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Abstract
A new reconstruction method is given for the spherical mean transform with
centers on a plane in R

3 which is also called the sonar transform. Standard
inversion formulas require data over all spheres, but typically, the data are
limited in the sense that the centers and radii are in a compact set. Our
reconstruction operator is local because, to reconstruct at x, one needs only
spheres that pass near x, and the operator reconstructs singularities, such as
object boundaries. The microlocal properties of the reconstruction operator,
including its symbol as a pseudodifferential operator, are given. The method
is implemented using the approximate inverse, and reconstructions are given.
They are evaluated in light of the microlocal properties of the reconstruction
operator.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper, we develop a novel local reconstruction method for the spherical Radon transform
with centers on a plane. As this transform is one model for sonar under the Born approximation,
that is, under the assumption there are not multiple scattering events, it is also called the sonar
transform.

Let u(t, x) be the acoustic pressure field at x ∈ R
3 at time t � 0. Then, u satisfies the

acoustic wave equation

�xu − 1

ν2
∂2
t u = −δ(x − z)δ(t) (1.1)
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where ν = ν(x) is the speed of sound and z ∈ P = {x ∈ R
3 |x3 = 0} is the excitation point

on the ocean surface. The inverse problem in sonar is to recover ν from the backscattered
(reflected) field us observed at P for all times t > 0.

Cohen and Bleistein [3] made the ansatz
1

ν2(x)
= 1 + n(x)

c2

where c is a constant background velocity. Then,

1

4π

1

c2τ 2

∫
S(y, cτ

2 )

n(x) dS(x) = −c2
∫ τ

0
(τ − t)us(t, y) dt + higher order terms in n (1.2)

where S(y, r) is the sphere centered at y ∈ R
3 and of radius r and τ is the observation period.

Under the assumption that n � 1 (i.e. the Born approximation), the higher order terms are set
to zero and the right-hand side of (1.2) becomes an integral from 0 to τ of the solution to the
wave equation. Thus, (1.2) reduces to recovering n(x) from the integrals of n over spheres
centered on the plane P where the right-hand side in (1.2) is known from the measured data
u(t, y).

Since we are interested in spheres with centers on the plane x3 = 0, we define our spheres
in terms of z ∈ R

2 and r > 0 :

S(z, r) = {x ∈ R
3 ||x − (z, 0)| = r}, Y = {(z, r)|z ∈ R

2, r > 0}. (1.3)

We define the spherical Radon transform for (z, r) ∈ Y to be the spherical mean over S(z, r):

Rn(z, r) = 1

4πr2

∫
S(z,r)

n(x) dS(x). (1.4)

Our goal is to use this spherical mean data to reconstruct a picture of n showing region
boundaries. Since the null space of R is the set of odd functions [4], R is not injective for
arbitrary functions on R

3. This null space characterization implies that R is injective for
functions supported in x3 > 0. We let

R
3
+ = {x ∈ R

3 |x3 > 0}
and we will consider only functions supported in R

3
+. This is a realistic assumption for

functions in the ocean when we assume that x3 > 0 points down to the ocean floor.
We define the backprojection operator R∗ for compactly supported functions g(z, r) as

R∗g(x) =
∫

R
2
g(z, |x − (z, 0)|) dz. (1.5)

Note that

|x − (z, 0)| =
√

|x′ − z|2 + x2
3 where x′ = (x1, x2, x3)

′ := (x1, x2).

The operator R∗ is used in [2, 6] and it is the dual operator to R if the measure on R
3
+ is dx and

the measure on Y is 4πr2 dr dz. The problem is that one cannot define R∗ on the range of R
even for compactly supported functions f because Rf is not necessarily compactly supported
even if f is. Therefore, we will need to include a cutoff function, see (2.2) below, in the
definition of our reconstruction operator.

Inversion algorithms for this problem exist if data are known over all spheres with
the center on a plane [2, 6, 13, 17]. For the two-dimensional problem, Palamodov [18]
analyzed the visible and invisible singularities, providing seminorm strength estimates for
each, and Denisjuk [5] developed inversion algorithms. Schuster and Quinto [25] adapted the
approximate inverse to distributions and used it to develop an inversion algorithm for the two-
dimensional problem. This model, integration over spheres, also comes up in thermoacoustic
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and photoacoustic tomography, but in this case the centers are constrained to lie on a sphere
or other surface that encloses the region to be imaged ([1, 11, 14, 27] provide references and
background).

