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Abstract

In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells
often leads to gamma-frequency (25–100 Hz) oscillations. When the number of driven cells is too small, however, the
synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using
a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the
driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in
drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis
of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if
parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in
a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion
that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell
populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft) lower
bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement
that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for
recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying
spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic
modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior
of pyramidal cells and fast-spiking interneurons in these experiments.
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Introduction

Mechanisms underlying the formation of gamma-frequency

(25–100 Hz) rhythms in networks of excitatory and inhibitory

neurons (E- and I-cells) have been investigated extensively [1–11].

However, mechanisms underlying the loss of rhythmicity, as

parameters change, have been given less attention. Here we

consider the loss of gamma rhythmicity as the number of

participating cells decreases. We focus on gamma rhythms

resulting from the synaptic interaction of E- and I-cells, thinking

of pyramidal cells and fast-spiking interneurons interacting via

AMPA- and GABAA-receptor-mediated synapses. The E-cells

spike intrinsically, driving and synchronizing the I-cells, which in

turn gate and synchronize the E-cells. Rhythms of this kind are

called PING (Pyramidal-Interneuronal Network Gamma) rhythms

[10,11]. We distinguish between ‘‘strong PING’’ and ‘‘weak

PING’’. In strong PING, there is strong tonic (i.e., temporally

constant) drive to some or all E-cells, and those E-cells that

participate at all typically participate on every population cycle. In

weak PING, drive to the E-cells is stochastic, and typically each

individual E-cell participates only on a fraction of population

cycles [12]. We think of weak PING as a reduced model of the

kainate-induced persistent gamma rhythm in slice [13–15]. Of

course, real gamma oscillations might also be a mixture of

‘‘strong’’ and ‘‘weak’’ PING, with a stochastically fluctuating drive

added to largely tonic baseline excitation. In most of the

simulations of this paper, we omit any stochastic drive for

simplicity, and assume that some or all E-cells receive strong

constant drive. When the driven ensemble is large and synaptic

interactions are strong, a strong PING rhythm will often arise in

the driven ensemble [12,16,17]. We refer to an ensemble of cells of

this sort, firing in synchrony at gamma frequency, as a ‘‘cell

assembly’’.

The breakdown of gamma rhythms, as the number of tonically

driven cells is decreased, is the combined effect of weak synaptic

interactions and heterogeneity. Therefore the modeling part of the

Results section of this paper begins with a study of how strong

PING rhythms break down as synapses are weakened in

heterogeneous E/I-networks of fixed size, assuming that all E-

cells are driven. Using a combination of numerical simulations and

mathematical analysis, we show that the breakdown of the rhythm

can often be understood well by studying highly reduced,
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homogeneous networks. In a realistically heterogeneous network,

the rhythm breaks down when the E-to-I-synapses become so

weak that a single excitatory spike volley is no longer sufficient to

prompt a response from the I-cells, or when the I-to-E-synapses

become so weak that in a homogeneous network, convergence to

tight synchrony would take several gamma periods. A surprising

conclusion of our analysis is that a slow, graduate slide into PING,

which is possible in a homogeneous network, is not possible in a

realistically heterogeneous network; the PING rhythm is either

established rapidly, or not at all.

We then apply this analysis to understand how the rhythm

breaks down as the number of driven cells is reduced. We

conclude that for given synaptic strengths and heterogeneities,

there is a (soft) lower bound on the possible size of cell assemblies.

As explained in detail in the Discussion, our modeling results

suggest possible theoretical explanations for several recent

experimental findings: (1) Gieselmann et al. [18], observed no

gamma rhythm in primary visual cortex when the spatial extent of

the driving stimulus was too small. (2) Chalk et al. [19] found that

attention can weaken gamma oscillations in primary visual cortex.

(3) In this paper, we report that in kainate-bathed hippocampal

slices, strong optogenetic drive to the pyramidal cells elicits fast

oscillations, whereas weak drive not only fails to elicit fast

oscillations, but also abolishes the slower kainate-induced

background gamma oscillations [14,15]. Our results lead to

specific predictions concerning the behavior of pyramidal cells and

fast-spiking interneurons in these experiments.

Methods

Experimental methods
Lentivirus carrying the light-activated cation channel ChIEF

[20], an enhanced-performance version of channelrhodopsin-2

[21,22], under the control of the CaMKII promoter was injected

in the CA3 region of C57BL/6 mice. After 3–5 weeks, the animals

were sacrificed, and 450 mm-thick horizontal hippocampal slices

were cut. Bath application of 400 nM of the glutamatergic agonist

kainic acid (Cayman Chemicals) induced 25–50 Hz oscillations in

the local field potential (LFP), as recorded in the CA3 stratum

radiatum. Light pulses were delivered via a DG-4 optical switch

with a 300 W xenon lamp (Sutter Instruments) and GFP filter set

(Chroma). For further details on the experimental methods, see

Text S1, Section A.

Computational models
Model networks. We describe only the most important

features of our network models in this section; for details, see Text

S1, Section B. In our model networks, the E-cells are reduced

Traub-Miles neurons [17], and the I-cells Wang-Buzsáki neurons

[23]. Our models include E-to-I, I-to-E, and I-to-I-synapses. We

omit E-to-E-synapses throughout most of this paper. To first

approximation, such synapses can be thought of as adding

excitation to the E-cells, akin to raising external drive to the E-

cells; thus they raise the frequency of the PING rhythm, but do not

alter the network behavior qualitatively. For numerical

experiments concerning the effects of E-to-E-synapses, see Text

S1, Section C.

We begin with networks without any spatial structure, similar to

those of Fig. 1 of Ref. [4]. Connectivity is sparse and random. In

most of the simulations of this paper, external drives are constant

in time but heterogeneous, i.e., inputs to different cells are of

different strengths. In some simulations, we drive the E-cells with

independent random sequences of excitatory synaptic input pulses,

arriving on Poisson schedules [12,16]. We also consider model

networks with spatial structure, assigning to each neuron a random

location in the disk of radius 1 centered at the origin in the (x,y)-
plane. (Distance is non-dimensionalized here.) In such networks,

we let the probability (not the strength) of a synaptic connection

between two neurons decay exponentially with distance between

the neurons.

