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Abstract. We consider region of interest (ROI) tomography of piecewise constant func-
tions. We prove that continuous ROI data determine piecewise constant functions. Ad-
ditionally, an algorithm is developed for ROI tomography of piecewise constant functions
using a Haar wavelet basis. A weighted `p–penalty is used with weights that depend on the
relative location of wavelets to the region of interest. We prove that the proposed method is
a regularization method, i.e., that the regularized solutions converge to the exact piecewise
constant solution if the noise tends to zero. Tests on phantoms demonstrate the effectiveness
of the method.

1. Introduction

In this article, we consider the interior problem or region of interest (ROI) tomography ;
tomographic data are given only over lines meeting a region of interest inside the body,
and the goal is to image that region. This comes up in micro-CT in which researchers are
interested in only a small part of an object and in medical CT in which doctors want to
limit X-ray dose and know the location of what they want to image [21, 22, 62]. If Ω is the
region of interest, then ROI data of a function f are the integrals Rf(`) for all lines ` that
intersect Ω. The goal is to image f in Ω from this data.

However, in general, f is not determined from ROI data (see Example 2.1). One can
recover singularities of f in the ROI from ROI data. This is true because R is an elliptic
Fourier integral operator and R∗R is an elliptic pseudodifferential operator (e.g., [28, 49]).
This fact is one motivation for Lambda tomography [22, 62], a local reconstruction method
from ROI data that reconstructs singularities of objects and clearly shows boundaries of
parts of the object.

In this article, we consider the ROI problem for piecewise constant (PC) functions. Any
PC function can be written as the finite linear combination of characteristic functions:

(1.1) f(x) =
N∑
n=1

anχΩn(x).

We assume that each set Ωn is compact with piecewise smooth boundary and nontrivial
interior and χΩn denotes the characteristic function of Ωn. Note that we only allow a finite
number of sets, which appears realistic for many applications.
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We prove that PC functions are determined by their ROI data (Theorem 2.2), and we
present a new sparsity promoting reconstruction method for ROI CT. We propose a weighted
wavelet reconstruction scheme where the weights are chosen according to the localization of
the wavelet relative to the ROI. Due to our uniqueness result for PC functions (Theorem 2.2),
we have convergence of the reconstruction method to that unique solution.

The mathematical model for X-raying an object is the Radon transform of the body
density f [47],

(1.2) Rf(ω, s) =

∫
R
f(sω + tω⊥) dt ,

(ω, s) ∈ S1 × R and ω⊥ ∈ R2 is a vector orthogonal to ω. Here S1 denotes the unit sphere
in R2, i.e., the set of all orientations in two-dimensional space. The pair (ω, s) ∈ S1 × R
defines a line ` = `(ω, s) ∈ R2 perpendicular to ω at directed distance s to the origin. For
convenience, we often denote the argument of the Radon transform by `, i.e., we use Rf(`)
for the Radon transform along the line `.

Assuming the function f to be supported on some set D, in ROI tomography, data are
given only on lines intersecting some subset Ω (the ROI) of D. To indicate this data limita-
tion, we define the operator Rlim with

(1.3) Rlimf(ω, s) :=

{
Rf(ω, s) if `(ω, s) ∩ Ω 6= ∅
0 else.

To solve the ROI tomography problem, the equation Rlimf = zlim has to be inverted. Already
the full data problem of solving Rf = z in L2 is ill-posed [20,42], and regularization methods
have to be applied.

The goal of this article is to compute a regularized solution to the problem of solving
Rlimf = zlim from possible noisy data zδlim by minimizing a functional of the form

‖Rlimf − zδlim‖2
L2(S1×R) + α‖Ff‖pp,ω .

The term ‖ · ‖pp,ω denotes a weighted `p-norm with strictly positive weights 0 < C ≤ ωn
and the operator F maps f to its Fourier coefficients with respect to a basis or frame,
Ff := (〈f, ϕn〉)n=1,.... For p < 2, such an approach is known to promote sparsity. In most
applications the weights are either constant or given as a fixed sequence.

In contrast, we use a set of weights that influence the reconstruction according to the
location of the basis (or frame) function in relation to the region of interest. The minimization
of the functional will be done with respect to the space of piecewise constant functions that
can be represented as a finite sum of Haar (db1) wavelets. The weights are chosen such
that wavelets that are contained within the ROI, or contain the ROI, contribute essentially
to the reconstruction within the ROI; whereas wavelets located far away from the ROI or
with only a small part inside the ROI have a smaller influence on the reconstruction quality
inside the ROI. By treating these classes of wavelets differently through the weights we aim
at a sparse and stable reconstruction method that emphasizes high quality inside the ROI
but still allows features to be reconstructed outside.

We now give a short overview of the literature on limited data tomography, especially
region of interest tomography, wavelet-based methods in tomography, and inverse problems
with sparsity constraints. There are some approaches to pseudolocal tomography using
almost completely local data; in [16, 17, 58] an additional coarse angular sampling of the
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whole domain is assumed whereas in [56] an additional margin to the region of interest is
used. Total variation approaches to the interior problem are studied in [64,66]. Authors have
shown that wavelet based local tomography allows one to find density differences and to put
Lambda tomography and pseudolocal tomography [35] in a wavelet context [46]. Wavelet-
based approaches for limited angle tomography can be found, e.g., in [55, 57]. In [34], an
adaptive regularization based on frequency components is applied to limited tomography
with additional coarse angular sampling. For sparse tomography, i.e., full angle of view but
only few directions, we refer to [29] for a wavelet-based sparsity promoting approach. Inverse
problems using wavelets and/or sparsity constraints are discussed in [1–9, 14, 15, 18, 19, 23–
27,32,33,38,40,41,50–54,60,68].