Our reconstruction operator is local in the sense that to reconstruct at a point x, one
needs only spheres that are near x, and the operator is easily restricted to the data that are
given in practice. Typical data are limited since one can acquire data only over a compact
set in Y, and the authors know of no reconstruction method from this limited data in R

3. Our
reconstruction operator will detect singularities such as boundaries of the object rather than
finding reflectivity values, and as shown in section 5, the operator can image objects clearly.
Furthermore, our algorithm is easy to adapt to different data acquisition geometries, such as
when z lies on an arbitrary C∞ surface rather than a plane.

In section 2 we define our reconstruction operator and give its basic properties. To
understand why and how our algorithm detects singularities we will analyze its (principal)
symbol as a pseudodifferential operator (�DO) (section 3). In section 4 we use the
approximate inverse to regularize our inversion operator. To this end we analytically compute
a reconstruction kernel from a given mollifier (theorem 4.1). Finally, we present several fully
3D numerical experiments in section 5 and analyze the resulting reconstructions in the light of
the microlocal results we developed in section 3. The technical proof of theorem 4.1 is given
in the appendix.

2. Our local reconstruction operator

In contrast to the planar Radon transform that integrates over planes, the spherical Radon
transform R cannot be formulated as a bounded operator between either appropriate L2- or
Sobolev spaces. Moreover Andersson [2] proves that R acts as a bounded mapping between
suitable chosen spaces of tempered distributions. Let

Se(R
3) := {f ∈ S(R3)|f (x′,−x3) = f (x′, x3)}

be the space of rapidly decreasing functions that are even in x3 and let

Sr(R
2 × R

3) = {f ∈ S(R5)|f (z, w) = f̌ (z, ‖w‖) for a function f̌ ∈ Se(R
3)}

be the space of rapidly decreasing functions in R
5 that are radially symmetric in the last

three components. The dual spaces Se(R
3)′ and Sr(R

2 × R
3)′ of Se(R

3) and Sr(R
2 × R

3),
respectively, consist of tempered distributions. In general f ∈ Se(R

3) does not imply that
Rf ∈ Sr(R

2 × R
3), but it is easy to show that Rf ∈ Sr(R

2 × R
3)′. By a density argument we

derive that R maps Se(R
3)′ to Sr(R

2 × R
3)′ and Andersson [2, theorem 2.1] proved that this

gives a bounded operator whose dual operator maps Sr(R
2 × R

3) to Se(R
3):

R∗ : Sr(R
2 × R

3) → Se(R
3),

and has a dense range. As a consequence we see that the composition R∗R is not meaningfully
defined in general and this is the reason for introducing a cutoff function φ in (2.2) below to
obtain φRf ∈ Sr(R

2 × R
3).

We use the following notation. Let � be the Laplacian in R
3. We let Hx3 be the Hilbert

transform in x3 (the Fourier multiplier with symbol −isgn(ξ3) [26]), and we let ∂x3 = ∂/∂x3.
Our local algorithm starts from an exact formula of Klein [13] that is based on the work

of Andersson [2] and Fawcett [6]. The formula of Klein involves a modified dual operator that
includes derivatives with respect to x of the data. He proves that the addition of the derivative
allows one to compose the dual operator with R for functions in the range of R [13]. Klein’s
formula in R

3 is

f = 1

2π
Hx3(−�)1/2

∫
R

2
(∂x3Rf (z, r)|r=|x−(z,0)|) dz. (2.1)

3



Inverse Problems 27 (2011) 035006 E T Quinto et al

The integral in (2.1) is the R∗ integral but with a ∂x3 inside the integral. Fawcett [6] and
Andersson [2, p 223] have a formula similar to (2.1), but they use the notation � for the
negative Laplacian (see e.g. [2], in particular the formula for the Fourier transform at the
bottom of p 222 and the inversion formula using � at the top of p 223).

Now we make (2.1) local. We replace 1
2π

Hx3 (a pseudodifferential operator of order 0)
by the identity, and we replace the nonlocal operator (−�)1/2 by (−�). The replacement of
(−�)1/2 by (−�) increases the order of the operator from order 0 (the order of the identity)
to order 1. Finally, we specify constants 0 < T ′ < T and 0 < δ < δ′ < M ′ < M and choose
a C∞ cutoff in z and in r:

φ : R
2 × (0,∞) → [0, 1], supp(φ) = [−T , T ]2 × [δ,M],

φ(z, r) > 0 (z, r) ∈ (−T , T )2 × (δ,M),

φ(z, r) = 1 (z, r) ∈ [−T ′, T ′]2 × [δ′,M ′].
(2.2)

Including φ allows us to compose R∗ and R even when the data Rf are not compactly
supported. Multiplying by φ(z, r) before using ∂x3 allows us to bring the derivative ∂x3 outside
the R∗ integral to get our reconstruction operator for x ∈ R

3:

�f (x) := −�∂x3R
∗(φ(z, r)Rf (z, r))(x). (2.3)

This operator is a natural generalization of the Lambda tomography operator [7] since it is
of order 1 as we will claim in theorem 3.2 and it is local in the following sense. To reconstruct
�f (x) one only needs spheres near x to calculate the derivatives and to evaluate R∗.

