

( Tmax )
2 0.0093 0.0008 < 2e-16 0.0088 0.0009 < 2e-16 

Tmin 0.1249 0.0325 0.0001 0.1225 0.0011 0.3365 

( Tmin )2 -0.0005 0.001 0.6144 -0.0011 0.0323 0.0001 

Null deviance 4139.3 3248.3 

Residual deviance 2134.4 1704.3 

Variability explain by the model 48.44% 48% 

AIC 3100.5 3004.9 

 

The Tmin  and Tmax are both statistically significant in  the regression model. The estimate coefficient for 

maximum temperature is greater than that of minimum temperature, which indicates every degree 

increase in Tmax  will lead to more  health risks than that brought by every degree increase in Tmin. The Tmin  

and Tmax  together can explain 38.56% of the variability in HSHs. The regression model with a linear term 

of temperature is not adequate to detect the association between temperature and HSHs. Adding 

quadratic indicators of maximum and minimum temperature to the regression model can explain 

another 10% of the variability in HSHs. The quadratic indicator of Tmin  is not statistically significant and 

can explain dispensable variability in HSHs, which indicates that HSHs are more closely related with daily 

maximum temperatures. 

The software support limits the application of a negative binomial model. The MASS package in R 

software (Version 2.15.2) has some bugs and it cannot model the association between Tmin, Tmax and 
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HSHs using generalized linear model with negative binomial distribution, warning the non- divergence of 

HSHs value. Theoretically, the null deviance should be constant for all negative binomial models if 

explaining the same dataset. The changing null deviance of a negative binomial model also creates 

doubt about the quality of the negative binomial model. 

5.4.2 Threshold of temperature effect 

Human beings have strong and subtle heat adjustment capabilities, and in a certain location, there exists 

an upper limit of temperature, exceeding which people’s thermoregulation system will fail to work and 

more adverse health outcomes will occur. This temperature limit is called the threshold of temperature 

[2, 24, 26]. The temperature threshold is a location-specific parameter and also correlated with other 

social-economic factors. 

This study applies a data-driven process to investigate the temperature threshold of HSHs in the Boston 

MSA. This study categorized daily temperature according to the HSHs happened on each day, and then 

observed the maximum and minimum records of maximum and minimum temperatures on those days 

in each subgroup. As is shown in Table 5.3, the variances of temperature records for those days with 

more than 5 daily hospitalization counts are smaller than those of other groups, which indicate that the 

high daily maximum and minimum temperatures are the prerequisite for HSHs, though the high 

temperatures won’t necessarily lead to hospitalizations. The minimum records of daily maximum and 

minimum temperatures (i.e.30.02°C and 16.72 °C) of those days with five or more HSH counts are 

selected as the threshold points of temperatures. The odds ratio for temperature exposure beyond the 

threshold is calculated in Table 5.4. As is illustrated in Figure 5.3 and Figure 5.4, the horizontal lines 

classify all the days into two groups: days with less than 5 daily cases and days with 5 or more daily cases. 

The vertical lines indicate the lower band of the daily minimum and maximum temperatures, and all 

those days with 5 or more HSHs are located beyond these two lines.  
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Table  5.3 The summary of temperature features according to the hospitalizations per day 

    HSHs Tmax (°C) Tmin (°C) 

all data (5844) 

Mean 0.12 15.46 5.07 

Median 0 15.78 5.04 

Variance 0.46 103.2 85.68 

Standard Deviation 0.68 10.16 9.26 

Minimum 0 -14.28 -22.62 

Maximum 22 36.54 24.75 

1st  Quartile 0 7.07 -1.71 

3rd  Quartile 0 24.27 12.82 

Skewness 15.56 -0.14 -0.21 

Kurtosis 370 -0.98 -0.72 

days with more 
than 1 count/day 

(426) 

Mean 1.65 25.55 13.92 

Median 1 28.93 16.52 

Variance 3.84 84.24 61.63 

Standard Deviation 1.96 9.18 7.85 

Minimum 1 -3.62 -13.98 

Maximum 22 36.54 24.75 

1st  Quartile 1 22.43 10.92 

3rd  Quartile 1 31.83 19.37 

Skewness 6.12 -1.37 -1.32 

Kurtosis 48.16 1.03 1.14 

days with more 
than 3 

counts/day 
(49) 

Mean 5.45 33.14 20.43 

Median 4 34.05 21.12 

Variance 16.29 6.35 8.12 

Standard Deviation 4.04 2.52 2.85 

Minimum 3 26.11 9.13 

Maximum 22 36.54 24.75 

1st  Quartile 3 31.28 19.67 

3rd Quartile 6 34.73 22.23 

Skewness 2.51 -0.81 -1.89 

Kurtosis 6.22 -0.04 4.52 

days with more 
than 5 

counts/day 
(20) 

Mean 8.5 34.19 21.7 

Median 7 34.36 21.65 

Variance 24.26 3.89 2.83 

Standard Deviation 4.93 1.97 1.68 

Minimum 5 30.02 16.72 

Maximum 22 36.5 24.75 

1st Quartile 5 33.85 21.18 

3rd Quartile 9.25 35.75 22.42 

Skewness 1.51 -0.84 -0.88 
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Kurtosis 1.06 -0.38 1.76 
 

 

Table  5.4 The odds ratio of temperature exposure beyond the threshold point 

   (Tmax, Tmin)> (30.02°C, 16.72 °C) 

HSHs on that day  YES NO 

YES 131 295 

NO 102 5316 

OR (95% CI) 23.14 (17.42, 30.75) 
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Figure 5.3 the association between daily hospitalization cases and minimum temperature 

 

 

 

 

 

 

 

 

 

 

Figure  5.4 the association between daily hospitalizations and maximum temperature 
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5.4.3 Temperature transformation 

With the understanding of threshold temperature, this study enhances the analysis of the relationship 

between daily temperature parameters and HSHs. Based on the biochemical kinetic principles, the 

effects of temperature on human health can be explained by the temperature effects on metabolic rate 

[99]. The metabolism is an energy and material transformation process which is closely correlated with 

temperature. The process of metabolism is the occurrence of countless chemical reactions in cells, 

therefore it is logical to borrow some concepts from the chemical field to explain and quantify the 

relationship between temperature and its health outcomes. 

