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Abstract

This paper is focused novel techniques for the unsupervised anomaly detection algo-
rithm over datasets of real and finite discrete variables, centered around the existing
FRaC algorithm. Novel variants of the FRaC algorithm are presented, alongside
mathematical justification and empirical evidence to support their use. mFRaC,
eFRaC and cFRaC, are introduced here. These techniques have a focus on ensem-
blification, treating features equally, and handling missing values in samples. eFRaC
and cFRaC are shown to be minor improvements on the traditional FRaC algorithm
over UCI datasets by comparison of AUROC values.

Additionally, several previously unknown properties of the FRaC algorithm are ana-
lyzed. The property of normalization-invariance is shown, given lenient assumptions.
The properties of strong and weak self selection in feature modelling techniques are
introduced, and FRaC is sown to have the weak self selection property under cer-
tain circumstances. Implementation details of the various statistical calculations
necessitated by FRaC are also discussed.

Original filter method based heuristic feature selection techniques are presented,
alongside analysis and empirical evidence. A more conservative FRaC specific al-
ternative to traditional filtering, termed partial filtering, is also introduced, and
compared to traditional filtering.

Finally, these algorithms are discussed in the context of the larger subfield of fea-
ture modelling anomaly detection techniques. The algorithms presented are bro-
ken into two categories, mathematical redefinitions of what constitutes an anomaly,
and hyperparameter-reducing generalization algorithms. Additionally, further algo-
rithms that were conceived but not implemented are described in this framework.

Keywords: Data Mining · Machine Learning · Anomaly Detection · Semisupervised Learning ·
Feature Modelling · Probability · Information Theory · Filter Method
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Chapter 1: Introduction

1.1 Anomaly Detection

1.1.1 What is Anomaly Detection

Anomaly detection, in its most general form,
is the problem of taking a set of samples, and
identifying samples that are different from the
others. In that definition, I used two very im-
precise words, samples, and different. Samples
can be made precise to fit any type of data; pop-
ular categories of data include text, time series
information, or vectors of real, complex, and/or
discrete variables. On the other hand, the word
different evades precise definition, and is a large
part of the reason why anomaly detection is such
a complex topic.

Many anomaly detection methods calculate
an outlier score for each point, and differ-
ent algorithms for calculating outlier scores can
be thought of as different definitions of dif-
ferent, so by their own definition of different,
each non-heuristic outlier detection algorithm is
supreme. Some techniques, rather than quanti-
fying anomality numerically, produce a binary
label of either normal or anomalous. This is
convenient, because the results are easy to inter-
pret, however knowing the degree of anomality
is often desirable. This paper primarily focuses
on the former type, because most algorithms are
capable of outputting scores rather than labels,
and it enables more sophisticated evaluation of
an algorithm than does a binary label.

Because of the imprecise nature of an anomaly,
anomaly detection algorithms are usually evalu-
ated empirically over real world datasets. Both
false positive and false negative rates are impor-
tant in the evaluation of an anomaly, however,
any discussion of false negative and false positive
rates requires a firm classification of a sample as
either “anomalous” or “normal”, and can thus
be tuned in either direction by adjusting the size
of those two groups.

An evaluation technique that operates on
rankings, rather than on binary classifications,
is the area under the curve of the receiver op-

erator curve (AUROC) (Spackman, 1989). The
AUROC is a valuable tool, because it summa-
rizes the full range of information present in
the set of outlier scores generated by applying
an anomaly detection algorithm to a query set
without requiring hard categorizations, and it is
not sensitive to the relative proportion of nor-
mal to anomalous samples in the test set. The
AUROC be interpreted as the probability that
in some set of instances, a classifier will rank a
randomly selected anomalous instance as more
anomalous than a randomly selected normal in-
stance (Fawcett, 2006).

Most of this paper is focused on variants of
the FRaC algorithm, introduced in 1.3.4, which
performs anomaly detection on vectors of real
and discrete (alternatively referred to as nom-
inal) variables. Many anomaly detection tech-
niques are restricted to working solely on either
real valued or discrete features, but more algo-
rithms that work on heterogeneous vector data
are also common.

1.1.2 Types of Anomaly Detection
Problem

Supervised Anomaly Detection

The supervised anomaly detection problem is
the problem of differentiating between a set of
common normal classes and a set of uncommon
anomalous classes, given instances of both as
training data. The supervised anomaly detec-
tion is similar to supervised classification under
a class imbalance (Chandola et al., 2009), be-
cause it can be considered a binary classification
problem where the task is to distinguish between
members of the normal and anomalous classes.
Many classic techniques in the machine learning
literature deal with class imbalance, and they
largely fall into two major categories: cost func-
tion and sample based techniques.

Cost function based approaches work by op-
timizing a function of accuracy of correct and
incorrect predictions for each class. Generally
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they assign high cost to misclassifying anoma-
lies so as to obtain high recall. On the other
end of the spectrum, sampling based techniques,
such as AdaBoost (Freund and Schapire, 1997),
SMOTE (Chawla et al., 2002), SMOTEBoost
(Chawla et al., 2003), and RUSBoost (Seiffert
et al., 2010) deal with class imbalance by over-
representing minority class instances in training
data, so as to train classifiers that are more likely
to report them. Both of these categories deal
with the class imbalance problem, and are thus
applicable to supervised anomaly detection.

Like many semisupervised and unsupervised
anomaly detection algorithms, FRaC is designed
to operate without labeled anomalous instances,
and does not benefit from this information. For
this reason, supervised anomaly detection is not
further discussed in this paper.

Semisupervised Anomaly Detection

The semisupervised anomaly detection prob-
lem is the problem of, given “normal” training
data (containing no anomalies), building a model
that can detect anomalous samples. The semisu-
pervised anomaly detection is a harder problem
than the supervised, because we have essentially
removed the anomalous instances from the train-
ing data. Thus semisupervised techniques need
to detect anomalies without an explicit concept
of what anomalies look like.

Although it is harder problem, semisupervised
learning is a very practical because it does not re-
quire labeling a dataset representative of anoma-
lies. Furthermore, semisupervised techniques
can identify novel categories of anomaly, which
in a sense makes them more useful than super-
vised algorithms, as the latter can only iden-
tify anomalies that resemble those present in the
training data. This is key, as in many fields
and obtaining a dataset encompassing all possi-
ble types of anomaly is infeasible or impossible.

Semisupervised learning requires the curation
of a set of normal behavior, which is potentially
costly, however it is generally far easier to gener-
ate normal training data than it is to identify a
sufficient number of anomalies to train a super-
vised algorithm.

Because semisupervised algorithms only have
normal data available, they generally are trained
by, either implicitly or explicitly, creating a
model of what normal data looks like. Identify-
ing anomalies (or scoring new instances with re-
spect to an outlier score) then becomes a matter
of finding how much an instance deviates from
the learnt model.

Popular semisupervised algorithms include
One-Class SVMs (Schölkopf et al., 2000, 2001),
ADBag (Pevnỳ, 2013), Cross Feature Analysis
(CFA) (Huang et al., 2003), FRaC (Noto et al.,
2010, 2012). A myriad of traditional statistical
techniques for identifying outliers may also be
used in a semisupervised manner.

Unsupervised Anomaly Detection

The unsupervised anomaly detection problem
is the problem of detecting anomalous samples
that are mixed into a pool consisting mostly of
normal samples. The unsupervised anomaly de-
tection problem is a more difficult problem than
its semisupervised analogue, because we do not
have a way to examine a normal population in
the absence of anomalous samples.

Note that by mixing the training and query
data of an instance of the semisupervised prob-
lem, we can see that the semisupervised problem
actually reduces to the unsupervised problem
(furthermore the supervised problem reduces to
the semisupervised, by removing the anomalous
training instances, completing the reduction hi-
erarchy between the three). Conversely, semisu-
pervised anomaly detection algorithms can of-
ten be run in an unsupervised manner by train-
ing them on a subset of data, and assuming the
subset contains sufficiently few anomalies so as
not to render whatever model of normalcy the
algorithm builds insensitive to further anoma-
lies (Chandola et al., 2009). The efficacy of this
technique depends on the dataset, the propor-
tion of anomalous samples in the data, and the
algorithm in question.

Popular unsupervised anomaly detection tech-
niques include Local Outlier Factor (LOF) (Bre-
unig et al., 2000) and K-nearest neighbors (not
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to be confused with the classification/regression
algorithm of the same name). Many statistical
and clustering based techniques are also directly
applicable to the unsupervised anomaly detec-
tion problem.

1.1.3 Types of Anomaly Detection Al-
gorithm

Distance Based Methods

Many of the early anomaly detection tech-
niques fit into the distance based category,
though due to the inherently simple hypothesi
of distance based techniques and susceptibility
to noise in high dimensional spaces, these tech-
niques are less popular today. Statistical defi-
nitions of outliers are often distance based, and
algorithms to find them can be considered dis-
tance based anomaly detection techniques.

A statistical outlier can be defined as “[an ob-
servation] that appears to deviate markedly from
other members of the sample in which it occurs”
(Grubbs, 1969). Simply taking the distance to
the nearest point in the space is a trivial form
of distance based method, though it is not at
all resistant to sampling artifacts. A more ad-
vanced technique takes the distance to the kth

nearest point as the outlier score; this gives some
resiliency to sampling artifacts and is an over-
all more robust metric, but it introduces a new
hyperparameter, k, that is quite difficult to set.
Knorr et al. discuss this and similar techniques
in (Knorr and Ng, 1999).

Statistical definitions, such as Peirce’s crite-
rion (Peirce, 1852) and Chauvenet’s criterion
(Chauvenet, 1863) relate the probability of the
occurrence of a sample to its anomality. These
techniques are at heart essentially distance based
methods, as they suffer from the same draw-
backs, they divide spaces in a similar manner,
and they find points that are distant from oth-
ers.

Although the history of distance based tech-
niques is a long one, more advanced computa-
tional techniques have long since dominated the
field. The inability of distance based methods to
cope with more diverse types of data, and the

normality assumptions often made in statisti-
cal techniques are largely unsuitable for modern
anomaly detectors. Furthermore, no distance
based technique is invariant to transforms more
complicated than scalar multiplication (uniform
scaling) or constant sum (shifting), and robust-
ness against complicated nonlinear transforma-
tions of data is necessary for many real world
applications.

Density Based Methods

The canonical approach to density based
anomaly detection is the Local Outlier Factor
(LOF) technique, introduced in (Breunig et al.,
2000). LOF is density insensitive, and, when
properly tuned and on appropriate datasets, it
finds points outside of any distribution in a mix-
ture, regardless of the variance of the distribu-
tions in play. See Figure 1.1 for an example of
the sorts of dataset on which LOF outperforms
distance based techniques.

LOF does have the downside of introducing a
tricky hyperparameter k: lower values increase
vulnerability to small sample sizes, and higher
values render the algorithm largely useless, as
it begins to examine irrelevant points. In (Bre-
unig et al., 2000), the authors suggest to sum the
outlier scores produced by running LOF with a
range of k values to mitigate these effects.

Both distance and density based techniques
rely on calculating the distances between sam-
ples. When all features in a sample are real val-
ues, this can trivially be done with Euclidean
distance, though other distance metrics such as
L1 distance are popular as well. In high dimen-
sional spaces, noise can become dominant and
issues associated with the curse of dimensional-
ity (Bellman, 1957) can dominate, so both den-
sity and distance based techniques tend to work
better in low dimensional spaces.

Feature Modelling Methods

Feature modelling techniques are a relatively
new group of anomaly detection algorithm that
operate by learning patterns in the relationships
between features and identifying samples that

3



Density based techniques are capable of identi-
fying anomalies regardless of the density of the
distribution from which they originate. In this
figure points are drawn nonuniformly from one of
three normal distributions of different variances.
Distance based techniques cannot distinguish the
fringes of larger and sparser distributions from
points not clearly associated with any distribu-
tion (particularly visible in the lower left distri-
bution), whereas density based techniques gen-
erally will not consider such points to be anoma-
lies.

Figure 1.1: Distance vs. Density Based Techniques

break these patterns as anomalous.

Feature modelling techniques are very gen-
eral in scope, and can identify diverse types of
anomaly. They operate in a manner quite un-
like distance and density based techniques, but,
with assumptions about hyperparameterization,
are able to quite easily learn spaces on which
distance and density based techniques perform
well. Feature modelling approaches generally
suffer from high training times, because a su-
pervised learner must be trained for each of the
features the algorithm models (which is usually
all of them).

Cross Feature Analysis (CFA) (Huang et al.,
2003) is the original feature modelling algorithm,
though it has largely been superseded by later
developments. CFA uses probabilistic predic-
tors, and identifies anomalies based how poor the
predictions are. FRaC (Noto et al., 2010, 2012)
is a related algorithm that expands upon CFA
in many ways, and calculates a very different
anomaly score, based on surprisal rather than
average probabilities. In (Tenenboim-Chekina
et al., 2013), the authors describe two additional
techniques, Feature Chains (abbreviated FC, so
called because of the influence of the Classifier
Chains multilabel classification technique (Read
et al., 2011)), and Ensemble of Feature Chains
(EFC), both based on CFA. These algorithms

calculate an outlier score using conditional prob-
abilities based on classifier chains, rather than
the simple summation of CFA.

Ensemble Methods

There is a great breadth of anomaly detection
techniques, and as discussed in Section 1.1.1,
there is no single mathematically precise concept
of what an anomaly is. A popular way to catch
diverse anomalies in a single net is to use an
anomaly detection ensemble. These techniques
generally work by summing or otherwise com-
bining several outlier scores produced by differ-
ent anomaly detectors for a single sample. When
eclectic anomaly detectors with vastly different
concept of an anomaly are used, the resulting
ensemble can detect anomalies of various types
that no one method would identify.

Both FRaC and CFA are ensemble based tech-
niques, as they combine the anomaly scores pro-
duced by many different models, however the
true power of anomaly detection ensembles lies
in the combination of vastly different techniques.
Zimek et al. treat the subject of ensemble
anomaly detection in great detail, and introduce
further techniques, in (Zimek et al., 2014b,a).
Ensemblification of supervised learners is dis-
cussed further in Section 1.2.3, and much of the
theory of supervised learner ensembles holds for
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anomaly detector ensembles as well.

1.2 Relevant Background and
Definitions

1.2.1 Probability Distributions

Discrete Probability Distributions

A discrete probability distribution is a set of
(Category, Probability) pairs, where each cate-
gory is unique, each probability is a real number
in [0, 1], and the probabilities sum to 1. All dis-
tributions used in FRaC additionally have the
distinction of being finite. One may also think
of a probability distribution as a function of cat-
egories onto probability values.

Support The support of a probability distri-
bution is defined as the set of values for which
the distribution assigns nonzero probability. It
is notated supp(X ).

Estimation through Sampling Given a set
of samples from some finite distribution, we can
estimate the original distribution by counting the
number of samples from each class, and dividing
each count by the total number of samples. In
FRaC, we often apply Laplace smoothing (often
referred to in the FRaC literature as a pseudo-
count of one), where each possibility in the dis-
tribution is artificially added to the actual sam-
ples, to preclude attempts to take the surprisal
of a zero probability event. This technique also
simplifies entropy calculations, and probability
theory suggests that it makes distributions less
prone to sampling noise.

This technique of estimation through sampling
with uniform prior is very much in line with the
Frequentist interpretation of probability. The
technique of estimating a true finite discrete dis-
tribution from a finite number of samples in this
manner comes from Laplace’s writings on the
sunrise problem (Laplace, 1814), in which he es-
timates the probability with which the sun will
rise tomorrow and explores the effects of evi-
dence and prior knowledge. When this technique

is used, for some number of samples n, a distri-
bution Xn created by sampling from the true
distribution XT n times with Laplace smoothing
has the following properties:

∀a ∈ supp(XT ) lim
n→∞

Xn(a) = XT (a)

∀m,n : n ≥ m,

E
[

DKL(Xn ‖XT )
]
≤ E

[
DKL(Xm ‖XT )

]
(1.1)

Although in practice we usually have a fi-
nite sample, this convergence provides theo-
retical justification for estimating a distribu-
tion through sampling, and the second equation
(where DKL(A ‖B) is a function of two distri-
butions valued by their Kullback Leibler diver-
gence, see Section 1.2.2) basically states that
distributions made with more samples are likely
to be closer to the true distribution than those
made with fewer samples.

Continuous Probability Distributions

A continuous probability distribution (PDF)
is a probability distribution over R. A continu-
ous probability distribution is represented with
a continuous probability distribution function1,
which is a bounded nonnegative continuous func-
tion f : R→ R+

0 such that
∫∞
−∞ f(x) dx = 1.

Despite their many similarities, continuous
distributions do not share all the properties of
discrete distributions. Having a continuous dis-
tribution over R, an uncountably infinite space,
means that the probability of any individual
event in the space must be 0 , and queries
are generally made as to the probability of an
event falling in some continuous range. For some
continuous PDF f , the probability of an event
falling between a, b where a ≤ b is given by∫ b
a f(x) dx.

1Note that functions are sets, and discrete distribu-
tions as I defined them are equivalent to functions. Gen-
erally, it is easier to think of discrete distributions as sets
and continuous distributions as functions, so I refer to
them as such.
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Support The support of a PDF is defined as
the set of values for which the PDF has nonzero
value. It is notated supp(X ).

Scaling a Continuous Probability Distri-
bution The concept of scaling a probability
distribution f by a nonzero real value a refers
to horizontal scaling. Scaling a probability dis-
tribution is usually notated by subscript, so f
scaled by a would be written fa. We can define
scaling in terms of the relationships between the
scaled and unscaled distributions:

∀x ∈ Rf(x) = a · fa(ax)

Another important property of the scale oper-
ation is that the result of scaling a probability
distribution is itself a probability distribution.

Estimation through Sampling Unlike in
the discrete case, calculating a probability dis-
tribution from a sample is a highly nuanced and
complicated affair. In FRaC, Gaussian distri-
butions and Gaussian mixture distribution func-
tions are generally used to represent probabil-
ity distribution functions. Fitting a sample to
a Gaussian distribution is a straightforward and
well defined process, but there are many ways
to fit a sample to a Gaussian mixture function.
This is further discussed in Section 1.2.4.