The closest articles to our work are [30,66,67] and [48]. Yu and Wang [66] and Han, Yu and
Wang [30] have developed a total variation reconstruction method for the ROI problem when
the ROI is a disk, D, based on the fact that a PC function, f , has a lower total variation
(semi)norm in D than any other solution, h, to the continuous problem Rh(`) = Rf(`)
for all lines intersecting D. Niinimäki et al. [48] have proposed a Bayesian multiresolution
method for local tomography reconstruction in dental x-ray imaging. They use a wavelet
basis for the representation of the dental structures with a high resolution inside the ROI
and coarser resolution outside the ROI. Their approach is closely related to our proposed
method. However, whereas their method does not allow any fine details outside the ROI,
our method will reconstruct significant fine details outside the ROI as shown in the numerics
section.

The article is organized as follows. In Section 2 we prove that PC functions are uniquely
determined from region of interest data. In Section 3 we present the general setup and in
Section 4 we describe the used regularization method. In Section 5 we discuss the choice of
the weights and in Section 6 we present numerical examples. Section 7 is the conclusion.

2. Uniqueness and nonuniqueness for the interior problem

In this section, we examine theoretical results about uniqueness for ROI CT for PC func-
tions, which we will use in Section 4.

We first provide an example to show that arbitrary functions are not determined by ROI
data (Ex. 2.1), even in the ROI, without some a priori information. Next, we prove the
surprising result, Thm. 2.2, that PC functions are determined everywhere from ROI data.

Throughout this section, we use the notation D(r) for the open disk centered at the origin
in R2 and with radius r.

Example 2.1. Let ε and L be chosen so 0 < ε < L. We construct a null function f
supported in D(L) for the ROI problem where Rf = 0 for lines meeting D(ε) but f is not
identically zero in D(ε).

Let g(s) be a smooth, nonnegative function with support the interval [ε, L]. We will view
g as a function of (s, ω) that is constant in ω.

The Radon transform has a simple inversion formula for radial functions [11, p. 2725,
equation (18)]. So, if Rf = g, then

f(r) = − 1

π

d

dr

∫ L

r

r

s
(s2 − r2)−1/2g(s) ds.
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Therefore, for |r| < ε,

(2.1) f(r) = − 1

π

d

dr

∫ L

ε

r

s
(s2 − r2)−1/2g(s) ds = − 1

π

∫ L

ε

(s2 − r2)−3/2(sg(s)) ds,

where we have used the support restriction on g to specify the limits of integration. Now it
is clear that f(0) is strictly negative and so f is a null function that is nonzero in the ROI.

Peter Maaß constructs a null function for ROI data in [45] and Natterer shows that null
functions are fairly constant in the ROI [47, p. 169, VI.4].

Several uniqueness results are valid for ROI data. First, if one knows f on a subset of
the region of interest, then one can determine f in the ROI using ROI data. Constructive
proofs and inversion methods have been given in [12,65] by analytically continuing a Hilbert
transform, and Corollary 2.5 provides a proof that f is unique everywhere. In Remark 2.6,
we discuss results in [64,67] that are closely related to the theorems in this section.

As noted in the introduction, our goal is to reconstruct PC functions (as in equation (1.1)).
Our next theorem shows that PC functions are determined everywhere from ROI data. This
is in contrast to the general case in which there is a large null space, as shown in Example
2.1.

Theorem 2.2. Let Ω be a bounded open set and let f be a compactly supported integrable
(L1) function that is PC in Ω. Then, data Rf(`) for lines ` intersecting Ω determine f
everywhere. That is, if Rf1(`) = Rf2(`) for all lines ` intersecting Ω and if f1 and f2 are
PWC in Ω, then f1 = f2 everywhere.

Note that the function f in the theorem can be supported outside Ω, and f is not neces-
sarily PC outside of Ω. Therefore, this theorem applies to more general functions than those
that are PC everywhere. Corollary 2.5 is a stronger uniqueness result that follows from our
proof.

Proof of Theorem 2.2. We make two reductions. First, let f be a function of compact sup-
port that is PC in Ω and assume Rf(`) = 0 for lines ` intersecting Ω. We will prove that
f = 0 everywhere. By linearity, this will prove the theorem.

Second, since Ω is open and f is PC in Ω, we know Ω contains an open disk on which f
is constant. By translating the center of the disk to the origin and using that the Radon
transform is translation invariant, we may assume the following:

Hypothesis 2.3. f is an integrable function of compact support that is constant in the disk
D(ε) for some ε > 0, and Rf is zero for all lines intersecting D(ε).

Under this hypothesis, we will show f = 0 everywhere, and this will prove the theorem.

Lemma 2.4. Let f satisfy Hyp. 2.3. Then, the circular means (or averages) of f over all
circles with centers in D(ε) are zero.

Proof of Lemma 2.4. By a standard convolution argument, one may assume f is a smooth
function of compact support. Let ϕ be a smooth radial function supported in D(1) with
integral 1 and let ϕn(x) = n2ϕ (nx). Then f ∗ϕn → f in L1. Because R (f ∗ ϕn) = Rf ∗pRϕn
and Rϕn is supported in [0, 2π] × [−1/n, 1/n], one sees for n > 1/ε that f ∗ ϕn satisfies
Hypothesis 2.3 on D(ε− 1/n) and is smooth. Finally, once we have proven that f ∗ ϕn = 0,
then, by taking the limit as n → ∞, we see f = 0. (This same reduction works to prove
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Lemma 2.4 for f a distribution of compact support, and then this lemma can be used to
prove Theorem 2.2 for distributions of compact support that are PC functions in the ROI.)

Therefore, we may assume that f is smooth and has compact support and is constant in
D(ε).

