OPEN QUESTIONS IN ASTRONOMY, 1642

. Insofar as Copernican and Tychonic systems are both
fully consistent with all accessible astronomical obser-
vations and several leading astronomers adhere to the
latter, can any decisive evidence be adduced to settle the
question whether the Earth is in orbit about the Sun or
vice versa?

. Granted that Kepler’s claims about planetary orbital
motion hold at least to high approximation, should they
be taken to hold (1) for bodies beyond those now known
to be orbiting the Sun and (2) for the bodies now known,
indefinitely far into the past and future; and should they
be taken to hold exactly, or only essentially exactly, or
merely approximately; and if they do not hold exactly,
should they be regarded as idealizations of some sort, and
do they at least hold in the mean?

. Qranted that questions about relative distances of the
planets, Sun, and Earth from one another have largely
been resolved in units of the mean distance of the Earth
from the Sun, what do these distances amount to in
earthly units — e.g. in units of the radius of the Earth?

. Is orbital astronomy perfectible at all —i.e. can the
motions be mathematically characterized in a way that
assures that conclusions drawn about the remote past and
the remote future will hold at least to the same level of
precision as conclusions about the present era?

. Can the apparent motion of the Moon be mathematically
characterized to the same level of precision as has been
achieved for the planets?

. What are comets, what trajectories do they describe in
their observed motions, and are they governed by the
same physical processes, whatever those may be, that
govern the motions of the planets?
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Archimedes

ON THE EQUILIBRIUM OF PLANES

OR

- THE CENTRES OF GRAVITY OF PLANES.

BOOK 1L

“I POSTULATE the following:

1. Equal weights at equal distances are in equilibrium,
‘and equal weights at unequal distances are not in equilibrium
" but incline towards the weight which is at the greater distance.
.. 2. If, when weights at certain distances are in equilibrium,
~something be added to one of the weights, they are not in

"equilibrium but incline towards that weight to which the .

addition was made. :

- 8. Similarly, if anything be taken away from one of the
-weights, they are not in equilibrium but incline towards the
‘weight from which nothing was taken.

- " 4. When equal and similar plane figures coincide if applied
- to one another, their centres of gravity similarly coincide.

8. In figures which are nnéqua.l but similar the centres of

gravity will be similarly situated. By points similarly situated

-in relation to similar figures I mean points such that, if straight
lines be drawn from them to the equal angles, they make equal
angles with the corresponding sides.
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‘6. If magnitudes at certain distances be in equilibrium,
(other) magnitudes equal to them will also be in equilibrium at

the same distances.

7. In any figure whose perimeter is concave in (one and)
the same direction the centre of gravity must be within the
figure.”

Proposition 1.
Wesghts which balance at equal distances are equal.
For, if they are unequal, take away from the greater the

difference between the two. The remginders will then not
balance [Post. 8]; which is absurd.

Therefore the weights cannot be unequal.

Proposition 2.
Unequal weights at equal distances will not balance but will
incline towards the greater weight. '
For take away from the greater the difference betwsen the
two. The equal remainders will therefore balance [Post. 1],
Hence, if we add the difference again, the weights will not
balance but incline towards the greater [Post. 2].

Proposition 3.
Unequal weights will balance at unequal distances, the greater
weight being at the lesser distance. aa
Let 4, B be two unequal weights (of which 4 is the

. greater) balancing about C at distances AC, BC respectively.

. Then-shall AC be less than BC. For, if not, take away

 from A the weight (4 —B.) The remainders will then incline
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Propositions 6, 7.

Two magnitudes, whether commensurable [Prop. 6] or in-
commensurable [Prop. 7], balance at distances reciprocally
proportional to the magnitudes.

I Suppose the magnitudes 4, B to be commensurable,
and the points 4, B to be their centres of gravity. Let DE be
a straight line so divided at C that

4 :B=DC: CE.

We have then to prove that, if 4 be placed at E and B at
D, O is the centre of gravity of the two taken together.

Since 4, B are commensurable, so are DC, CE. Let N be
a common measure of DC, CE. Make DH, DK each equal to
CE, and EL (on CE produced) equal to OD. Then EH =CD,
since DH=CE. Therefore LH is bisected at E, as HK is
bisected at D.

Thus LH, HK must each contain N an even number of

: times,
Ta.ke a ma.gmtude O such that O is contained as many
times in 4 as N is contained in LH, whence
A:0=LH :N.
But B:A=CE :DC
=HK: LH.

Hence, ex aequali, B: 0=HK : N, or O is contained in B 8s
many times as IV is contained in HK.

Thus O is a common measure of A, B,
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. Divide LH, HK into parts each equal to N, and 4, B into
parts each equal to 0. The parts of A will therefore be equal
in number to those of LH, and the parts of B equal in number
to those of HK. Place one of the parts of A at the middle
point of each of the parts N of LH, and one of the parta of B
at the middle point of each of the parts N of HK.