At times, one can perform calculations (such
as expectation of a function) with either a prob-
ability distribution function or a sample of the
function. This is usually a worthwhile pur-
suit, because converting a sample to a contin-
uous distribution is an inherently lossy process,
and can be computationally expensive. Further-
more, when the resulting distribution is inte-
grated, more computational expense is incurred,
making computations on samples of distributions
an attractive option when possible.

1.2.2 Information Theory

Entropy is a numeric quantity which can be
calculated on probability distributions. Intro-
duced as an information theoretic concept (and
giving rise to the field) in (Shannon, 1948), there

are many interpretations, and several equivalent
formulations. Thermodynamic Entropy is in-
timately related to Information Theoretic En-
tropy, though the latter is largely the focus of
this paper.

Entropy is often described as the the aver-
age number of bits required to encode messages
drawn from a probability distribution, but it may
also be interpreted as the average surprisal when
estimating a value drawn from a distribution X
with a second value drawn from X . The average
surprisal interpretation is the most prevalent in
FRaC.

Surprisal and Entropy

Surprisal , also introduced in (Shannon, 1948),
is defined on some probability p as:

I(p) = − log(p)

Surprisal may be interpreted as the amount of
information in an event, and consequently is also
referred to as self-information.

Choice of base rarely matters for the mathe-
matics in this document, as long as it is consis-
tent. Usually Euler’s number (e) or 2 is used.

(Discrete) Entropy If entropy is defined as
the average surprisal of a sample drawn from the
distribution, then the formula for (discrete) en-
tropy of some random variable X over the set ~p
is as follows (with the addendum that elements
in ~p not in the support of X do not contribute
to the entropy of X ):

H(X ) = E[I(X )] =

−
dim ~p∑
i=1

{
0 if P(X = ~pi) = 0, otherwise:
P(X = ~pi) · logP(X = ~pi)

Differential Entropy Differential Entropy is
a closely related concept to the discrete analogue,
but despite the many similarities, many proper-
ties that hold for discrete entropy do not hold
for differential. The differential entropy of some
random variable X with PDF f(x), and support
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X also defined by Shannon in (Shannon, 1948),
is defined as:

H(X ) = −
∫
X
f(x) log

(
f(x)

)
dx

It is important to note that differential entropy
differs from ordinary Shannon entropy in many
ways. It is not the limit of the entropy of the
discretized distribution as the number of cate-
gories goes to infinity (this is infinite), and it is
not invariant under scaling. Despite having iden-
tical notation, it is important to use context and
to not confuse differential entropy with ordinary
Shannon entropy.

The entropy of a random variable X of some
probability distribution scaled by some constant
α is related to the entropy of the original distri-
bution by the following formula:

H(αX ) = log(α) + H(X )

Divergence Functions

Divergence functions take two probability dis-
tributions onto a nonnegative real value, and
generally signify how different the distributions
are. Unlike distance functions, divergence func-
tions need not be symmetrical or uphold the tri-
angle inequality, however divergence functions
are positive definite, so the divergence of two
distributions is 0 if and only if the distributions
are equal, and is positive in all other cases.

Kullback Leibler divergence (KL divergence),
first described in (Kullback and Leibler, 1951),
is a metric used to evaluate the efficacy of using
an encoding optimized for one probability distri-
bution to send signals from another.

The KL divergence of two discrete probabil-
ity distributions P and Q is defined only when
supp(P) ⊆ supp(Q), and is given by:

DKL(P ‖Q) =
∑

i∈supp(P)

P(i) log
P(i)

Q(i)

Similarly, the KL divergence of two continu-
ous probability distributions fP and fQ is de-
fined only when supp(fP ) ⊆ supp(fQ), and is
given by:

DKL(fP ‖ fQ) =

∫
supp(fP )

fP log
fP (x)

fQ(x)
dx

Note that KL divergence is invariant under
scaling, meaning that ∀α 6= 0, random variables
X ,Y ,DKL(X ‖Y ) = DKL(αX ‖αY ).

KL divergence can be viewed as a measure of
the similarity of two probability distributions, al-
though it is not a true metric, because it is not
symmetric. Because of this asymmetry, extra
care must be taken to use KL divergence prop-
erly. Generally, it is useful to consider P or fP to
be the “true distribution”, and the other distri-
bution in question to be Q or fQ, because then
KL divergence can be interpreted as a measure
of how much a distribution varies from the true
distribution.

Alternatively, when no such distinction exists
between two distributions, symmetric KL diver-
gence can be used. Symmetric KL divergence is
more difficult to interpret simply from an infor-
mation theory perspective, but is of course sym-
metric. Symmetric KL divergence is defined as
follows:

DKL◦(P ‖Q) = DKL(P ‖Q) + DKL(Q ‖P)

Because of its symmetry, symmetric KL diver-
gence can be used without worrying about inter-
preting P and Q , which is both a strength and a
weakness. Due to the properties and restrictions
of ordinary KL divergence, symmetric divergence
is only defined when supp P = supp Q , and fur-
thermore, note that it is also nonnegative.

Similar to the symmetric KL divergence, but
with a different interpretation and fewer limita-
tions are the class of λ divergences. Of particular
interest is the Jensen-Shannon divergence intro-
duced in (Lin, 1991), which is defined as

DJS(P ‖Q) =
DKL(P ‖ P+Q

2 ) + DKL(Q ‖ P+Q
2 )

2

Note that unlike the symmetric KL diver-
gence, the Jensen-Shannon divergence makes no
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assumptions about the support of P and Q2.
Furthermore, Jensen-Shannon divergence is con-
fined to the interval of [0, log2(a)] where a is the
base of the logarithm used in the original for-
mula.

1.2.3 Predictors

Predictor is a generic term for a regressor or
a classifier. Predictors take labeled training data
that contains both prediction features and a la-
bel to build a model that predicts labels from
additional data. If the label is discrete, the pre-
dictor is a classifier, and if the label is real, the
predictor is a regressor.

Predictor Ensemble

The benefits of ensemblification in machine
learning are well known (Wolpert, 1992; Maclin
and Opitz, 1999). According to (Dietterich,
2000), an ensemble classifier is more accurate
than any of its individual components if and only
if they are both accurate and diverse. In this
context, accurate signifies accuracy greater than
that of random guessing, and for two classifiers
to be diverse means that they make different er-
rors on the same data.

A traditional unweighted ensemble learner l
works as follows: For training data train =
{( ~x1, y1), ( ~x2, y2), . . . , ( ~xn, yn)}, classifiers c =
{c1, c2, . . . , cn}, l is trained by training each c
on train, and a trained l is applied to a new in-
stance ~x by applying some function f to a vector
created by mapping each c over ~x. For classifiers,
f usually takes the classifier with the most votes,
and for regressors f is usually mean or median.

A weighted learner uses weighted votes in
classification, picking the class with the high-
est weight sum, and a weighted regressor takes a
weighted mean. It is important to note that the
highest weight sum is not guaranteed to exist,
and the probability of a tie is particularly high in
unweighted classification ensembles. This situa-
tion can be resolved in several ways. First, it can

2This follows from the fact that supp(P+Q
2

) =

supp(P) ∪ supp(Q), and thus the support of P+Q
2

is a
superset of the supports of both P and Q .

be resolved deterministically with a well ordered
tiebreaker, though this can introduce biases, and
alternatively, it can be resolved nondeterministi-
cally through random choice. The latter is used
in all experiments presented in this paper.

Ensembles as Probabilistic Predictors
Ensembles, weighted or not, are composed of su-
pervised learners, but they are supervised learn-
ers themselves. In addition to being supervised
learners, ensembles can be viewed as probabilis-
tic predictors as well. The (possibly weighted)
votes of a probabilistic classifier ensemble pro-
duce a vote distribution, which once normalized
can be treated as a probabilistic classifier output.

Similarly, the votes of a regressor ensemble can
be treated as samples of a continuous probability
distribution (see Section 1.2.1), and they can be
used as such or fit to a continuous probability
distribution function.

1.2.4 Error Models

An error model is a model of the accuracy of a
predictor. Error models are a form of conditional
distribution, where both the evidence space and
the distribution space are that of the predictor’s
output. When the predictor is a regressor, then
these spaces are the reals, and when the predic-
tor is a classifier, these spaces are finite discrete
sets. Thus error models are continuous proba-
bility distributions, conditional on a real value,
or finite discrete probability distributions, con-
ditional on a discrete value.

An error model can be used to answer queries
such as P(True Class A | Predicted Class B), or
P(Predicted Value 6.28 | True Value 2.71).

Note that in one case, the distribution is over
true values, with an evidence space over pre-
dicted values, and in the other, the distribution
is over predicted values, and the evidence space
is over predicted values. Ordinarily, in FRaC, er-
ror models are queried with predicted values as
evidence (to answer queries such as, for some dis-
crete feature F , P(Feature F is of true class B |
Predicted class A) for sample x̂), but at times it
is useful to make queries on the predicted class
using the true class as the evidence.
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Different data structures can represent error
models, such as matrices for categorical features,
and various types of distribution valued func-
tions of real numbers for continuous features.
Some error models only support queries of one
type (given one of either predictor values, or true
values, but not the other), and other types sup-
port both types of queries.

Creating error models

Error models are generally built from a set of
(prediction, truth) pairs, where the pairs are pro-
duced by pairing a truth value with a predictor’s
prediction for the truth value. Pairs can either
be obtained from a validation set, as long as the
elements of the validation set do not overlap the
training set3, or be obtained via cross validation
(Stone, 1974) of the original training set.

When an error model is obtained through a
validation set, it is more accurate to the model
in question, because the error model is trained
on the predictor itself. However, the predictor
itself is generally less accurate, because some of
the data that would otherwise be used to cre-
ate it was withheld from the training set to form
the validation set. Furthermore, if the valida-
tion set is small, the error model is subject to
significantly more sampling bias than would be
the case in cross validation. It is very important
to consider these effects when creating an error
model with a validation set.

On the other hand, when an error model is
constructed through cross validation, it is less
accurate, because the (prediction, truth) pairs
used to construct it come from a collection of
related models, all trained on different subsets
of the training data. This effect is particularly
devastating with unstable learners, such as de-
cision trees or neural networks. However, all
of the data can be used to build the predictor
(after cross validation), and it can also all be

3Strictly speaking, this statement is false. With pre-
dictor algorithms and error models with sufficiently sim-
ple hypothesis spaces to prevent overfitting, the training
set and the validation set may overlap. These situations
are quite nuanced, and depend heavily on structure of the
dataset, so overlap is not acceptable in the general case.

used during cross validation to build the error
model, without suffering the effects of construct-
ing an error model on the training data. It is
important to note that cross validation can be
an extremely costly operation, as models need be
trained, used, and destroyed repeatedly, whereas
with a validation set, only a single model need
be built.

For these reasons, when data are plentiful, a
validation set is a better option, because it is
both faster and more accurate. However, when
data are limited, cross validation is more accu-
rate, as more data can be used in the error model
and the predictor. The decision of when to use
cross validation and when to use a validation
set is nontrivial, and entirely dependent on the
dataset in question. When sufficient data exists,
enough to build an accurate predictor is used for
the training set, and if enough data remains for
a validation set, the remainder of the data are
used for that purpose, though determining when
“sufficient” data are available is nontrivial.

Types of error models

Confusion Matrix Confusion matrices,
known alternatively as error matrices, are in
their most general form a way of keeping track
of how many times instances of class A are
classified as class B, for generic A,B. See
(Stehman, 1997) for more information on using
confusion matrices to measure classification
accuracy.

Confusion matrices are built from pairs of
(true class, predicted class) from a particular
source, usually a single classifier, or in the case
of cross validation, a set of classifiers generated
in a similar manner. Usually, a confusion ma-
trix is organized such that MA,B is valued by
the number of entries in the list of (true class,
predicted class) pairs such that the true class is
A and the predicted class in B. The convention
of a vertical true class and horizontal predicted
class will be used throughout this paper. Often
Laplace Smoothing is used, in which case a con-
stant, usually 1, is added to each cell of the con-
fusion matrix. See Figure 1.2 for a comparison
of different types of confusion matrix, alongside
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Table 1.1: Overview of Error Model Types

Model Type
Query

Directionality
Memory Cost Query Cost Model Specificity

Confusion Matrix Bidirectional c2 ∈ θ(c2) θ(c) Perfect

Normalized

Confusion Matrix
Unidirectional c2 ∈ θ(c2) θ(1) Perfect

Gaussian Bidirectional 2 ∈ θ(1) θ(1)
Normal Distributions Only,

Error Distributions Only

Gaussian Mixture
Distribution

Bidirectional 2n ∈ θ(n) θ(f(n)) Error Distributions Only

In these analyses, c refers to the number of categories in a discrete variable, and n refers to the
number of instances in the sample used to build the matrix. f refers to a function used to determine
the number of Gaussian distributions in the Gaussian mixture distribution.
Here various concrete types of error models are presented. See Table 1.1 for a summary of these
models.

Construction Set:

Pred True

A A

A B

A A

A C

Pred True

A B

A A

B B

B B

Pred True

B C

C C

C A

C B

Confusion Matrix:3 2 1
0 2 1
1 1 1

+

1 1 1
1 1 1
1 1 1

 =

4 3 2
1 3 2
2 2 2


Normalized Confusion Matrix:
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Figure 1.2: Various Forms of Confusion Matrix.

a comparative look at how they are built.

Normalized Confusion Matrix A normal-
ized confusion matrix is a confusion matrix that
has been processed so that each row (true class)
or each column (predicted class) is a probability
distribution.

In the normalization process, information is
lost, notably the overall distribution of both the
true and predicted classes (making conditional
distribution calculations impossible), as well as
distributions in the antidirection of normaliza-
tion. Because this information is lost, a normal-
ized confusion matrix can only be used to an-
swer queries of the form P(true | predicted) or
P(predicted | true), but not both.

See Figure 1.2 for an example of the construc-
tion of a normalized confusion matrix.

Gaussian A Gaussian function is a function
of the form

ae−
(x−µ)2

2σ2

for constants a, µ, σ : a, σ > 0 (Gauß, 1809).

It can be shown that Gaussian distributions
are strictly positive continuous functions, µ is
both the expected value and the maximum value,
and σ is the standard deviation. Further-
more, when a = 1

σ
√

2π
, it can be shown that∫∞

−∞
1

σ
√

2π
e−

(x−µ)2

2σ2 dx = 1, thus Gaussian distri-

butions of this form are continuous probability
distribution functions.

Error models need to function as conditional
continuous probability distributions, so querying
the likelihood of a model requires two arguments:
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Figure 1.3: One Dimensional Continuous Error Models.

an evidence value and the value at which the
query is directed (as in P(value | evidence). To
model this with a univariate function, we build
a Gaussian of the error distribution, where error
is defined like so:

error(t, p) = t− p

Where t denotes the true value and p the pre-
dicted value p of a feature. With this technique,
a Gaussian function (or another univariate func-
tion) can represent the error distribution of a
model, but situations where p − t = k for some
constant k (e.g. p = 2, t = 4 and p = 0, t = 2)
can not be differentiated.

An example of a Gaussian distribution fit to
error values is shown in Figure 1.3.

Gaussian Mixture Distribution Gaussian
mixture distributions are functions composed of
(possibly weighted) mixtures of Gaussian dis-
tributions. Error values are not always Gaus-
sian distributed, and Gaussian mixture distribu-
tions have vastly larger hypothesis spaces than
do Gaussian functions. See (John and Lang-
ley, 1995) for an overview of the advantages of
a Gaussian mixture distribution for modelling
probability distribution functions, and see figure
1.3 for an example of fitting a Gaussian mixture
distribution to error values.

There are many ways to fit a Gaussian mix-
ture distribution to a set of points. A simple
technique used in FRaC is to build a histogram
of equal bin sizes from the data, and mix to-
gether a Gaussian distribution for each bin, its
weight that of the bin, its mean the center of the
bin, and its standard deviation the width of the
bin (John and Langley, 1995). As the number
of bins increases, this converges to an arbitrary
(not necessarily continuous) distribution, though
a finite mixture of Gaussian distribution is nec-
essarily continuous.

A similar technique is to partition the data
into regions with equal numbers of samples, and
mix equally Gaussian distributions centered at
the center of each region, with standard devia-
tion equal to the width of the bin.

More advanced techniques exist, but generally
speaking, any technique that converges to the
true distribution as the number of Gaussian dis-
tributions in the mixture increases is adequate
to approximate continuous probability distribu-
tions.

Note that with Gaussian distributions g, ∀x ∈
R, g(x) > 0, and similarly this holds for Gaus-
sian mixture distributions. This property sim-
plifies the calculation of many information theo-
retic constructs that would otherwise need guard
against zeros. This is valuable from an imple-
mentation standpoint, and it also means that the
KL divergence of any two Gaussian or Gaussian
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mixture distributions is defined.

1.3 FRaC

1.3.1 What is FRaC

In this section I introduce the FRaC algorithm
and summarize the FRaC literature.

Feature Regression and Classification (FRaC)
was introduced in the paper Anomaly Detec-
tion Using an Ensemble of Feature Models (Noto
et al., 2010) as a semisupervised anomaly detec-
tion algorithm, and further expanded to work
in the unsupervised case in FRaC: a feature-
modeling approach for semi-supervised and un-
supervised anomaly detection (Noto et al., 2012).
FRaC is conceptually related to the earlier Cross
Feature Analysis (CFA) algorithm, introduced
in Cross-feature Analysis for Detecting Ad-Hoc
Routing Anomalies (Huang et al., 2003), which
works on a very similar principle.

The primary differences between FRaC and
CFA are first that FRaC supports more types of
features and predictors, and second that FRaC
uses the information theoretic normalized sur-
prisal outlier score to CFA’s simpler probabilis-
tic Average Probability score. Specifically, CFA
supports only probabilistic classifiers of discrete
values, whereas FRaC supports ordinary (non-
probabilistic) classifiers and regressors of discrete
and continuous values. A third distinguishing
feature is that FRaC builds error model through
a validation phase, whereas CFA relies on prob-
abilistic classifiers, such as the Näıve Bayes, to
determine its probabilities. Probabilistic clas-
sifiers generally make assumptions when deter-
mining probabilities, and when these assump-
tions are violated, their probabilities can be in-
accurate. FRaC’s error models generally make
few assumptions, and are (usually) built through
cross validation, which although susceptible to
some bias, is unlikely to be sufficiently wrong so
as to degrade performance.