To show that circular means (or average) of f over all circles centered at the origin are
zero, we consider 0th order angular Fourier coefficient of f ,

f0(r) =
1

2π

∫
θ∈S1

f(rθ)d θ.

Note that f0 can be defined for all r ∈ R and f0(r) is the circular mean of f over the circle
of radius |r| centered at the origin. Furthermore, for |r| < ε, this integral is constant since
f is constant in D(ε). Therefore, all derivatives

(2.2) f
(m)
0 (r) = 0 for m = 1, 2, 3, . . . and |r| < ε.

We now view f0 as a radial function on R2. For any θ, let g = Rf0(θ, s). Because f0 is
radial, g is independent of θ and can be viewed as a function of s, g = g(s).

First, we show f0(r) = 0 for all r; equivalently, all averages of f over all circles centered
at the origin are zero.

Because the Radon transform is rotation invariant, it commutes with averaging over circles
centered at the origin (Fubini’s Theorem can be used to commute the integrals). This means
that

g(s) = Rf0(θ, s) =
1

2π

∫
ω∈S1

Rf(ω, s) dω.

Since Rf(θ, s) = 0 for all lines intersecting D(ε) (i.e., |s| < ε), g(s) = 0 for |s| < ε.
Assume L > ε is chosen so that supp(f) ⊂ D(L − ε) (this choice will be useful in the

second part of the proof). Therefore, the radial function f0 is supported in D(L). Applying
(2.1) to Rf0 = g, we see for |r| < ε that

(2.3) f0(r) = − 1

π

d

dr

∫ L

ε

r

s
(s2 − r2)−1/2g(s) ds = − 1

π

∫ L

ε

(s2 − r2)−3/2(sg(s)) ds

Taking a derivative in r of the right-hand expression in (2.3), using (2.2), and then dividing
by a factor of r, we see, for |r| < ε that

(2.4) 0 =

∫ L

ε

(s2 − r2)−5/2(sg(s)) ds.

By continuing this pattern–taking a derivative in r then dividing by a factor of r, we see
that

0 =

∫ L

ε

(s2 − r2)−(2n+5)/2(sg(s)) ds for n = 0, 1, 2, 3, . . . and |r| < ε.

Now setting r = 0, we see that

(2.5) 0 =

∫ L

ε

s−2n(s−4g(s)) ds for n = 0, 1, 2, . . . .

By the Stone Weierstrass Theorem, the algebra generated by {s−2n
∣∣n = 0, 1, 2, . . . } is dense

in C([ε, L]). Therefore, s−4g(s) = 0 almost everywhere for s ∈ [ε, L]. Since g = 0 in [0, ε],
5



we see that g = 0. Since the Radon transform is injective, f0(r) = 0 for all r. This shows
the circular means of f are zero over all circles centered at the origin.

In the second part of the proof, we use the same argument to show that circular means
of f are zero over all circles with centers in D(ε). Let x ∈ D(ε) and assume ε′ = ‖x − 0‖.
Note that 0 < ε′ < ε. Then, one can translate the plane so that x is mapped to zero. Let
f̃(y) = f(y−x), then f̃ is constant on D(ε− ε′) and supported in D(L) since f is supported

in D(L − ε). Furthermore integrals of f̃ are zero for all lines meeting D(ε − ε′) since R is
translation invariant. The same proof as for x = 0 works except the lower limit of integration
is (ε− ε′) not ε in (2.3), (2.4),and (2.5). �

We now describe how we use the proof of [31, Lemma 2.7, p. 13] to conclude f = 0. Let
C(x, r) be the circle centered at x and of radius r. Lemma 2.4 implies that all integrals of f
over all circles C(x, r) for x ∈ D(ε) and all r > 0 are zero. In Helgason’s argument on p. 13
and 14 of [31] he takes a derivative in the center, x, of

∫
C(x,r)

f ds and uses the divergence

theorem to show (by an inductive procedure) that
∫
C(x,r)

fP ds = 0 for any polynomial P .

The Stone Weierstrass Theorem is then used to show f = 0 on C(x, r). Since r is arbitrary,
f = 0. �

Our next corollary is a stronger result that follows from our proof.

Corollary 2.5. Let Ω′ be an open set and let f be an L1 function of compact support. Then,
f is determined everywhere by its values on Ω′ plus values of Rf for lines intersecting Ω′.

If Ω is an ROI and Ω′ is an open subset, then this corollary implies that knowing a
function’s line integrals on lines through Ω and its values on the smaller set Ω′ determine
the function everywhere.

Proof of Corollary 2.5. One applies Theorem 2.2 to Ω′ and uses linearity: If f1 and f2 agree
on Ω′ and have the same integrals on all lines intersecting Ω′, then f = f1 − f2 is 0 on Ω′

(and so constant on Ω′) and Rf = 0 on lines meeting Ω′. Therefore, f satisfies Hyp. 2.3.
Then, Theorem 2.2 can be applied to conclude f = 0 so f1 = f2 everywhere. �

Remark 2.6. Two important articles provide results that are closely related to Theorem
2.2. In [67], the authors prove that if a compactly supported square integrable function is
constant on a circular ROI and Rf = 0 for lines meeting the ROI, then f = 0 on the ROI.

In [64], the authors show that their TV minimization is valid for functions that are piece-
wise polynomial in the ROI, and they use Hilbert transform arguments to prove a variant of
Theorem 2.2. One assumption in their theorems is less general than in Theorem 2.2; they
assume f is piecewise smooth [64, Conditions 1 and 4], and we assume f ∈ L1

c(R2). However,
their second assumption is more general: they assume only that f is piecewise polynomial
in the ROI whereas, in Theorem 2.2, we assume f is PC in the ROI.