' Then the centre of gravity of the parts of 4 placed at equal
distances on LH will be at E, the middle point of LH [Prop. 5,
Cor. 2], and the centre of gravity of the parts of B placed at
equal distances along HK will be at D, the middle point of HK.

Thus we may suppose 4 itself applied at &, and B itself
applied at D.

But the system formed by the parts O of A and B together
is a system of equal magnitudes even in number and placed at
equal distances along LK. And, since LE = CD, and EC = DK,
LC= CK, so that C is the middle point of LK. Therefore C is
the centre of gravity of the system ranged along LK.

- Therefore A acting at £ and B acting at D balance about
the point C.

~II. Suppose the magnitudes to be incommensurable, and
let them be (A +a) and B respectively. Let DE be a line
divided at € so that
(A+a):B=DC:CE.

o e E

Then, if (4 +a) placed at £ and B placed at D do not
balance about C, (4 + a) is either too great to balance B, or not
great enough.

- Suppose, if possible, that (4 + a) is too great to balance B.
Take from (A +a) & magnitude a smaller than the deduction
which would make the remainder balance B, but such that the
remainder 4 and the magnitude B are commensurable.



194 ARCHIMEDES

Then, since 4, B are commensurable, and
A :B<DC:CE, )
4 and B will not balance [Prop. 6], but D will be depressed.

But this is impossible, since the deduction ¢ was an
insufficient deduction from (4 +a) to produce equilibrium, so
that % was still depressed.

Therefore (4 +a) is not too great to balance B; and
similarly it may be proved that B is not too great to balance
(4 +a)

Hence (4 +a), B taken together have their centre of
gravity at C.

Proposition 8.

If AB be a magnitude whose centre of gravity is C, and AD
a part of it whose centre of gravity is F, then the centre of
gravity of the remaining part will be a point G on FC' produced
such that
GC: CF=(AD): (DE).

D : B .

For, if the centre of gravity of the remainder (DE) be not
G, let it be a point H. Then an absurdity follows at once from
Props. 6, 7.

Proposition 9.

The centre of gravity of any parallelogram lies on the
straight line joining the middle points of opposite sides.

Let ABCD be a parallelogram, and let EF join the middle
points of the opposite sides AD, BC,

If the centre of gravity does not lie on EF, suppose it to be
H, and druw HK parallel to.4.D or BC meeting EF in K,
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Then it is possible, by bisecting ED, then bisecting the

‘halves, and s0 on continually, to arrive at a length EI less

. than KH. Divide both AF and ED into parts each equal
~ to EL, and through the points of division draw parallels to 4B

or CD.

- We have then a number of equal and similar parallelograms,
and, if any one be applied to any other, their centres of gravity

_' coincide [Post. 4]. Thus we have an even number of equal

magnitudes whose centres of gravity lie at equal distances along
& straight line. Hence the centre of gravity of the whole
parallelogram will lie on the line joining the centres of gravity
of the two middle parallelograms [Prop. 5, Cor. 2].

" But this is impossible, for H is outside the middle

parallelograms.
- "Therefore the centre of gravity cannot but lie on EF.

Proposition 10.

The centre of gravity of a parallelogram ss .the potnt of
intersection of its diagonals.

- For, by the last proposition, the centre of gravity lies on
each of the lines which bisect opposite sides. Therefore it
is at the point of their intersection; and this is also the
point of intersection of the diagonals.

Alternative proof.

_ Let ABCD be .the given parallelogram, and BD a diagonal.

Then the triangles ABD, CDB are equal and similar, so that

[Post. 4], if one be applied to the other, their centres of gravity
will fall one upon the other.



Motion, Celestial and Local

Goal: a mathematical representation specifying the location of a
body versus time along a trajectory, known or unknown

Status as of 1638:

By adopting Kepler’s proposed horizontal parallax of 1',
Horrocks had reduced his eccentricity for the Earth-Sun orbit
from 0.0180 to 0.0173, and that in turn had led to an increase
in the eccentricity of Venus’s orbit from 0.00692 to 0.00750
and in the length of its semi-major axis from 0.74413 to 0.7233
a.u.; the revised value of the semi-major axis eliminated the
prior 0.11% discrepancy between its cube and the square of
its period, leading him then to take Kepler’s 3/2 power rule to
be exact and inferring from its period a further revision of the
length of the semi-major axis to 0.72333 a.u.; these revisions
turned out to reduce discrepancies between observation and
the Rudolphine Tables as large as 5’ to less than 2'.

The sole “natural” local motion — that is, near the surface of
the Earth — is vertical fall. Galileo had originally concluded
that bodies have a characteristic, natural constant speed of
descent that depends on their density and the density of the
medium. He was now instead proposing that, in the absence
of any resisting medium, all bodies are uniformly accelerated
as they descend, the rate at which they gain speed is the same
for all bodies regardless of their weight and shape, and any
observed departure from this results from an effect induced
by the motion, and hence a “second-order” consequence of it,
namely a resistance to it impressed on the moving bodies by
the medium through which they are descending.