1.3.2 Algorithm Definition

The FRaC algorithm (Noto et al., 2010, 2012)
works by treating each feature in turn as a label,

and training a classifier or regressor for said fea-
ture using the remaining features. It then con-
structs an error model for each predictor using
a validation set (alternatively the error model is
constructed by cross validating the training set).

After training, FRaC evaluates novel samples
(the query set) by predicting each feature with
each predictor, and summing the surprisal values
of the conditional probabilities of each true value
given the predicted value (these conditional error
values are obtained by querying the error mod-
els). This outlier score is called normalized sur-
prisal, and can be expressed mathematically as:

NS(x̂) =

F∑
i=1

M∑
m=1

{
0 if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

(1.2)

where x̂ is a query instance, v̂ the training set,
F the number of features in the dataset, Mi the
number of predictors for each feature, Ci,m(x̂)
the prediction of the mth predictor for feature i
given x̂, and ρi(x̂) a vector identical to x̂ sans the

ith feature4. H(v̂T
i ) is perhaps obtuse notation

for the entropy of the ith feature in the training
set. A graphical overview of the FRaC algorithm
is provided in Figure 1.4.

Note that the double sum represents an
anomaly detection ensemble, where each inner
summand represents the output of a weak clas-
sifier. These inner summands are sometimes re-
ferred to as partial normalized surprisal or fea-
turewise normalized surprisal.

1.3.3 Evaluation of FRaC in the Lit-
erature

FRaC has been shown to outperform other
semisupervised anomaly detection algorithms
(Noto et al., 2010, 2012), such as CFA (Huang
et al., 2003), Local Outlier Factor (LOF)

4This formulation of normalized surprisal differs
slightly from that of (Noto et al., 2012). The change is
purely aesthetic.
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model calculates the surprisal of the true class
given the predicted class, and lines from error
models to the normalized surprisal box indicate
summation of surprisal values to produce nor-
malized surprisal values. Subtraction of entropy
values not shown.

Figure 1.4: FRaC Data Dependency Diagram

Data Set SVM
Noto

LOF
Noto

CFA FraC
Noto

FrAC
Pevnỳ

PCA KNN LOF
Pevnỳ

SVM
Pevnỳ

ADBag

abalone 0.58 0.51 0.39 0.48 0.44 0.46 0.46 0.5 0.6 0.59
blood-
transfusion

0.57 0.57 0.51 0.59 0.41 0.53 0.56 0.46 0.53 0.56

breast-cancer-
wisconsin

0.51 0.93 0.3 0.96 0.94 0.96 0.95 0.95 0.9 0.96

ecoli 0.98 0.98 0.5 0.97 0.93 0.97 0.98 0.98 0.98 0.98
glass 0.61 0.7 0.64 0.65 0.64 0.68 0.67 0.68 0.55 0.67
haberman 0.67 0.64 0.67 0.67 0.67 0.61 0.67 0.66 0.33 0.64
ionosphere 0.84 0.91 0.87 0.97 0.96 0.96 0.97 0.95 0.93 0.96
iris 1 1 0.97 1 1 1 1 1 1 1
letter-
recognition

0.99 0.99 1 1 0.99 0.99 0.98 0.98 0.79 0.96

libras 0.63 0.69 0.81 0.89 0.66 0.88 0.72 0.75 0.72 0.82
page-blocks 0.57 0.95 0.72 0.89 0.96 0.96 0.96 0.91 0.86 0.95
parkinsons 0.75 0.67 0.45 0.64 0.71 0.68 0.61 0.67 0.85 0.74
wine 0.79 0.88 0.33 0.96 0.93 0.95 0.95 0.93 0.91 0.93
yeast 0.69 0.72 0.56 0.72 0.72 0.72 0.72 0.71 0.67 0.74

Average 0.727 0.796 0.623 0.814 0.783 0.811 0.8 0.795 0.759 0.821
Maximal Count 3 3 2 8 3 3 5 2 4 5
Avg Rank 5.8 4.467 7.933 3.067 5.067 3.6 3.6 5 6.2 3.2

Table 1.2: Comparison of 10 semisupervised anomaly detection algorithms.
Data adapted from (Noto et al., 2012) and (Pevnỳ, 2013), only datasets common to both experi-
ments were used.
Color in the table conveys no information beyond the values themselves, but is instead intended
to convey intuition and direct attention: darker AUROC values represent higher AUROC values,
darker discrete and real feature counts represent a dataset more imbalanced toward either category,
and light training and test set colors represent abnormally small datasets.
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Table 1.3: Correlations between AUROC scores on UCI datasets for semisupervised anomaly de-
tection algorithms.
Data adapted from (Noto et al., 2012) and (Pevnỳ, 2013), see Table 1.2. Color carries no additional
information and is used solely to direct attention to high correlation values.

(Breunig et al., 2000), and One-Class SVMs
(Schölkopf et al., 2000) in terms of accuracy over
standard datasets, such as those available in the
UCI repository (Lichman, 2013).

Were we to take these results in isolation,
it would seem that FRaC is clearly dominant
in the semisupervised anomaly detection prob-
lem. However, in the paper Anomaly Detec-
tion by Bagging (Pevnỳ, 2013), Pevnỳ finds that
FRaC performs the second worst on the semisu-
pervised anomaly detection over UCI datasets
out of a PCA based anomaly detection technique
(Shyu et al., 2003), kth nearest distance (referred
to, perhaps confusingly, as KNN), LOF, a one
class SVM, and Pevnỳ’s own technique, ADBag
(Pevnỳ, 2013), though not by a large margin (av-
erage rank 4 out of 6), outperforming only the
one class SVM. All learners performed relatively
evenly overall in this experiment (average ranks
all fell in [3.1, 4.3]), however it is interesting to
note that FRaC does not perform as well on
the supervised anomaly detection problem when
evaluated by a third party.

I have two explanations for the inconsistencies
between Pevnỳ’s experiments and those of the
FRaC authors. First, FRaC is a complex meta
algorithm with many hyperparameters; choice
of learners and error models heavily influences
the accuracy of FRaC. In Pevnỳ’s work, he used
FRaC with only the simple linear least-square
regression technique (Gauß, 1823), but as shown
in (Noto et al., 2012), FRaC is far more accurate
when used with an ensemble of regressors. In the
Noto paper, a linear kernel SVM, a radial basis
kernel SVM, and a decision tree were used. In
some sense, the comparison in Pevnỳ’s paper is
unfair, as although the ADBag algorithm is in-
herently far simpler, it is still an ensemble tech-

nique. In the experiments in question, ADBag
was used with an ensemble of 150 weak anomaly
detectors, against FRaC’s weak collection of one
linear least-square regressor per feature.

The data from both (Noto et al., 2012) and
(Pevnỳ, 2013) are presented in Table 1.2. Un-
fortunately, only 14 datasets were common to
both papers, so the significance of their junction
is debatable, and furthermore, the datasets un-
derwent different processing, so the comparison
is not entirely fair. We can however clearly see
that Pevnỳ’s FRaC is inferior to the FRaC an-
alyzed in Noto et al. in all but two datasets
(page-blocks and parkinsons), whereas the
relative performance of the common algorithms
(one-class SVM and LOF) is similar. We also see
that although ADBag does have the highest av-
erage AUROC, FRaC has the most datasets with
maximal AUROC values and the lowest average
rank.

In addition to the poorly tuned FRaC used in
Pevnỳ’s work, FRaC may be represented overly
well in (Noto et al., 2010) and (Noto et al.,
2012), because FRaC is capable of operating over
continuous and discrete variables, whereas the
algorithms against which it competed operate
only on continuous variables. Conversion from
a discrete to continuous variable is a nearly loss-
less process (only context is lost), but it drasti-
cally increases the dimensionality and complex-
ity of the space, so it stands to reason that
an algorithm that is specialized to handle dis-
crete variables may perform better than one that
is not. FRaC’s handling of missing variables
also provides a slight advantage, although for
the most part these were not common over the
UCI datasets. Pevnỳ’s experiment operates only
over “classification problems with numerical at-
tributes without missing variables,” so it affords
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FRaC neither of these advantages.

Inconsistencies between the other algorithms
are for the most part minor (note the correlations
in Table 1.3). Noto’s LOF is for the most part
more accurate: Noto et al. use an ensemble over
k ∈ [10, 100] for LOF (Noto et al., 2012), whereas
Pevnỳ simply uses a static k = 10 in his experi-
ment (Pevnỳ, 2013), which explains the discrep-
ancies between LOF AUROC scores between the
papers. The two SVMs are vastly different, with
a correlation of only 0.527, but one-class SVMs
are complicated and have many hyperparame-
ters. In this case, Pevnỳ’s SVM used a Gaussian
kernel, and that of Noto et al. used a radial basis
kernel, so this discrepancy is not surprising.

In addition to its use as a standalone anomaly
detector, FRaC is an integral part of the later
CSAX (Characterizing Systemic Anomalies in
eXpression data) algorithm, introduced in (Noto
et al., 2014), for detecting anomalies in bio-
logical networks. CSAX is also an unsuper-
vised anomaly detection that additionally takes
a group of feature sets, and identifies anomalies
based on regions of consistent anomality in these
sets. CSAX has been used to analyze anoma-
lies in RNA microarray data and characterize the
anomalies in terms of the gene sets5 involved.

1.3.4 Properties of FRaC

Scaling Invariance

An important but subtle property of FRaC is
that, given reasonable assumptions about hyper-
parameterization (error model types and learn-
ing algorithms), normalized surprisal scores are
invariant under scaling of continuous features.

Informally, the necessary assumption is that
no learner or error model is affected by the scal-
ing of any feature, be it the predictor and er-
ror model for said feature or the learnt models
of other features. Firstly, this entails that for

5Gene sets is an intentionally vague term: CSAX uses
the Gene Set Expression Analysis (GSEA) algorithm, in-
troduced in (Subramanian et al., 2005), to identify highly
anomalous sets.

some feature f and scaled factor α, each learn-
ing algorithm for αf generates a model that is
functionally identical to that generated for f , ex-
cept with output scaled by α, on identical train-
ing data. Secondly, it also requires that learners
for features other than f , when trained with αf ,
generate functionally identical models to those
trained with f , except for scaling by α the input
of f .

These criteria seem rather stringent, but al-
gorithms that meet them or approximate them
are in reality quite common. Note that deci-
sion trees generally do not make any sort of ab-
solute quantity based decisions, and their rules
will scale with the input features. Additionally,
linear gradient descent techniques, like percep-
trons, linear SVMs, and Neural Networks are for
the most part resistant to scaling. However, dis-
tance based techniques, such as KNN are very
sensitive to this type of scaling, and they thus
violate the above assumption. It also requires
that, for a unidimensional error model, the er-
ror distribution scales with the feature itself (i.e.
scaling the feature by x produces an identical
scaling in the error distribution).

Proposition 1. Scaling-insensitive predictor
hyperparameters imply scaling-insensitivity of
FRaC.

Proof. This proof shall proceed inductively. The
inductive step shall be that scaling a particular
feature in both the training and query set shall
not change the normalized surprisal of an arbi-
trary element of the query set, and the base case
shall be the trivial fact that the normalized sur-
prisal of a sample in the query set is equal to the
normalized surprisal of said sample, unscaled.

Now, suppose we have some continuous fea-
ture with PDF f and error distribution Err(f).
We scale the feature by a, and call the scaled
feature distribution fa. The resulting error dis-
tribution, Err(fa), by assumption has the prop-

erty that Err(fa)(ab) = Err(f)(b)
a . Now, we get

that the normalized surprisal term for this fea-
ture, value x, in the original distribution with
the original error model is I(x) − H(f), and the
normalized surprisal term for this feature, value
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ax (which is just x scaled), in the scaled distribu-
tion with the new error model is I(ax)− H(af).
We now have:

− log
(

Err(fa)(ax)
)
−H(af)

= − log
(Err(f)(x)

a

)
−
(

log(a) + H(f)
)

= −
(

log(Err(f)(x))− log(a)
)
− log(a)−H(f)

= − log
(

Err(f)(x)
)

+ log(a)− log(a)−H(f)

= − log
(

Err(f)(x)
)
−H(f)

We see that even after scaling a feature, the
feature makes the same contribution to normal-
ized surprisal. Because we also assumed that
scaling a feature did not affect the other pre-
dictors, their contributions remain unchanged as
well.

In the above mathematics, the possibility of
missing features was neglected. If we define scal-
ing a missing feature to produce a missing fea-
ture, then clearly scaling has no effect on miss-
ing features, as the normalized surprisal contri-
bution of a missing feature is 0. Thus the nor-
malized surprisal contribution of a feature is not
changed under scaling, even if the feature is 0.

Now, by induction, I note that iterating this
process and scaling each feature in turn results in
scaled training and test sets such that a feature
in the unscaled test set has the same normalized
surprisal as a feature in the scaled set, thus we
may conclude that normalized surprisal is invari-
ant under scaling.

This seemingly innocuous result has several
practical applications. Firstly, if the same as-
sumptions are made, with similar assumptions
about shifting of continuous variables, it follows
that FRaC is z-score normalization insensitive.
Furthermore, this result provides a theoretical
justification for the scaling performed in eFRaC,
discussed in Section 2.1.

Expected Normalized Surprisal of Normal
Instances

In (Noto et al., 2012), Noto et al. write that on
normalized surprisal, “[When] the query instance
feature value x̂qi is missing, FRaC uses the en-
tropy (this is the expected surprisal) of feature
i’s training set distribution in place of the sur-
prisal score. This is equivalent to subtracting the
entropy from each surprisal score and using zero
when the feature value is missing.” It is tempt-
ing to think that, under this second interpreta-
tion, for subsequent normal (non-anomalous) in-
stances, we have a sum of the form:∑

X∈Ŷ

I(X )− E[I(X )]

and of course the expectation of this sum is 0.
However, this does not follow; the fallacy stems
from a misinterpretation of the “expected sur-
prisal” interpretation of entropy.

Since the predictions for a feature are made
by trained predictors, and not by sampling ran-
domly from the feature distribution, it is reason-
able to expect I(X) to be less than H(X), as long
as the predictors are more accurate than ran-
domly sampling from the feature distribution.
Therefore, on average and depending on the pre-
dictability of the features in a dataset, normal-
ized surprisal scores of normal instances are neg-
ative.

Under certain circumstances antagonistic to
FRaC, the above does not hold. When a dataset
consists solely of features that are not pre-
dictable from the remaining features, and models
are learnt that make predictions with the same
distribution as the true distribution, then nor-
malized surprisal can be expected to be 0. This
seemingly contrived scenario could presumably
happen if all classifiers had prediction distribu-
tions equal to the true distributions, and all fea-
tures are independent of one another.

A Data Centric Remedy Although ex-
pected normalized surprisal of normal samples
is not 0, if an application requires that they are,
there is a simple trick to attain this property.
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The mean normalized surprisal values of the nor-
mal instances in the query set may be subtracted
from each normalized surprisal value in the query
set. This offsets each outlier score by a constant
value, and thus does not affect rankings, but it
does have the effect that the mean normalized
surprisal value of the normal instances, and thus
their expected value, is 0.

Alternatively, in the normalized surprisal for-
mula, instead of subtracting entropy, we could
subtract true expected surprisal. Expected sur-
prisal may be calculated via cross validation or
through a validation set, with the usual caveats
about these techniques. This is more sophisti-
cated than the previous technique, as it handles
missing values more elegantly, but both result in
expected normalized surprisal values of 0.

Self Selection Property

In this section, I define two concepts, the
(strong) self selection property and the weak self
selection property , specific to feature modelling
techniques, explain their utility, and show con-
ditions under which FRaC exhibits the weak self
selection property and the strong self selection
property. Both are related to the general idea of
introspection, where a learning algorithm mea-
sures the accuracy of some component and in-
corporates this knowledge in subsequent models.
Model selection by cross validation, as in (Zhang,
1993; Shao, 1993), is an early example of such
introspection. Similarly, FRaC constructs error
models and uses them to calculate surprisal val-
ues, so it too can be said to be introspective.

I first define the concept of a poor predictor
to be one such that conditional distributions of
true values for each predicted value are all equal,
ignoring predicted values for which the resulting
conditional distribution does not exist because it
would be empty. A poor predictor must then be
identified through its error value, and is thus de-
pendent on the validation phase. Note that this
definition implies that the set of conditional dis-
tributions of predicted values for each true value
are all equal as well. Therefore, intuitively, a
poor predictor is one that makes identically dis-

tributed predictions regardless of the evidence.
Some features, such as those that take on only
one value, will only produce poor predictors, and
predictors of features that are independent of the
remaining features converge to poor predictors
as training and validation data tend to infinity,
because the independence hypothesis makes the
features entirely unpredictable. See Figure 1.5
for confusion matrices representing poor predic-
tors.

I now define the self selection property of a
feature modelling technique to be as follows: any
poor predictor shall make no contribution to the
outlier score. In the case of FRaC, where outlier
scores are sums, this means that the surprisal of
all predictions shall equal the entropy, and thus
make a contribution of 0 to normalized surprisal.
I similarly define the weak self selection property
to be as follows: any poor predictor shall on av-
erage make no contribution to the outlier score,
averaged over multiple samples. Thus in the case
of FRaC (as in any feature modelling technique
where feature scores are combined through sum-
mation), the termwise score must have an ex-
pected value of 0.

An algorithm with the self selection property
essentially completely ignores the contribution of
all poor predictors. This is intuitively a good
thing, because if a feature can’t be predicted,
then predictions for the feature should have no
effect on the anomaly score, because such pre-
dictions are meaningless. An algorithm with the
weak self selection property allows such features
to make contributions to the anomaly score as
long as overall they do not bias it one way or the
other. This seems like a useful property, but in
reality it is only marginally useful, because even
if the feature contributed a bias, it would con-
tribute the bias systematically across the entire
query set, and rankings would remain constant,
even if absolute outlier scores did not. However,
in FRaC, it does have the distinction of mak-
ing the expected contribution of a missing and a
present unpredictable feature identical (0), so it
is still of some practical use.