A strengthening of the proof of Theorem 2.2 can be used to prove their theorem for
f ∈ L1

c(R2), and it would generalize Theorem 2.2 to functions that are piecewise polynomial
in the ROI. The changes to our proof are as follows: If f is a polynomial in the small open
set, D(ε), then f0 is an even polynomial in r; so if one takes derivatives d

d(r2)
in (2.3), the

left-hand side will eventually become identically zero (and the right hand side starts at more
negative power of (s2 − r2)). Then (2.5) is true for all sufficiently large n and the proof
proceeds as in our proof of Theorem 2.2.
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A general uniqueness theorem such as Corollary 2.5 is not proven in that article.

Remark 2.7. These uniqueness results are surprising since there is a large null space for
ROI tomography (e.g., Example 2.1). Furthermore, PC functions can be very close to null
functions in L1 norm [44]. This reinforces the point that our uniqueness result does not
guarantee a stable inversion method, in general. In fact any inversion method could have
instabilities, especially outside the region of interest. This is also apparent from microlocal
analysis [49]; all singularities f in the ROI are visible from ROI data, but some singularities
of f at points outside the ROI will not be stably visible (those not normal to lines in the
ROI data set).

So, any reconstruction method that uses PC functions must really “use” them in their
assumptions and in the reconstruction method. The Mumford Shah methods in [37,39] and
the total variation methods in [66] do use them. We use this assumption in our algorithm
by assuming our function can be written as a finite sums of Haar basis functions (see (3.1)).

3. The Setup

Since we consider region of interest CT, we want to reconstruct a function f from local
projection data. We assume that the (convex hull of the) support of f is contained in D ⊂ R2.
Please note that it might be the case that the function f represents an object that has
inclusions with value zero (e.g., holes in a workpiece in non-destructive testing) and hence,
we consider the convex hull of the support. We assume that D is a square that can be
easily partitioned by Haar wavelets. For simplicity, we further assume that the region of
interest, denoted by Ω, is a circle contained in D. Thus, we assume that the same number
of projections is used for every direction. The circle is not required to be in the center of
the domain D and can vary in size. As defined in the introduction, see (1.3), we consider a
restricted Radon operator, taking projections only along lines intersecting the ROI,

Rlimf(ω, s) :=

{
Rf(ω, s) if `(ω, s) ∩ Ω 6= ∅
0 else.

Theorem 2.2 shows that piecewise constant functions can be recovered uniquely from
the measurements zlim taken from all lines L intersecting the region of interest (at least
for continuous data). It therefore seems reasonable to restrict our attention to this type
of functions, that is, functions which can be represented as a finite linear combination of
characteristic functions (see (1.1)). As we want to use a reconstruction approach based on
orthonormal basis functions, we will restrict the space of admissible functions even further:
Consider the orthonormal Haar-Wavelet basis

H = {φjk
∣∣j ∈ N, k ∈ N} .

Wavelet bases were originally defined as basis functions for L2(R), see the standard refer-
ences [10, 13, 36, 43, 61] on wavelets. Using tensor wavelets, orthonormal bases for higher
dimensions can easily be obtained. The construction of orthonormal wavelets on a bounded
domain usually requires a change in the boundary functions. In contrast to the decomposi-
tion on unbounded regions, for bounded domains one has on each level j only a finite number
K(j) of shifts, see, e.g., [13].
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Thus we will consider the space

(3.1) PCHN =

f ∈ L2(D) : f(x) =
N∑
j=0

K(j)∑
k=0

〈f, φjk〉φjk(x)

 .

Note that PCHN contains

(3.2) L =
N∑
j=0

K(j)

basis functions. We will call such functions PCH functions (or PCHN functions when we
have a specific N in mind).

Please note that the admissible functions f ∈ PCHN have a finite decomposition w.r.t. the
Haar basis, i.e., they are sparse w.r.t. to the Haar basis decomposition. As each Haar basis
function is itself piecewise constant, a function f ∈ PCHN is a piecewise constant function.
On the other hand, not every piecewise constant function can be represented by functions
in PCHN , which means we restrict ourselves to a subspace only. However, we expect a
good reconstruction for all piecewise constant functions that can be well approximated by
functions from PCHN . So far, we have considered the operator Rlim : L2(D)→ L2(R× S1).
Defining

F : PCHN ⊂ L2(D)→ `2(RL)

Ff := (〈f, φjk〉)j=1,...,N,k=0,...K(j),

we obtain for c ∈ `2(RL)

F ∗c =
∑
j,k

cjkφjk

and finally define

Rl : `2 → R(Rl) ⊂ L2(R× S1)

Rl := RlimF
∗ .

4. Tikhonov regularization with sparsity constraints

Regularization methods obtain an approximation to the solution of an ill-posed problem by
replacing the unstable inversion. For an ill-posed problem with forward mapping A : X → Y
a regularization is a mapping Tα : Y → X and a parameter choice rule for α ∈ R+ such that
the regularized solutions converge to the solution of the original problem.

Standard Tikhonov regularization [20] obtains an approximation to the solution by solving
the surrogate problem

f δα = argmin
f

{
‖zδlim −Rlimf‖2

L2(S1×R) + α‖f‖2
L2

}
.

Alternatively, f δα is obtained as solution of the equation

(R∗limRlim + αI) f = R∗limz
δ
lim .