DISCORSI

DIMOSTRAZIONI

MATEMATI C H E,
intorno a due nuone [Cienz.e
Attencnti alla
MEecanica & 1 MoviMenTr Locar,

dclS{gkor
GALILEO GALILEI LINCEO,

Filofofo e Matematico primario dcl Sereniffimo
Grand Ducadi Tofcana.

Convna Appendicedelcentrodi granitad alcuni Solids.

IN LEIDA,
Appreflo gli Elfevirii. m. p. c. xxxvrr.



Table of the Principal Matters

That Are Treated in the

Present Work'

1
First new science, concerning
the resistance of solid bodies

to separation. First Day,
I
What may be the cause of
cohesion. Second Day,

m
Second new science, of local

motions. Third Day,
Of uniform motions, page 148
Of naturally accelerated
motion, page 153
v
Of violent motion, or of _
projectiles. Fourth Day,
v

Appendix of some propositions
and demonstrations
concerning the center of
gravity of solids.

(vl
[ Of the force of percussion.? Added Day,

page 11

page 109

page 147

page 217

page 261

page 281)

1. This table of contents reversing the essential content of the two first

days, was prepared by the Elzevirs.

2. Sometimes called the Sixth Day, this incomplete dialogue was first
published in 1718, as part of the second collected edition of Galileo’s works,
A so-called Fifth Day, first published by Vincenzio Viviani (1622-1703)

in 1674, does not belong to this book.
9



“Natural philosophy” — from Scholastic philosophy
VS.

“Scientia” (Lat.), “Scienze” (It.) — secure knowledge
g

“Theory”: An inter-connected system of mathematical
propositions, linking measurable parameters to one
another and to observable phenomena, from which,
with appropriate additional empirical information
(e.g. values of parameters), one can derive answers

to a wide range of questions, including predictive
and counterfactual questions.

Examples: Ptolemaic theories of the Sun, the Moon,
Mercury, Venus-Mars-Jupiter-Saturn; Copernican
theories of the same; Keplerian theories of the six
planets and the Moon



Apollonian Parameters of Orbital Theory

Obliquity of the ecliptic
Longitude and latitude

Sidereal period

Synodic period

Longitude of apogee (or aphelion)
Eccentricity

Radius ratio (of two circles involved in retrograde
motion)

Each of these was (1) linked to specific observable
phenomena; (2) measurable; (3) assigned a physical
significance (that underwent revision from Ptolemy to
Copernicus to Kepler, while preserving, at least to high
approximation, key propositions involving them)



Galileo’s First New Science

Strength of Materials

What parameters govern fracture? Obviously some
combination of dimensions of the beam and applied
load (i.e. weight), but what combination?

Our answer: stress (1820s) and stress intensity (1920s)



Galileo’s Second New Science

“Local Motion”

I.e. uniform motion, naturally accelerated
motion, violent projectile motion

Relevant parameters, in absence of a resisting medium:

distance, height of descent or ascent, time, speed

Irrelevant parameters, in absence of a resisting medium:

weight, shape, density, density of resisting medium

Basis for claim;

(1)“Thought experiments” — e.g. Discorsi, [108]

(2) While the heavier of two bodies in vertical fall almost
always reaches the ground sooner, the times and hence
the speeds are not proportional to the weights of the
bodies; and as the heavier the two bodies are, the less
the difference in their times of fall

(3) The effects of resistance on a falling body are smaller
the less the density of the medium, suggesting they
disappear entirely with zero density

(4) Two 5 braccia pendulums, one with a cork bob and the
other with a lead bob, remain synchronous, with equal
periods, even though resistance affects former more



Galileo on Pendulum Isochronism

... So I fell to thinking how one might many times repeat descents
from small heights, and accumulate many of those minimal differ-
ences of time that might intervene between the arrival of the
heavy body at the terminus and that of the light one, so that added
together in this way they would make up a time not only observ-
able, but easily observable.

... Ultimately I took two balls, one of lead and one of cork, the
former being at least a hundred times as heavy as the latter, and I
attached them to equal thin strings four or five braccia long, tied
high above. Removed from the vertical, these were set going at
the same moment, and falling along the circumferences of the
circles described by the equal strings that were the radii, they
passed the vertical and returned by the same path. Repeating
their goings and comings a good hundred times by themselves,
they sensibly showed that the heavy one kept time with the light
one so well that not in a hundred oscillations, nor in a thousand,
does it get ahead in time even by a moment, but the two travel
with equal pace. The operation of the medium is also perceived;
offering some impediment to the motion, it diminishes the oscil-
lations of the cork much more than those of the lead. But it does
not make them more frequent, or less so; indeed, when the arcs
passed by the cork were not much more than five or six degrees,
and those of the lead were fifty or sixty, they were passed over in

the same times.
First Day, p. [128f]; see also Fourth Day, p. [277]



NON-ISOCHRONISM OF CIRCULAR-ARC PENDULUMS

£ . Lyzgz o (13y2pe , (135y2p6
A U N T TR

where k=sin{a/2) and « is the arc in descent.