The Arrhenius equation (Svante Arrhenius, 1889) explains the energy required to start a chemical 

reaction. The reaction rate depends on temperature, because which offers the activation energy. A 

reaction cannot start until the atom can leap over the activation energy threshold. 

     
  
    (5.3) 

where    is the rate constant of a chemical reaction;   is the reaction temperature;    is a pre-factor;  

 is the Universal gas constant;    is a factor that can affect the chemical reaction rate in the existence 

of catalyst, which is also influenced by temperature. 

The enzyme is a specific type of biological catalyst that keeps the chemical reactions in the human body 

occurring quickly enough to keep the body alive. Enzymes are sensitive to their environmental 

temperature. Up to a threshold, the rate of chemical reaction in the human body increases as a function 

of temperature because the substrates collide more frequently with the enzyme active site. However, at 

both high and low temperature extremes, the native structure of the enzyme will be compromised and 

the molecule becomes inactive (as is shown in Figure 5.5). The convex curve of enzyme reactions 

together with regression model in Table 5.2 indicates that the association between temperature and 

HSHs is not a simple linear one. 
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Figure 5.5  The relationship between temperature and activity of enzyme reactions (The data source is cited in Appendix 5) 

This study illustrates the heat stroke related disease as the macro manifestation of the enzyme action: 

when people are exposed to extremely high temperature environments, their heat regulation 

mechanism may fail to control and keep the constant status of the interior temperature environment, 

and then the enzymes cannot work within the optimal temperature range; consequently, the heat 

stroke-related disease occurs. This study demonstrates the mechanism in a quantity form: 

            (   )   
              

   (5.4) 

Equation 5.4 is formula of temperature transformation,     is the transformed daily maximum or 

minimum temperature, where   is the date from January 1st ,1991 to December 31st ,2006 ;       

indicates daily maximum temperature and      indicates daily minimum temperature;              

are the thresholds of maximum temperature (               30.02 °C) and minimum temperature 

(               16.72 °C) (explained in chapter 5.4), exceeding which, there will be more HSHs;   

is the median level (10.00 °C) of daily average temperature, which is used to adjust the order of the 

magnitude of the exponential term. The temperature transformation aims to emphasize the exponential 

increase of negative health outcomes after the threshold and detect those extreme values in HSHs. 
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Table  5.5 the regression model with transformed daily temperature 

Model Poisson Model Negative binomial Model 

Variables  Estimate Std.Error P-value Estimate Std.Error P-value 

Transformed (Tmax) 1.1857 0.0595 < 2e-16 1.3763 0.0906 < 2e-16 

Transformed (Tmin) 0.4485 0.0464 < 2e-16 0.5359 0.0681 3.72E-15 

Null deviance 4139.3 3232.7 

Residual deviance 2145.4 1679.5 

Variability explained by the model 48.17% 48.05% 

AIC 3107.6 2983.5 

 

Comparing table 5.5 and table 5.2, this study finds that the transformed daily temperatures are 

statistically significant and can explain 10% more variability in HSHs than the untransformed variables. 

5.4.4 Lag effect  

The lag effect explains the temporal pattern of association between temperature exposure over 

previous days and negative health outcomes on another particular day. The lag effect of heat events 

plays a crucial role in the severity of health outcomes, because the length of lag is correlated with the 

duration of the heat event. This section tests and selects the length of lag according to the AIC value of 

each model.  As is shown in Table 5.6, adding 1 and 2 days’ lag can explain another 4% of the variability 

in HSHs. These two lag terms are both statistically significant and the maximum temperature of two 

previous days greatly affects human health. 

Table  5.6 the regression model with transformed daily temperature and two days’ lags 

Model Poisson Model Negative binomial Model 

Variables Estimate Std.Error P-value Estimate Std.Error P-value 

Transformed (Tmax) 0.8289 0.0665 < 2e-16 0.9965 0.0930 < 2e-16 

Transformed (Tmin) 0.2538 0.0525 1.31E-06 0.2062 0.0706 0.0035 

Transformed (Tmax(lag1)) 0.8034 0.2079 0.0001 0.7235 0.2554 0.0046 

Transformed (Tmax(lag2)) 0.9620 0.1672 8.70E-09 0.9555 0.2040 2.80E-06 

Null deviance 4139.3 3539.1 

Residual deviance 1971.7 1726.2 

Variability explain by the model 52.37% 51.22% 

AIC 2937.9 2899.4 
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Chapter 6.4 will verify the selection of length of lag by considering the duration of heat wave and explain 

the lag effect as the manifestation of the accumulative heat effect. 

5.5 Seasonality of maximum temperature  

In chapter 4.3, the seasonality of HSHs was detected using a harmonic function, and this chapter aims at 

modeling the seasonality of maximum temperature for each year with harmonic functions and 

investigating whether the annual peak time of HSHs is correlated with annual peak time of maximum 

temperature.  

                                    (5.5) 

where   is the daily maximum temperature;   is the date from January 1st , 1991 to December 31st, 2006; 

   is the vector of coefficients for the seasonality; π is the constant; ω is the frequency-sequence of the 

day divided by the number of cycles, whose value is 365 for the average year and 366 for the leap year. 

The terms           and           model the annual oscillation cycle. 

Applying the same formula in Equation 4.5-4.7 to estimate annual peak time of the daily maximum 

temperature. The estimated results are shown in Table 5.7. Recalling the peak time of HSHs shown in 

Table 4.3, the scatter plot of the annual peak time of HSHs and the annual peak time of the daily 

maximum temperature is shown in Figure 5.6. There is no strong correlation between the annual peak 

time of the daily maximum temperature and the peak time of HSHs. 
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Table  5.7 The annual peak time of the maximum temperature estimated by the regression models for each year 

Year 1991 1992 1993 1994 1995 1996 1997 1998 

Julian day 199 203 205 205 204 203 205 206 

Date 18-Jul 22-Jul 24-Jul 24-Jul 23-Jul 22-Jul 24-Jul 25-Jul 

Year 1999 2000 2001 2002 2003 2004 2005 2006 

Julian day 205 201 209 200 208 208 204 208 

Date 24-Jul 20-Jul 28-Jul 19-Jul 27-Jul 27-Jul 23-Jul 27-Jul 

 

 

Figure  5.6 The scatter plot of annual peak time of HSHs and daily maximum temperature 
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5.6 Result 

This study started the analysis of the association between ambient temperature and HSHs with linear 

indicators of daily maximum and minimum temperatures, and then created the transformation 

formulae for the daily temperatures to model the different behaviors of HSHs when whose daily 

maximum and minimum temperature are below or beyond the local temperature thresholds. Applying 

the transformed temperature and two days’ lag can explain 52.37% of variability in HSHs. 