As we assume that our solution has a sparse representation with respect to the Haar basis,
we will use Tikhonov regularization with a sparsity promoting penalty, see especially [14,27,
41,50,53].
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This could be a (power of a) Besov norm or more general a (power of a) weighted `p-norm
of the wavelet coefficients. Denoting by cjk the wavelet coefficients of the function f , that
is, cjk = Ff = 〈f, φjk〉, we obtain an approximation of the solution as minimizer of the
functional

(4.1) f = argmin
f∈PCH

{
‖Rlimf − zδlim‖2

L2(S1×R) + α‖Ff‖pp,ω
}
,

where

‖Ff‖pp,ω =
N∑
j=0

K(j)∑
k=0

ωjk|cjk|p

is a weighted `p-norm with strictly positive weights 0 < C ≤ ωjk. Please note that for p > 1
the functional is strictly convex and has a unique minimizer. For p = 1 uniqueness is given,
e.g., if the operator is injective. Since the penalty term works on sequences we rewrite the
functional with the help of the operator Rl as

(4.2) c = argmin
c∈`2

‖Rlc− zδlim‖2 + α
N∑
j=0

K(j)∑
k=0

ωjk|cjk|p
 .

The minimizer of the above functionals will depend on the following parameters: the regular-
ization parameter α, the weights ω := (ωjk)jk, the norm parameter p and the possibly noisy
data zδlim. Taking all parameters into account we denote the minimizer of (4.2) by c?α,ω,p,δ.
The corresponding function will be denoted by f ?α,ω,p,δ and we have f ?α,ω,p,δ = F ∗c?α,ω,p,δ and
f ?α,ω,p,δ is the minimizer of (4.1). For the minimization of the functional, several methods do
exists, e.g., the method of surrogate functionals [14, 50]. In that method, the functional is
replaced by a sequence of easier-to-minimize “surrogate” functionals such that the successive
minimizers converge to the desired limit f ?α,ω,p,δ.

Regularization theory is concerned with the convergence of the regularized solutions (in
our case, the minimizer of the Tikhonov functional with a sparsity constraint) to the solution
of the equation. We have the following result:

Theorem 4.1. Assume that A : X → Y is a bounded operator between Hilbert spaces X, Y ,
1 ≤ p ≤ 2, and that 0 < c < minλwλ, {ωλ}λ∈Λ = ω. For p = 1 assume further N (A) = {0}.
Let f ?α,ω,p,δ be the unique minimizer of (4.1) for given data zδ with ||z − zδ|| ≤ δ and α > 0.
If α = α(δ) satisfies the requirements

lim
δ→0

α(δ)→ 0 and lim
δ→0

δ2

α(δ)
= 0,

then we have,

lim
δ→0

[
sup

||z−zδ||≤δ
||f ?α,ω,p,δ − f †||

]
= 0,

i.e., the regularized solutions converge to the solution of the equation Af † = z that has
minimal value of || · ||pp,ω.
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This theorem was first proven in the seminal paper [14]. Please note that the condition
on the injectivity of A for p = 1, which is in turn needed to prove the existence of a unique
minimizer of the Tikhonov functional, has been slightly weakened in [7]. We may add that
results for different parameter choice rules do exist, e.g., for the discrepancy principle [1]. We
also would like to mention convergence speed results, which require, e.g., source conditions
for the solution [2, 3, 8, 14, 26, 27, 41, 51]. Convergence and convergence rates for sparse
regularization in a Bayes setup have been recently investigated in [25].

We immediately have:

Corollary 4.2. Tikhonov regularization with sparsity penalty for region of interest CT with
continuous data over the space PCHN is a regularization method.

Proof. According to Theorem 2.2 we have that the region of interest CT operator is injective.
Hence, the minimizer of (4.1) is unique. As PCHN and the data space are Hilbert spaces,
the corollary follows from Theorem 4.1. �

5. Parameter and Weight Choices

We aim for an approximate solution to the problem of solving Rlimf = zlim from noisy
data zδlim when f is a piecewise constant function. We gain such an approximate solution in
the space PCH of piecewise constant functions spanned by the Haar-wavelet by computing
the wavelet coefficients as given in (4.2), i.e.,

f =
∑
jk

cjkφjk with

cjk = argmin
c∈`2

‖Rlc− zδlim‖2
L2(S1×R) + α

N∑
j=0

K(j)∑
k=0

ωjk|cjk|p
 .

In the following we discuss the choice of the regularization parameter α, the weights ωjk and
the `p-norm. It is well-known that an `p-norm with p < 2 promotes sparsity, whereas p ≥ 1
ensures convexity. The theoretical results mentioned at the end of the previous section hold
true for all 1 ≤ p ≤ 2 and for all sequences of weights strictly bounded away from zero. For
our numerical experiments in Section 6 we set p = 1. For the choice of weights we consider
three types of basis functions in the space PCH. The first type are basis functions with
support either containing the region of interest (approximation, coarse wavelets), or being
contained in the region of interest (detail, fine wavelet). These basis functions assemble the
reconstruction in the ROI and hence, the coefficients should be computed as accurately as
possible. We choose the weight to be equal to 1 for these basis functions. The second type are
basis functions whose support does not overlap the region of interest (details, fine wavelets
and coarser wavelets away from the ROI). Although these functions do not affect the actual
reconstruction in the ROI they have an influence on the data fit term (the first term) of (4.2)
and hence on the values of the coefficients for the basis functions of the first type. We choose
a fixed value for the corresponding weights. In the numerical examples we experiment with
different values for this outside weight, e.g., 2, 5 and 10, but also 0.5. With a weight larger
than 1 we make sure that the coefficients outside the ROI are constrained but can still
contribute to the reconstruction. In doing so we make sure that small, but significant details
are still allowed to contribute to the reconstruction. The larger the weight for these ‘outside’
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basis functions the sparser the reconstruction, see the examples and discussion in the next
section. The last type of basis functions are those that overlap the region of interest without
belonging to the first type. For these functions we define intermediate weights depending on
the size of the intersection (the size of the shared support). The weight interpolates between
1, the inside weight, and the value chosen for the outside weight (empty intersection).