Notation. Synaptic strengths are of paramount importance in

this paper. We therefore introduce our notation for these

quantities here. (Other notational conventions are introduced in

Results as needed.) We denote by gei(i,j) the maximal

conductance density associated with the synaptic input to the j-
th I-cell from the i-th E-cell, by Gei(j) the sum of gei(i,j) over all i,
i.e., the total excitatory conductance density impinging upon the j-
th I-cell, and by Gei the average of Gei(j) over all I-cells. Quantities

gie, Gie, Gie, gii, Gii, Gii, gee, Gee, and Gee are defined similarly.

Thus the small letter g always denotes the conductance density

associated with the synaptic interaction between two neurons,

whereas the capital G indicates summation over presynaptic cells,

and a bar over G indicates averaging over post-synaptic cells.

Quantifying rhythmicity. To study the dependence of

rhythmicity on parameters, it is useful to define a quantitative

measure of rhythmicity. There are many different ways of doing

this, and by necessity the choice is somewhat arbitrary. Since

rhythmicity may be relevant to the effectiveness of signals sent by

the pyramidal cells in a local network to other parts of the brain,

our rhythmicity measure, r, is based on the frequency content of

the average, sE , of all gating variables governing the synaptic

output of the E-cells. We define r to be energy of the component

of sE in the gamma frequency band, divided by the energy of all of

sE ; see Text S1, Section B for complete details.

Results

Experiments
In kainate-activated mouse hippocampal slices, expressing the

light-activated cation channel ChIEF under the control of the

Author Summary

Gamma-frequency (25–100 Hz) oscillations in the brain
often arise as a result of an interaction between excitatory
and inhibitory cell populations. For this mechanism to
work, the interaction must be sufficiently strong, and
connectivity and external drives to participating neurons
must be sufficiently homogeneous. As the interactions
become weaker, either because the neuronal ensembles
become smaller or because synapses weaken, the rhythms
deteriorate, and eventually break down. This fact, by itself,
is not surprising, but details of how the breakdown occurs
are subtle. In particular, our analysis leads to the
conclusion that in realistically heterogeneous networks,
gamma rhythms must arise quickly, within a small number
of oscillation periods, if they arise at all. Our findings
suggest explanations for recent experimental findings
concerning the minimal spatial extent of stimuli eliciting
gamma oscillations in the primary visual cortex, the
modulation of gamma oscillations in the primary visual
cortex by attention, as well as our own experimental
results, reported here, concerning the minimal light
intensity below which optogenetic drive to pyramidal
cells in a kainate-activated hippocampal slice results in
disruption of an ongoing gamma oscillation. Our analysis
leads to experimentally testable predictions about the
behavior of the excitatory and inhibitory cells in these
experiments.

Minimal Size of Cell Assemblies
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CaMKII promoter allowed us to selectively drive CA3 pyramidal

cells, without optically affecting other cell classes present in the

network. We explored the effects of modulating the light intensity,

focusing on two conditions: ‘‘weak’’ (1–3 mW=mm2, 470 nm) and

‘‘strong’’ (10–30 mW=mm2, 470 nm) stimulation.

Thus there were two sources of excitation in these experiments.

The first was the kainic acid in the bath, which induced a

persistent gamma (25–50 Hz) oscillation in the LFP as reported by

others, e.g., [14,15]. We model the effect of the kainic acid as

stochastic drive to the E-cells – see Methods and Text S1, Section

B, as well as refs. [12] and [16]. The second source of excitation

was optogenetic drive. We model it as tonic drive.

Weak optogenetic drive reduced the power of ongoing

oscillations (Fig. 1). Energy in the low gamma frequency band

during weak stimulation was 0:754+0:18 of the pre-stimulation

baseline (94 trials, 8 slices, pv0:05), with no significant change in

peak frequency (pw0:15). It is important to note that the

stimulation did not simply result in a shift to a faster oscillation

frequency, as the energy in all higher frequency bands was also

decreased.

In contrast, strong optogenetic drive resulted in the emergence

of fast oscillations with a peak frequency of 86.8 Hz and a

standard deviation of 18.4 Hz (40 trials, 4 slices), significantly

different from the baseline oscillation frequency of 28:5+3:8 Hz

(60 trials, 5 slices) (pv0:01). The fast oscillations appeared to

replace, rather than superimpose onto, the baseline rhythm, as

energy in the 25–50 Hz frequency band was 0:11+0:05 of

baseline (pv0:05).

Modeling ‘‘weak’’ vs. ‘‘strong’’ optogenetic drive
As has been measured by others (e.g., Huber et al. [24, Fig. 1G]),

the intrinsic variation in the amount of channelrhodopsin

expressed in one cell vs. another means that stronger light will

elicit spiking in more cells than weaker light. We therefore use

computational simulation and mathematical analysis to study how

the number of driven cells governs whether or not a PING rhythm

forms in model networks.

The total number of active cells determines the strength of

synaptic input per target cell. A more fundamental question is,

therefore, how weakening synaptic connections leads to the

disintegration of PING rhythms. We study this question first, then

apply the conclusions to understanding how gamma rhythms

break down when reducing the number of tonically driven E-cells,

or reducing, in a spatially structured network, the size of the region

in which the E-cells are driven, or making synaptic connectivity

more local.

Figure 1. Weak light stimulation of pyramidal cells reduces gamma power. A. Raw trace of the LFP measured in the CA3 stratum radiatum
of a hippocampal slice. Background drive given by 400 nM kainic acid induced gamma oscillations (peak frequency *34 Hz. A 100 ms, weak (1–
3 mW=mm2) pulse of blue light, indicated in blue, reduced the amplitude of the ongoing oscillations. B. Population data from 94 trials, 8 slices
plotting energy in the gamma band (25–50 Hz) as a function of time. The average energy during the stimulation period was 0:754+0:18 of the pre-
stimulation baseline. The dashed lines indicate one estimated standard deviation.
doi:10.1371/journal.pcbi.1002362.g001

Minimal Size of Cell Assemblies
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Heterogeneity in input to I-cells matters when E-to-I-
synapses are of marginal strength, not otherwise

As one gradually weakens the E-to-I-synapses in an E/I-

network, there comes a point at which the PING mechanism

fails. Where the breakdown occurs depends on network

heterogeneity to some degree, but we show below that it can

be predicted, with good accuracy, by studying homogeneous

networks: In a homogeneous network, weakening of E-to-I-

synapses leads to a sudden switch from 1:1 entrainment of I-cells

by E-cells to more complicated patterns, such as 2:1 entrain-

ment. The synaptic strength at which this happens approxi-

mately equals the synaptic strength at which rhythmicity breaks

down, somewhat more gradually, in a heterogeneous network.