This study superimposed the daily time series of HSHs predicted from the overall model for 16 years 

with temperature effects, and the variability in annual intensity and peak time are plotted in Figure 5.7. 

Year 1991, 2006, 1993, and 2002 are predicted to have high hospitalization intensity. The model with 

temperature effects can detect the peak time, magnitude and duration of HSHs much better than the 

model with calendar effects. The model with temperature effects can predict the variation in annual 

peak time quite close to the observed dates, ranging from June to July, can predict the HSHs are in the 

same order of magnitude as the observed records and can predict the accurate length of heat wave 

duration. 

To visualize the distances between observed hospitalization dates and predicted hospitalization dates, 

the hospitalization calendar is built for June, July and August from 1991 to 2006. The daily 

hospitalization counts are sorted and the top 100 daily hospitalizations and their dates are selected to 

plot in the HSHs calendar (Figure 5.8). 
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Figure  5.7 Superimposed daily time series of HSHs for elderly people (1991-2006) as predicted from the model 
with temperature effects 
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Figure  5.8 HSHs calendar (The window with purple border stands for the observed HSHs dates; the window in 
yellow stands for the HSHs dates predicted by model with temperature effects) 
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5.7 Conclusion 

The elevated ambient temperature exposure is the direct cause of HSHs and there exists a non-linear 

relationship between temperature and heat HSHs. The temperature transformation formula takes the 

temperature threshold idea into account and describes the exponential increase tendency of 

hospitalizations when the temperature threshold is exceeded. The transformed temperature can 

accurately detect the magnitude of HSHs. 

This chapter investigates the general temperature effects and supports the hypothesis that the ambient 

temperature highly influences the heat stroke related hospitalization, when ambient temperature 

exceeds a threshold, the HSHs will increase rapidly, and in next chapter, this study will focus on those 

prolonged extremely hot temperature evens — heat waves. 
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5. Heat wave and heat stroke related hospitalizations 

Chapter 5 investigated the association between ambient temperature and heat stroke related 

hospitalizations (HSHs) and found that there are some extremely high hospitalizations on some 

“extreme days”. This chapter aims to test the hypothesis that the heat wave independently affects HSHs 

in the presence of well-pronounced seasonality, detecting how those “extreme days” can be 

distinguished from the common days, and how to utilize those “extreme days” to better understand the 

occurrence of HSHs 

6.1 Background 

The heat wave and its severe negative health outcomes attracted study attentions all over the world, 

especially after the 1995 Chicago and 2003 European heat wave events. What’s worse, the potential 

climate change may increase the frequency, duration, and intensity of the heat wave. Published studies 

have pointed out that more severe health effects would be resulted from the prolonged duration of 

heat wave, but very few studies investigated how the timing of first occurrence of the heat wave each 

year affect the negative health effects due to the heat wave.  

All the further analyses about intensity, duration and timing should conduct based on the definition of 

heat wave; however, the biggest challenge of heat wave study is the lack of standard and consistent 

definitions of heat wave. 

6.2 Definition of heat wave  

The heat wave can be conceptually explained as a type of extremely uncomfortable and life-threating 

heat event, which is beyond people’s heat adjustment capacity and may lead to lift-threating health 

outcomes. The health outcomes are associated with the intensity, duration and timing of the heat wave, 

as well as people’s adaptation and the availability of technical facilities [86]. The definitions of heat wave 

applied in published studies were summarized in Table 1.3. 
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This study investigates the best indicator of the heat wave for the Boston-Cambridge-Quincy MA NH 

Metropolitan Statistical Area (Boston MSA) by referring to published studies and sufficiently considering 

the Boston MSA’s local temperature features. This study expects the selected indicator of the heat wave 

to be a proper warning signal of the arrival of the heat-related disease. 

In published studies, heat waves were defined according to both absolute and relative temperature 

metric, and the duration of heat events. It makes more sense to define the heat wave by its relative 

intensity in order to consider the local temperature characteristics and long-time records. What’s more, 

the duration of heat wave, describing the accumulative heat effect on human health is highly 

determined by the geographical location of each city, for example the heat wave lasts longer in locations 

surrounded by rivers and mountains, like the city of Chongqing in China. This study evaluates the 

indicator of the heat wave by analyzing relative temperature conditions for several consecutive days. 
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Table  6.1 Application of various definitions of heat wave in the Boston MSA 

Definition of heat wave 
Days that are defined 

as heat wave 
Variability explained by 

the Dummy variable 
Variability explained in the 

presence of seasonality 

Days with minimum 
temperature above 99th 
percentile of  daily mean 
temperature in this 
location[81] 

28 15% 33% 

Days with daily maximum 
temperature above 99th 
percentile of 16 years’ 
daily maximum 
temperature[78] 

28 21% 37% 

2 consecutive days with 
mean temperature above 
95th percentile of warm 
season (May 1 to 
September 30) daily 
mean temperature for 
this location 
(community)[5] 

168 19% 36% 

2 consecutive days with 
daily maximum 
temperature above 98th 
percentile of 16 years’ 
daily maximum 
temperature* 

68 21% 38% 

2 consecutive days with 
daily maximum 
temperature above 95th 
percentile of 16 years’ 
daily maximum 
temperature* 

170 21% 41% 

3 consecutive days with 
daily maximum 
temperature above 95th 
percentile of 16 years’ 
daily maximum 
temperature* 

158 30% 43% 

* Original definition  
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According to Table 6.1, utilizing various definitions of heat wave may categorize different days into the 

heat wave period accordingly, directly affecting the study results and hindering comparison or synthesis 

of results across studies. 