Splitting the set of indices Γ for the basis functions according to the position of the basis
functions with respect to the ROI in three sets, namely Γin, Γout and Γrim, the regularization
functional can be written as
(5.1)

cjk = argmin
c∈`2

{
‖Rlc− zδlim‖2

L2
+ α

( ∑
jk∈Γin

|cjk|p +
∑

jk∈Γrim

ωjk|cjk|p + ωout

∑
jk∈Γout

|cjk|p
)}

.

Other choices for the interpolation between the weight inside the ROI and the outside
are, of course, possible. Furthermore, one can also use level dependent weights, thus using a
more distinct penalization of coarse and fine details.

For the minimization of (5.1) we use the method of surrogate functionals [14, 50]: The
functional is replaced by a sequence of easier-to-minimize “surrogate” functionals such that
the successive minimizers converge to the desired limit. In each step of this iterative proce-
dure soft shrinkage is applied.

6. Numerical Results

We consider three examples: (i) a purely academic, and very sparse wavelet example, (ii)
the MCAT torso phantom [59, 63], and (iii) the Shepp-Logan head phantom. The wavelet
example is constructed to demonstrate the ability of the proposed method to numerically
reconstruct everything (even outside the ROI). Even though theoretically, see Theorem 2.2,
the reconstruction of PC functions is possible from ROI data, in numerical computation the
data do not fulfill the requirements of the theorem. The data are sampled, i.e., only finitely
many projections along finitely many lines (through the region of interest) are taken. The
case that projections are taken from only very few directions [29,34,48] is not considered in
the present work.

The implementation is done in Matlab. All data are simulated data. For the reconstruc-
tion method we choose the Haar (db1) wavelet and p = 1. Different sets of weights and
regularization parameter are chosen. The approximation quality of the computed recon-
struction freco is measured by computing the relative L2-error with respect to the true target
image ftrue, both for the whole image D as well as for the ROI Ω:

δΩ :=
‖ftrue − freco‖L2(∗)

‖ftrue‖L2(∗)
.

The weights are computed numerically as follows: given the finest possible wavelet decom-
position (Matlab command wmaxlev), we reconstruct from all possible delta-sequences and
check the overlap of this reconstructions with the ROI.

The regularization parameter is chosen manually to get small reconstruction errors and
visually best looking results. Stopping criteria such as Morozov’s discrepancy principle or
the S-curve method of [29] are still to be examined.
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6.1. A very sparse wavelet example. We consider an academic example built from 8
wavelets of different size, see Figure 1, and the first row of Table 1 for the values of the coef-
ficients. An important feature is the small wavelet – corresponding to a fine detail with high
intensity – outside the region of interest. Our proposed method allows the reconstruction of
fine details outside the ROI; and Figure 1 as well as Tables 1 and 2 demonstrate this. Table 1
shows the values of the wavelet coefficients for the original function and for the solutions
to the weighted wavelet functional with different values of the regularization parameter α.
The number of nonzero coefficients and their values for decreasing α indicate convergence
of the coefficients to the true solution. Table 2 shows reconstructions errors in the ROI and
in the whole image domain. The proposed method is able to achieve a very small relative
reconstruction error both in the region of interest and in the whole image domain.

In [48] a wavelet based method is proposed that deletes fine detail levels outside the region
of interest in order to get a regularized and sparse solution in the ROI. With this method,
the small detail cannot be reconstructed as soon as more than 1 detail level outside the ROI
are deleted, see the second row of Figure 1. From the reconstruction errors given in Table 3
one can see that also with this approach a very small reconstruction error in the ROI can
be achieved. This happens, however, at the cost of the sparseness of the reconstruction (see,
e.g., the first row of Table 3). The second part of Table 3 with two detail levels deleted
outside the ROI shows that increasing the regularization parameter indeed enforces sparsity
(decrease in the number of nonzero wavelet coefficients) but at a cost to the data fit. It
also shows that without the small detail the error of the reconstruction in the whole image
domain is quite large. Although one might be only interested in the reconstruction in the
ROI, with regard to Theorem 2.2, it seems a good idea to also reconstruct the outside as
good as possible.

The influence of the regularization parameter can also be observed for the proposed
weighted wavelet method. If the regularization parameter is chosen too small the reconstruc-
tion becomes less sparse (Table 2, the pair (ωout, α) = (10, 1 · 10−7)), whereas a too large
regularization parameter subdues small details (Table 2, the pair (ωout, α) = (10, 5 · 10−5)).

Please note that choosing a different outside weight is not just a simple scaling that can
be balanced by the regularization parameter but effects the quality of the reconstructed
solution. This is due to the fact that the minimizer of (5.1) is computed using a nonlinear
shrinkage method that is affected by a change in the weights. As an example, we point out
the pairs (ωout, α) = (10, 5 · 10−7) and (ωout, α) = (5, 1 · 10−6) in Table 2 with the different
reconstruction errors δROI(10, 5 · 10−7) = 0.379% and δROI(5, 1 · 10−6) = 0.417% respectively.
Further evidence of the existence of an ‘optimal pair’ of weight and parameter can be found
also in Table 5.