Arc in Number of full
descent P/P, cycles before a
(deg) — 20% discrepancy
2.5 1.00012 1667
5. 1.00048 417
10. 1.00191 105
15. 1.00430 47
30. 1.01741 12
60. 1.07317 3
90. 1.17996 1+

These precise numbers were not calculable before the late 18th century. (It requires the solution
of an elliptical integral.) But both Mersenne and Huygens had observed the qualitative results,
the former in the 1630s (published at that time) and the latter in the 1650s (published in 1673).
A constant-arc circular pendulum would, of course, have a repeatable period, but the question
of the trajectory required to maintain isochronism (that is, same period regardless of arc length)
was left for Huygens to discover, in 1659.



Why, when two mechanisms are irremediably
involved in an actual process, should one be
disregarded, focusing exclusively on the other?

¢ A theory of the principal or dominant mechanism is
possible, and it is needed in order to make empirical
investigation of the other “secondary” one tractable

e Experiments yielding results of evidential value are
possible provided only that the confounding effects of
the other mechanism be largely eliminated or controlled

e No theory of the other mechanism is possible at all — for
example, because too many variables are involved — so
that any science becomes possible only by disregarding
it and focusing on the one amenable to theory



Uniform Motion

In a given time:

speed, : speed, :: distance, : distance;

Over a given distance:

speed; : speed :: elapsed time; : elapsed time;

Therefore, speed in uniform motion varies directly
with distance and inversely with elapsed time, the
compound to two ratios

Proposition V1. If two moveables are carried in equable
motion, the ratio of their speeds will be compounded

from the ratio of spaces run through and from the
inverse ratio of the times.

Proof: Let V and T represent the spaces, and S and R
represent the times. Then the ratio of the speeds is
represented by the ratio of C to G, compounded from
the ratio of C to E (where C:E as V:T) and the ratio of
E to G (where E:G as R:S).
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Euclid's Elements, Book VII, Proposition 2

Fuclid’s Elements
Book VII

Proposition 2

To find the greatest common measure of two given numbers not relatively prime.
Let AB and CD be the two given numbers not relatively prime.

It is required to find the greatest common measure of 4B and CD.

14 1C ] If now CD measures 4B, since it also measures itself, then CD is a common measure of CD

17 G and AB. And it is clear that it is also the greatest, for no greater number than CD measures
CD.

But, if CD does not measure 4B, then, when the less of the numbers AB and CD being

continually subtracted from the greater, some number is left which measures the one before

it.

‘n For a unit is not left, otherwise 4B and CD would be relatively prime, which is contrary to
the hypothesis.

ip Therefore some number is left which measures the one before it.

Now let CD, measuring BE, leave EA less than itself, let E4, measuring DF, leave FC less than itself, and
let CF measure AE.

Since then, CF measures AE, and AE measures DF, therefore CF also measures DF. But it measures
itself, therefore it also measures the whole CD.

But CD measures BE, therefore CF also measures BE, And it also measures EA, therefore it measures the
whole BA.

But it also measures CD, therefore CF measures AB and CD. Therefore CF is a common measure of 4B
and CD.

I say next that it is also the greatest.

If CF is not the greatest common measure of 4B and CD, then some number G, which is greater than CF,
measures the numbers 4B and CD.

Now, since G measures CD, and CD measures BE, therefore G also measures BE. But it also measures
the whole B4, therefore it measures the remainder AE.

But AE measures DF, therefore G also measures DF. And it measures the whole DC, therefore it also
measures the remainder CF, that is, the greater measures the less, which is impossible.

Therefore no number which is greater than CF measures the numbers 4B and CD. Therefore CF is the
greatest common measure of AB and CD.

Corollary

http://aleph0.clarku.edu/~djoyce/java/elements/bookVIL/prop VII2. html[10/4/2011 12:17:20 PM]



Euclid's Elements, Book VI, Proposition 13

FEuclid’s Elements
BooK VI

Proposition 13

To find a mean proportional to two given straight lines.
Let AB and BC be the two given straight lines.

It is required to find a mean proportional to AB and BC.

Place them in a straight line, and describe the semicircle ADC on AC.
Draw BD from the point B at right angles to the straight line AC, and L1l
join AD and DC.

Since the angle ADC is an angle in a semicircle, it is right. )1

And, since, in the right-angled triangle ADC, BD has been drawn from the right angle perpendicular to the VLA.C
base, therefore BD is a mean proportional between the segments of the base, 4B and BC. '

Therefore a mean proportional BD has been found to the two given straight lines 4B and BC.
QEF.

Guide

This construction of the mean proportional was used before in [1.4 to find a square equal to a given rectangle. By
proposition V.17 coming up, the two constructions are equivalent. That is the mean proportional between two lines is

the side of a square equal to the rectangle contained by the two lines. Algebraically, a : x = x : b if and only if ab = x2.
Thus, x is the square root of ab.