This study added a dummy variable to indicate heat wave days which are defined using different 

definitions (Table 6.1) and conducted regression analyses of HSHs with the indicators of heat waves. This 

study selected the definition “3 consecutive days with daily maximum temperature above 95th 

percentile of 16 years’ daily maximum temperature”, for it can explain more variability in HSHs than any 

other definitions.  

Another issue resulting from the definition of heat wave is whether or not to include the first two days 

in the 3-day heat wave period. (In Table 6.1, the first two days of these 3 consecutive days with daily 

maximum temperature above 95th percentile of 16 years’ daily maximum temperature are included in 

those 170 heat wave days.) 

6.3 Analysis of heat wave and hospitalizations 

The annul peak time of HSHs usually occurs during the first heat wave period. As is shown in Figure 6.1, 

the annul peak time of HSHs is closely correlated with the occurrence of the first heat wave each year, 

following  the occurrence of the first heat wave in seven days. 
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Figure  6.1 The scatter plot of the peak time of HSHs and the time of first heat wave (No points stand for year 1996, 1998, 
2003, and 2004, because no heat wave  happened in those years.) 
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Adding an indicator variable of the heat wave to the regression model with calendar effects can be 

explain the effect of heat wave on HSHs (ICD-9-CM 992.0 – 992.9) in the presence of seasonality. 

Generalized linear regression with Poisson or negative binomial distribution is conducted in the 

following sections. 

                                                                                                  (6.1) 

In Equation 6.1:    is the daily hospitalization count from January 1st, 1991 to December 31st, 2006;    is 

the date of the hospitalization record; β0 is the intercept for the regression model; β1 is the coefficient 

for the linear trend; β2 is the vector of coefficients for the year effect; β3 is the vector of coefficients for 

the seasonality; β4 is the vector of coefficients for the weekday and holiday effects; β5 is the coefficient 

for the indicator of the heat wave. 

Table  6.2 The results of two regression models with heat wave effect 

    Poisson Model Negative Binomial Model 

  Predictors Estimate Std.Error P-value Estimate Std.Error P-value 

Linear trend day -0.0014 0.0017 0.4068 -0.0015 0.0018 0.4173 

Year effect 

1991 -7.9313 9.5238 0.4050 -7.9846 9.8381 0.4170 

1992 -8.0704 8.8918 0.3641 -8.0595 9.1842 0.3802 

1993 -6.7648 8.2551 0.4125 -6.8826 8.5274 0.4196 

1994 -6.7913 7.6201 0.3728 -6.7165 7.8723 0.3936 

1995 -5.9321 6.9852 0.3958 -5.8393 7.2164 0.4184 

1996 -5.6709 6.3519 0.3720 -5.5520 6.5613 0.3975 

1997 -5.1178 5.7169 0.3707 -5.0739 5.9060 0.3903 

1998 -4.8485 5.0843 0.3403 -4.8846 5.2526 0.3524 

1999 -4.4187 4.4484 0.3205 -4.4937 4.5979 0.3284 

2000 -4.2812 3.8203 0.2624 -4.2979 3.9476 0.2763 

2001 -3.1521 3.1804 0.3216 -3.1968 3.2886 0.3310 

2002 -2.3953 2.5462 0.3468 -2.5790 2.6351 0.3277 

2003 -3.7120 1.9379 0.0554 -3.7363 2.0099 0.0630 

2004 -2.1158 1.3020 0.1042 -2.0652 1.3492 0.1259 

2005 -1.2815 0.6670 0.0547 -1.0102 0.7048 0.1518 

Seasonality 

          -1.2965 0.1024 < 2e-16 -1.2994 0.1061 2.00E-16 

          -0.0253 0.2337 0.9136 -0.0539 0.2403 0.8225 

          0.5110 0.0821 0.0000 0.4870 0.0905 0.0000 
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          0.1847 0.1122 0.0998 0.2046 0.1217 0.0928 

Weekday 
effect 

Monday 0.2069 0.1432 0.1485 0.1053 0.1828 0.5645 

Tuesday 0.2806 0.1415 0.0474 0.1716 0.1810 0.3430 

Wednesday 0.1976 0.1453 0.1737 0.0567 0.1846 0.7588 

Thursday 0.1616 0.1461 0.2687 -0.1963 0.1932 0.3094 

Friday 0.0174 0.1517 0.9085 -0.2888 0.1974 0.1435 

Saturday 0.1113 0.1487 0.4544 0.0123 0.1861 0.9473 

Heat wave Indicator 2.2104 0.0940 < 2e-16 2.2551 0.1450 2.00E-16 

Analysis 

Null deviance 4139.1 2877.6 

Residual deviance 2339.1 1597.6 

Variability explain by the model 3351.1 3129.7 

AIC 43.49% 44.48% 

 

6.4 Heat wave and lag effect 

The lag effect of temperature on HSH in the regression model is expected to reflect the accumulated 

heat effect and indicate the lack of relief during that heat wave period. The study proposes the heat 

wave definition “3 consecutive days with daily maximum temperature above 95th percentile of 16 years’ 

daily maximum temperature”, indicating the heat wave effect will become risky with two previous days 

accumulation. What’s more, four or more consecutive days with daily maximum temperatures all above 

the 95th percentile are less likely to happen in the Boston MSA, if more than two days’ lag were added to 

the regression model; the cool temperature might alleviate accumulated heat effect.  

Comparing the Figure 6.2 and Figure 4.3, I can see the significant contribution of heat wave effect in the 

explanation of daily HSHs. 
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Figure  6.2 Superimposed daily time series (predicted with calendar and Heat wave effects) of HSHs for 
elderly people for 16 years (1991-2006) 
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6.5 Conclusion 

Understanding the correlation between the heat wave effect and HSHs can provide suggestions on the 

prevention heat wave’s adverse health effects effectively and HSHs preparations timely. 

The first occurrence of the heat wave each year is significant in guiding the heat wave prevention: it can 

serve as a proceeding warning signal to of the steep increase in HSHs.  If the warning system or 

engineering control system can be operated instantly when the heat wave begins each year, people can 

be better protected from the heat wave. However, the warning system operation needs financial 

support from the local government, and starting the warning and other public cooling system instantly 

after the arrival of heat wave may cost more money.  