6.2. Reconstructions from the MCAT torso phantom. The proposed algorithm is
applied to numerically generated ROI-CT data for the standard mathematical cardiac torso
(MCAT) phantom [59,63], see Figure 2. The piecewise constant density function µ represents
a section through a simplified model of a human torso: Figure 2 (left) shows spine (no.4),
spinal canal (no.5), the lungs (no.3 and no.6), the surrounding tissue (no.2) and the exte-
rior (no.1). The table in Figure 2 gives the exact density values µi of the piecewise constant
torso phantom. The tomography data are generated by a Matlab implementation of the
limited Radon operator (1.2) where 160 offsets and 159 directions are used. The region of
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Figure 1 – A very sparse wavelet example with region of interest. First row left: Original.
Right: reconstruction from region of interest data with the proposed weighted wavelet method
and regularization parameter α = 5 · 10−7 and outer weight equal to 10. Second row: Recon-
structions with the linear shrinkage reconstruction as in [48]; outside of the ROI the 2 finest
detail levels are missing. Left: α = 1 · 10−6. Right: α = 5 · 10−6. See also Table 3. The colors
are normalized for better comparison.

interest is an off-center circle including part of the spine and the spinal canal as well as some
part of the left lung, see Figure 2 (right).

In this example we choose a region of interest that includes the bigger part but not all of
the spine where the spine has the highest attenuation coefficient. We want to test our method
in the situation that right outside the region of interest a small area with high attenuation
exists.

Figure 3 shows some example reconstructions with the db1-wavelet, the regularization pa-
rameter α = 5 · 10−8 and different weights. Reconstruction errors for different regularization
parameter and weights are listed in Table 5. Please note that the listed combinations of
weights and regularization parameter indicate that there is a ‘best pair’, meaning a combi-
nation of α and ωoutside that gives the smallest relative reconstruction error within the ROI.
This will be the topic of future work. E.g., we plan to adapt the “S-curve method” [40,48],
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α ωout nnz 100 · (c1, c2, . . . , c8)

original 8 3.125, 3.125, 3.125, 3.125, 6.250, 1.250, 1.250, 3.125

5 · 10−7

10

8 3.112, 3.113, 3.111, 3.117, 6.215, 1.244, 1.246, 3.028

1 · 10−6 8 3.099, 3.102, 3.097, 3.110, 6.181, 1.238, 1.242, 2.931

5 · 10−6 8 2.999, 3.008, 2.983, 3.049, 5.904, 1.190, 1.209, 2.155

1 · 10−5 8 2.874, 2.891, 2.841, 2.973, 5.557, 1.130, 1.170, 1.184

1 · 10−6

5

8 3.112, 3.113, 3.111, 3.117, 6.215, 1.243, 1.244, 3.028

5 · 10−6 8 3.061, 3.064, 3.053, 3.086, 6.077, 1.213, 1.222, 2.640

1 · 10−5 8 2.996, 3.004, 2.981, 3.047, 5.905, 1.176, 1.194, 2.156

Table 1 – A very sparse wavelet example. Reconstructions with the proposed weighted
wavelet method. Values of the wavelet coefficients of the true phantom and the reconstruction
for different values of the regularization parameter and ωout = 5 and 10.

α ωout nnz δROI in % δD in %

0 no influence 22396 10.731 72.708

1 · 10−7

10

181 0.216 34.525

5 · 10−7 8 0.379 1.114

1 · 10−6 8 0.758 2.221

5 · 10−6 8 3.789 11.105

1 · 10−5 8 7.578 22.211

5 · 10−5 7 38.404 52.846

1 · 10−7

5

571 1.410 45.600

5 · 10−7 45 0.235 12.603

1 · 10−6 8 0.417 1.115

5 · 10−6 8 2.084 5.560

1 · 10−5 8 4.167 11.120

Table 2 – A very sparse wavelet example. Reconstructions with the proposed weighted
wavelet method. Relative L2-error in the ROI and in the image domain for different values of
the regularization parameter and ωout = 5 and 10.

a sparsity-based choice rule for the parameter α based on a priori knowledge of the number
of nonzero wavelet coefficients in µ, e.g., from an anatomical atlas.

Figure 4 and Table 6 allow a comparison of our weighted wavelet method with the linear
shrinkage outside of the ROI as done in [48]. One can see that with the linear shrinkage
method the smallest reconstruction error is achieved when only the finest detail level is
deleted outside the region of interest. The relative reconstruction error in the ROI is then
14.93% where as the weighted wavelet method achieves a reconstruction error of 10.34% with
a comparable amount of nonzero wavelet coefficients. The first row of Figure 4 shows the
influence of the missing detail levels outside the ROI. The more detail levels are missing, the
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α no. of deleted levels nnz δROI in % δD in %

5 · 10−7

1

247 0.195 42.3

1 · 10−6 133 0.226 32.41

5 · 10−6 8 0.864 1.153

1 · 10−5 8 1.727 2.302

5 · 10−7

2

162 0.972 57.507

1 · 10−6 109 0.683 53.552

5 · 10−6 33 1.030 39.433

1 · 10−5 23 2.267 36.042

5 · 10−5 11 8.872 33.756

Table 3 – A very sparse wavelet example. Reconstructions with the linear shrinkage method
of [48]. Relative L2-error in the ROI and in the image domain for different values of the
regularization parameter and different numbers of deleted detail levels outside the ROI.

α ωout nnz δROI in % δD in %

1 · 10−6

5

268 11.987 4.206

5 · 10−6 15 2.094 5.612

7 · 10−6 9 2.615 8.120

1 · 10−5 8 0.406 10.952

5 · 10−5 7 20.705 39.235

Table 4 – A very sparse wavelet example. Reconstructions with the proposed weighted wavelet
method from data with 10% relative noise. Relative L2-error in the ROI and in the image
domain for different values of the regularization parameter and ωout = 5.

j µj

1 0

2 0.0600

3 0.0100

4 0.1200

5 0.0600

6 0.0100

Figure 2 – Density function from a torso phantom with numbered domains (left). Density
values of the domains (middle). Torso phantom with region of interest (right).

larger the ‘pixels’ (squares representing the basis functions that are used) get outside the ROI.
However, the difference between the linear shrinkage method [48] and the proposed weighted
wavelet method is that for the weighted wavelet method, small wavelets are always allowed
outside the ROI, and they show up in the spine region. From the zoom into the difference
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of reconstruction and true solution (Figures 3 and 4, lower row), one can see that the part
of the spine that is outside the ROI is much better reconstructed for the weighted wavelet
method. As this is an area of high attenuation, the observations about the reconstruction
error indicate that, indeed, its reconstruction influences the overall reconstruction.