We will also show that for significantly stronger E-to-I-synapses,

even fairly substantial heterogeneities in synaptic connections

and external drives to the I-cells do not have strong effects on I-

cell synchrony.

Single-cell analysis. To support the claims in the preceding

paragraph, we first consider a single I-cell, with external drive

below the spiking threshold, initialized at rest. In response to an

excitatory synaptic input pulse arriving at time zero, the I-cell may

or may not spike; if it does, we denote the delay between the pulse

arrival time and the time of the spike, measured in ms, by Ts. If Ts

depends sensitively on the pulse strength and the external drive to

the I-cell, then the response of a population of I-cells with

heterogeneous external drives receiving excitatory pulses of

heterogeneous strengths should be expected to be significantly

spread out.

Fig. 2 demonstrates that the effects of variations in the external

drive to the I-cell or the input pulse strength rapidly become minor

as the pulse strength rises above the strength needed to elicit a

response of the I-cell. The figure shows the change DTs in Ts

resulting from reducing the external drive to the I-cell (panel A), or

reducing the strength of the pulse (panel B). In panel A, the

variable Gei on the horizontal axis is the strength of the input

pulse. In panel B, it is the strength of the stronger of the two input

pulses being compared. The dashed vertical line indicates the

value of Gei below which the I-cell fails to respond when external

drive is lowered (panel A) or pulse strength is reduced (panel B).

For details, see caption of Fig. 2 and Text S1, Section B. For an I-

cell modeled as an integrate-and-fire neuron, a similar result is

proved rigorously in Text S1, Section D.

Network simulations. In Fig. 3, we present results of

network simulations leading to similar conclusions. In each case,

Figure 2. Effect of varying parameters on the delay Ts between the arrival of an excitatory synaptic input pulse to an I-cell and the
resulting spike of the I-cell. A: Increase DTs in Ts resulting from a reduction in drive density to the I-cell from z0:15 to {0:15 mA=cm2 . The
dashed vertical line indicates the pulse strength Gei below which the pulse fails to elicit a spike when external drive density to the I-cell is
{0:15 mA=cm2 . B: Increase DTs in Ts resulting from reducing pulse strength by 30%, from Gei to 0:7Gei . The external drive to the I-cell is fixed at zero
in panel B. The dashed vertical line indicates the value of Gei below which the pulse of strength 0:7Gei fails to elicit a spike.
doi:10.1371/journal.pcbi.1002362.g002
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the initialization is asynchronous. In Panels A, B, D, E, G, H, and

J, a PING rhythm forms within one or two gamma periods. Panels

A through C show results of simulations of networks without any

heterogeneities and with all-to-all connectivity, with, from left to

right, decreasing strength of E-to-I-synapses. In Panel C, the E-to-

I-synapses are so weak that a single spike volley of the E-cells is no

longer sufficient to trigger a spike volley of the I-cells, and 1:1

entrainment is replaced by 2:1 entrainment. (This is accompanied

by a sudden and substantial drop in oscillation frequency.) Panels

D through F show results of similar numerical experiments, with

sparse, random E-to-I-synapses, but with the same values of Gei.

The sparseness and randomness of the E-to-I-synapses has little

effect until the synaptic strength gets so low that even in the

homogeneous network, 1:1-entrainment would break down.

Panels G through I show similar results again, now with sparse,

random connectivities for E-to-I-, I-to-E-, and I-to-I-connections,

but with the same values of Gei, Gie, and Gii as before, and with

heterogeneity in external drives. Again, the breakdown of the

rhythm occurs at approximately the same point as before. It occurs

not because the I-cell spike volleys spread out, but because many

of the I-cells receive too little excitatory input to participate at all,

weakening the inhibitory input to the E-cells to the point where its

synchronizing effect is lost.

Our analysis suggests that it should be possible to restore the

rhythm in Fig. 3I, for example, by raising the drive to the I-cells

instead of raising excitatory conductance. This is indeed the case;

see Fig. 3J. To make sure that the rhythm in Fig. 3J is not ING

[11], i.e., not based on the interaction of the I-cells, we removed

the I-to-I-synapses altogether in panel J of Fig. 3.

In a heterogeneous network, the loss of the gamma rhythm, as

E-to-I-synapses are weakened, is gradual, not a sudden bifurcation.

To demonstrate this, Fig. 4 displays our measure r of gamma

rhythmicity (see Methods and Text S1, Section B for the definition

of r) as a function of the mean excitatory conductance density per

I-cell, with all other parameters fixed as in the bottom row of

panels in Fig. 3.

Figure 3. Spike rastergrams illustrating breakdown of strong PING rhythm as E-to-I-synapses are weakened. Blue dots indicate spike
times of I-cells (cells 1–20), and red dots indicate spike times of E-cells (cells 21–100). From left to right: mean excitatory conductance density per I-cell
Gei~0:12 (panels A, D, G), 0.08 (B, E, H), and 0.04 (C, F, I, and J) mS=cm2 . The network in panels A, B, and C is homogeneous. In panels D through F,
the E-to-I-connection is sparse and random (50% connectivity). In panels G through I, the I-to-E- and I-to-I-connections are sparse and random as well
(50% connectivity), and so are external drives: 15% heterogeneity in drives to E-cells, and drives to I-cells vary between {0:2 and z0:2 mA=cm2 . (See
paragraph surrounding Eq. S8 in Text S1 for the precise meaning of ‘‘15% heterogeneity’’.) The parameters in panel J are those of panel I, but mean
external drive density to the I-cells is raised from 0 to 0.4 mA=cm2 , and there are no I-to-I-synapses.
doi:10.1371/journal.pcbi.1002362.g003
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Heterogeneity in input to E-cells always matters, but its
effects are greatest when I-to-E-synapses are of marginal
strength

Weakening of the I-to-E-synapses eventually results in break-

down of the PING mechanism. As for the E-to-I-synapses, the

point of breakdown can be predicted well by studying homoge-

neous networks. However, here the breakdown of the rhythm in

the heterogeneous network is not signaled by downright

breakdown in the homogeneous network, but by lengthening of

the time needed to establish the rhythm in the homogeneous

network when starting from asynchronous initial conditions. To

demonstrate and explain this point, we will first give a

computational analysis of the response of a single cell to an

inhibitory pulse, then present results of network simulations.