I now show that if the prediction distribution
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Figure 1.5: Various Confusion Matrices Representing Poor Predictors

of each poor predictor matches the correspond-
ing feature’s true prediction (as is the case with
some types of bias-free learners), then FRaC has
the weak self selection property. For a given
poor predictor, the expected contribution to nor-
malized surprisal is 0, because either the feature
is missing, in which case the contribution is 0,
or the feature is present, but the expected sur-
prisal is equal to the entropy. This statement fol-
lows from the definition of a poor predictor and
the assumption, as the true distribution condi-
tional on any predicted class (from which sur-
prisal scores are drawn for normalized surprisal)
equals the overall true distribution, and the ex-
pected surprisal of this conditional true distri-
bution is therefore equal to the entropy of the
overall true distribution), and thus the expected
contribution for said feature is 0. In either case,
the expected contribution is 0, so the overall ex-
pected contribution for the feature is 0. Because
this applies to all poor predictors, it follows that
FRaC has the weak self selection property.

If we now additionally assume that all features
are uniformly distributed (in the normal class),
it follows that FRaC has the strong self selec-
tion property. This is because for any uniformly
distributed feature the conditional distribution
of true values on any predicted value is also uni-
form, and thus every prediction has identical sur-
prisal. It then follows that surprisal equals ex-
pected surprisal, and thus all normalized sur-
prisal contributions are equal to 0. Therefore, all
features are uniformly distributed, then all poor
predictors make no contribution to normalized
surprisal, and the strong self selection property
is satisfied for FRaC.

We now have vocabulary for discussing the re-
sponse of a feature-modelling technique to un-
predictable features. Ideal algorithms have cer-
tain properties, and under certain circumstances,
FRaC can have the weak self selection property

and even the strong self selection property. This
theoretical analysis suggests that under certain
hyperparameterizations, such as those that pro-
duce identical predicted and true distributions,
FRaC may have better performance. It also
suggests that given such a hyperparameteriza-
tion, FRaC is very resistant to difficult or un-
predictable features when said features have uni-
form distributions.

Although FRaC does not in the general case
have the self selection property, it is capable of
introspection in a more general sense, in that
FRaC trains error models in a validation phases,
and bases decisions on them. In many practi-
cal contexts, because of this introspection, the
contributions of poor predictors are outweighed
by the contributions of better predictors, even
when poor predictors vastly outnumber their su-
periors. In (Noto et al., 2012), an experiment
was performed in which FRaC was able to de-
tect anomalies with large number of additional
randomly generated features. This experiment
also shows FRaC’s resilience against poor classi-
fiers.

1.4 Contributions of This Pa-
per

In this paper, theoretical analysis of tradi-
tional FRaC, as well as novel variants of FRaC,
is presented. The first important contribution is
the scaling insensitivity property above.

A technique to further correct for missing val-
ues, Missing value corrected FRaC (mFRaC), is
presented in Section 2.3; a technique moving to-
ward equipotent feature contributions, Entropy
normalized FRaC (eFRaC), is presented in Sec-
tion 2.1; and a technique to more effectively use
ensembles of predictors in FRaC, Combinatorial
ensemble FRaC (cFRaC), is presented in Sec-
tion 2.2. These techniques refine the normalized
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surprisal anomaly score to be more effective at
detecting anomalies in real world data.

In addition to the algorithmic variants pre-
sented here, heuristic techniques for feature se-
lection by the filter method are discussed in Sec-
tion 3.1. Somewhat surprisingly (due to the
self selecting nature of FRaC), in some instances
filtering is able to substantially raise the accu-
racy of FRaC. In addition to ordinary filtering,
the FRaC-specific technique of partial filtering is
also introduced in Section 3.2.1.

Finally, these techniques are categorized into
refinements of the definition of an anomaly and
generalizations of existing techniques. The prior
group represents novel mathematical formulae
for anomaly scoring, and the latter represents
a general trend toward removing hyperparam-
eters from algorithms through generalization.
These new techniques are then understood in the
context of feature modelling and more general
anomaly detection techniques in Section 4.1.
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Chapter 2: Modifications to FRaC

2.1 Entropy Normalized FRaC

2.1.1 Motivation

In FRaC, each feature makes a contribution
to the normalized surprisal outlier score. Some
features tend to make larger contributions to the
overall normalized surprisal than others, such as
those that, given a predicted value, have many
unlikely (high surprisal) true values. Each one is
unlikely, but overall they may be likely, in which
case predictions for the feature often generate
high surprisal. In FRaC, we can see these situ-
ations reflected in the error model as a feature,
where continuous distributions are wide contin-
uous distribution and confusion matrices have
many possibilities of low probability. One way
of capturing this concept is with the entropy (or
differential entropy in the continuous case) of a
feature in the training set, though conditional in-
formation is lost in this calculation, because we
are only looking at the input distribution, and
not taking predictor accuracy into account.

The normalized surprisal score roughly tends
toward 0 (though the actual expected value is
dependent on the distributions of each predic-
tor, as discussed in Section 1.3.4), as entropy
(expected surprisal) values are subtracted from
surprisal scores, however, perhaps counterintu-
itively, the subtraction of entropy values actu-
ally has no effect on the overall ordering of sur-
prisal values, and high entropy features often
make much larger contributions to normalized
surprisal scores. We can see this more easily if
we rearrange the normalized surprisal equation:

NS(x̂) =

F∑
i=1

M∑
m=1

{
0 if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

=
F∑
i=1

M∑
m=1

{
H(v̂Ti )−H(v̂Ti ) if x̂i missing:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

=

F∑
i=1

M∑
m=1

{
H(v̂Ti ) if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−

F∑
i=1

M∑
m=1

H(v̂Ti )

=
F∑
i=1

M∑
m=1

{
H(v̂Ti ) if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−

F∑
i=1

M ·H(v̂Ti )

As one can see, entropy is only visible on the
left for missing values , and as a constant that
is subtracted from each sample’s normalized sur-
prisal score. The constant has no effect on out-
lier rankings, because it is subtracted from each
sample in a test set.

We have now seen that, when compared to
average surprisal, normalized surprisal does not
have an effect on outlier rankings in the absence
of missing data. This means that normalized
surprisal does not account for differences in the
strength of the contributions of the surprisal val-
ues generated by different features in the final
score. In order to do this, we would need to di-
vide by the expected surprisal. I discuss a formal
definition for entropy normalized FRaC (eFRaC)
in the next section.

2.1.2 Algorithm Definition

In this section, I present the eFRaC algorithm,
and the associated outlier score entropy normal-
ized surprisal . I first present an intuitive näıve
definition, and then after discussing issues with
the näıve definition, proceed to define a final ver-
sion that does not suffer the same inadequacies.

Näıve Definition

I define the näıve entropy divided normalized
surprisal as follows:
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Näıve ENS(x̂) =

F∑
i=1

M∑
m=1

{
0 if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

H(v̂Ti )

(2.1)

This definition performs very well over discrete
features (see Section 2.1.4 for empirical data sup-
porting this claim), but the technique breaks
down over continuous features. It is also worth
noting that the technique is not defined over fea-
tures of zero entropy, as this results in indeter-
minate forms of the form 0

0 , however these sit-
uations can be precluded by applying Laplace
smoothing to discrete feature distributions be-
fore taking their entropy.

The greater problem is the issue of negative
differential entropy values, which can occur when
a PDF attains values in excess of 1. When terms
are divided by these negative differential entropy
values, highly surprising events are multiplied by
a negative number, becoming highly negative,
and thus push the score of a sample towards
normalcy. Similarly, unsurprising events push
the score toward anomality. Effectively, features
with negative entropy have the opposite of the
desired effect, and because of them, näıve en-
tropy divided normalized surprisal is a poor out-
lier score.

Full Definition

There are several ways to modify the näıve
eFRaC definition to overcome the shortcomings
on continuous variables, but the simplest is to
scale each continuous feature such that their dis-
tribution has a maximal value of one. Upon ap-
plication of this scaling function, no value has
negative surprisal, and consequently all features
have nonnegative entropy.

Aside from the feature scaling step, the full
eFRaC algorithm is the same as its näıve coun-
terpart, so the formula is identical to Equation
2.1. The feature scaling can be implemented as
a preprocessing step where the distribution of
each feature over the training set is calculated,
and subsequently, the training and test sets are

scaled accordingly.

In many respects, this is similar to z-score nor-
malization. With z-score normalization, if the
data are assumed to be Gaussian distributed, the
probability distribution function of a normalized
feature has a maximum value of f(x) ≈ .4 at
x = 0, so the problem of negative surprisal val-
ues vanishes. Additionally, both techniques ad-
dress the problem of surprisal over continuous
distributions not being invariant under transfor-
mations by providing a technique to standardize
a probability distribution.

2.1.3 Analysis of eFRaC

It is tempting to think of eFRaC as a sort of
normalized FRaC, where a sort of normalization
is being applied to the surprisal values of each
feature. In many ways, this is not a bad analogy,
as eFRaC is intended to smooth the contribution
each feature makes to the overall anomaly score.

However, the analogy between entropy nor-
malized surprisal and a featurewise normaliza-
tion1 of surprisal values only goes so far: with
featurewise normalization techniques, all fea-
tures are weighted equally, including features
with little or no utility in classifying anomalies
(such as those with near-uniform error model
distributions). In eFRaC, only the entropy of
the true distribution is used in performing the
normalization-like step, so difficult to predict
features still make a small contribution to overall
anomaly scores, even if they have high-entropy
true distributions.

For this reason, the experiment in (Noto et al.,
2012) wherein FRaC is shown to be resistant to
large numbers of irrelevant (noise) features could
be repeated with eFRaC.

Similar to the normalization of continuous fea-
tures prior to the use of distance based algo-
rithms, such as KNN (Cover and Hart, 1967), in
which the magnitude of each continuous feature
is ignored, eFRaC allows FRaC to treat features
equally with regards to their entropy, which in

1By featurewise normalization, I refer to any tech-
nique where the featurewise surprisal scores are normal-
ized across the query set before being summed.
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some sense is a proxy for the difficulty of a clas-
sification problem.

In addition to analyzing the anomaly score
used by eFRaC, we need also concern ourselves
with the effects of transforming the continuous
features. As shown in Section 1.3.4, FRaC is
scaling invariant under certain certain assump-
tions, so in these cases, the transformation has
no side effects. When these assumptions are not
met, it’s not clear that the transformations will
have negative side effects: if the features are nor-
mally distributed, the effects are very similar to
z-score normalization, differing only by a global
scale. In other cases, the results may be unpre-
dictable.

If this transformation is thought to have un-
acceptable side effects, it may be reversed after
calculating entropy values, in which case it has
no effect on learners. These entropy values can
then be scored, and used when calculating en-
tropy normalized normalized surprisal.

2.1.4 Empirical Evaluation

In Table 2.1, I present an empirical comparison
of FRaC, näıve eFRaC and eFRaC. The datasets
presented in the table are from the UCI ma-
chine learning repository (Lichman, 2013). As
in (Noto et al., 2012), these datasets are drawn
from classification problems in the UCI machine
learning repository (Lichman, 2013). They are
converted to anomaly detection problems by de-
noting the dominant class normal, and all other
classes anomalous. Fewer datasets are shown
here than in (Noto et al., 2012) because the im-
plementation of FRaC used here does not toler-
ate unknown values in the training set, so sets
containing unknown values in the training set
were removed.

In the table, AUROC values are reported by
algorithm for each dataset. Because AUROC
values are often so similar, sometimes the mean
rank (calculated using 1224 ranking) is more in-
formative than the raw mean. The number of
times an algorithm scores maximally are all re-
ported. When these values agree, a result may
be considered to be more significant than any

one of them alone.

Additionally, p-values from a two-tailed paired
t-test are presented, both between FRaC-eFRaC
and FRaC-neFRaC. Pairings are between the
runs of each algorithm on a dataset. Whether er-
ror values between pairs are normally distributed
is questionable, so these p-values may be overly
optimistic.

In each experiment, a decision tree and a linear
SVM were used to predict discrete and contin-
uous features, respectively. Additionally, rather
than running with leave one out cross validation
(LOOCV), 16 fold cross validation was used in-
stead. For these reasons, performance of FRaC
in these experiments is lower than that reported
in (Noto et al., 2010, 2012), but unless otherwise
noted, this parameterization is consistently used,
so the comparison is fair.

In the table, we see that näıve eFRaC performs
worse than ordinary FRaC by a statistically sig-
nificant amount, and ordinary eFRaC has per-
formance similar to that of FRaC. However,
eFRaC is more often maximal than FRaC, and
if the abysmal performance of eFRaC over the
dermatology dataset (AUROC of 0.0176 against
FRaC’s 0.9938) is removed from the dataset, the
paired t-test has a p-value of 0.495. Presumably,
reweighting by inverse entropy creates an ex-
tremely unlikely antagonistic weighting for this
dataset, causing the poor performance of eFRaC.
Since eFRaC is essentially a heuristic to obtain
a better weighting for each feature, the existence
of such antagonistic datasets is not surprising.

All in all, entropy normalized FRaC is a tech-
nique to control the weight of the contribu-
tion each feature makes to the overall outlier
score, intended to make each feature equipo-
tent. Empirical evidence suggests that this of-
ten leads to improvements, but there are times
when the weightings generated by entropy nor-
malized FRaC are inferior to the default uniform
weighting of traditional FRaC.
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Table 2.1: Comparison of FRaC, näıve eFRaC (neFRaC), and eFRaC over UCI Datasets

FRaC neFRaC eFRaC Real Fea-
tures

Nominal
Features

Training
Set Size

Query
Set Size

abalone 0.4083 0.5555 0.4168 8 0 1146 3031
acute 0.9523 0.9756 0.9629 1 6 45 75
audiology 0.7292 0.8635 0.8651 0 52 36 164
balance-scale 0.95 0.9137 0.9127 4 0 216 409
car 0.7872 0.766 0.8091 0 6 907 821
cmc 0.3905 0.4317 0.4034 2 7 471 1002
connect-4 0.6431 0.5681 0.5682 0 42 33354 34203
dermatology 0.9938 0.018 0.0176 2 32 84 282
ecoli 0.8558 0.1892 0.8298 5 2 107 229
glass 0.6678 0.439 0.6892 9 0 57 157
haberman 0.7035 0.7186 0.7005 3 0 168 138
hayes-roth 0.8514 0.8533 0.8029 0 4 38 94
image 0.9549 0.8264 1 19 0 22 188
ionosphere 0.9673 0.9135 0.967 34 0 168 183
iris 1 0 1 4 0 37 113
letter-
recognition

0.993 0.9765 0.995 16 0 609 19391

magic 0.7325 0.4784 0.8134 10 0 9249 9771
nursery 1 1 1 0 8 3240 9720
page-blocks 0.591 0.3347 0.9454 10 0 3684 1789
parkinsons 0.6526 0.232 0.6909 22 0 110 85
pima-indians-
diabetes

0.6564 0.4881 0.6916 8 0 375 393

poker 0.506 0.4991 0.5341 5 5 9369 15641
spambase 0.5258 0.5804 0.8236 57 0 2091 2510
tae 0.5117 0.3959 0.5218 1 4 39 112
tic-tac-toe 0.8322 0.8396 0.8449 0 9 469 489
voting-records 0.9182 0.9553 0.9585 0 16 200 235
wine 0.9273 0.8925 0.9393 13 0 53 125
yeast 0.693 0.3063 0.7046 8 0 347 1137
zoo 1 1 1 1 15 30 71
Mean 0.7722 0.6211 0.7727 8.3448 7.1724 2301 3536
Mean Rank 1.9655 2.3103 1.4828
Maximal Count 8 7 19
p-value 0.0091 0.9903

Data from 29 UCI datasets shown. Color used to direct attention to more accurate algorithms,
real or nominal feature dominated datasets, small training or test set sizes and more significant
p-values.
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2.2 Combinatorial Ensemble
FRaC

Ensemblification in the typical machine learn-
ing sense is reviewed in Section 1.2.3. In this
section, I discuss ensemblification in a second
sense that is intrinsically tied to the FRaC al-
gorithm, and introduce an algorithm that uses
the information produced by an ensemble more
effectively.

In FRaC, there is a second option for ensembli-
fication. Each feature i has M classifiers associ-
ated with it, and as can be seen in the normalized
surprisal equation (Equation 1.2), the surprisal
values of these classifiers are summed. I subse-
quently refer to a traditional ensemble (that is
an ensemble of predictors that is treated as a
single predictor by FRaC) as an inner ensem-
ble, and the FRaC-specific ensemble as an outer
ensemble.

Inner ensembles have the advantage of being
quite accurate, and therefore generally produc-
ing higher surprisal values on misclassifications,
however, while this may be true over large num-
bers of samples, over individual samples, the
idiosyncrasies and biases of various classifiers,
which are “smoothed out” in an inner ensemble,
sometimes produce high surprisal values that are
very useful in detecting outliers. See see Figure
2.1 for a diagram showcasing their structural dif-
ferences in the context of the FRaC algorithm,
and see Figure 2.2 for an example comparing the
surprisal scores produced by inner and outer en-
sembles.

The performance of FRaC using both an in-
ner and an outer ensemble is shown in Table
2.2. Overall, their performance is quite simi-
lar although, perhaps surprisingly, the simpler
inner ensemble seems to win out by a small mar-
gin. Though this result is somewhat consistent,
it is not unlikely that the difference in the perfor-
mance of inner and outer FRaC is entirely due
to chance.

2.2.1 Analysis of FRaC Ensemble Use

In FRaC, the output of each learner in an
outer ensemble is used to calculate surprisal val-
ues, which are simply summed together. This
works reasonably well, as the information from
each learner can be used to detect different types
of surprising events. However, the one to one
correspondence between error models and classi-
fiers, paired with the simple summation, means
that the results of each classifier can only be used
independently.