When b is taken to have unit length, this construction gives the construction for the square root of a.

Use of this proposition

This construction is used in the proofs of propositions VI.25, X.27, and X 28.

Next proposition: V[.14 [Select from Book VI |

Previous: V.12
Book V1 Jucti
EETTa

http://aleph0.clarku.cdu/~djoyce/java/elements/book VI/propVI13.htm1[10/4/2011 12:05:06 PM]



Euclid's Elements, Book VI, Proposition 11

~FEuclid’s Elements —
Book VI

Proposition 11

To find a third proportional to two given straight lines.

Let AB and AC be the two given straight lines, and let them be placed so as to contain any angle.

It is required to find a third proportional to 4B and AC.

A Produce them to the points D and E, and make BD equal to AC. Join BC, and 13
draw DE through D parallel to it. L31
Then since BC is parallel to a side DE of the triangle ADE, therefore, 19
proportionally, AB is to BD as AC is to CE. —
But BD equals AC, therefore AB is to AC as AC is to CE. h'fvA

Therefore a third proportional CE has been found to two given straight lines 4B and AC.
QEF.

Guide

If a and b are two magnitudes, then their third proportional is a magnitude ¢ such that a:5 = b:c. The third proportional
is needed whenever a duplicate ratio is needed when the ratio itself is known. The duplicate ratio for a:b is a:c.

Use of this proposition

This construction is used in propositions VI.19, VI.22, and a few propositions in Book X.

Next proposition: VI.12 [Select Rom Book VI |

Previous: VI.10 ]
SelEgrbookse”
Book VI introduction
[Selectiopic |

€199
D.E loyce

http://aleph0.clarku.edu/~djoyce/java‘elements/book V1/propVI1 1.htmi[10/4/2011 12:07:51 PM]



“On Naturally Accelerated Motion”

And first it is appropriate to seek out and clarify the definition
that best agrees with that which nature employs. Not that there is
anything wrong with inventing at pleasure some kind of motion
and theorizing about its consequent properties, in the way that
some men have derived spiral and conchoidal lines from certain
motions, though nature makes no use of these; and by pretending
these, men have laudably demonstrated their essentials ex suppo-
sitione. But since nature does employ a certain kind of accelera-
tion for descending heavy things, we decided to look into their
properties so that we might be sure that the definition of acceler-
ated motion which we are about to adduce agrees with the essence
of naturally accelerated motion. And at length, after continual
agitation of the mind, we are confident that this has been found,
chiefly for the very powerful reason that the essentials success-
ively demonstrated by us correspond to, and are seen to be in
agreement with, that which naturalia experimenta show forth to
the senses. Further, it is as though we have been led by the hand
to the investigation of naturally accelerated motion by considera-
tion of the custom and procedure of nature herself in all her other
works, in the performance of which she habitually employs the
first, simplest, and easiest means. And indeed, no one of judg-
ment believes that swimming or flying can be accomplished in a
simpler or easier way than that which fish and birds employ by
natural instinct.

Thus when I consider that a stone, falling from rest at some
height, successively acquires new increments of speed, why should
I not believe that those additions are made by the simplest and
most evident rule? For if we look into this attentively, we can
discover no simpler addition and increase than that which is
added on always in the same way .... [- that is,] whenever, in

equal times, equal additions of swiftness are added on.
p. [197f]



Uniformly Accelerated Motion

Equal increments in speed in equal increments of time

vacquired oc telapsed

(v=at; s =% at)
Versus

Equal increments in speed over equal increments of space

Vacquired C Straversed

(s = ceP’; v = ¢ - beb?)



Mean Speed Theorem

Prop. 1. The time in which a certain space is traversed
by a moveable in uniformly accelerated movement
from rest is equal to the time in which the same space
would be traversed by the same moveable carried in
uniform motion whose degree of speed is one-half the
maximum and final degree of speed of the previous,
uniformly accelerated, motion.

Let line AB represent the time in which the
space CD is traversed by a moveable in
uniformly accelerated motion from C. Let
EB represent the maximum and final degree
of speed increased in the instants of the time
AB. All lines reaching AE from single points
on the line AB drawn parallel to EB will

G A
.2

represent the increasing degrees of speed

after the instant A. Next I bisect BE at F and E
I draw FG and AG parallel to BA and BF;

the parallelogram AGFB will [thus] be

constructed, equal [in area] to the triangle

AEB, its side GF bisecting AE at I.

Upshot: Problems involving uniformly accelerated
motion can be reduced to problems involving only
uniform motion.

FB;J)-



Evidence Problems

In orbital astronomy

1. Determining distances of celestial objects from the
Earth (and from the Sun) in a common unit.

2. Distinguishing merely apparent motions and
changes of motions from real ones.

In mechanics of local motion

1. Making precise measurements of elapsed time was
difficult because the characteristic times of pheno-
mena of motion that could be controlled were short

2. While mean speeds may be measurable, via distance
and time measurements, there was no obvious way
of measuring speeds that vary with time

3. Theoretical claims that were being set forth usually
concerned motions under idealized circumstances
like the absence of air resistance — ideals that could
not be realized in experimental practice



Fundamental Result

Prop. 2. If a moveable descends from rest in uni-
formly accelerated motion, the spaces run through in
any times whatever are to each other as the duplicate
ratio of their times; that is, are as the squares of those
times.