3. The microlocal properties of Λ and its symbol as a ΨDO

In this section, we give the microlocal properties of R. We prove � is a �DO on R
3
+ and we

give its symbol and where it is elliptic. This will show how much � emphasizes singularities
in different directions. In order to understand what R and � do to singularities, we must first
understand what singularities are and this will be framed in terms of the wavefront set.

For f ∈ L1(Rn) we define the Fourier transform of f to be

Ff (ξ) = 1

(2π)n/2

∫
R

n

f (x) exp(−iξ · x) dx

and we note thatF−1f (x) = Ff (−x). IfFf is rapidly decreasing at ∞ (decreasing faster than
any power of 1/|ξ | at ∞) then f and all its derivatives are continuous, that is, f ∈ C∞(Rn).
This is the motivation for the definition of the wavefront set: we can understand the smoothness
of f by understanding where a localized Fourier transform of f is rapidly decreasing at ∞. We
note that a cutoff function at x0 will be any C∞ compactly supported function ϕ : R

n → [0,∞)

such that ϕ(x0) 	= 0.

Definition 3.1. Let f be a distribution in R
n and let x0 ∈ R

n and ξ0 ∈ R
n \ 0. Then

f is smooth at x0 in direction ξ0 if for some cutoff function ϕ at x0 and some open conic
neighborhood V of ξ0, F(ϕf ) is rapidly decreasing at ∞ for ξ ∈ V .

If f is not smooth at x0 in the direction ξ0 then we say (x0, ξ0) ∈ WF(f ).

Definition 3.1 is given in [19, p 146] and it is equivalent to the one in the seminal article
[12]. Using our next definition, we can evaluate qualitative strength of singularities using
Sobolev weights.
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Definition 3.2 ([19, p 258]). Let f be a distribution in R
n and let x0 ∈ R

n and ξ0 ∈ R
n \ 0.

Then f is in Hs at x0 in direction ξ0 if for some cutoff function ϕ at x0 and some open conic
neighborhood V of ξ0, the microlocal Sobolev seminorm

‖ϕf ‖Hs,V =
√∫

V

|F(ϕf )(ξ)|2(1 + |ξ |2)s dξ

is finite.
If f is not in Hs at x0 in direction ξ0 then we say (x0, ξ0) ∈ WFs(f ).

In general, the wavefront set and Sobolev wavefront sets are defined as subsets of the
cotangent bundle T ∗(Rn), because this allows one to define the wavefront set invariantly
on manifolds. However, we will consider the wavefront of f as a subset of R

n × R
n \ 0,

since we will not consider manifolds besides R
n (except in the technical parts of the proof of

theorem 3.2 and remark 3.3, where we will use cotangent bundles).
Note that if f is smooth on R

n then WF(f ) = ∅. If f is the characteristic function χ� of
a domain � with C∞ boundary, then WF(χ�) is the set of normal vectors to the boundary

N(bd(�)) = {(x, ξ)|x ∈ bd(�), ξ ∈ R
3 \ 0, ξ ⊥ bd(�) at x} = WF(χ�). (3.1)

This is also true for WFs(f ) for s � 1/2.
Radon transforms detect singularities perpendicular to the set being integrated over and

so R will detect singularities of f normal to the sphere being integrated over. This is made
clear in the following theorem; a more precise version was given in [16] and was proven for
manifolds in arbitrary dimensions in [21].

Theorem 3.1. Let R be the spherical Radon transform in R
3 with centers on the plane

x3 = 0. Then, R is an elliptic Fourier integral operator for functions supported in R
3
+. Let f

be a locally integrable function on R
3
+ and z ∈ R

2 and r > 0. WF(f ) ∩ N(S(z, r)) = ∅ if
and only if Rf is C∞ in some neighborhood of (z, r).