Note that a sum of surprisal values is equal
to the surprisal of the product of the probabil-
ities that generated the surprisal values. If we
make the hypothesis that the probability of the
true value given each predicted value is inde-
pendent from the other predictions, then what
we are calculating with this sum is the surprisal
of the probability of making all of the obser-
vations. Formally stated, under the indepen-
dence hypothesis (and ignoring for the moment
the possibility of missing values):

FS(~x, i) =

M∑
m=1

I
(
P(xqi | Cp,i(ρi( ~xq)), Ap,i)

)
= I

(
P
(
~xi|Ci,1(ρi(~x))

)
∗. . .∗P

(
xi|Ci,M (ρi(~x))

))
= I

(
P
(
~xi|Ci,1(ρi(~x)) ∩ . . . ∩ ~xi|Ci,M (ρi(~x))

))
It is highly unlikely for the surprisal values of

multiple predictors to be independent, because
the goal of each is to determine the same quan-
tity, the surprisal of a particular feature given the
remaining features and some training instances,
using a particular training algorithm and param-
eterization. If we then assume that the predic-
tions of each learner are not independent, we po-
tentially have more information with which to
calculate surprisal values.

2.2.2 Algorithm Definition

With the motivation of Combinatorial Ensem-
ble FRaC (cFRaC) introduced, in this section I
outline the algorithm itself.
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Figure 2.1: Visual Comparison of Inner and Outer Ensemble FRaC

Classifier A:

Predicted

True

[
0.7 0.2
0.3 0.8

]

Classifier B:

Predicted

True

[
.9 .3
.1 .7

]

Classifier C:

Predicted

True

[
.7 .3
.3 .7

]
Ensemble of A, B, C:

Predicted

True

[
.75 .2
.25 .8

]
Now, suppose that we used the inner ensemble
to calculate the surprisal of a class 0 feature be-
ing predicted to be in class 1. We would get
− log2(.25) ≈ 2 bits. The outer ensemble would
give (assuming all predictors made the same pre-
diction) an average surprisal of:

− log2(.3) + log2(.1) + log2(.3)

3
≈ 2.265 bits.

However, let us now suppose that we have a class
1 feature being predicted to be in class 0. The in-
ner ensemble surprisal is − log2(.2) ≈ 2.322 bits,
and the outer distribution surprisal is:

− log2(.2) + log(.2) + log(.3)

3
≈ 2.127 bits.

Let’s summarize these results in a matrix.

(Average) surprisal values:
(Predicted, True) Inner Outer

(1, 0) 2 2.265

(0, 1) 2.322 2.127

In this example, we see that sometimes an in-
ner ensemble has a higher surprisal contribution
than the outer ensemble, and sometimes it does
not. In Table 2.2, we empirically verify that nei-
ther inner nor outer ensembles are consistently
superior for the anomaly detection problem us-
ing FRaC.

Figure 2.2: Inner vs. Outer Ensembles in FRaC
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In this diagram we see a visual presen-
tation of the cFRaC algorithm. In this
instance, models are constructed with
two predictors over four features, result-
ing in a total of 22 − 1 = 3 ensembles
and error models.
Note that the set of error models and
ensembles is a superset of both those
that would be present in inner ensemble
and outer ensemble FRaC. Due to the
difficulty of fitting an exponential num-
ber of ensembles onto the page, only two
predictors for each feature are shown,
however for larger predictor quantities,
feature combinations that are not repre-
sented in inner or outer ensemble FRaC
appear.

Figure 2.3: Visual Diagram of the cFRaC Algorithm

In FRaC, we have a one to one correspon-
dence between prediction models and error mod-
els. All surprisal calculations take the form
I(P(T |prediction i), where T represents the true
value, and these values are summed for each pre-
diction i. Ultimately, this is the näıve version
(so called because of the independence assump-
tion) of I(P(T | ~P )), where ~P is a vector of all
predictions for this feature, and we would get
more information if we were to use this second
form. However, the evidence space grows expo-
nentially with the number of predictors, making
it extremely difficult to obtain enough data to
build an error model2.

There are several options available to solve
this problem: in the discrete case, we can
“bleed” classification events with a multidimen-
sional convolution matrix, not unlike the Gaus-
sian blur technique in image processing (e.g. if
events A and B differ only by one predictor, their
probabilities should bleed into each other be-

2This is highly similar to the problem of training a
Bayesian classifier without the näıve independence as-
sumption.

cause they are very similar). This essentially ar-
tificially populates the matrix with likely events,
and in the continuous cases, we can perform sim-
ilar operations with Gaussian mixture distribu-
tions. However, there is an alternative and much
simpler way to build an error model with a more
complicated evidence space: ensemblification.

An inner ensemble’s error model looks just like
an ordinary ensemble, as an inner ensemble is
just an ordinary prediction model. However, we
can consider the ensemble’s prediction to be evi-
dence, and after each predictor makes its predic-
tion, we combine the predictions in all possible
ways (except for combination into the null set:
this combination of predictors yields no infor-
mation) to form new models, and build an error
model for each one. Now, given N predictors, we
train 2N − 1 error models, and for each training
instance, for each combination of predictors, we
ensemblify the predictions. We then use these
ensemblified predictions to build and query er-
ror models. See Figure 2.3 for a visual diagram
outlining the algorithm.

This technique results in the combination of

26



a large number of error models, each of which
is queried using some subset of the information
carried by the results of all predictors. Because
the ensemble of all predictors is included in the
set of all combinations, the inner ensemble of all
predictors is represented with an ensemble. The
outer ensemble is also represented, as each single-
ton predictor is represented in the combinatoric
set. Additionally, all intermediate combinations
are also represented, which is potentially very
useful, because it allows powerful combinations
of predictors to self select (as they will have high
surprisal events in their error models).

Because the contribution of both the inner and
outer ensemble, as well as intermediate ensem-
bles, are considered in combinatorial ensemble
FRaC, it is not unreasonable to expect superior
accuracy to either technique alone. The fact that
FRaC inherently self selects through the con-
struction of error models furthers that hypoth-
esis, as the algorithm is able to weigh different
subset ensembles differently based on their ac-
curacy values. Empirical justification of these
claims is provided in Section 2.2.3.

Formal Definition

Given N predictors, the feature surprisal for
a known feature q for a feature vector ~x is given
by

CNS(x̂) =

F∑
i=1

2M∑
e=1

{
0 if x̂i is missing, else:

I
(
P
(
x̂i | Ei,e(ρi(x̂))

))
−H(v̂Ti )

(2.2)

where Ei,e, for some i, represents one possible
ensemble of the N predictors of the ith feature,
such that no two e ∈ [1, 2M ] are the same. Note
that an ensemble of classifiers may produce a tie.
There are many ways to resolve this situation,
but for simplicity ties are broken randomly.

2.2.3 Empirical Evaluation

In this section, I provide empirical evidence
to suggest that Ensemble FRaC is superior to

inner and outer ensemble FRaC. In Table 2.2,
we can see that the average AUROC of cFRaC
is higher than that of both inner and outer en-
semble FRaC, and similarly the average rank is
lower. Inner ensemble FRaC has more maximal
rank datasets, this may be because it is the sim-
plest of the three algorithms and it does very well
on simple datasets. Overall, the performance of
inner and outer ensemble FRaC are similar, and
combinatorial ensemble FRaC is slightly better.

Each of these experiments involves an ensem-
ble, so in addition to the decision tree and linear
SVM used in previous experiments, a 3 layer neu-
ral network classifier and a decision tree regressor
were added. Note that when the ensembles are
of size 2, the normalized surprisal score of a sam-
ple in cFRaC is equal to the sum of normalized
surprisal scores in the inner and outer ensemble
FRaC algorithms. For this reason, we can think
of combinatorial ensemble FRaC for an ensem-
ble of size 2 as an ensemble anomaly detection
technique, where the component anomaly detec-
tors are inner and outer ensemble FRaC. We see
from the Table 2.2 that they make diverse pre-
dictions, and both are accurate in that they have
mean AUROC values in excess of 0.5, so from en-
semble theory it follows that cFRaC should be
superior to either one. For this reason, in addi-
tion to the 2-tail t-tests, single tail tests are pro-
vided as well, to test for superior performance of
cFRaC over inner and outer ensemble FRaC.

From the t-tests, we see that the experi-
ment shows no statistically significant differ-
ence between inner and outer ensemble FRaC.
There may be a small difference in performance,
but vastly more powerful experiments would be
needed to find it. We also see that neither of the
two tailed tests for cFRaC is significant, however
the one tailed test between cFRaC and outer en-
semble FRaC is significant, and similarly the test
between cFRaC and inner ensemble FRaC is sug-
gestive.
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Inner En-
semble

Outer En-
semble

Combinator-
ial FraC

Real Fea-
tures

Nominal
Features

Training
Set Size

Query
Set Size

abalone 0.4191 0.4158 0.4159 8 0 1146 3031
acute 1 0.9799 1 1 6 45 75
audiology 0.7429 0.7467 0.75 0 52 36 164
balance-scale 0.9428 0.9191 0.936 4 0 216 409
car 0.7925 0.8789 0.8738 0 6 907 821
cmc 0.4039 0.3937 0.396 2 7 471 1002
connect-4 0.5851 0.6047 0.6078 0 42 33354 34203
dermatology 0.9941 0.9934 0.9941 2 32 84 282
ecoli 0.9636 0.9491 0.9596 5 2 107 229
glass 0.7277 0.7021 0.7151 9 0 57 157
haberman 0.6582 0.6662 0.6628 3 0 168 138
hayes-roth 0.8875 0.8827 0.8875 0 4 38 94
image 0.9993 1 1 19 0 22 188
ionosphere 0.9663 0.9694 0.9691 34 0 168 183
iris 1 1 1 4 0 37 113
letter-
recognition

0.9985 0.9854 0.9919 16 0 609 19391

magic 0.8224 0.8538 0.8494 10 0 9249 9771
nursery 1 1 1 0 8 3240 9720
page-blocks 0.8676 0.7747 0.7988 10 0 3684 1789
parkinsons 0.5805 0.5901 0.5805 22 0 110 85
pima-indians-
diabetes

0.684 0.6327 0.6599 8 0 375 393

poker 0.5557 0.5551 0.5539 5 5 9369 15641
spambase 0.7728 0.7809 0.7826 57 0 2091 2510
tae 0.4953 0.5653 0.5427 1 4 39 112
tic-tac-toe 0.9043 0.9951 0.9945 0 9 469 489
voting-
records

0.915 0.9101 0.9161 0 16 200 235

wine 0.893 0.9045 0.905 13 0 53 125
yeast 0.7189 0.6884 0.7032 8 0 347 1137
zoo 1 1 1 1 15 30 71
Mean 0.8031 0.8048 0.8085 8.3448 7.1724 2301 3536
Mean Rank 1.8276 2.069 1.6207
Maximal
Count

16 11 12,

p-value (2 tail
paired)

inner,
outer

0.8122 0.3292,
0.0569

p-value (1 tail
paired)

0.1646,
0.0284

Table 2.2: Comparison of inner and outer ensembles vs. combinatorial FRaC over UCI datasets.
p-values shown between inner and outer ensemble FRaC, and also between cFRaC and both of
the previous techniques. cFRaC-inner ensemble and cFRaC-outer ensemble two tailed p-values are
shown, comma separated, in that order, as are their single tailed variants.
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2.3 Missing Value Corrected
FRaC

2.3.1 Motivation

In FRaC, normalized surprisal (See Equation
1.2) is used to calculate an outlier score. This
metric has a slight bias toward 0 for samples
containing missing features, because missing val-
ues contribute nothing to normalized surprisal
scores. If we carry this to the extreme, a sample
consisting of only missing values would have a
normalized surprisal score of 0.

Now, let us suppose we have a sample s of
F features, with an anomaly score of x. Now
we remove a random feature from s and replace
it with the value unknown. Let us denote this
modified sample s′. The effect of this operation
on the surprisal of the remaining feature values
is difficult to predict; it depends on the classifier,
and the technique used to handle unknown val-
ues, as well as the feature values themselves. If
we suppose that it has a net effect of zero on the
surprisal values of the other features, then the
expected normalized surprisal of s′ is x · F−1

F . As
we continue removing features, this value keeps
dropping, until eventually, when all features are
missing the normalized surprisal is 0.

In the next section, I introduce a modified al-
gorithm, missing value corrected FRaC, which
corrects for this effect.

2.3.2 Algorithm Definition

We can correct for this drop in absolute sur-
prisal suggested in the previous section by mul-
tiplying the anomaly score x by F

F−1 , which we

can generalize to F
F−m for m missing features.

This yields a new formula:

NSm(x̂) =

F∑
i=1

Mi∑
m=1

{
0 if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

· F∑F
i=1

{
0 if x̂i is missing
1 otherwise

(2.3)

Using NSm (Normalized Surprisal Missing
value corrected) in place of ordinary normal-
ized surprisal yields the alternative algorithm,
mFRaC (missing value corrected FRaC). Note
that in mFRaC, a sample that consists entirely of
missing values has an undefined anomaly score.
Because such a sample contains no information
(assuming that the absence of a feature does not
carry information), refusing to assign an outlier
score in such a case is not unreasonable.

2.3.3 Analysis

In the previous derivation, we made the some-
what dubious assumption that replacing a fea-
ture with an unknown had no effect on the sur-
prisal values of the remaining features. If we do
not make this assumption, we need to begin look-
ing at actual data to see how well the assumption
holds.

Logically, the more effect a feature has on pre-
dicting the remainder of the features (classifier
and dataset dependent), the less the assumption
holds. In data with more features, individual fea-
tures are less important to predicting the other
features, so the assumption should hold up bet-
ter on such datasets. Additionally, the assump-
tion may be less inaccurate when small numbers
of features are missing, as the remaining features
are more likely to compensate for the missing
features3.

It is important to consider the types of
datasets in which we can expect differences in
the output of FRaC and mFRaC. When no fea-
tures are missing, the corrective term in mFRaC
has value 1, so the two algorithms produce iden-
tical outlier scores on the same data.

Similarly, when every element of the test set
has the same number missing values, the same
multiplicative factor is applied to each sample,
so the ranking of the anomaly scores of the test
set does not change.

3This statement is highly dependent on the dataset in
question. In nonredundant datasets, such as those where
features sum or exclusive or to some value, we can not
use the remaining features to compensate for a missing
feature.
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It is only in cases where different elements of
the test set of different numbers of missing values
that mFRaC has an effect on the anomaly rank-
ing. Essentially, in these cases, mFRaC allows
a sample with more missing features to be more
fairly compared to a sample with fewer missing
features, by compensating for the fact that fewer
surprisal values are summed in calculating the
normalized surprisal of the sample with fewer
known features.

2.3.4 Empirical Evaluation

Experimental validation on synthetic data is
provided in Figure 2.5. In this experiment, we
see that mFRaC slightly outperforms traditional
FRaC, especially when the range of missing value
counts is large.

Additionally, a comparison of mFRaC and
FRaC over UCI datasets is provided in Table 2.3.
In addition to testing these algorithms against
the vanilla UCI dataset, the same experiment
was repeated using modified datasets where 25%
of the data points were replaced with unknown
values. Most of the UCI repository datasets
don’t have many missing values, so this was done
to test the performance of mFRaC in the sort of
data-starved scenario in which it was designed to
be used.

It is difficult to extract a conclusion from these
data over the raw UCI datasets; the mean AU-
ROC of mFRaC is higher than that of FRaC,
but FRaC produces more maximal AUROC val-
ues and has a slightly lower average rank (though
when comparing only two predictors the last two
imply one another). Additionally, on the ar-
tificially sparsified data, mFRaC’s performance
seems to be superior to that of ordinary FRaC.
However, the differences are quite small, and do
not appear to be statistically significant.

FRaC mFRaC FraC
0.25

mFRaC
0.25

abalone 0.4083 0.4024 0.5301 0.5252

acute 0.9523 0.9544 0.8734 0.9354

audiology 0.7292 0.7248 0.6891 0.7379

balance-
scale

0.95 0.9139 0.8119 0.8133

car 0.7872 0.7512 0.6003 0.6249

cmc 0.3905 0.3982 0.4186 0.3997

connect-4 0.6431 0.6435 0.5542 0.5514

dermatology 0.9938 0.9931 0.8448 0.8538

ecoli 0.8558 0.8489 0.8089 0.8137

glass 0.6678 0.6678 0.4777 0.5734

haberman 0.7035 0.7135 0.6673 0.6111

hayes-roth 0.8514 0.8495 0.6804 0.7626

image 0.9549 0.9674 0.8118 0.7674

ionosphere 0.9673 0.969 0.8718 0.8535

iris 1 1 0.9942 0.9938

letter-
recognition

0.993 0.9818 0.9333 0.9195

magic 0.7325 0.6671 0.6408 0.6508

nursery 1 0.9355 0.8489 0.8532

page-
blocks

0.591 0.8432 0.552 0.5749

parkinsons 0.6526 0.7663 0.5954 0.5099

pima-
indians-
diabetes

0.6564 0.623 0.5896 0.5901

poker 0.506 0.4548 0.4952 0.4857

spambase 0.5258 0.4665 0.5674 0.5613

tae 0.5117 0.5389 0.5627 0.4454

tic-tac-toe 0.8322 0.8396 0.6599 0.6653

voting-
records

0.9182 0.9202 0.9081 0.8913

wine 0.9273 0.9091 0.8276 0.8606

yeast 0.693 0.714 0.6048 0.5287

zoo 1 0.9955 0.9455 0.9606

Mean 0.7722 0.7742 0.7023 0.7005

Mean Rank 1.4138 1.5172 1.5172 1.4828

Maximal
Count

17 14 14 15

p-value 0.8553 0.8358

Table 2.3: Comparison of FRaC and mFRaC
over UCI Datasets
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Visualization of the first three dimensions
of the first category of the test data.
8 sets of 4 dimensional Gaussian distributed
points, centers chosen uniformly from a 4 di-
mensional hypercube, standard deviations cho-
sen randomly from [−16, 16]. Each set is cho-
sen from 8 possible distributions, and the se-
lected distribution’s index is added as a categor-
ical variable, for a total of 8 ∗ 4 = 32 continuous
variables and 8 ∗ 1 = 8 categorical variables.

Figure 2.4: Test Data For mFRaC-FRaC Comparisons.
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Figure 2.5: AUROC of mFRaC vs Traditional FRaC.
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Chapter 3: Heuristic Improvements

3.1 Feature Selection Overview

3.1.1 Motivation

The FRaC algorithm does not scale well:
training FRaC is Ω(f2) for f the number of fea-
tures. Here I present preprocessing techniques
to perform feature selection for FRaC, with the
goal of reducing the feature space to provide a
reduced runtime.