This   chapter supports the hypothesis that the heat wave independently affects HSHs in the presence of 

well-pronounced seasonality, and in next chapter, this study will explain the model based on the 

combination of calendar effects, temperature effects and the heat wave effect.  
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6. Model explanation 

This study investigated the calendar effect, temperature effects and the heat wave effect on HSHs 

respectively in previous chapters, and now aims to build a model to explain HSHs with both calendar and 

temperature effects. 

7.1 Model building 

The calendar effects alone can explain 30% of the variability in HSHs, and the temperature effects can 

explain 52% of the variability in HSHs. However, when integrating the temperature effect and calendar 

effect in the same regression model, they can explain 56% of the variability in HSHs in total, which is 

smaller than the additive variability explained by calendar and temperature effects, because the 

information expressed by calendar effects is overlapping with that conveyed by temperature effects. 

Naturally, the calendar is created according to the rotation regularity of Sun and Earth and the variation 

of temperature and seasons are also the direct manifestations of relative position between Sun, Moon 

and Earth. 

Even though calendar effects and temperatures convey somewhat repeated information, it is still 

meaningful to consider these two effects in the same regression model: 1) calendar effect links the 

natural phenomena to social events, and it is an easy way to record the occurrence of HSHs; 2) 

temperature effect explains the environmental trigger of HSHs, and it is a straightforward way to 

understand and evaluate the occurrence of HSHs. What’s more, temperature adjustment is the main 

element considered in the heat prevention strategy. 
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Table 7.1 The results of two regression models with calendar effects and temperature effects 

    Poisson Model Negative Binomial Model 

  Predictors Estimate Std.Error P-value Estimate Std.Error P-value 

Linear trend day -0.0026 0.0018 0.1367 -0.0025 0.0018 0.1602 

Year effect 

1991 -14.6383 9.7242 0.1322 -14.0735 9.8552 0.1533 

1992 -13.6121 9.0810 0.1339 -13.0590 9.2018 0.1558 

1993 -12.5456 8.4295 0.1367 -11.9813 8.5425 0.1607 

1994 -11.5672 7.7809 0.1371 -11.1398 7.8847 0.1577 

1995 -10.3851 7.1329 0.1454 -9.9296 7.2285 0.1695 

1996 -9.6084 6.4873 0.1386 -9.2023 6.5738 0.1616 

1997 -8.7864 5.8379 0.1323 -8.4492 5.9158 0.1532 

1998 -8.1334 5.1900 0.1171 -7.8840 5.2593 0.1339 

1999 -7.4421 4.5428 0.1014 -7.2264 4.6043 0.1165 

2000 -6.4551 3.9021 0.0981 -6.2613 3.9543 0.1133 

2001 -5.1631 3.2476 0.1119 -5.0446 3.2918 0.1254 

2002 -4.4130 2.6021 0.0899 -4.4090 2.6378 0.0946 

2003 -4.3106 1.9750 0.0291 -4.2640 2.0029 0.0333 

2004 -2.5461 1.3291 0.0554 -2.5127 1.3478 0.0623 

2005 -1.2857 0.6818 0.0593 -1.3067 0.6949 0.0600 

Seasonality 

          -0.0564 0.1222 0.6448 -0.0706 0.1269 0.5781 

          0.2794 0.2375 0.2393 0.2687 0.2391 0.2612 

          0.1909 0.0850 0.0246 0.1608 0.0878 0.0672 

          -0.2398 0.1171 0.0406 -0.2023 0.1202 0.0922 

weekday 
effect 

Monday 0.0829 0.1451 0.5681 0.1082 0.1582 0.4940 

Tuesday 0.0926 0.1440 0.5205 0.1078 0.1586 0.4969 

Wednesday -0.0308 0.1474 0.8346 0.0159 0.1610 0.9215 

Thursday -0.1781 0.1502 0.2358 -0.1645 0.1678 0.3271 

Friday -0.1455 0.1539 0.3446 -0.1807 0.1718 0.2927 

Saturday 0.1372 0.1490 0.3569 0.1177 0.1619 0.4671 

Temperature 
effect 

Trans (Tmax) 0.8976 0.0701 2.0E-16 0.9930 0.0870 2.0E-16 

Trans (Tmin) 0.1611 0.0634 0.0110 0.1334 0.0758 0.0785 

Trans(Tmax(lag1)) 0.8686 0.2082 3.0E-05 0.8273 0.2380 0.0005 

Trans(Tmax(lag2)) 1.2026 0.1763 9.0E-12 1.1617 0.1986 5.0E-09 

Analysis 

Null deviance 4139.3 3781.9 

Residual deviance 1801.6 1679.2 

Variability explain by the model 56.48% 55.60% 

AIC 2819.7 2811.1 
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As is shown in Table 7.1, the variables of calendar effects lose their significance when combined with 

temperature effects in the same regression model, but the calendar effect can deal with the 

autocorrelation in model residuals. The significance of calendar effects also lies that they can adjust for 

the annual, seasonal and weekly variations, some of which are resulted by social factors.  Therefore, the 

calendar effect plays a significant role in explaining the social factor of HSHs. 

The lag effects of temperature on HSHs are statistically significant. As is explained by the estimate 

coefficients, the two previous day’s temperatures greatly affect HSHs. The exact health effect of 

temperature on HSHs within each temperature range can be explained as the incidence rate ration in 

chapter 7.3. 

The Poisson regression model can produce more reliable results under the R software (Version 2.15.2) 

environment. The null deviances keep constant in all the Poisson regression models, which makes sense, 

for the null deviance is calculated from an intercept-only model, and it should be constant when using 

the same dataset and should not be affected by the combination of predictor variables. However, the 

null deviances of negative binomial models change all the time. Moreover, the negative model cannot 

cope with some data sets, which are thought to be divergent. The quality of a negative binomial 

regression model in R is doubtful.  The software development is one of this study’s, reading its 

explanation in Chapter 8.1.3 

7.2 Model comparison 

In this part, this study tests whether a zero inflated Poisson model can be a better fit of the HSHs data. 

The zero-inflated Poisson model can be a good alternative to explain HSHs, because zeros take up 93% 

of the dataset. 