Corol. 1. From this it is manifest that if there are any
number of equal times taken successively from the
instant or beginning of motion [during each of which
a certain space is run through], ... then these spaces
will be to one another as are the odd numbers from
unity, thatis,as 1, 3,5, 7, ....

Corol. 2. 1t is deduced, second, that if at the beginning
of motion there are taken any two spaces whatever,
run through in any [two] times, the times will be to
one another as either of these spaces is to the mean
proportional space between the two given spaces.

i.e. elapsed time; : elapsed time, ::
spacey : ‘f(space, * space;) = ‘/space; : ‘/spacez



“Galileo’s Postulate”

The same speed is acquired from any given height
whether in direct fall or along an inclined plane.

First edition

Posthumous Edition



Torricelli: De Motu Gravium Naturaliter Descendentium
Et Projectorum (1644)

Galileo, when about to discuss naturally accelerated motion, puts forward
a principle, that he himself thinks not yet clear, as long as he strives to
establish it by the not fully precise experiment of the pendulum, which is:
That the stages of velocity of the same moving object, when amassed over
differently inclined planes, are equal when the elevations of the same
planes are equal. From this claim hangs as it were his whole doctrine on
both accelerated and projectile motion. If anyone has doubts about the
principle, he will not have at all secure knowledge of the things that follow
from it. I know that Galileo in the last years of his life tried to demonstrate
that supposition, but because his own argument, with his book on motion,
has not been published, we have brought forth these few statements on the
movements of weights, to be fixed at the beginning of our little book, so
that it may appear that Galileo’s supposition can be demonstrated and
indeed at once by that theorem that he himself selected as demonstrated
from Mechanics in the second part of his sixth proposition on accelerated
motion, to wit: The momenta of equal weights over planes unequally
inclined are to each other as the perpendiculars of equal parts of the same
planes, [that is, as the sines of the angles of inclination of the planes].

We set forth

that two weights joined together cannot move of themselves unless their
common center of gravity descends.

For whenever two weights are so joined together among themselves that the
motion of one follows on the motion of the other, these two weights will be as if
one weight made up of two, whether this be a balance, or a pulley, or any other
mechanical proportion; however a weight of this sort will not ever move unless
its center of gravity descends. And so whenever it is set up so that its common
center of gravity cannot at all descend, the weight will remain wholly at rest in its
own place; for it will be moved elsewhere without effect; namely, by horizontal
motion, which tends downward in vain.



Mersenne: Harmonie Universelle (1636)

“I question whether Lord Galileo ever did the experiments of falls along
the plane, since he nowhere says so, and the proportion he gives often
contradicts experiment.” (p. 112)

Mersenne carried out a number of inclined plane experiments before
Galileo’s Two New Sciences was published, from low to high inclinations.
In the set of experiments presented immediately preceding the above quo-
tation, he first calculates the expected distance of fall along the inclined
plane in a given time, based on a value he had obtained for the distance of
fall in 1 second, and then measures the actual distance the sphere travels
along the plane. Dominico Bertoloni Meli has reduced the reported data
to the ratio of the observed distance to the expected distance, using a
common denominator of 7 (corresponding to the then unknown fact that a
rolling sphere covers 5/7 of the distance of a freely sliding sphere in any
given time):

Inclination of the plane Observed/Expected Distance
15 deg 5.25/7
25 49717
30 5.6/7
40 6.0/7
45 6.0/7
50 ’ 5.0/7

Mersenne remarks on the difficulties of getting well-behaved results at 50
deg and above.



GALILEO’S INCLINED PLANE EXPERIMENTS

“We made the same ball descend only one-
quarter the length of this channel, and the time
of its descent being measured, this was found
always to be precisely one-half the other. Next
making the experiment for other lengths, com-
paring now the time for the whole length with
the time of one-half, or with that of two-thirds,
or of three-quarters, and finally with any other
division, by experiments repeated a full hundred
times, the spaces were always found to be to one
another as the square of the times. And this for
all inclinations of the plane. ... We observed
also that the times of descent for diverse inclina-
tions maintained among themselves accurately
that ratio that we shall find later assigned and
demonstrated by our Author.”

Two New Sciences (1638) p. 213

Galileo’s diagram in A
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Galileo’s announced dimensions in
Two New Sciences:

Length: 12 braccia
Height: 1 to 2 braccia

Angle: 4.8 t0 9.6 deg
Maximum time: 4.9 sec
Minimum time: < 0.9 sec



An Experiment in the
History of Science

With a simple but ingenious device Galileo could
obtain relatively precise time measurements.