Because FRaC cross validates each error
model, and many of the algorithms used in clas-
sification and regression by FRaC perform im-
plicit feature selection, feature selection algo-
rithms cannot be expected to improve the accu-
racy of FRaC, however, by reducing the number
of features, the runtime can be improved.

Because we are not expecting improved accu-
racy, these heuristic feature selection algorithms
are evaluated not by their improvement in AU-
ROC scores, but instead by a lack of reduction
of AUROC score as compared to removing an
equal number of random features. They are also
evaluated by their computational cost, both in
terms of asymptotic complexity and empirically
validated time costs.

3.1.2 Feature Selection Techniques

Many traditional feature selection and fea-
ture reduction techniques operate on the princi-
ple of reducing redundancy in the feature space.
This works very well for many machine learn-
ing applications, however the consequences of re-
ducing redundancy in FRaC are severe: redun-
dant or correlated features are used to predict
each other, contributing potential high surprisal
events when the redundancy or correlation is
broken. When redundant or correlated features
are removed, this signal is destroyed, and FRaC’s
performance is degraded. Principle Component
Analysis (PCA, introduced in (Pearson, 1901)) is
an example of a popular feature space reduction
algorithm that succumbs to this flaw.

Additionally, wrapper method techniques in-
volve multiple iterations of training, and are thus

far slower than just training over all features1.
FRaC can be considered to be an embedded
method, as each feature’s learner can choose to
ignore every other feature (if the learner itself
has embedded properties), and a feature’s contri-
butions to normalized surprisal can be neutral-
ized by an error model that considers all events
equally surprising. The remaining category of
feature selection techniques, filter methods, are
worth considering, so long as proxy criteria for
FRaC accuracy can be found.

3.2 Filter Techniques

Filter methods are particularly relevant in
high dimensional feature spaces. They have been
used to great effect in computational biology on
DNA microarrays (Xing et al., 2001) and in text
classification (Guyon and Elisseeff, 2003): both
of these domains can contain many thousands of
features, and filtering is an efficient technique to
reduce the space to tractable proportions.

These techniques provide scores to each fea-
ture, and the scores can be used to select a sub-
set of features on which to perform FRaC. This
selection can be done with an absolute cutoff,
particularly when the filter score has some use-
ful interpretation (remove all features with score
less than x), or it can be done on a constant frac-
tion (remove the bottom 25% of features by filter
score). To be useful, filtering by cutoff generally
requires a deep knowledge of the filter criterion,
and sometimes also knowledge of the domain, so
constant fraction filtering is the simpler alterna-
tive.

It is exceedingly difficult to concoct useful fil-
ter score algorithms for FRaC, because in FRaC,
each feature interacts with every other feature,
both in predicting and being predicted by them.

1If it were the case that training was not the bottle-
neck, as could happen with a sufficiently large query set,
then wrapper methods could improve runtime. However,
these techniques are targeted at improving training time,
so these techniques are not discussed further.
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Because of these complicated interactions, it is
difficult to predict the effects of removing any
particular feature.

Additionally, some traditional feature selec-
tion techniques designed for general purpose use
with classification work in an antagonistic man-
ner with FRaC. Most feature selection algo-
rithms attempt to find and eliminate irrelevant
features, which are not related to the pattern
at hand, and redundant features, which are re-
lated, but have low information content in the
context of the remaining features. Correlated
features are generally redundant, and a feature
like, for instance, eye color, is probably irrele-
vant to disease classification. In FRaC, removal
of irrelevant features is helpful, however removal
of redundant features is not: FRaC thrives on
redundancy2, and requires predictable relation-
ships between features in order to function.

In order to truly find irrelevant features in
FRaC, one must examine each feature in the con-
text of every other feature to decide to what de-
gree each feature is related to every other feature.
This is as complex as the training step of FRaC,
and therefore does not result in a reduction of
runtime. For this reason, all of the filter score
generation techniques below score features with
heuristics designed to estimate the utility of a
feature for use in FRaC. Because each has its ad-
vantages and disadvantages, and selects features
for different reasons, it is both possible and rec-
ommended to use multiple scoring techniques in
order to select the final set of features.

3.2.1 Partial Filtering

Ordinarily, filtering a feature removes it en-
tirely from a dataset, however in FRaC an al-
ternative exists. By default, FRaC trains an en-
semble of classifiers for each feature, using every
remaining feature. As an alternative, I introduce

2I should qualify this statement: in FRaC, completely
redundant features result in simple predictors, and if the
redundancy is also present in anomalous data, FRaC
will make correct predictions and fail to detect anoma-
lies when subtler patterns (which would be picked up in
the absence of the redundant feature) break down.

the FRaC-specific partial filtering technique. In-
stead of removing the features entirely, we leave
them, allowing unfiltered features to train mod-
els based on them, but we do not train models
for filtered features.

Partial filtering is a far more conserva-
tive metatechnique than the traditional filter
method. Because partially filtered features re-
main available to learners for the unfiltered fea-
tures, the decision to partially filter a feature is
entirely local: no other feature is affected. For
n the total number of features, any sort of anal-
ysis of the interdependence of features is Ω(n2),
so it is impossible to analyze the effects of re-
moving a feature on predicting other features
in subquadratic time. Partial filtering affords a
solution linear in n by locally analyzing a fea-
ture, and knowing that the decision to remove
it will not interfere with the prediction of other
features.

3.2.2 Feature Scoring Algorithms

Correlation Approach

Though looking at correlation alone misses
many of the subtler ways in which features can
be related, and only applies to numeric features,
determining which features are correlated is an
excellent way to make sense of a dataset and be-
gin finding relationships. Correlated features are
redundant, so for many machine learning appli-
cations, they are undesirable, and a filter method
could operate by identifying and removing them,
as discussed in (Hall, 1999). In FRaC, this is not
the case: redundant features are greatly benefi-
cial, so long as the redundancy breaks down in
anomalies. For this reason, features that cor-
relate with other features, and are thus pre-
dictable, are highly desirable.

Both positive and negative correlations con-
tribute to predictability, and this is reflected in
the formula below.

corrscore(f) =

dimF∑
i=1

(
|corr(Fi, Ff )|

)
− 1

In this formula, F is a vector representing all
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Partial Filtering of features 2, 5, and 7.

Predictors
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Full Filtering of features 2, 5, and 7.

Comparison of data flow between full and partial filtering. Note the richer connection network in
the partial filtering diagram. No filtered feature has an error model, and thus no filtered feature
contributes to the normalized surprisal score.

Figure 3.1: Full vs Partial Filtering Data Dependency Diagram

features, and corr is the function taking the Pear-
son correlation between two features over the
training set. Alternatively, Spearman correla-
tion may be used; the proper choice requires
more sophisticated analysis or domain knowl-
edge of the dataset. Notice that the correlation
of a feature with itself is 1, and this is subtracted
out, making this function take on values in the
range [0, dimF − 1].

Although highly scoring features are definitely
predictable, low scoring features may well be pre-
dictable as well. Unconditional correlation is a
blunt instrument, but it is a necessarily blunt in-
strument, as more complex analysis of interfea-
ture relationships takes more time. This tech-
nique is already θ(f2n) for f the number of fea-
tures and n the number of training instances.
Many filter criteria look at a feature in isolation,
and have θ(fn) time complexities. This tech-
nique, while slower, is theoretically capable of
teasing apart relationships in a way that is im-
possible in a linear algorithm.

KL Divergence

As outlined in Section 1.2.2, Kullback Leibler
divergence is a metric used to evaluate the ef-
ficacy of using an encoding optimized for one
probability distribution to send signals from an-
other. KL divergence between classes, usually
in the symmetric form, has been used as a fil-
ter criterion to great success in the classifica-
tion field (Baker and McCallum, 1998; Schneider,
2004; Coetzee, 2005), as has Jensen-Shannon di-
vergence (Coetzee, 2005).

Unlike the classification problem, in anomaly
detection, ordinary asymmetric KL divergence
has a logical interpretation: the predominant
normal class can be considered the “true class”,
and the divergence from the true class in the
anomalous class can be measured and used as
a filter criterion. Unfortunately, in the unsuper-
vised anomaly detection problem, we do not have
access to a collection of anomalous samples, so
we can not construct feature distributions for the
anomalous class.

Instead of looking at the KL divergence be-
tween features in normal and anomalous classes,
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we can look at KL divergence between the train-
ing and query set. For some feature, we consider
the training set distribution to be the “true dis-
tribution”, as it is our sampled approximation
of the true distribution, following Laplace’s rea-
soning and the continuous analogue outlined in
1.2.1. We then consider the query set to be the
approximation distribution, because as a hetero-
geneous mixture of normal and anomalous sam-
ples, the features of the query set are potentially
distributed differently from the training set. To
identify these differences, for random variables
X drawn from feature i of the training set, and
Y drawn similarly from the query set, we take
DKL(X ‖Y ) as a filter score.

Features with high KL divergence have signif-
icant differences in their distributions between
the normal and anomalous classes, and thus,
barring sampling artifacts, are valuable features
to the FRaC algorithm. No conclusion can be
drawn about features with low KL divergence,
so in some sense this technique identifies which
features not to remove, rather than those which
should be removed. It is important to note
that when anomalies are varied, or even when
they are not, there may not be much difference
between normal and anomalous feature distri-
butions, even if the relationships between fea-
tures have changed. For this reason, KL diver-
gence based filtering can filter valuable features
over less valuable features if they have similar
low divergences. Low KL divergence filtering is
thus a heuristic that can produce false positives
as to what to filter, but it will rarely produce
false negatives. It may also perform better on
homogeneous anomaly types over heterogeneous
anomaly types, because the former is more likely
to have significant differences between feature
distributions.

Technically, examining the query set makes
this algorithm a transduction anomaly detection
algorithm, and consequently changing the query
set has the potential to change the anomaly score
of constant elements of the query set. Transduc-
tive learning is easier than nontransductive, but
transductivity precludes the use of an algorithm

in an online setting.

I conclude the theoretical analysis of diver-
gence based filter techniques with a brief ar-
gument regarding the ability of the divergence
based techniques to remove irrelevant features.
I also comment that the same holds for similar
divergence-based approaches, including Jensen-
Shannon filtering.

Proposition 2. As the number of training and
test instances tend to infinity, the filter scores of
divergence based filtering techniques of irrelevant
features tend to 0.

Proof. Suppose that feature f is irrelevant to the
classification problem at hand. Then the dis-
tribution of f in both the normal and anoma-
lous classes is identical, as the negation would
contradict the hypothesis. Now, as we draw s
samples, the sampled approximation of a dis-
tribution d, denoted fd(s), approaches the true
distribution, denoted fT. The training set con-
sists of only normal samples, and the query set
is a mixed distribution of normal and abnor-
mal samples, but regardless of the mixture ratio,
the distribution of f over the query samples is
identical to that over the training samples, be-
cause the distribution over normal and abnor-
mal samples is identical. ÷XX = 0, by pos-
itive definiteness of divergence functions, thus
lims→∞DKL(fnorm(s) ‖ fanom(s)) = 0, which we
can interpret to mean that for irrelevant features,
the KL divergence filter score goes to zero as the
number of both training and query samples go
to infinity.

Entropy

Entropy is a valuable filter criterion insofar as
it is a proxy for predictability. Low entropy fea-
tures are highly predictable, and furthermore,
rarer events in low entropy features may oc-
cur so rarely that insufficient information exists
to build a statistically significant error model,
thus making predictions for these rare events of
little use. Because the predictions of common
events will be low-surprisal, and predictions of
rare events will not be statistically significant,
no predictions from this feature are helpful.
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Predicted Class

True
Class

103 3 0
7 11 2
2 1 6


Predicted Class

True
Class

.904 .222 .091
.070 .667 .273
.026 .111 .636


Key:
Very common, probability near 1.
Insignificant due to low column count.
Unlikely due to class imbalance bias.
Extremely insignificant due to low column count
and an unlikely incorrect prediction.

Confusion matrices of counts and of column normalized Laplace smoothed probabilities.
Events in gray are unlikely to have a statistically significant number of entries, and are thus dom-
inated by chance and Laplace Smoothing. Meanwhile, the black cell (correct prediction of the
preeminent class is by far the most likely, and is a low surprisal event, and therefore makes a min-
imal contribution to overall surprisal. Therefore, regardless of the true value and prediction, the
surprisal contribution for the feature is either minimal or subject to extreme sampling bias, and
therefore not useful to FRaC.

Figure 3.2: Confusion Matrix of a Low Entropy Feature.

We can see this most clearly by analyzing the
different cells of a confusion matrix. See Figure
3.2 for an example of this, as well as an in depth
analysis of this of how different biases affect these
types of confusion matrix. Note that the same
principles apply to continuous variables as well.

The use of entropy as a filter criterion suf-
fers from the same flaw as do all filter method
techniques for semisupervised anomaly detec-
tion: without observing the difference between a
feature in the normal class and an anomalous fea-
ture, we can not make a fully informed decision
about which features to filter out. As a patho-
logical example, consider a dataset in which a
particular categorical feature is always A in the
normal class, but never A on anomalies. The
entropy of this class is of course 0 bits over the
training set, so it would be filtered, even though
it alone is a perfect anomaly detector.

One way to alleviate this problem is via trans-
duction, where we simply take the entropy of the
union of the training set and test set, and there-
fore we target the removal of features that are
highly consistent even over anomalous samples.

It is important to note that entropy is not in-
variant to scaling, but scale should not be a fac-
tor in considering when to filter a feature. The
technique described in Section 2.1.2, whereby
all continuous variables are scaled such that all
maximal values of their PDF are 1, allows us to

fairly compare entropy values invariant of their
original scale. This technique is not necessary for
KL divergence, because KL divergence is scaling
invariant, as discussed in Section 1.2.2.

High entropy features are also often not help-
ful in the anomaly detection problem, because
high entropy features are generally more difficult
to predict. Predictors for difficult to predict fea-
tures are more likely to be poor. Because FRaC
does not have the strong self selection property,
poor predictors contribute noise to normalized
surprisal scores (as shown in Section 1.3.4), so re-
moving high entropy features may improve clas-
sification. Negative entropy may thus be a useful
filter criterion (as this removes high entropy fea-
ture first), though this technique and ordinary
low entropy filtering cancel each other out. A
function of entropy that filters both high and
low entropy features allows them to be used in
tandem, such as distance from mean entropy or
rank offset from median, would solve this issue.

Technique Combination

Because the various filter criteria outlined
above operate on different assumptions, they are
quite compatible with ensemblification. For ex-
ample, as discussed above, KL divergence fil-
tering can identify with certainty excellent can-
didate features (highly divergent features), but
low scores are not particularly meaningful. Con-
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versely, entropy can identify poor candidate fea-
tures (high or low entropy features), but high
scores are not particularly meaningful. Ideally,
an ensemble using these techniques is capable of
identifying both good and poor candidate fea-
tures, and filtering accordingly.

In order to ensemblify a set of filter criteria, a
manner by which to combine their scores is nec-
essary. In the previous example, we have domain
knowledge of how the two filter scoring functions
operate, and it makes sense to create a function
that will assign low scores to features with low
KL divergence, low scores to features with low
entropy and moderately low KL divergence, and
higher scores to other features. However, in the
general case a technique for combining arbitrary
score vectors is required.

A safe option for criterion combination is to
normalize the output vector of each scoring func-
tion, and then simply sum them. Vector addition
exhibits monoid structure, so this technique is
applicable to an arbitrary number of filter crite-
ria, and no one criterion can dominate the scores,
as each score vector is normalized. Formally, the
technique is as follows:

sumscore(f̂) =
∑

~i∈nonzero(f̂)

~i

‖~i‖

where f̂ is a vector of feature score vectors, and
nonzero(f̂) is the function that takes a list of vec-
tors onto the same list, minus any zero vectors.
Alternatively, each vector could be converted to
a rank ordering, and the rank scores for each fea-
ture for each criterion could be summed.

An alternative to sum combination is product
combination, where the product of all scores for
a particular feature is used as the feature’s crite-
rion score. This method is extremely sensitive to
low feature scores, as a single low feature score
can result in an overall low score. Whether this
is desirable depends on the component feature
criteria, so this may or may not be a liability.
On the other hand, the product technique poorly
handles negative feature values, so care needs to
be taken when such values are a possibility.

Just as the choice of feature filter criteria de-
pends on the dataset in question, the choice of
filter criterion combination technique is also a
nontrivial decision. The properties of a dataset,
as well as the properties of component criteria,
need to be considered when selecting a filter cri-
terion combination technique.

Overview of Filter Techniques

The KL divergence metric assigns features
that are known to be good anomaly detection
features high values. This contrasts sharply with
the entropy metric, which assigns features that
are known to be poor anomaly detection features
low values. Due to the ideological differences
between the two techniques, they should theo-
retically work quite well in tandem, as features
that perform well by both metrics are known to
be valuable features, and features that perform
poorly by both metrics are known to poor fea-
tures.

The correlation based metric, although more
costly, can detect features that are valuable in
the context of other features, which is impossible
for the KL divergence and entropy techniques.
However, the lack of support for discrete features
is a major drawback to this technique.

These simple techniques in tandem should al-
low for the efficient selection of candidate fea-
tures, though more complicated techniques may
be necessary to discover the subtle relationships
between features. Calculating a subset of fea-
tures on which to run FRaC without losing ac-
curacy is a difficult problem, as the effects of re-
moving any feature are difficult to predict. Solv-
ing these problems, finding a balance between
time spent selecting features and time saved run-
ning FRaC on a reduced feature space, and cal-
culating feature subsets on which FRaC is ac-
tually more accurate than over the whole space
are the ultimate goals of these feature selection
techniques.
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Figure 3.3: Filter Cutoff vs. AUROC Curves, for Various Datasets and Filter Criteria.
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3.2.3 Empirical Evaluation

Full Filtering

Presented here are the results of running
FRaC with various filter types over several UCI
datasets, and the schizophrenia dataset. Plots of
the response curves of filter cutoffs against AU-
ROC values for the unsupervised anomaly detec-
tion problem are presented in Figure 3.3, and a
summary of the data is available in Table 3.1.