Finally, we will give a detailed analysis for a simplified problem,

elucidating the reason for the link between slow convergence to

synchrony in a homogeneous network and failure to synchronize

at all in a heterogeneous network.

Single-cell analysis. We consider here the response of a

single E-cell, driven above threshold, to an exponentially decaying

inhibitory synaptic input pulse. A study of how the response of the

E-cell depends on the timing of the inhibitory pulse yields insight

into the synchronization of asynchronous populations of E-cells by

inhibitory pulses.

In ref. [1], we showed that the inhibition creates an ‘‘attracting

river’’ [25,26] in a phase space in which one of the variables is the

decaying inhibitory conductance, and that the synchronization of

a population by an inhibitory pulse can be understood as a

consequence of this river. Here we visualize the synchronizing

effect of a single pulse of inhibition in a different way, using plots

similar to those of [27, Fig. 1]. We denote by Te the intrinsic

period of the E-cell. We assume that at time zero a spike occurs,

and that an inhibitory input pulse arrives at some time t� with

0vt�vTe. We denote by d the time between the arrival of the

inhibitory pulse and the next spike. If d were independent of t�, the

time of the first spike following the arrival of the inhibitory pulse

would be independent of the past history of the neuron; thus a

single inhibitory pulse would synchronize a previously asynchro-

nous homogeneous population of non-interacting E-cells.

Fig. 5 shows the computed dependence of d on t�. For strong

inhibition (panel A), d is nearly independent of t�. Thus a single

inhibitory pulse leads to nearly perfect synchronization of a

population. However, at some value of t� close to Te, d suddenly

drops to near-zero; this corresponds to the fact that when the

inhibitory pulse arrives very close to a spike, it cannot significantly

delay the spike. In [1], we interpreted this sudden transition, for

theta neurons, as the result of the crossing of an ‘‘unstable river’’

[25,26]. Panels B, and C of Fig. 5 demonstrate the effect of

weakening the inhibitory pulse: d becomes significantly dependent

on t� throughout the entire range, 0vt�vTe. Thus a weak

inhibitory pulse no longer comes close to erasing the memory of

the past: A cell that was closer to spiking before the pulse arrived

(larger t�) spikes earlier even in the presence of the inhibitory pulse

(smaller d). In the limiting case of an inhibitory ‘‘pulse’’ of zero

strength, d~Te{t�, so d decreases linearly with t� (panel D of

Fig. 5).

This analysis suggests that effects of heterogeneity (in either

external drive or strength of inhibition) on synchronization by an

inhibitory pulse should become more pronounced as inhibition

weakens: The phase dispersion caused by heterogeneity increases

from cycle to cycle. We will confirm and expand upon this

conclusion below.

Network simulations. Fig. 6 illustrates what happens as

inhibition is weakened in a homogeneous network: The PING

rhythm takes longer to be established. However, even for very

weak inhibition, a tightly synchronous rhythm eventually emerges:

Even in panel C of Fig. 6, synchronization becomes perfect, to the

eye, by time t~1000 ms (not shown in the figure).

Notice that the I-cells synchronize tightly before the E-cells

synchronize in Fig. 6. In general, the I-cells tend to synchronize

more tightly than the E-cells in PING [1]. Their synchronization is

induced by the spike volleys of the E-cells. Even when those volleys

are not tightly synchronous, the I-cells all receive the same (if the

E-to-I synapses are all-to-all) or nearly the same (if the E-to-I

synapses are sparse, but not too sparse) excitatory input pulses,

which synchronize them.

Heterogeneity alters the behavior in Fig. 6 dramatically. Fig. 7

shows what happens when one introduces 10% heterogeneity (see

paragraph surrounding Eq. S8 in Text S1) in the external drive to

the E-cells in the simulations of Fig. 6 and makes the E-to-I-

synapses sparse and random (50% connection probability, with

Gei unchanged). In those cases when the PING rhythm takes some

time to be established in Fig. 6, it is not established at all in Fig. 7.

The connection between loss of rhythmicity in the heteroge-

neous network and the inability of the homogeneous network to

synchronize in a small number of cycles can be understood, in

light of our earlier discussion of the synchronizing effect of a single

inhibitory pulse, as follows. Inhibition is not able to overcome the

effects of heterogeneity in inhibitory synaptic inputs or external

drives to the E-cells [1,28], but a strong enough pulse of inhibition

removes the effects of different initial conditions on the next time

Figure 4. Quantitative measure of gamma rhythmicity. The measure r (see Eq. S10 in Text S1) is plotted as a function of mean excitatory
conductance density per I-cell, Gei , with all other parameters as in Fig. 3, bottom row of panels.
doi:10.1371/journal.pcbi.1002362.g004
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to spike, allowing target cells to lock to periodic inhibitory drive

with a range of phases. When inhibition is not strong enough to

remove the effects of past history in one or two cycles, the spread

of phases resulting from heterogeneity grows from cycle to cycle.

When, on the other hand, inhibition is strong enough for a

PING rhythm to be established rapidly, further strengthening of

inhibition does not substantially reduce the heterogeneity effect

[1,28]. This point is illustrated by Fig. 8, which shows a close-up of

panel A of Fig. 7, and a close-up of a simulation with the strength

of inhibition increased ten-fold, but all other parameters as in

Fig. 7A. The E-cell synchronization obtained with the ten times

stronger inhibition is not very much better; see also Text S1,

Section E.