On the “Third Day"” of his Discorsi
(7} Galileo described an experiment in
which he had timed a ball gccelerating
along different lengths and slopes of
an inclined plane, With it he belicved
he had established the science of nat-
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(Left) General Iayout of the experimental appuratus, (Right) The timing apparatus,

Thomas B. Scttle

vrally accelersted motion. To get a
better appreciation for some of the
problems he. faced I have tried to re-
produce the experiment essentially as
Galileo described it. In the process I
found that it definitely was technically

“LARGE
CONTANER®
N
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feasible for him, and 1 think I gained
& good idea of the type of results he
probably looked for and of how well
they turned out.

He described the experiment because,
in his words: “in those sciences where
mathematical demonstrations are ap-
plied to natural phenomena, as is seen
in the case of perspective, astronomy,
mechanics, music, and others [,] the
principles, once established by well-
chosen experiments, become the found-
ations of the entire superstructure” (7,
p. 171). In this case his aim was to
eatablish a science based on two prin-
ciples: (i) a general definition of uni-
form acceleration, “such as actually
oceurs In mature” (7, p. 154), as that
motion in which equal increments of
velocity are added in equal times and
(ii) sn assumption that “the speeds
acquired by one and the samie body
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Table 1. Sample of expcnmentnl “sesults and
calculations which confism Eg. 2.

Time (ml of water)

=
e T R

1S " 88 90+ 90+
9t
91

13

SRR z888838s

10 72 724- 2%~

3 40 40 404

23 23.5 23+

Table 2, Bxperimental data huiud

ths billiard ball for tho bases of three

and times computed from one of
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e

Bz

~

Exporimental dats  Calculsted data
Slope L a T T
a 12 292 117 118— (from b}

b 13 625 84 85— {fromc)
c 9 1147 52 Si4 (froma)




Rolling in a Groove on an Inclined Plane
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Huygens on Rolling vs. Falling (after the Principia)

APPENDICE VI
A LA PARS QUARTA DE L', HOROLOGIUM OSCILLATORIUM".

[1692 ou 1693]".

[Fig. 160.] Pendulum pondus cujus
centrum gravitatdds A [Fig.
160] per Cycloidemn delatum
AB, acquirit in punéto B in-
fimo celeritatem qua per ar-
cum BD ®qualem BA afcen-
dat.

Si vero annulus gravitace
preditus, et tamen ut peri-
pheria fimplex confideratus
volvatur in paracycloide *)
EF,ita ut centrum ejus de-

feribac cycloidis portionem
AB, is quoque vim collegit,

ubi in B pervenit, qua afcendat revolvendo ufque in D.

Huygens concludes: “Therefore the total time of revolving in the annulus along the curve
EG will be to the time of vibration of the pendulum along the arc AF as V2 to 1, or
roughly as 7 to 5.”

VIL>

MOUVEMENT ROULANT SUR UN PLAN INCLINE.

Un anncau roule [Fig. 83] moins vifte qu’un cylinde fur un plan inclind. le cylindre
moins vifte que Ia fphere, et In fphere moins vifte qu’une poutre fur des rouleaux *).

[Fig. 83.]




Riccioli on Measuring Time

First example: A pendulum of 3 old Roman feet 4
inches in length with a 1 pound bob

21706 arcs in 21660 sidereal seconds

Second example: A pendulum of 3 old Roman feet 4
inches, with an 8 ounce iron sphere

87758 arcs in 86400 sidereal seconds

“I set up nine companions (well instructed in this matter, who almost all

publicly practiced Philosophy or Theology or Mathematics) so that they
succeeded each other in the counting after about every half hour; and in
the year 1642 from noon on April 2 to noon on April 3, we maintained a
count of simple vibrations, whose number, from the pebbles thrown in
the vase every 60 vibrations, was found to be 1466 sixties and in addition
38 vibrations. But a day of the primum mobile contains 1440 of its own
minutes. The solar day indeed is 1444 primum-mobile minutes. There-
fore such a pendulum in one day of the primum mobile completes sixty
times 1462 vibrations and in addition 38 vibrations, when it ought to
complete only 1440 if a single simple vibration corresponded to one
second; therefore I added one ring to the chain so that the number of
vibrations might turn out less, and it might approach more nearly in each
of its vibrations to a second of the primum mobile.”

Almagestum Novum, 1651, p. 86

Third example: A pendulum of 3 old Roman feet 4
+20/100 inches with an 8 ounce iron sphere

86998 arcs in 86400 sidereal seconds



Fourth example: A pendulum of 3 old Roman feet 2
+67/100 inches with a 20%; ounce brass sphere

3212 arcs in 3192 sidereal seconds

Upshot:

The one-second pendulum: 3 old Roman feet 3+27/100
inches —i.e. 3927/100 inches — with a 20%: ounce brass
sphere

The one-half second pendulum: 9 +76/100 inches with
a little brass sphere

The one-sixth second pendulum: 1 + 15/100 inches
with a little brass sphere weighing 4 drachmas

“Therefore we used a pendulum of this sort for measuruing the
natural movement of weights, but, in order to count its vibrations
as quickly as possible, it is proper after each set of ten to raise one
finger of two clasped hands, and to be extremely attentive. Indeed
for greater proof to take two equal pendulums of this sort and
have two counters, making their own count separately, so that it is
apparent at the end of the operation whether it agrees or not.”