The five UCI datasets with the highest fea-
ture counts from prior experiments were cho-
sen for this experiment. They were audiology,
connect-4, dermatology, image, ionosphere,
letter-recognition, parkinsons, spambase,
voting-records and schizophrenia. The
schizophrenia dataset was assembled from
genome sequencing data in several studies. Nor-
mal instances represent genomic data from
healthy subjects, and anomalous instances repre-
sent genomic data from schizophrenic individu-
als. The dataset has 1965 ternary features. More
information on this dataset is given in the next
section.

Random filtering is also presented, where
rather than selecting features to remove by some
filter criterion, they are selected randomly. Be-
cause the efficacy of randomly selected feature
subsets can be highly variant, especially for small
subsets, in these experiments the results are av-
eraged over three runs. The random feature se-
lection technique is used to provide a fair base-
line against which to compare various filter cri-
teria. A filter criterion is working if it is more
accurate than random removal, and a filter cri-
terion is doing something actively wrong if it is
less accurate than random removal.

From the summary table, we see that en-
tropy based feature selection is the clear winner,
though KL divergence is not far behind, and in
some datasets they are quite close. Both tech-
niques certainly outperform random feature se-
lection.

Also interesting is the fickle nature of the re-
sponse curves in Figure 3.3; one might expect
to see accuracy sharply decline as the number of
features decreases, but this is often not the case.

Cutoff Random Entropy KL Div

0.05 0.8056 0.8592 0.8227

0.1 0.8169 0.8545 0.8276

0.15 0.8191 0.8595 0.85

0.2 0.832 0.8416 0.816

0.25 0.8042 0.8559 0.8369

0.3 0.8317 0.8374 0.8335

0.35 0.7971 0.8453 0.8151

0.4 0.7854 0.8029 0.7721

0.45 0.761 0.85 0.8068

0.5 0.7586 0.7895 0.7549

0.55 0.8024 0.8282 0.7958

0.6 0.7234 0.8136 0.7853

Overall 0.7948 0.8365 0.8097

Mean
Rank

2.6923 1 2.3077

Maximal
Count

0 13 0

Table 3.1: Comparison of various filter criteria:
data summary.
Average performances over the five largest UCI
datasets examined in this paper. Random refers
to random feature selection averaged over 3 runs,
Entropy refers to non-transductive low entropy
filtering, and KL Div refers to low KL divergence
filtering.

Even with random feature selection, often the
performance of FRaC degrades only marginally
with 50% feature removal. This is surely a prop-
erty of the datasets in question, and further re-
search is needed to determine why this happens.

Partial Filtering

In this section, I present experiments over two
datasets to demonstrate the efficacy of partial fil-
tering. Both were picked because of their domain
(computational biology) and large feature space
(over 1000 features), as filter methods have his-
torically performed well in similar experiments.

Because partial filtering uses the predictors
trained on all other features, it is possible to
use the same predictors (and therefore feature-
wise normalized surprisal values) for each fea-
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Filter Cutoff vs AUROC in Full and Partial Filtering Techniques over Schizophrenia Dataset
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Figure 3.4: Exploration of Partial Filtering over Schizophrenia Dataset

ture of each sample, because the features that
predictors are trained on is invariant of the fil-
ter scores. By using precalculated normalized
surprisal values, it is possible to evaluate FRaC
on arbitrary partial filterings for a dataset after
only once training models and classifying a test
set. This technique was utilized in the following
experiments, and because of it, data is available
at the finest possible granularity.

KL divergence and entropy based filter cri-
teria, introduced in Section 3.2.2, are investi-
gated. Unless otherwise noted, entropy based
filtering refers to removing low entropy features
first, though high entropy filtering is explored as
well. Transductive entropy refers to the tech-
nique where the entropy of a feature across the
training and query sets is used as a filter crite-

rion, rather than just the training set entropy.
Transductive entropy and KL divergence filter-
ing always filter low scoring features before high
scoring features. Additionally, hybrid techniques
between transductive entropy and KL divergence
filter scores, including summation and multipli-
cation of these scores, are explored. All filter
criteria are compared to a random baseline, es-
tablished by randomly selecting a subset of fea-
tures over which to partially filter. To reduce
the variance of the curves shown in the diagram,
the random baseline curve was averaged over 40
runs.

Schizophrenia The schizophrenia dataset was
assembled from multiple studies in the HapMap
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project (Gibbs et al., 2003). The training set
(non-schizophrenic) came from (Redon et al.,
2006), GEO accession number GSE5173, non-
schizophrenic test set instances from the con-
trols in (Scholtysik et al., 2010), GEO acces-
sion number GSE21597, and the schizophrenic
test set instances came from (Vrijenhoek et al.,
2008), GEO accession number GSE12714. All
data was collected using an Affymetrix Mapping
250K Nsp SNP array, which classifies each sin-
gle nucleotide polymorphism (SNP) as homozy-
gous dominant, homozygous recessive or het-
erozygous. There is also a small possibility of
classification failure, which is interpreted as a
missing value when it occurs. The data were
then preprocessed to only contain SNPs in pro-
tein coding regions, bringing the dataset down
to 1965 ternary features. The task was then to
identify samples from schizophrenia patients as
anomalous. Due to the extreme heterozygosity
of schizophrenia, diagnosing it is very difficult
even in clinical settings, so overall AUROC val-
ues are expected to be low.

In Figure 3.4, the partial filtering technique
with various filter criteria are compared. Full fil-
tering results are shown as well, for comparison.

Note that the (low) entropy and transductive
entropy filter criteria are overall the highest scor-
ing. Judging by the area under the AUROC vs
filter fraction scores, it seems as though the non-
transductive variant is superior, however the dif-
ference is minor and may be due to chance. The-
oretically speaking, the transductive variant has
more information, but it may just be that the
cases where transductive entropy is useful are
not present in this feature set. At a filter cutoff
of around 82.5%, techniques drop below the per-
formance of random feature choice, most likely
because at this point only high entropy features
remain.

It is also worth noting that the high entropy fil-
ter does very well early on, beating all other par-
tial filtering criteria until a filter cutoff of about
12%. Presumably, this means that high entropy
features are difficult to predict, and thus predic-
tions for them contribute noise. The accuracy

of the high entropy filtering technique plateaus
around 5%, so presumably the top 5% highest
entropy features generally have poor predictors.
The scores drop sharply at around 20%, proba-
bly signifying that these features are mostly pre-
dictable, and soon only low entropy features are
left.

It is interesting to note that both the high
and low entropy filtering techniques do well for
low filter cutoffs, but eventually drop below the
performance of random selection. This supports
the hypothesis that both high and low entropy
features produce poor predictors, so ideally both
would be filtered out.

KL divergence scores very poorly overall,
though for conservative filter cutoffs, the tech-
nique does quite well. This in itself is surprising:
since entropy filtering identifies poor features, it
should be able to pick them out early on and
do well, but instead KL divergence has the lead.
Also of note is that at the tail of the graph, KL
divergence scores rise sharply. As KL divergence
filtering can select very good features (those that
are highly divergent), these are the final remain-
ing features, so it makes sense that KL diver-
gence filtering would perform well for high filter
cutoff values.

Another notable feature of the response curves
are the sharp drops of the low entropy based
techniques, beginning with a filter cutoff value
of ≈ 0.775 and at ≈ 0.45 in the KL divergence
technique. These drop to well below the perfor-
mance of random feature selection, and for trans-
ductive entropy, even drop below 1

2 over most of
the region [.9, 1]. These results are difficult to
interpret, and it remains to be seen if they hold
over other datasets.

Interestingly, in the KL divergence transduc-
tive entropy hybrid technique, performance is
nearly identical to that of transductive entropy
alone. I hypothesize that this is the case be-
cause of the distributions of the two features:
nearly every feature has low KL divergence, so
these features make the dominant contribution
for KL divergence, whereas the entropy of fea-
tures is more spread out. Ideally, this tech-
nique would virtually guarantee that features
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Filter Cutoff vs AUROC in Full and Partial Filtering Techniques over Lymphoma Dataset
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Figure 3.5: Exploration of Partial Filtering over Lymphoma Dataset

with high KL divergence between training and
test set get used, which should improve perfor-
mance, however the area under the filter cut-
off vs AUROC curve shows a (positive) improve-
ment of less than .00005 over that of transduc-
tive entropy alone. This is hardly a significant
result, and provides evidence against the hypoth-
esis that these two filter techniques operate well
in tandem, though this is only one dataset.

A final note is that, as expected, the partial
filtering curves for the most part lie above the
corresponding full filtering curves. The main ex-
ception to this trend is that the full filtering KL
divergence curve seems to take on higher values
than the partial filtering curve for a brief inter-
val in the beginning. One possible explanation is

that some of the features filtered early in the fil-
tering process were so irrelevant that they served
only to confuse predictors of other features, so by
removing them entirely, better predictors were
trained. Due to the low granularity of the full-
filtering curve3, it is difficult to draw a conclusion
about a small region.

3Running full filtering for all possible filter values
would have resulted in over 1000 experiments for each fil-
ter type, each taking an average of around 10 hours. How-
ever, because the models trained in partial filtering do not
depend on whether other features are filtered, the partial
filtering experiment only required one run of FRaC where
termwise surprisal scores were output. Different combi-
nations of surprisal scores were then added together to
generate the curve shown in Figure 3.4.

42



Lymphoma The lymphomas dataset, taken
from the CSAX microarray compendium (Noto
et al., 2014), consists of 2364 real valued fea-
tures, each representing the expression level of
a particular gene. These values were obtained
from a lymphoma specific RNA microarray (Al-
izadeh et al., 2000). On this dataset, the task is
to identify diffuse large B-cell lymphoma given
training data consisting of follicular lymphoma
and chronic lymphocytic leukemia.

The most striking difference between the lym-
phoma experiment and the schizophrenia exper-
iment is that on this dataset, KL divergence is
by far the best feature criterion. Although this is
dataset dependent, a confounding factor is that
in this experiment, the test set consisted of 6 nor-
mal samples and 77 anomalous, so divergence be-
tween the training and test set is very close to di-
vergence between normal and anomalous classes.
In the schizophrenia experiment, there are 10
normal samples and 54 anomalous, so the diver-
gence between training and test is less a proxy
for that between normal and anomalous. That
being said, as the size of the training and query
sets increase while the proportion of anomalous
samples is held constant, the divergence of a fea-
ture between them becomes less subject to sam-
pling bias, so even a tiny fraction of anomalous
samples can be detected given sufficient data.

Another significant difference is that the over-
all AUROC scores for the lymphoma experiment
are far higher than those of the schizophrenia ex-
periment. This is an indication that it is a much
easier classification problem, or at least one to
which FRaC is better suited. It is interesting
to note that with random feature selection AU-
ROC values fluctuate on a narrow band occu-
pying around [0.82, 0.84] as filter cutoff scores
occupy [0, 0.70]. Another way to look at this is
that predictors for just 30% of the features are
enough to predict whether a sample is anoma-
lous with the same accuracy as the full ensemble.
One likely interpretation is that there are some
number of highly predictive features, and sam-
ples of 30% or more of the features are extremely
likely to contain enough of these highly predic-
tive features to enable highly accurate classifica-

tion. Certainly high performance of small ran-
dom subsets of features is a dataset dependent
property, but it suggests that in many cases,
FRaC does far more work than is necessary, and
perhaps much of this work has little or no effect
on accuracy.

Additionally, the poor performance of high en-
tropy filtering may be an indicator that there
are very few difficult to predict high entropy fea-
tures. This is corroborated by the tight clus-
tering of entropy values around 0.25 bits in the
distribution of filter scores. However, it is also
important to note that the performance of the
high entropy filtering technique overtakes that of
random selection on most of the [0.75, 1] interval.
This result suggests that on this dataset, some
of the low entropy features are actually useful.

In addition to the high accuracy of the ran-
dom feature subsets, the performance of some
of the filter criteria far outstrips that of random
feature selection. We see that for filter cutoffs in
[0.89, 0.96], the AUROC values of the KL diver-
gence partial filtering curve are nearly perfect.
Additionally, the transductive entropy and the
hybrid techniques are extremely accurate, even
outperforming KL divergence alone for filter cut-
offs in excess of 0.975. extremely high cutoff val-
ues. All of this suggests that partial filtering is
an effective technique, not only for reducing the
amount of necessary computation, but also for
increasing the accuracy of FRaC.

The performance of the hybrid techniques is
a bit underwhelming: for the most part both
the hybrid product and hybrid sum techniques
are equivalent to the transductive entropy tech-
nique, though the hybrid product is slightly more
accurate. Ideally hybrid techniques would out-
perform the component techniques, rather than
have intermediate performance. It remains to be
seen whether the effect of hybridization between
less similar filter criteria will be greater.

Overview Overall, if we assume that these re-
sults generalize to other datasets, we can con-
clude that partial filtering, although compu-
tationally more expensive, generally produces
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more accurate results for the same filter cutoff
than does full filtering, though unlike full filter-
ing, partial filtering can not prevent irrelevant
features from confusing other models. We also
see that at times, depending on choice of filter
criterion and filter technique, both partial and
full filtering can actually improve accuracy. Full
filtering can improve the predictors for unfiltered
features (though it can also be detrimental), and
partial filtering can improve results by remov-
ing surprisal values from poorly scoring features
from the equation. Because FRaC does not have
the self selection property (see Section 1.3.4),
these features contribute noise to normalized sur-
prisal, so removing them leads to greater accu-
racy.

One question that remains is why the KL di-
vergence technique performs better than random
selection for most low filter cutoff values but
drops below the performance of random selec-
tion for a significant region on the schizophrenia
dataset. This effect is not seen the lymphoma ex-
periment, so it may be an artifact of the dataset.
Additionally, the fact that high entropy filtering
is more accurate than any other criterion for high
filter cutoffs in the schizophrenia dataset implies
that low entropy features are good identifiers of
anomalies, which is paradoxical because the effi-
cacy of low entropy filtering implies the opposite.
Further research is needed to discover patterns
in these effects and elucidate their causes. Fur-
thermore, only two datasets are analyzed here,
and it would be dangerous to draw hard conclu-
sions about the general technique from such an
analysis.

3.2.4 Filter Method Extensions

Domain Knowledge Integration

Sometimes we have additional knowledge
about our features, and the expectation that
some will be better predictors of anomality than
others. With this additional information, we
can perform a modified filter step that combines
prior information with an established filter score.

There are many paths one could go down, but
for the sake of simplicity, suppose we assign each

feature a prior knowledge score, where 0 is neu-
tral, high values represent putative valuable fea-
tures, and lower values represent features that
are thought to be of less value to the anomaly
detection problem. We then add the prior knowl-
edge score of each feature to its filter score, per-
haps first normalizing the filter scores, to obtain
a final score for each feature, upon which we then
perform the filter step as usual. Using this tech-
nique, we can “suggest” to the filter algorithm
that some features are probably worth keeping,
and others are probably not, but the final deci-
sion can be made with the additional information
provided by the filter scoring algorithm.

This technique is valuable in several cases.
First, some features could be thought to be more
relevant to the class than others. For instance,
we could try to predict a person’s weight by
height and gender, because our prior knowledge
dictates that these are related, but any link be-
tween, say, hair and eye color, could be much
more tenuous. This is particularly useful when
some features are suspected to be relevant, and
some are not, but the truth about each individ-
ual feature is not known.

A second use case is when some features come
from noisy measurements, in which case we can
discount them with the prior knowledge score.
This allows us to discriminate against features
that are known to be unreliable, except in the
case that they should prove themselves to be
valuable through the filter score technique.

Domain knowledge is often utilized in dataset
creation. In text classification, common words,
known as stop words (Luhn, 1957), such as “the,”
“and” and “a” in English, are often ignored or
not counted: in essence they have been explic-
itly filtered based on domain knowledge. Sim-
ilarly, in personalized medicine, when building
models, often a small number of genes thought
to be important to the task at hand are used,
and the remainder are implicitly filtered. Sophis-
ticated techniques, such as those in (Kim and
Bredel, 2013) have been used to select features
in these contexts, but such techniques can not
be optimal without knowledge of the algorithm
that will later operate over the filtered dataset,
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because two different algorithms may have differ-
ent optimal filterings for the same dataset. For
this reason, I advocate for sharing this domain
knowledge with the algorithm, rather than using
it to filter and then running the algorithm on the
filtered dataset4.

The prefiltering technique has two drawbacks.
The first is that domain knowledge can not
be combined with other filter criteria, so unex-
pected relationships can’t be identified. For ex-
ample, in the computational biology space, if a
gene is removed by hand before filtering, even if
it would score highly by some filter criterion, it
can never be used in a model. By combining a
priori knowledge of a dataset with filter criteria,
strong patterns can speak for themselves, while
weaker ones can be filtered. The second draw-
back is that this technique is totally incompatible
with partial filtering. By instead making domain
knowledge explicit to the feature selection stage,
partial filtering and filtering can proceed sepa-
rately and in an intelligent manner, using filter
criterion evidence in place of the decisions made
by an operator.

4Although I advocate for this technique, I did not
in fact use it in the experiments on the schizophre-
nia dataset, where I removed all noncoding SNPs from
the original dataset. This was done for simplicity and
tractability, because I was examining only partial filter-
ing.
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Chapter 4: Conclusion

4.1 Overview

In this document, I define and evaluate many
variants on the FRaC algorithm. Some of them
appear to have been more successful than others,
though everything I report seems to have a niche
of some sort. The beauty of FRaC is that it is
a self selecting algorithm capable of introspec-
tion, and for this reason hyperparameterization
is minimally important. Here I discuss the niche
carved out by each of the variants discussed in
this paper in a broader context.

Entropy Normalized FRaC eFRaC is es-
sentially a feature weighting algorithm, concep-
tually related to normalization of distance based
algorithms, although not the same thing: as
shown in Section 1.3.4, FRaC is normalization
insensitive under circumstances in which general
algorithms are not. Essentially, in eFRaC the
contributions of different features are reweighted
with the goal of balancing their contributions. It
may be that the features are already implicitly
weighted in such a way that reweighting degrades
performance, but I provide empirical evidence to
show that this is rare in real world datasets (with
the dermatology dataset being a notable excep-
tion). In most cases, eFRaC improves perfor-
mance, though the difference is small.