The loss of energy in the gamma frequency range, as I-to-E-

connectivity is weakened in a heterogeneous network, is gradual;

see Fig. 9. Note, however, the sharp kink in the graph of Fig. 9.

Qualitatively, we have found this feature of the graph to be robust

with respect to parameter variations, but for the complicated

network underlying Fig. 9, we have not been able to explain it

definitively. It seems natural to hypothesize that it reflects an

analogue of the sudden transition in network behavior demon-

strated, for a much simpler model network, in Fig. 10; that figure

will be discussed in detail next.

More detailed analysis of a simpler network. The use of

a simplified model network allows us to be more specific about the

nature of the loss of synchrony as inhibition is weakened. We use a

smaller network (20 E-cells and 1 I-cell), with drive to the E-cells

linearly increasing with neuronal index, but without any other

heterogeneities, and in particular with all-to-all connectivity.

Fig. 10 shows how the rhythm deteriorates, and eventually

breaks down, as inhibition is weakened. In Figs. 10A and B, each

E-cell spikes exactly once between any two I-cell spikes, with more

strongly driven E-cells spiking sooner, and the least strongly driven

E-cell spiking immediately prior to the I-cell. When inhibition gets

so weak that such a rhythm is no longer possible, rhythmicity

breaks down altogether (Fig. 10C).

To clarify the nature of the breakdown of the rhythm, consider

again Figs. 10A and B. Denote the drive density to the j-th E-cell

by Ie,j . In analogy with the notation used earlier when discussing

the effect of an inhibitory pulse on a single E-cell, denote the delay

between the spiking of the j-th E-cell and the next spiking of the I-

cell by t�j . The delay d between the spiking of the I-cell and the

next spiking of the j-th E-cell depends on all the parameters in the

network; we focus on its dependence on t�j and Ie,j here, and

therefore write d~d(t�j ,Ie,j). All cells in the network fire at the

same period, the PING period; we denote it by TP. With this

notation,

t�j zd(t�j ,Ie,j)~TP ð1Þ

for j~1,2, . . . ,20. We use this equation to analyze the t�j . For this

purpose, we plot in Fig. 11 the quantity t�zd (the left-hand side of

Eq. (1)) as a function of t�. Thus Fig. 11 displays precisely the same

information as Fig. 5; the only difference is that in Fig. 11, t� has

been added to d. Recall that in Fig. 5, tight synchronization of a

homogeneous population by a single pulse is reflected by a nearly

horizontal graph over most of the range of values of t�. In Fig. 11,

this corresponds to a slope close to 1 over most of the range of

values of t�.
For each j, t�j satisfies Eq. (1). In Fig. 12, we therefore plot t�zd

for all 20 values of Ie,j used in our model network simultaneously.

According to Eq. (1), the values of t�j are obtained by intersecting,

Figure 5. Time d between arrival of inhibition and next spike of an E-cell, as a function of time t� between previous spike and arrival
time of inhibition. The external drive density to the E-cell is Ie~1:6 mA=cm2 , and the inhibitory conductance density Gie is (A) 0.24, (B) 0.12, (C)
0.06, and (D) 0 mS=cm2 .
doi:10.1371/journal.pcbi.1002362.g005
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in each of the panels of Fig. 12, the 20 graphs shown with a single

horizontal line. This horizontal line is indicated in red in Fig. 12,

assuming that (as in panels A and B of Fig. 10) the I-cell spikes

immediately after the first (least strongly driven) E-cell, i.e., t�1~0.

Panels A and B of Fig. 12 show that for each j, Eq. (1) has two

solutions t�j ; we select the smaller of the two solutions because in a

PING rhythm, the inhibitory spike volleys rapidly follow the

excitatory ones. Panels A and B of Fig. 12 also show the duration

of the E-cell spike volleys (bold red lines). In panel C, the

maximum of t�zd for the most strongly driven E-cells (lower edge

of the band shown in panel C) is smaller than the minimum of

t�zd for the least strongly driven E-cells (upper edge of the band).

This implies that a rhythm in which each E-cell participates

exactly once per period, i.e., a phase-locked solution, does not exist

in this case; the slope of the ascending branch of the curves is not

steep enough because inhibition is too weak.

Thus the condition for rapid synchronization of the E-cells in a

homogeneous network, namely that the slope of the ascending

branches of the curves in Figs. 11, 12 be close to 1, turns out to be

precisely the condition under which rhythms of the kind shown in

Figs. 10A and B can exist, explaining why heterogeneity destroys

the rhythm altogether when, in a homogeneous network, it takes

many gamma cycles to synchronize the E-cells.

Specific drive to too small an ensemble can abolish even
the background weak PING rhythm

We now connect the previous results to the size of cell

assemblies. We start with a spatially unstructured network that is

sparsely and randomly connected, and consider the behavior as

the number of tonically driven E-cells is reduced. Our expectation

for what should happen comes from our earlier discussion of

weakening E-to-I-coupling; reducing the number of active E-cells

reduces the total excitatory current received by I-cells. Thus we

expect the rhythm to be destroyed if the number of participating

E-cells gets too small.

Fig. 13 shows the breakdown of the rhythm. In contrast with

other simulations in this paper, in the simulation of Fig. 13, all E-

cells receive a background of stochastic input; see Text S1, Section

B for details. As the number of E-cells receiving tonic drive is

reduced, there is a transition from PING (A and B), through an

arrhythmic regime in which both E- and I-cells continue spiking

(C), to a background weak PING rhythm [12] driven by the

Figure 6. In a homogeneous network, the strong PING rhythm becomes less and less rapidly attracting as I-to-E-synapses are
weakened. As before, blue dots indicate spike times of I-cells (cells 1–20), and red dots spike times of E-cells (cells 21–100). From top to bottom:
Gie~0:2, 0.05, 0.02 mS=cm2 .
doi:10.1371/journal.pcbi.1002362.g006
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stochastic input to the E-cells, akin to a kainate-induced persistent

gamma rhythm in a hippocampal slice. We hypothesize that panel

D of Fig. 13 is an analogue of what happens in Fig. 1 before and

after the stimulus. As discussed earlier, we think of driving fewer E-

cells as the analogue of using weaker optogenetic stimulation;

therefore panel C is an analogue of what happens in Fig. 1 during

Figure 7. A simulation similar to that in Fig. 6, but with heterogeneity in drive to the E-cells, and with sparse, random E-to-I-
synapses. The heterogeneity in drive to the E-cells is 10% (see paragraph surrounding Eq. S8 in Text S1). E-to-I-connections are removed with 50%
probability, and those that are not removed are doubled in strength to preserve Gei (see Text S1, Section B). Top to bottom: Gie~0:2, 0.05,
0.02 mS=cm2 . The rhythm in the I-cells seen in panel C is based entirely on the interaction of the I-cells, i.e., it is an ING rhythm [11]; see Text S1,
Section F.
doi:10.1371/journal.pcbi.1002362.g007