The Vuong test (Equation 7.1) is used to test the zero-inflated model can bring significant improvement 

in the explanation of HSHs comparing to the Poisson model. 
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                        (7.1) 

In equation 7.1,    is the result of ln(µ1/µ2) where µ1 is the predicted probability of HSHs for the zero 

inflated model; µ2 is the predicted probability of HSHs for the base model (Poisson);    is the standard 

deviation of m; N is the number of observations in each model. The test statistic V is asymptotically 

normal. If V>1.96, the zero-inflated model is preferred. If V<-1.96, the base model is preferred. Values of 

V between -1.96 and 1.96 indicate that neither model is preferred. 

As is tested in R: 

V= 4.517918 with p-value 3.12e-06 

So the zero-inflated model is statistically preferred over the Poisson model. 

 

Figure  7.1 The scatterplot of observed HSHs and predicted HSHs with Poisson and zero-inflated Poisson Model ( x-axis is the 
observed HSHs and y-axis is the predicted HSHs) 

Comparing these two scatter plots in Figure 7.1, the zero-inflated Poisson model can detect those 

extremely high HSHs more accurately than a Poisson model.  

7.3 Interpretation of coefficients 
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Interpreting the coefficients under the log link function can be difficult; therefore this study uses the 

coefficients in the transformed form to explain the change of HSHs in the presence of temperature 

change. 

The measurement of Incidence Rate Ratio (IRR) was defined as the rate of change in the health outcome 

(106). 

    
   {             }

   {         }
     (7.2) 

In Equation 7.2,    is the intercept estimated by a regression model;    is the coefficient of exposure 

term estimated by a regression model;      is the expression of exposure,   is the measurement of 

difference in exposure. 

For example, the exposure can be the ambient temperature: 

When       ,            

    
   {          }

   {        }
             (7.3) 

Therefore, for every degree increase in ambient temperature, i.e.     

    
   {          }

   {        }
          (7.4) 

In our study, where             
               

 
    (7.5) 

In Equation 7.5,      is the transformed daily maximum or minimum temperature, where   is the date 

from January 1st ,1991 to December 31st ,2006 ;       indicates daily maximum temperature and      

indicates daily minimum temperature;              are the thresholds of maximum temperature 

(               30.02 °C) and minimum temperature (               16.72 °C) (explained in 

chapter 5.4), exceeding which, there will be more HSHs;   is the median level (10.00 °C) of daily average 
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temperature, which is used to adjust the order of  magnitude of the exponential term. The temperature 

transformation aims to emphasize the exponential increase of negative health outcomes after the 

threshold and detect those extreme values in HSHs. 

Then Equation 7.2 becomes 

     

   {     (     
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)]}     (7.6) 

The Taylor series of a real or complex-valued function      that is infinitely differentiable in a 

neighborhood of zero is the power series: 
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In our study, Equation (7.5) can be approximated as 
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For daily maximum temperature, Equation (7.9) becomes 
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For daily minimum temperature, Equation (7.9) becomes 

     
          

  
        

          

  
  

 
          

  
 
 

 
 

 
          

  
 
 

 
 

 
          

  
 
 

  
  (7.11) 

Equation (7.4)  for every degree variation in daily maximum temperature becomes: 
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Equation (7.4)  for every degree variation in minimum maximum temperature becomes: 
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In Equation 7.12 and 7.13, the confidents      
 and      

 are the estimates in Table 7.1 for Trans (Tmax) 

and Trans (Tmin) respectively.  
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Figure  7.2 IRR of HSHs explained by maximum and minimum temperature (CI: 95%) 
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When maximum temperature is as low as -20 ˚C, the IRR of HSHs is close to 1, indicating that there is 

less probability of the occurrence of HSHs. The IRR increases along with the increase of daily maximum 

temperature and when maximum temperature exceeds the threshold (30.02 ˚C) point, the increase of 

IRR tends to be much steeper. The IRR is a good explanation of the association between temperature 

and HSHs:  temperature directly affects human health, but exact health risk increases exponentially with 

the increase of temperature, especially when temperature exceeds the threshold point.  

7.4 Conclusion 

This study aims to understand the occurrence of HSHs rather than only investigate how much variability 

can be explained by the model. 

The model with both calendar effects and temperature effects can explain 56% variability in HSHs which 

indicates that firstly, the occurrences of HSHs show regularity and can be partly detected by 

temperature exposure and calendar effects; secondly, the occurrences of HSHs are also affected by 

other random factors which cannot be explained by any model systematically; moreover, a statistical 

model can only summarize the general behaviors of HSHs rather than the accurate reflection of all the 

extreme events and details. 

Specifically speaking, the model can give general guidance on the community level, but it is not 

adequate enough to provide sufficient suggestions to every individual: the personal health condition, 

social economic status and adaption to heat events greatly affect the individual’s health outcome, even 

if their exposures are identical. The heterogeneity in exposures will be explained in Chapter 8.  

The IRR is a quantitative way to explain the health risk brought on by heat exposure. Yet, it is 

meaningless to emphasis the exact value of IRR. This study aims to warn elderly residents in the Boston 

MSA that HSHs are directly correlated with ambient temperature, especially when temperature exceeds 
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the threshold, because temperature will lead to more acute and dangerous health outcomes with every 

single degree increase of temperature beyond the threshold. 

This study focuses not only on the definition of heat wave, but on how the heat wave’s timing and 

intensity affect human health. This study finds that the annual peak of HSHs follows the first occurrence 

of the heat wave in about seven days. The first day with daily maximum temperature above the 95th 

percentile of 16 years’ records of each year is the signal of the arrival of the heat wave.  Maybe it is hard 

to persuade the government to start to operate cooling facilities at the occurrence of the first heat wave 

each year, but we can persuade individuals to gradually adjust their clothing, foods and exercise 

intensity at least. During that time, the hospitals may need to make special preparations for HSHs and 

individuals may need to be aware that they should seek medical cares without delay if they have some 

symptoms of the heat stroke related disease.  Earlier and more instant medical care may be the last 

opportunity to protect lives during the presence of heat events. 
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7. Discussion 

8.1 Study limitation 

8.1.1 Potential uncertainty  

This study was conducted based on three general assumptions: the heat exposure and HSHs happened 

at the same time; the individuals’ heat exposure happened around their residential area; the ICD-9-CM 

992.0 – 992.9 included all the adverse health outcome of heat exposure. In reality, the real life situations 

may not perfectly support these assumptions.  