In [21] a precise relationship is given between the wavefront set of f and that of Rf , and
the simple version given here explains that R ‘sees’ singularities only if they are normal to the
sphere S(z, r).

Example 3.1. To illustrate our theorem, we give a basic example. Let f be the characteristic
function of a domain � ⊂ R

3
+ with C∞ boundary. According to theorem 3.1, a singularity

of f will be visible in Rf near (z, r) if and only if the sphere S(z, r) is tangent to bd(�) (so
normals to the boundary are normal to the sphere). Our reconstructions in section 5 are from
a limited set of spheres, and the only singularities that are visible in those reconstructions are
the ones normal to spheres in the dataset. Palamodov referred to the wavefront directions
normal to S(z, r) as audible, and he proved elegant estimates for singularities in the audible
zone (and inaudible zone) for the circle transform in R

2 [18].

Now that we have discussed the microlocal properties of R, we consider �. We first prove
that � is a �DO and we give its symbol and then we discuss what the symbol means for the
algorithm.

Theorem 3.2. Let � be the operator (2.3) with the C∞ cutoff function φ (2.2). Then, � is a
pseudodifferential operator of order 1 on E ′(R3

+). Furthermore the top-order symbol of � is

σ(�) = 2π iφ

( (
x − x3

ξ3
ξ

)′
,

x3

|ξ3| |ξ |
)

ξ3

|ξ3| |ξ | (3.2)

where (y1, y2, y3)
′ = (y1, y2).

5
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Note that the argument of φ is not defined if ξ3 = 0, but we define the symbol to be zero
there since for each x ∈ R

3
+, the symbol is zero for ξ3 close to 0. Before we prove the theorem

we make some observations about what this means for our problem.
Note that our domain is R

3
+ and so x3 is always positive. The operator � is not elliptic

since σ(�) can be zero as φ can be zero. For x ∈ R
3
+, let

C(x) =
{

ξ ∈ R
3 |ξ3 	= 0,

(
x − x3

ξ3
ξ

)′
∈ (−T , T )2, x3|ξ |/|ξ3| ∈ (δ,M)

}
. (3.3)

The symbol of � is zero on the complement of Cl(C(x)). Where the symbol is zero tells
where the operator � smooths, so �f will not show any wavefront of f at (x, ξ) if ξ /∈ C(x)

(see remark 3.3 below).
Since the symbol σ(�) is nonzero on C(x) and homogeneous of degree 1 in ξ , if ξ ∈ C(x),

then � is elliptic of order 1 at (x, ξ). Therefore, if ξ ∈ C(x), then (x, ξ) ∈ WF(�f ) if and
only if (x, ξ) ∈ WF(f ). Thus, the wavefront of f for ξ ∈ C(x) will, in some sense, be
visible in �f . Since � has degree 1 and is elliptic on C(x), singularities of �f will be one
degree less smooth in the Sobolev scale than those of f . Of course wavefront directions near
bd(C(x)) might be reconstructed more weakly than those corresponding to where φ = 1. This
discussion proves the following corollary.

Corollary 3.1. Let � be the operator (2.3) with the C∞ cutoff function φ (2.2). Let x ∈ R
3
+

and let ξ ∈ C(x). Then,

(x, ξ) ∈ WFs(f ) if and only if (x, ξ) ∈ WFs−1(�f ). (3.4)

Finally, we should emphasize that theorem 3.2 and corollary 3.1 are valid because we are
considering only functions supported on one side of the plane x3 = 0. Since the null space
of R is the set of odd functions about x3 = 0, R cannot distinguish singularities above (x′, x3)

from those above (x′,−x3). However, for functions supported in R
3
+, this is not a problem.

Proof (Proof of theorem 3.2). We will give an easy to understand explanation of the result
and then we outline the proof.

For purposes of this heuristic discussion, we assume we can compose R∗ and R and write
R∗∂x3 = ∂x3R

∗ without having the cutoff φ. These assumptions are wrong in general, but this
calculation shows what result we should expect, and it will allow us to skip one step in the
rigorous calculation. By Klein’s formula, Id = 1

2π
Hx3(−�)1/2∂x3R

∗R, and the symbol of Id

is 1. Recall that σ(Hx3) = −isgn(ξ3) = −iξ3/|ξ3| and H−1
x3

= −Hx3 [26]. Our operator �

without the cutoff φ is then 2π(−Hx3)(−�)1/2Id and therefore the symbol of � without the
φ is 2π i ξ3

|ξ3| |ξ | which corresponds to (3.2) without the φ.
Because we will be using manifolds besides R

n in this proof, we will use the invariant
conventions for wavefront sets and canonical relations and consider them as subsets of
cotangent bundles. We will denote covectors as follows: for ξ = (ξ1, ξ2, ξ3) we denote
ξdx = ξ1dx1 + ξ2dx2 + ξ3dx3 and for η = (η1, η2), ηdz = η1dz1 + η2dz2.