Figure 8. Ten-fold strengthening the I-to-E-synapses does not erase the effects of heterogeneity on E-cell synchronization. A: Close-
up of Panel A of Fig. 7. B: Close-up of a simulation with Gie raised from 0.2 to 2.0 mS=cm2 , all other parameters as in Panel A of Fig. 7.
doi:10.1371/journal.pcbi.1002362.g008
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the stimulus. We show the time interval from 200 ms to 400 ms,

not the initial time interval from 0 ms to 200 ms, in Fig. 13 in

order to demonstrate that in panel C, the rhythm is not just slow to

arise, but does not arise at all.

The mean frequency of the I-cells is approximately 54 Hz in

panel A, 48 Hz in panel B, and 29 Hz in panel C. Panel D of

Fig. 13 shows a simulation in which no E-cells receive tonic drive;

the results would look very similar if, for instance, 5 E-cells

Figure 9. Loss of energy in the gamma range, as I-to-E-synapses are weakened, is gradual, not sudden. Measure of gamma rhythmicity,
r (see Eq. S11 in Text S1), as a function of Gie, the mean inhibitory conductance density per E-cell, with all other parameters as in the bottom panel of
Fig. 7.
doi:10.1371/journal.pcbi.1002362.g009

Figure 10. Breakdown of gamma rhythm, as inhibition is weakened, in a simplified model network. External drive to the E-cells is
heterogeneous. Inhibition is strongest in panel A and weakest in panel C. The network is smaller than in earlier network simulations (20 E-cells and
one I-cell), and the E-cells are put in order of linearly increasing external drive. The spike times of the I-cell are indicated by the blue dashed vertical
lines. For complete details, see Text S1, Section B.
doi:10.1371/journal.pcbi.1002362.g010
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Figure 11. Same as Fig. 5, plotting dzt� instead of d.
doi:10.1371/journal.pcbi.1002362.g011

Figure 12. Same as Fig. 11, plotting the graphs for a range of values of external drives. The drive Ie to the E-cells varies between 1.4 and
1.8. The bold horizontal red lines in panels A and B indicate the duration of the E-cell spike volley. In panel C, the inhibition is so weak that a rhythm in
which each E-cell participates exactly once per cycle no longer exists. Panel D shows the limiting case of no inhibition.
doi:10.1371/journal.pcbi.1002362.g012
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received tonic drive. When a significant number of the E-cells

receive specific drive (panels A–C), the weak PING rhythm in the

other E-cells is suppressed either by fast rhythmic activity of the I-

cells (panels A and B), or by sparser, but arrhythmic and therefore

still powerful [2] activity of the I-cells (panel C).

With fewer E-cells driven tonically, the I-cells receive less synaptic

excitatory input; therein lies the main connection between the

simulation results in Fig. 13 and the earlier ones concerning the

effect of weakening E-to-I-synapses (Fig. 3). However, effective

heterogeneity in excitatory synaptic input per I-cell also becomes

greater when the input originates from a smaller number of E-cells,

for statistical reasons: When the excitatory synaptic input into the I-

cells originates primarily from a small number of tonically driven E-

cells, the heterogeneity resulting from the randomness of the

connectivity is substantial. This effect is reduced by the Law of

Large Numbers as the number of tonically driven E-cells increases.

In Fig. 13C, the I-cells inhibit each other. However, the I-to-I-

interactions alone are not sufficient to create synchrony, i.e., there

is no ING [11] rhythm, because of the heterogeneity of the drive

from the E-cells [29].

Our reasoning suggests that in Fig. 13C, the rhythm should be

restored if the E-to-I-synapses are strengthened: The loss of

rhythmicity occurs simply because E-to-I-connectivity is so weak

that more than 50 E-cells are required to sustain the rhythm.

Indeed, if the strength of excitatory synapses is tripled in Fig. 13C,

the rhythm does return; see Fig. 13E.

Specific drive to too small a patch in a spatially
structured network fails to elicit a PING rhythm

We now consider a network in which the connection probability

decays with increasing distance between neurons (see Text S1,

Section B). Fig. 14 shows the placement of neurons in the unit disk.

(Distance is non-dimensionalized here.) Strong drive is given to the

E-cells in a smaller circle of radius R, also indicated in Fig. 14. As

R is reduced, the rhythm eventually breaks down, as shown in

Fig. 15. In plotting the spike rastergrams, each of the two cell

populations was ordered in such a way that smaller indices

correspond to positions closer to the center of the disk.

As the size of the driven patch gets smaller, the I-cells receive

less excitatory input. This is one way in which the results of Fig. 15

are related to the earlier ones on weakening E-to-I-synapses (Fig. 3)

and reducing the number of cells driven (Fig. 13). In addition,

however, as the driven patch decreases in size, fewer I-cells receive

enough excitatory synaptic input to participate in the rhythm,

since the probability of synaptic interaction decays with distance

here. Thus, in fact, the loss of rhythmicity in Fig. 15 is also related

to a reduction in the total amount of inhibitory input per E-cell;

compare Fig. 7.