Temporal factors: 

 Delay in HSHs registration date: people may not start feeling sick the exact day when 

temperature achieves a high level; and people may not go to hospital the day they start feeling 

sick; or the urgent care patients may not be registered in the insurance system timely when they 

were sent to hospital. Those last two types of delay may partly explain the temperature’s lag 

effect of adverse health outcomes. 

Spatial factors:  

  The billing zip code of each beneficiary may not be the location in which the heat exposure 

happened; what’s more the zip code may be incorrectly recorded. And for such a long time 

interval (16 years), the areas covered by a zip code may change.  

Individual and diagnostic:  

 Individual have quite different heat vulnerability, and people with chronic disease are quite 

vulnerable to heat exposure, however when they are sent to hospital during the heat wave 

period; the heat stroke is less likely to be diagnosed as their primary cause of hospitalization. 
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what’s more, there is no standard definition for heat events related disease, and this study 

extracted cases with diagnostic codes ICD-9-CM 992.0 – 992.9, which explain the effect of heat 

and light, but sun burns, burns, diseases of sweat glands due to heat, malignant hyperpyrexia 

following anesthesia are not included. Thus the records may not completely reflect all the 

negative health outcomes caused by heat events. 

8.1.2 Heterogeneity    

This utilized individual records to analyze the health outcomes in the Boston-Cambridge-Quincy MA NH 

Metropolitan Statistical Area (Boston MSA) without taking the heterogeneity into account. Adequate 

considerations of heterogeneity may facilitate the understanding of health risk on the individual level. 

 Heterogeneity in individual exposure 

The individual’s exact temperature exposure may be significantly various or may deviate greatly from 

the entire community’ exposure. I conducted the regression analysis using the average temperature for 

the whole Boston MSA, which is an approximate exposure measurement for each sub-location within 

this MSA. What’s more, the exact individual exposure is actually unknown, because the insurance 

system only recorded the billing zip codes of patients and lacked the records of exact locations in which 

the hospitalization happened; the insurance system only recorded the HSHs date and lacked the exact 

time. Even though we may apply remote sensing tools to extract temperature records on a smaller 

temporal and spatial resolution, the exact individual temperature exposure is still immeasurable.   

 Heterogeneity in individual status 

Even if the temperature exposure were assumed to be identical for every individual, the heterogeneity 

of individual status such as health condition, demographical status, social economic status and the 

adaptation to heat may also lead to various health outcomes.  The health condition of each individual 

greatly determines his vulnerability to heat; gender and race also indicate different adaptation abilities 
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to heat. The personal exposure to heat is closely associated with individuals’ job types and educational 

levels. The exterior temperature exposure may not really affect human health if they live or work in 

houses with good air conditioning systems; therefore the housing and facility types also affect people’s 

heat risk.  

8.1.3 Understanding and application of statistical theory    

The negative binomial regression is thought to be a useful accommodating of otherwise overdispersed 

Poisson data. However, within the GLM framework, the link of negative binomial regression attracted 

continuing discussion: the canonical link (i.e.       
 

  
   ) is stable, but it has properties that often 

result in non-convergence [96]. 

The development of software may limit the application of statistical theory in practice, and the 

regression results are determined by the application of algorithms and the setting of upper limit of 

iterations.  In this study, the negative binomial is expected to be a better fit of the hospitalization data 

theoretically, but when I try to conduct the regression analysis using generalized linear model with 

negative binomial distribution, I am always warned that the upper limits of iterations have been 

achieved, thus the negative binomial regression doesn’t show its superiority. Moreover, the MASS 

package in R software (Version 2.15.2) applies a log function          )to link the linear predictor and 

mean parameter in the generalized negative binomial regression model. The log link doesn’t sufficiently 

consider the dispersion parameter in a negative binomial distribution; therefore the superiority of a 

negative binomial model does not appear either. In terms of algorithm, maximum likelihood (ML) and an 

iteratively re-weighted least squares (IRLS) are two main approaches to estimating models of count data. 

IRLS is intrinsic to the estimation of generalized linear models, as well as to certain extensions to the 

generalized linear model algorithm [96]. In reality, the strengths of one algorithm over the other decide 

on the dataset, thus it is worth comparing more algorithms to improve the regression result. 
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8.2 Future direction 

8.2.1 A more refined spatial resolution 

Aggregation to HSHs data to the MSA level can guarantee adequate elderly population base, while this 

study applied single temperature measurement to represent the average heat exposure in a sufficiently 

large area and didn’t consider the heterogeneity in demographics and social-economic status in each 

sub location.  

Urban areas may have quite different temperature patterns from those of rural patterns, which may 

lead to various health outcomes. If this study defines the urban areas according to local meteorological 

features and then investigate the association between ambient temperature and HSHs in the rural and 

urban areas respectively, a more specific conclusion with a sufficiently consideration of the social factor 

as a modifier of health outcomes can be achieved.  

The contextual demographic and social-economic status may not always accurately reflect individual 

variables. If this study can be conducted on a more refined spatial resolution (zip code or county), the 

roles of demographic and social economic statuses in HSH in the presence of the similar temperature 

exposures will be investigated. 

8.2.2 The role of technical adaptation 

This study currently applies the ambient temperature recorded by ground monitor stations as the 

measurement of temperature exposure; however, the exact temperature exposure of each individual 

varies greatly. Elderly people’s exposure to ambient temperature is even more limited; instead, the 

housing temperature plays a more significant role in their health outcomes. 

The technical adaptation embraces the design of indoor ventilation systems, the efficiency of air 

conditioning systems, and the covering of green plants surroundings.  Those factors are correlated with 
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an individual’s social-economic status; therefore an adequate consideration of the technical 

adaptation’s effects on human health can facilitate our understanding of HSHs. 

8.2.3 Evaluation of the health protection system 

A complete health protection system includes both prevention strategies before the occurrence of heat 

related diseases and health care after the occurrence of negative health risks. The main issue facing us is 

not the lack of such a health protection system, but its financial support and efficacy.  

We should realize that the interplay between the financial support and efficacy of health protection 

systems: a system that fails to get financial support from government will not operate efficiently, while a 

system without adequate scientific evidence to verify its efficacy will never be accepted by policy 

makers.  