Combinatorial Ensemble FRaC cFRaC is
an algorithm developed to generalize the con-
cept of inner and outer ensembles, and combine
their output with that of intermediate ensembles.
For ensembles of size one, cFRaC is identical to
ordinary FRaC, and for ensembles of size two,
cFRaC is equivalent to an ensemble of size three,
consisting of the two original predictors, and an
inner ensemble composed of both of them. For
larger ensembles, the results are more sophisti-
cated. cFRaC eliminates the hyperparameteri-
zation decision between inner and outer ensem-
bles, is efficient, and empirically seems to outper-
form both inner and outer ensembles over real
world datasets, though the significance of these

results is debatable.

Missing Value Corrected FRaC Overall,
mFRaC is a very conservative modification, and
only applies to datasets with missing values. It
appears to be advantageous on some datasets,
and not on others. More research is needed to de-
termine under which circumstances the missing
value correction of mFRaC increases accuracy.

Filter Methods Filter methods provide a
much needed computation time reduction to
FRaC, though it can be difficult to predict what
effect filtering will have on accuracy. Accuracy
often increases as filtering is applied, especially
with partial filtering, which is notable because
these techniques increase accuracy while reduc-
ing runtime.

Analysis from a Feature Modelling Per-
spective In (Noto et al., 2012), the authors
identify three questions which any feature mod-
elling algorithm need address, either explicitly or
implicitly. The questions are as follows:

1. For which features do we learn a predictive
model, and which other features do we use
in each model?

2. Which supervised learning algorithm(s) do
we use to train the feature models?

3. How do we combine the set of feature models
C into a single anomaly score for a query
instance ~xq? That is, what is the definition
of f(C, ~xq)→ R?

mFRaC and eFRaC both address question
three, providing simple alternatives to the sum-
mation in traditional FRaC. cFRaC also ad-
dresses question three, albeit in a more sophis-
ticated manner, and to some extent addresses
question two, in that the ensembles of cFRaC
are themselves learning algorithms.
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On the other hand, filtering predominantly ad-
dresses question one. In full filtering, we select
both features with which to learn models and
features to use in these models, and in partial
filtering, we only select which features to use in
a model.

Experimental Results Many of the results
outlined here show that one algorithm seems to
outperform another by a small margin. At times,
it is difficult to determine whether a result is sig-
nificant, and running the algorithms over more
datasets would make the results more significant.
In an attempt to show the significance of these
results, when algorithms were compared over a
group of datasets, in addition to the mean AU-
ROC, the average rank of each algorithm, as well
as the number of times it scored a maximal value,
were shown.

4.2 Further Work

I have created several variants of FRaC in this
document, and they fit into two broad categories.
The first category consists of mathematical mod-
ifications to the algorithm. This class essentially
represents a new idea of what an anomaly is,
and comes with an associated anomaly score for-
mula. The development of normalized surprisal
from average probability (used in CFA) is such
an example, as are the formulae used in eFRaC
and mFRaC.

The second broad category is the group of al-
gorithms that generalize a decision, reducing the
number of hyperparameters, allowing FRaC’s
validation phase to make such decisions. An ex-
ample of such a technique is cFRaC, which elimi-
nates the choice between inner and outer ensem-
bles, and allows cross validation to adjust the
weight of the contributions the inner and outer
ensembles (as well as the intermediate ensem-
bles). These techniques are very interesting be-
cause they (potentially) allow a broader class of
anomalies to be detected while simultaneously
reducing the hyperparameterization space.

Most of the following ideas fit into one of these
categories.

4.2.1 Alternative Filter Criteria

Although they are discussed briefly in Sec-
tion 3.2.2, I never actually implemented the cor-
relation based filter or the Jensen-Shannon fil-
ter. The correlation based filter has a higher
time complexity in terms of the number of fea-
tures than the others, but it also measures some-
thing very different, and is the only filter based
technique mentioned in this paper that is capa-
ble of taking interfeature relationships into ac-
count (due to its ω(n) complexity). As Jensen-
Shannon divergence and KL divergence are sim-
ilar in many ways, I expect their utility as filter
criteria to be similar as well, though consider-
ing how effective a filter criterion KL divergence
proved to be, one wonders if Jensen-Shannon di-
vergence would be similarly successful.

Also not evaluated were the hybrid filter tech-
niques. The different filters usually measured
different heuristic correlates of utility, and were
based on diverse assumptions, so it stands to rea-
son that a filter ensemble would yield many of
the benefits of ensemblification.

In addition to experiments with these alter-
native filter criteria, it remains to be seen how
much the results I did find generalize. I only ran
filtering on a few biological datasets and UCI
datasets with 16 or more features. Filter meth-
ods traditionally work best in high dimensional
spaces, and we may see stronger results with such
datasets.

4.2.2 Diverse FRaC

In this work, I presented many minor varia-
tions on the basic FRaC theme. Many of them
showed minor improvements to the baseline of
the original FRaC algorithm, and focused on
specific aspects, such as missing value correc-
tion, ensemblification, or feature selection. I be-
lieve that the next major leap in feature mod-
elling based anomaly detection techniques will
need to combine all these advances into some-
thing greater than the sum of their parts. I
present a candidate here.

In order to take full advantage of the diversity
hungry combinatorial FRaC, a large number of
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Figure 4.1: Diverse FRaC

classifiers for each feature need be trained. In
cFRaC, a group of classifiers is trained for each
feature, but each uses all available training data
and all features (except the predicted feature). A
more sophisticated approach would be to train a
number of models, using a random learning algo-
rithm with a random subset of the training data
(as in (Breiman, 1996)) and a random subset of
the features (as in (Sutton et al., 2005)). Though
it is a dataset dependent property, the AUROC
response curves in 3.3 suggest that strong pre-
dictive models can still be built even with only
small subsets of the feature space, and those in
3.4 show that not all features need to be pre-
dicted to produce a powerful anomaly detector.

These models would be very diverse, because
they would be trained on different data, and
therefore base their predictions on different in-
formation. Furthermore, any poor predictors
trained in this manner would make a minimal
contribution to normalized surprisal due to intro-
spection (See the Self Selection Property, in Sec-
tion 1.3.4). Combinatorial FRaC is capable of
using ensembles in a sophisticated manner, and
would be able to effectively combine the results
of a large number of diverse learners.

Both target and predictor features could be
chosen uniformly, though this is a great opportu-
nity to utilize some of the filter criterion research.
By running a feature scoring algorithm, a score
can be produced for each feature. These scores
can be used (transforming such that they are
nonnegative if necessary) as weights, and feature
selection could be performed by weighted, rather
than uniform, sampling. This favors certain fea-
tures that are thought to be better anomaly iden-
tifiers over others, but is more conservative than
filtering or partial filtering.

Although elegant and simple, this technique
is not without its problems. Cross validation in
FRaC is already somewhat suspect, as the error
model was trained across a collection of smaller
models based on subsets of the training data
rather than the final model. With this technique,
where model selection is random and on random
subsets of the data, cross validation is even more
questionable. However, because a random sub-
set of samples is used for model construction, the
remainder could be used for error model collec-
tion, possibly along with a smaller validation set,
so cross validation may not be necessary.
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A second issue is that as the number of mod-
els for a feature increases, the total number of
summed values increases at an exponential rate.
Because different features have different numbers
of predictors, one feature could be represented
significantly more in the final outcome. Such a
property violates the empirically supported con-
jecture of eFRaC: different features should make
similar overall surprisal contributions. This can
be accounted for by multiplying each feature
term by 1

2M̂i−1
, for M̂i the number of models

trained for feature i (and treating possible 0
0 val-

ues as 0).

This technique very much fits into the cate-
gory of hyperparameter-reducing algorithms, as
it folds the benefits of partial and complete fil-
tering into the benefits of cFRaC, without requir-
ing the setting of a specific filter cutoff. Diverse
FRaC is interesting because it provides sophis-
ticated answers to feature modelling questions
one and three of (Noto et al., 2012), establishing
a sophisticated manner of selecting features for
which to train models and features to use in said
models as well as combining feature scores using
the ensemblification technique of cFRaC. For a
visual diagram of Diverse FRaC, see 4.1.

4.2.3 FRaC and Conditional Proba-
bilities

Though some interesting derivations were
made for cFRaC, it is not clear that the assump-
tions made were significantly more valid than
those in the original FRaC definition. It seems as
though more complicated anomaly scores could
be developed using conditional probabilities of
the output of various classifiers for various fea-
tures. Such techniques would provide a signif-
icantly more sophisticated answer to the third
question of feature modelling techniques as pro-
posed by Noto et al. in (Noto et al., 2012)
. Any sort of refinement of the evidence space
could yield more informative events and poten-
tially more information-dense surprisal values for
situations that current iterations of FRaC can
not distinguish. Some of the logic in (Read
et al., 2011), based on CFA, may be reframable

in terms of FRaC, and may yield to smarter con-
ditional probability calculations.

4.2.4 FRaC and Probabilistic Predic-
tors

Many classifiers are capable of outputting a
probability distribution over possibilities, rather
than a single classification (indeed, many work
this way internally, and output the maximum-
likelihood value). We can form a reduction hier-
archy of classifiers, where ordinary classifiers ≤m
classifiers with confidence ≤m probabilistic clas-
sifiers. Similarly, some regressors are capable of
outputting a distribution, though the concept of
a regressors with confidence values is more com-
plicated, due to the nature of continuous proba-
bility spaces.

Both classifiers with confidence values and
probabilistic classifiers give more information
than an ordinary classifier, but even when this
information is available, it is ignored by FRaC.
This means that FRaC treats a very certain clas-
sification, and one that is, say, 49% to 51%, iden-
tically. This results in instability around these
uncertain classifications, and furthermore the ef-
fects of very certain classifications are diluted by
the effects of uncertain classifications.

To remedy this issue, I propose the pFRaC al-
gorithm, which calculates the expected normal-
ized surprisal in place of normalized surprisal.
The definition is as one would expect:

E[NS(x̂)] =

E

[
F∑
i=1

M∑
m=1

{
0 if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

]

=

F∑
i=1

M∑
m=1

{
0 if x̂i is missing, else:

E
[

I
(
P(x̂i | Ci,m(ρi(x̂)))

)]
−H(v̂Ti )

(4.1)

This inner expectation is a bit unusual in that
there is a random variable (the classifier predic-
tion) in the evidence space of a probability judg-
ment, but other than that it is a completely nor-
mal expectation calculation.
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X and Y axes represent the probability that the
true class, X , is class 0 or 1, respectively, given
the evidence. The remainder of the probability
mass (1−X−Y) represents the probability that
the true class is class 2.

True class is class 3.

Here the outlier scores for a 3 class categorical feature are shown, alongside the confusion matrix
for the feature.
Note the planarity of the pFRaC surface contrasted with the discontinuous FRaC surface. Also
note the equality between the scores produced by both algorithms on points of certainty.

Figure 4.2: pFRaC vs FRaC Featurewise Outlier (Surprisal) Scores.

Expected normalized surprisal changes
smoothly with classifier probabilities, in stark
contrast to the discontinuities that result when
a nonprobabilistic classifier tips the balance to
a new class. This phenomenon is illustrated in
Figure 4.2, where we see that, for an individual
feature, surprisal changes abruptly as classifi-
cation probabilities change, whereas expected
surprisal is an affine function of the probability
of each class.

The use of pFRaC promises to be more ro-
bust to the effects of unstable classifiers, which
is important in and of itself, but it also has
important implications for use with cFRaC. In
cFRaC, classifier ties are a problem in that ties
lead to instability, as they are randomly bro-
ken. With probabilistic classifiers, ensemblifi-
cation can be done by sampling uniformly from
each constituent classifier, and furthermore, with
expected surprisal calculations, ties do not need
to be broken. The probabilistic version of cFRaC
uses the following ensemble score:

ECNS(x̂) =

F∑
i=1

2M∑
e=1

{
0 if x̂i is missing, else:

E
[

I
(
P
(
x̂i | Ei,e(ρi(x̂))

))]
−H(v̂Ti )

(4.2)

where here Ei,e is as before, except it rep-
resents the probabilistic ensemblification of a
group of predictors, and thus outputs a distri-
bution (and does not need random tie breaking
in the case of discrete variables).

4.2.5 Strong Self Selection

In 1.3.4, the self selection property and the
weak self selection property are defined. It is
also shown that in the general case, FRaC has
neither.

There are obvious solutions to this conun-
drum, such as using an error model to deter-
mine if a predictor is a poor predictor and dis-
carding the predictor if so, which may represent
a marginally improved new algorithm, however
because the definition of a poor predictor is so
specific, it is unlikely that they often occur in
practice. A generalization of poor predictors to a
continuous metric representing poorness, paired
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with an outlier score that weights each predictor
by its poorness would have the strong self selec-
tion property, though doing so in a way that is
of practical use remains an open problem. Addi-
tionally, these concepts have primarily been dis-
cussed in the discrete case, and it remains to be
seen how well they translate to the continuous.
I present a candidate algorithm for the discrete
case below.

The following conditional divergence corrective
factor is to be applied to each predictor’s nor-
malized surprisal contribution:

DivCond(f̂ ,T,P) =

dim f̂∑
i=1

DKL(TP=i(f̂)‖T(f̂))

(4.3)

where f̂ is the vector of possible values in a cat-
egorical feature, T(f̂) is the true distribution of
the feature, and TP=i(f̂) is the true distribution
of the feature given prediction i. I now show a
property of the conditional divergence corrective
factor.

Proposition 3. The conditional divergence cor-
rective factor, when applied to the normalized
surprisal formula, results in an outlier score with
the strong self selection property.

Proof. To show the strong self selection property,
it suffices to show that all poor predictors shall
make no contribution to the outlier score, which
in FRaC entails a contribution of 0 to the overall
sum.

Suppose P is a poor predictor. Then, from
equations 1.2 and 4.3, the contribution to nor-
malized surprisal of P is equal to:

{
0 if x̂i is missing, else:
I
(
P(x̂i | Ci,m(ρi(x̂)))

)
−H(v̂Ti )

·
dim f̂∑
i=1

DKL(TP=i(f̂)‖T(f̂)) (4.4)

I now denote the left factor α, and note
that it is always defined. The right fac-
tor is simply the conditional divergence cor-
rective factor. Because P is a poor predic-
tor, it follows that ∀ ∈ f̂ ,T(f̂) = TP=i(f̂).
Thus each DKL(TP=i(f̂) ‖T(f̂)) is equal to
DKL(T(f̂) ‖T(f̂)), and by the properties of di-
vergences, this is equal to 0. This leaves a final

score of α ·
∑dim f̂

i=1 0 = 0. Because the corrective
factor is identically 0, the product is constant,
so the surprisal of any prediction is completely
ignored.

Thus it has been shown that the conditional
divergence corrected normalized surprisal contri-
bution of a poor predictor is 0, and it follows that
this technique has the strong self selection prop-
erty.

This factor is conceptually not unlike the
Jenson-Shannon divergence, and is very much
like a multary λ divergence, where the λ param-
eter for each conditional true distribution is con-
trolled by the predicted distribution.

A bit of analysis leads to the result that the
expected value on a perfect predictor (one such
that the normalized confusion matrix is the iden-
tity matrix) is as follows:

dim f̂∑
i=1

DKL(TP=i(f̂)‖T(f̂))

=

dim f̂∑
i=1

dim f̂∑
j=1

TP=i(f̂)(j) · log
TP=i(f̂)(j)

TT (f̂)(j)

=

dim f̂∑
i=1

0 + . . .+ 1 · log
1

TT (f̂)(i)
+ . . .+ 0

=

dim f̂∑
i=1

− log TT (f̂)(i) =

dim f̂∑
i=1

I
(
TT (f̂)(i)

)
where Tx(f̂)(j) is the probability of the jth

value of the conditional distribution TT of the
feature.

Armed with this equation, we could apply an
additional multiplicative factor to the corrective
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factor such that their product is one for perfect
predictors, in which case we have an algorithm
reminiscent of traditional FRaC. Alternatively,
we could modify the corrective factor to attain
the value of the inverse of the feature entropy for
perfect predictors, in which case the algorithm
would resemble eFRaC.

I end this section with two conjectures about
the conditional divergence corrective factor. The
first states that the corrective factor is maximal
on a perfect predictor, and the stronger second
conjecture states that this corrective factor is
(strictly) greater on more accurate predictors. I
formalize these below:

Conjecture 1. P a perfect predictor ⇒
∀P′DivCond(f̂ ,T,P) ≥ DivCond(f̂ ,T,P′).

Conjecture 2. ∀T,P,P′defined on f,Acc(P ) >
Acc(P )′ ⇒ DivCond(f̂ ,T,P) > DivCond(f̂ ,T,P),
where Acc(x) represents the overall accuracy of
an error model x.

Both of these conjectures represent desirable
traits for a corrective factor of this nature. Like
the strong self selection property, these traits
represent properties that an introspective algo-
rithm would ideally possess.

4.3 Closing Remarks

Some of the techniques in this document seem
promising, though further experimentation is
needed to confirm their applicability to real
world problems. The techniques proposed in the
previous section suggest further avenues for re-
search that build upon the work established here.
Exploring alternative FRaC variants in terms
of the three questions proposed in (Noto et al.,
2012) seems to be an interesting direction to take
feature modelling research, as does the pursuit
of desirable theoretical properties, such as the
strong self selection property.

In the techniques examined here and in the fu-
ture work section, there is a general trend toward
using information more intelligently, rather than
obtaining more information. FRaC in its original
form can scale up to using an arbitrary number of

predictors, and the experiments in (Noto et al.,
2012) suggest that more predictors make a better
anomaly detector, however the lack of the strong
self selection property means that this improve-
ment is limited: regardless of how many predic-
tors are used, each contributes noise on features
that it predicts poorly. Techniques like cFRaC
use the information produced by predictors more
intelligently, rather than simply using more pre-
dictors, and techniques like the conditional di-
vergence based corrective factor address the fun-
damental limitations of FRaC, rather than try
to overcome them with more information.

In the future, ideally algorithms will be able
to spend less time to make more accurate predic-
tions. Additionally, big data keeps getting big-
ger, so techniques need to be able to scale up
efficiently, both in terms of the size of datasets
and the number of features. For these reasons,
smarter techniques are an important research di-
rection, as they allow more accurate anomaly de-
tection in less time.
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