As in the earlier Figs. 3, 7, and 13, the loss of rhythmicity in

Fig. 15 results from a combination of weak effective synaptic

interactions and heterogeneity. There are two sources of effective

heterogeneity here. The first is statistical: When fewer E-cells give

synaptic input to the I-cells (or vice versa), there are more statistical

fluctuations, because the Law of Large Numbers does not wash

them out. If we increased the size of the model network, while

proportionally reducing the strength of each individual synapse

and leaving all other parameters fixed, the statistical heterogeneity

would be reduced. However, here there is a second, geometric

source of heterogeneity: Cells that lie near the edge of the driven

patch receive fewer synaptic inputs than ones that are far from the

edge. For a smaller patch, the percentage of cells significantly

affected by this effect is greater. If we increased the size of the

Figure 13. Breakdown of strong PING as the number of E-cells receiving strong, time-independent drive is reduced. Neurons 1–80 are
I-cells, and neurons 81–400 E-cells. All E-cells receive stochastic drive. In addition, m E-cells receive strong tonic drive, with m~250 (A), m~150 (B),
m~50 (C), and m~0 (D). Rhythmicity is largely abolished when m~50 (panel C), but weak PING emerges when m~0 (panel D). In Fig. 13C, the
rhythm returns when the strength of the E-to-I-synapses is tripled (panel E).
doi:10.1371/journal.pcbi.1002362.g013
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Figure 14. E-cells (red) and I-cells (blue) placed at random in the unit disk. E-cells in the center disk (yellow) of radius R are given additional
drive.
doi:10.1371/journal.pcbi.1002362.g014

Figure 15. Breakdown of gamma rhythms as the radius R of the driven patch of E-cells is reduced. R~0:8 (A), R~0:6 (B), R~0:4 (C),
and R~0:2 (D). The length scale dsyn characterizing the decay of connection probability with spatial distance (see Text S1, Section, Eq. S12) equals
0.25 here. (Distance is non-dimensionalized.)
doi:10.1371/journal.pcbi.1002362.g015
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model network, while proportionally reducing the strength of each

individual synapse and leaving all other parameters fixed, the

geometric heterogeneity would not disappear.

Fig. 16 shows the same numerical experiment as Fig. 15, but

with twice as many E- and I-cells, and with the strengths of

individual synapses halved. Inspection of the rastergrams suggests

that synchrony is sharper in Fig. 16 than in Fig. 15. This is

confirmed by Fig. 17, which shows the synchrony measure r (see

Text S1, Section B) as a function of the radius R of the driven

patch of E-cells. The enhanced synchrony for the larger network is

likely due to the reduction in statistical fluctuations in the

stochastic input per cell as the network is enlarged. Fig. 17 also

shows that for both networks, there is a gradual but marked

deterioration of gamma power as R is reduced, setting in at

approximately the same value of R.

Specific drive to a patch in a spatially structured network
fails to elicit a PING rhythm when synapses are too local

We consider the same kind of spatially structured networks as

before. However, we now fix the radius R of the circular patch in

which the E-cells receive specific drive, and vary the length

constant dsyn characterizing the decay of the connection

probability with distance (see Text S1, Eq. S12). The effect of a

decrease in dsyn is a reduction in total synaptic input per cell, and

therefore eventually the breakdown of the PING rhythm, for the

reasons discussed earlier; see Fig. 18, panels A and B. Panel C of

Fig. 18 shows the result of making connectivity more local, as in

panel B of the figure, but compensating by strengthening the

synapses: The rhythm returns. Thus panel C illustrates that the

rhythm breaks down in panel B because there is too little overall

synaptic input per cell, not because connectivity is too local per se.

Discussion

We have examined how the PING mechanism breaks down as

excitatory and/or inhibitory synapses are weakened, as the

numbers of participating excitatory and/or inhibitory cells get

too low, or as synaptic connectivity becomes too local. Although

the breakdown of the rhythm results from the interaction of

weakness of synaptic inputs with network heterogeneity, the point

at which it occurs can be predicted, with good accuracy, by

studying homogeneous networks. The effects of heterogeneity in

synaptic or external drive to the I-cells disappear rapidly as the

Figure 16. As Fig. 15, with numbers of E- and I-cells doubled, and strengths of individual synapses halved. The breakdown of the
rhythm occurs near the same value of R.
doi:10.1371/journal.pcbi.1002362.g016
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strength of excitatory synapses increases, and is substantial only if

the excitatory synapses are marginal, i.e., nearly so weak that in a

homogeneous network, 1:1-entrainment of E- and I-cells would be

replaced by a more complicated pattern such as 2:1-entrainment.

In contrast, the effects of heterogeneity in synaptic or external

inputs to the E-cells remain sizable even in the limit as the strength

of the inhibitory synaptic input per E-cell tends to infinity. They

increase greatly, and quickly lead to a complete breakdown of the

rhythm in a heterogeneous network, when inhibitory synaptic

inputs into the E-cells become so weak that, in a homogeneous

network, the rhythm would only be established after multiple

gamma cycles. In a realistically heterogeneous network, a PING

rhythm is either established rapidly, within a small number of

gamma cycles, or not at all.

As the number of driven cells is reduced, the synaptic input per

cell is reduced as well. At the same time, the effective heterogeneity

in synaptic connections becomes more significant. The combina-

tion of effectively weaker synaptic interactions with greater

heterogeneity eventually leads to the breakdown of the rhythm.

There are two reasons why a reduction in the number of driven

cells can lead, in effect, to more significant heterogeneity. First,

when connectivity is sparse and random, different cells receive

different numbers of synaptic inputs. When many cells participate

in the rhythm, this effect is largely erased by the Law of Large

numbers. However, when only a small number of cells participate,

it can be substantial. Second, when only the neurons in a certain

spatial domain are driven strongly, and when the probability of

synaptic connections decreases with increasing spatial separation,

those neurons near the edge of the spatial domain receive less

synaptic input than those near the center. As the size of the driven

domain is reduced, the fraction of cells that are close enough to the

edge for this effect to matter increases.

Our results imply that for given synaptic strengths, cell

assemblies cannot be arbitrarily small. This is complementary to

recent work by Oswald et al. [30], who have pointed out a reason

why there may be an upper bound on the possible size of cell

assemblies. The lower bound on the size of cell assemblies

substantially depends on the strength of E-to-I- and I-to-E-

Figure 17. Synchrony measure r as a function of radius R of driven patch of E-cells in Figs. 15 and 16. See Text S1, Section B for
definition of r.
doi:10.1371/journal.pcbi.1002362.g017

Figure 18. Breakdown of gamma rhythms as the synapses become too local. dsyn~0:25 (panel A), and dsyn~0:20 (panel B), where dsyn

denotes the length constant characterizing the decay of the connection probability with distance (see Text S1, Eq. S12). In panel (C), dsyn~0:20 as
well, but the synaptic strengths have been tripled, and the rhythm is restored.
doi:10.1371/journal.pcbi.1002362.g018
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coupling; stronger synapses allow smaller assemblies. To some

extent, it also depends on network heterogeneity, with less

heterogeneity allowing smaller assemblies.