 

 

−0.06

−0.04

−0.02

0

0.02

0.04

 

 

−0.06

−0.04

−0.02

0

0.02

0.04

 

 

−0.06

−0.04

−0.02

0

0.02

0.04

 

 

−0.06

−0.04

−0.02

0

0.02

0.04

Figure 3 – Reconstructions from noise-free data with the proposed weighted wavelet method;
α = 5 · 10−8. Upper row: reconstructions. Lower row: difference of reconstruction and true
image with zoom into the ROI. From left to right: Weight outside 0.5, 1 (i.e., all weights are
equal to 1), 5 and 10. The colors are normalized so that all images are shown within the same
range.

α ωout 0.25 0.5 1 2 5 10 15 20 25 30

5 · 10−7

nnz 1064 719 512 355 239 185 - -

δROI 18.10 17.09 17.56 18.98 21.25 23.77 - -

δ 58.48 57.05 56.62 59.05 60.66 61.69 - -

5 · 10−8

nnz - 3049 1957 1358 916 778 690 - -

δROI - 17.21 15.79 13.38 10.34 11.63 13.73 - -

δ - 59.82 58.67 57.21 55.80 56.38 57.97 - -

1 · 10−8

nnz - 8536 5775 3763 2322 1659 1457 1344 1247 1194

δROI - 19.23 18.80 17.98 16.23 14.12 12.81 12.30 12.32 12.74

δ - 61.43 60.90 60.14 58.67 57.21 56.39 56.05 55.86 55.95

Table 5 – Reconstructions from noise-free data with the proposed weighted wavelet method
for different values of the regularization parameter and the outside weight; ωout = 1 refers to
the case where all weights are equal to 1, i.e., a standard Besov penalty.

Comparing the reconstructions of the proposed weighted wavelet method for the very
sparse wavelet example and the MCAT phantom, Figures 1 and 3, one could observe that
for the very sparse wavelet example the whole function, i.e., also the exterior is reconstructed
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Figure 4 – Reconstructions from noise-free data with db1 and the linear shrinkage method
outside the ROI as introduced in [48]. Upper row: reconstructions. Middle row: zoom into
reconstructed ROI. Lower row: difference and zoom into ROI. Left: 4 from 7 detail levels are
used outside the ROI. Middle: 5 from 7 detail levels are used outside the ROI. Right: 6 from 7
detail levels are used outside the ROI. The colors are normalized so that all images are shown
within the same range.

extremely well, whereas this is not the case for the MCAT phantom. This is a result of using
discrete, sampled data in contrast to continuous data in the theoretical result. For the very
sparse example the amount of data is sufficient to also reconstruct the exterior whereas this
is not the case for the MCAT phantom with its much higher structure. This also reflects the
high instability for reconstructing outside the ROI.

6.3. Reconstructions for the Shepp-Logan head phantom. In order to compare our
method to the one from [66] we apply it to the same 2-dimensional modified Shepp-Logan
head phantom. The exact specifications are taken from [66, Table 1] and the description
given in the text. Hence, we use a 256 × 256 matrix with a region of interest as shown
in Figure 5, left. We reconstruct the ROI by the proposed weighted wavelet method and
show the results in Figure 5, right. The same profile lines as in [66] are also shown to allow
a comparison, see Figure 6. We would like to point out that the region of interest chosen
in [66] is rather large in comparison to the phantom. This explains that the weights have
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α # deleted levels 1 2 3

5 · 10−7

nnz 364 298 265

δROI 20.30 23.06 28.81

δ 60.75 63.16 69.38

1 · 10−7

nnz 819 618 500

δROI 14.93 18.00 28.15

δ 61.86 64.56 71.47

5 · 10−8

nnz 1155 839 680

δROI 15.86 18.68 29.30

δ 63.28 65.71 72.45

1 · 10−8

nnz 1998 1200 964

δROI 19.25 21.49 31.73

δ 65.44 67.16 73.52

Table 6 – Reconstructions from noise-free data with db1 and the linear shrinkage method
outside the ROI as introduced in [48].

a fairly small effect in this computations. We have also point out that our reconstructions
are comparable to those in [66] but with a much rougher angular sampling (255 equi-angular
views compared to 1300 equi-angular views in [66]).

Figure 5 – Shepp-Logan phantom. Left: the original phantom as used in [66] with lines
indicating the ROI and two profiles. Right: reconstruction using the proposed weighted
wavelet method with outer weight equal to 2 and α = 5 · 10−7. The images were modified
(contrast, light) to enhance visibility. The same grayscale is used for both pictures.

7. Conclusions

We presented a sparsity promoting reconstruction method for ROI tomography of piece-
wise constant functions using a Haar wavelet basis and a weighted `p–penalty. Theorem 2.2
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Figure 6 – Profiles along the white lines in Figure 5; true (blue, solid), reconstructed (red,
dashed), region of interest (green, dotted).

justifies convergence of our algorithm, at least for continuous data. Numerical tests on phan-
toms demonstrate that our method works well, and that it is indeed beneficial to allow also
small details outside the ROI to be reconstructed. First observations regarding the influence
of the weights and the regularization parameter indicate the existence of an optimal pairing.
However, parameter and weight choice rules are topic of future work.
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