We are most concerned with the quality of health protection information and it is urgent to provide 

health protection suggestions with solid scientific evidence and propose the exact local suggestion with 

a full consideration of local economic and climate characteristics. From the national and global level, it is 

quite significant to analyze the contradictory information, such as the application of fans and 

consumption of caffeinated drinks, which may either ease or increase people’s heat burden, depending 

upon people’s living regions and long term adaption and acclimation. It is worth considering and 

evaluating the effectiveness of health protection strategy for each region, and then specifying the 

effective region of each suggestion. 

In reality, it is worth evaluating a health protection system’s costs and benefits, for example, the health 

care savings and potential decreases in mortality and morbidity. What’s more, targeting the most 

vulnerable population may greatly increase the efficiency of a health protection system. 

8.2.4 Vulnerability map 
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The vulnerability of each community is affected by its demographics, economic level, housing type, 

accessibility to medical care, and climate characteristics. Visualizing the heat risk within a certain 

community is a vivid way to warn people of the potential adverse health effects. Vulnerability is defined 

in one instance as the summation of all risk and protective factors that ultimately determine whether an 

individual or subpopulation experiences adverse health outcomes. The vulnerability maps comprise two 

parts: historical evidences and vulnerable factors. Mapping the already existed adverse health outcomes 

for each community can help individuals to realize their community’s risk history, and also provide 

information for new settlers to select their new houses.  Mapping the risk factors for each community 

can provide information for residents to decide what they can do to protect themselves from heat risk if 

they decide to live in the community. 
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    Appendix 

1. Data source of explanations of the heat exposure’s symptom:  

“HEAT STRESS,” last modified May 28, 2013. http://www.cdc.gov/niosh/topics/heatstress/  

2. Data source of explanations of ICD codes:  

“ICD-9-CM,” http://icd9cm.chrisendres.com 

3. Data sources of demographic information for each city: 

“Los Angeles,” last modified May 28, 2013.  http://en.wikipedia.org/wiki/Los_Angeles#2010_Census  

“CENSUS 2010: Changes in the Elderly Population of New York City, 2000 to 2010,” last modified July 16, 

2012. http://www.nyc.gov/html/dfta/downloads/pdf/demographic/elderly_population_070912.pdf 

“Chicago,” last modified May 28, 2013.  http://en.wikipedia.org/wiki/Demographics_of_Chicago 

“Houston,” last modified May 28, 2013.  http://en.wikipedia.org/wiki/Demographics_of_Houston 

“Jacksonville,” last modified May 28, 2013.  http://en.wikipedia.org/wiki/Jacksonville,_Florida 

“Atlanta,” last modified May 28, 2013.  http://www.citytowninfo.com/places/georgia/atlanta 

“Washington D.C.,” last modified May 28, 2013. http://quickfacts.census.gov/qfd/states/53000.html 

“Detroit,” last modified May 28, 2013. http://en.wikipedia.org/wiki/Detroit#Demographics 

“Philadelphia,” last modified May 28, 2013. http://en.wikipedia.org/wiki/Philadelphia#Demographics 

“Phoenix,” last modified May 28, 2013.  http://en.wikipedia.org/wiki/Phoenix,_Arizona#Demographics 

“San Antonio,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/San_Antonio#Demographics 

“San Diego,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/San_Diego#Demographics 

“Dallas,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/Dallas#Demographics 

“San Jose,” last modified May 28, 2013. 

http://en.wikipedia.org/wiki/San_Jose,_California#Demographics 

“Austin,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/Austin,_Texas#Demographics 

http://www.cdc.gov/niosh/topics/heatstress/
http://icd9cm.chrisendres.com/
http://en.wikipedia.org/wiki/Los_Angeles#2010_Census
http://www.nyc.gov/html/dfta/downloads/pdf/demographic/elderly_population_070912.pdf
http://en.wikipedia.org/wiki/Demographics_of_Chicago
http://en.wikipedia.org/wiki/Demographics_of_Houston
http://en.wikipedia.org/wiki/Jacksonville,_Florida
http://www.citytowninfo.com/places/georgia/atlanta
http://quickfacts.census.gov/qfd/states/53000.html
http://en.wikipedia.org/wiki/Detroit#Demographics
http://en.wikipedia.org/wiki/Philadelphia#Demographics
http://en.wikipedia.org/wiki/Phoenix,_Arizona#Demographics
http://en.wikipedia.org/wiki/San_Antonio#Demographics
http://en.wikipedia.org/wiki/San_Diego#Demographics
http://en.wikipedia.org/wiki/Dallas#Demographics
http://en.wikipedia.org/wiki/San_Jose,_California#Demographics
http://en.wikipedia.org/wiki/Austin,_Texas#Demographics
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“San Francisco,” last modified May 28, 2013.   

http://en.wikipedia.org/wiki/San_Francisco#Demographics 

“Columbus,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/Columbus,_Ohio#Demographics 

“Charlotte,” last modified May 28, 2013. 

http://en.wikipedia.org/wiki/Charlotte,_North_Carolina#Demographics 

“Boston,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/Boston 

“Seattle,” last modified May 28, 2013.   http://en.wikipedia.org/wiki/Seattle 

4. Data sources of climate information for each city: 

“Current Results,” last modified May 28, 2013.  http://www.currentresults.com/Iather/US/average-

annual-temperatures-large-cities.php 

5. Data sources of the enzyme action curve: 

 “How Temperature Affects Reaction Rate of Enzyme Reactions,” last modified May 28, 2013.  

http://science.halleyhosting.com/sci/soph/enzyme/enzfactorstemp.htm 

 

 

http://en.wikipedia.org/wiki/San_Francisco#Demographics
http://en.wikipedia.org/wiki/Columbus,_Ohio#Demographics
http://en.wikipedia.org/wiki/Charlotte,_North_Carolina#Demographics
http://en.wikipedia.org/wiki/Boston
http://en.wikipedia.org/wiki/Seattle
http://www.currentresults.com/Weather/US/average-annual-temperatures-large-cities.php
http://www.currentresults.com/Weather/US/average-annual-temperatures-large-cities.php
http://science.halleyhosting.com/sci/soph/enzyme/enzfactorstemp.htm
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