It would be very interesting to give a specific, numerical answer

to the question ‘‘How many cells must an assembly include to

oscillate at gamma frequency?’’ Unfortunately, such an estimate

would have to remain highly speculative at this point. We would,

for instance, have to know how many synchronous excitatory

synaptic inputs a fast-spiking parvalbumin-positive interneuron

must receive for a spike to be elicited, what are the density and

spatial reach of synaptic connections from pyramidal cells to fast-

spiking interneurons and vice versa, and how many inhibitory

synaptic inputs are required to create the synchronizing ‘‘river’’ in

the pyramidal cells. None of these data are known with any degree

of certainty, and they are surely different in different parts of the

brain. These uncertainties render any attempt to give a numerical

estimate futile.

In those of our simulations that involved space-dependent

connectivity probabilities, we assumed that excitation and

inhibition reached equally far. While this assumption is in

agreement with what Adesnik and Scanziani [31] have found in

their recent work for horizontal connectivity in layer 2/3 of mouse

somatosensory cortex, it is not crucial for the results of the present

paper.

In this study, we have focused on strong PING, i.e., PING

driven by tonic excitation of the E-cells. (The only exception is

Fig. 13, where we added stochastic drive to the E-cells in order to

demonstrate that the weak PING rhythm created by such drive is

abolished when a small, but not extremely small number of E-cells

receive tonic drive.) However, we do not see a reason why similar

results should not hold for stochastically driven PING rhythms.

Spencer [32] has previously studied the effects of weakening

synaptic connections in E/I networks of integrate-and-fire

neurons, and found rapid deterioration of gamma rhythms with

the weakening of fast synaptic connections. The loss of gamma

rhythmicity in [32] appears to be faster than in our numerical

experiments; compare for instance [32, Fig. 3] with Fig. 4 of this

paper. This is a quantitative (not qualitative) difference that may

be accounted for by several differences in details between the

model of [32] and ours. For instance, external drive in [32]

fluctuates stochastically in time, whereas in our model the primary

drive is tonic, but often with significant heterogeneity.

We note that Fig. 1 of [32] does appear to show a gradual slide

into PING, contrary to our conclusion that in a heterogeneous

network, PING is formed either rapidly, or not at all. However,

note that the rhythm in [32, Fig. 1] relies on recurrent, NMDA-

receptor-mediated excitation among the E-cells. This excitation

has to build up before the rhythm begins. Here we have only

considered rhythms sustained by external drive to the E-cells.

There is a considerable body of work on the stability of

asynchronous states in neuronal networks [33–36]. Our focus here

has not been on this bifurcation, in which oscillations are created,

but rather on the gradual tightening of synchronization, and

resulting rise in oscillation amplitude, as synaptic strengths are

increased beyond the level necessary for the asynchronous state to

loose its stability. (Of course, in a heterogeneous E/I network,

synchrony will never get entirely tight – there is no strictly

synchronous state in such a network.)

There is also previous literature on the dependence of

synchronization on connectivity, e.g., [37,38]. Our focus here is

different, however; we point out that making synaptic connectivity

more local, without compensating by strengthening individual

synapses, can lead to a loss of rhythmicity simply because synaptic

interactions get too weak, before they get too local (independently

of their strength); see Fig. 18.

Bartos et al. [39] have suggested that the inhibitory synapses

relevant to gamma oscillations should be faster and less

hyperpolarizing than the ones used here. There is controversy

over which are the biologically realistic parameter choices. For

example, Cobb et al. [40] reported GABAA-receptor-mediated

inhibition in hippocampus to be hyperpolarizing, not shunting.

Traub et al. [6] reported IPSCs with decay time constants around

10 ms during ongoing gamma oscillations. Gamma rhythms are

possible in our model networks with the parameters used by Bartos

et al., but many of their properties, including the mechanisms by

which they are lost when synaptic interactions are weakened, are

different.

The fact that the PING rhythm eventually breaks down as

synaptic interactions become weaker is, of course, obvious, but it

suggests explanations for several seemingly unrelated recent

experiments. First, in our own experiments in kainate-bathed

slices of area CA3 of mouse hippocampus, strong light activation

of pyramidal cells elicits a strong, fast rhythm. Weak light

activation not only fails to elicit such a rhythm, but also abolishes

the kainate-induced persistent gamma rhythm. We hypothesize

that weaker light activation in these experiments results in

activation of a smaller number of cells. These results are then

closely analogous to our Fig. 13, where we examined the loss of the

gamma rhythm as the number of E-cells with specific drive

becomes too small. Second, in macaque primary visual cortex,

gamma rhythms are elicited by spatially extended stimuli, but not

by ones that are too small [18, Fig. 1]; this is expected from our

Fig. 15. We note that gamma rhythms have been associated with

binding [41–43], and may therefore not be needed for highly

spatially focused neuronal activity. Third, attention has been

found to reduce gamma power in primary visual cortex [19]. Our

Fig. 18, which shows the loss of gamma rhythms as synaptic

connections become too local, offers a possible theoretical

explanation of this result, since the cholinergic modulation

associated with attentional processing is thought to reduce the

efficacy of lateral synaptic connections [44]. Our simulation results

predict that in all of these experiments, when the rhythm

disappears, vigorous activity should continue in the driven E-cells

and in nearby I-cells.

In summary, the strengths of the reciprocal synaptic interactions

between principal cells and those inhibitory interneurons partic-

ipating in the gamma rhythm play a crucial role in determining

the possible sizes of cell ensembles oscillating at gamma frequency,

with stronger synapses allowing smaller ensembles.

Supporting Information

Text S1 This file contains all supporting information as
a single PDF document.
(PDF)
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