Ibid., p. 87









Proposition IV.
Weights in perpendicular free fall move more and more quickly towards the end, in an increase of
speed that is between numbers equally unequal, numbered as wholes; or so as the spaces,
traversed in certain times, are among themselves as the squares of the times; or so as the spaces
traversed have among themselves a duplicate proportion to that which the times during which

those spaces were measured have [among themselves].

The whole assertion of Galileo (above) and Baliani has been very often proven by our
experiments; now these are the numbers are said to be equally unequal as wholes:
1,3,5,7,9,11,13,15, &c. And so if in the first quarter of an hour some weight has completed 1
stage, in the second quarter it will complete 3, in the third, 5 stages, & thus through the rest of the
progression. In order to explore this in truth, Grimaldi & I prepared in advance several clay
globes of the same bulk & dropped those of 8 ounces from different towers, or house-windows, or
little casements suited for taking measurements, and we first used the towers of Bologna, namely
the Asinelli, which is 312 old Roman feet high, and St. Peter, 208 feet high and St. Petronius, 200
feet high, & St. James, 189 feet high, & St. Francis, 150 feet high, though we did not use their
whole height, but that which was suited for the aforesaid proportion. Moreover, for discerning
more precisely the time in which the dropped globes arrived at the pavement, we used two very
small pendulums (see Chap. 20, prop. 13, in the second paragraph), of whom, as is clear, one
simple vibration lasts for 10 thirds of the primum mobile. Among many experiments, however,
the best two, the most certain of all, written below, I place in the following table, so that so I may

not end up t00 lengthy for my reader.

Expe | Vibratianes fim- | Tempus ¥ibra- | Spatium confelfum 4 glo- 5 ""}7 Z‘gafgor]ﬂrﬂi?rap 07110 ReT b
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4 . 12 i | 99 9
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4 ~ 140 N - 106 b
4 o ferd ac] 280 7

And so in the first experiment, when we observed from a height of 10 feet the aforesaid globe
(the operation repeated often) come to the pavement in at least five vibrations of the aforesaid
pendulum, we tested the height which a globe equal to that one passed through in 10 vibrations
and found it to be 40 feet & thus for the rest. In experiment 2, however, we explored those times
with an assumed height, for the height having been found to be 15 feet which the globe passed
through in 6 vibrations, we concluded that, if the aforesaid proportion were correct, at the end of
12 vibrations it ought to pass through 60 feet, therefore, a height of 60 feet that would be suitable
to action having been sought for, we found this to be correct, & thus for the others; we could not
nowever find the height owed to 30 vibrations which would be useful for the rest of the
progression. Now you see in the first experiment, that as the space of 10 was to 40, so the square
of 5 vibrations, that is 25, is to the square of 10 vibrations, that is 100; & in the second
experiment, as the space of 15 was to the space 60, so the square of 6 vibrations, that is 36, is to
the square of 12 vibrations, that is 144, & thus for similar ones.

Riccioli: New Almagest, Book 2, Chapter 21, 1651



Constant of Proportionality: A Key Parameter

velocity o« time distance < time®
g : velocity acquired in d, : distance of fall in
the first second the first second

Galileo (remark in a letter to Peiresc, 15 January 1635)

4 cubits in the first second (197 cm)

Mersenne (in Harmonie Universelle, 1636, confirmed in 1640s)

12 Paris feet in the first second (394 cm)

Riccioli (in Almagestum Novum, 1651)

15 Roman feet in the first second (467 cm)’

{Huygens (in 1659, then in Horologium Oscillatorium, 1673)

15 Rh feet 7% in. in the first second (4904 cm)}

' Using Riccioli’s 312 old Roman ft height for the Tower of Asinelli, which is now said
to be 97.2 meters high; if instead one uses 29.57 cm for the old Roman ft (Koyré, Klein),
the distance of fall in the first second 444 cm, a nearly 10 percent error that is difficult to
explain insofar as the error appears to be uniform across all Riccioli’s announced values,
and therefore cannot be attributed to either air resistance or to timing errors, but only to a
uniform error across all his announced heights.



Galilean Principles of “Local” Motion

In the absence of air resistance, bodies descending from rest

1. In vertical descent acquire equal increments of speed
in equal increments of time.

2. Acquire the same speed in descending from the same
height regardless of their weight or shape.

3. Acquire the same speed in falling from a given height
whether falling vertically or along an inclined plane.

4. Acquire a speed in descending from any given height
which is just sufficient to raise them to that height.

What experimental evidence did Galileo and those in the
decade following him provide in support of each of these
principles; and how telling was that evidence in showing
whether each holds merely to high approximation or exactly?