To prove the theorem rigorously, we add the cutoff φ and we calculate the symbol of the
composition of the Fourier integral operators that make up �. This starts with the canonical
relation of R. Then the canonical relation of R is [21]4

C = {(
z, r, x;α((x′ − z)dz + rdr − (x − (z, 0))dx

))|x ∈ R
3
+, (z, r) ∈ Y, α 	= 0}. (3.5)

Since x ∈ R
3
+ we can specify global coordinates on C where we let S2

+ = {ω ∈ S2 |ω3 > 0}
S2

+ × R
2 × (0,∞) × (R \ 0) � (ω, z, r, α) �→ (z, r, z + rω;α(ω′dz + dr − ω dx))) (3.6)

4 Note that in formula (4.7) of [21], rdr should be 2rdr.
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after factoring. Using these coordinates it is easy to show that the projection �L : C → T ∗Y \0
is an injective immersion. This is the Bolker assumption (e.g. [20, equation (3.1)]) and
it implies that R∗φR is a pseudodifferential operator [9, 10]. Note that if we considered
x ∈ R

3 we would need to enlarge C so that in coordinates (3.6), we would need to include
ω ∈ S2

0 = {τ ∈ S2 |τ3 = 0} and �L is not an immersion above such points.
Using (3.5) one sees that the projection to T ∗

R
3
+ \ 0, �R : C → T ∗

R
3
+ \ 0 is also injective

and for (x, ξdx) ∈ T ∗
R

3
+ \ 0, ξ3 	= 0, we have

�−1
R (x, ξ dx) = (z(x, ξ), r(x, ξ), x;α(ξ)(ω′(ξ)dz + dr − ω(ξ) dx)), (3.7)

z(x, ξ) =
(

x − x3

ξ3
ξ

)′
, (3.8)

r(x, ξ) = x3

|ξ3| |ξ |, (3.9)

α(ξ) = −ξ3|ξ |
|ξ3| , ω(ξ) = ξ3

|ξ3||ξ |ξ ∈ S2
+. (3.10)

Since ξ must be normal to the sphere S(z, r), ξ must be parallel x − (z, 0). This explains
(3.8). A calculation using (3.8) and the fact x3 > 0 justifies (3.9). Finally, because ξ3 	= 0
and ω3(ξ) must be positive (if we require ω ∈ S2

+), (3.8) and (3.9) are used to prove (3.10).
To calculate the symbol of � one follows the outline in [20]. We let Z =

{(z, r, x)||(z, 0) − x)| = r} be the incidence relation of all spheres and points such that
the point x is on the sphere S(z, r). We have already chosen the measure dm = dx on R

3
+ and

dn = 4πr2 dr dz on Y. We choose the measure on Z to be dμ = √
φ(z, r)r2 dr dz dω. As

done by Guillemin [8] one uses these measures to define measures for the Radon transform
and its dual. This gives the measure on S(z, r) as dμ

dn
=

√
φ(z,r)
4π

dω and the measure for the
backprojection is dμ

dx = √
φ(z, r) dz and so the Radon transform defined by this theory is

R′ = √
φR and the dual transform is (R′)∗ = R∗√φ. Therefore, (R′)∗R′ = R∗φR, and this

justifies our choices of dx, dn and dμ.
The next part of the calculation is to write IZ, integration over Z, as a Fourier integral

distribution. To do this one chooses coordinates so that Z is locally defined by w = 0 where
coordinates on Z are (z̃, w). One then follows the mathematics on p 337 [20] to calculate the
symbol of IZ as a Fourier integral distribution as in the calculation of (15) in that article. One
calculates that it is

σ(IZ) = (2π)2φ(z, r) dx dz dη

(4π)r2�∗
R(|σ

R
3 |3/2)�∗

L(|σY |3/2)
(�−1

R (x, ξ dx)) (3.11)

where σ
R

3 and σY are the canonical symplectic forms on T ∗
R

3 and T ∗Y . To calculate the
pullbacks in (3.11) one lets λ = �−1

R (x, ξ dx) as given in (3.8)–(3.10) and one chooses a basis
of TλC using the coordinates (3.6). Then, using (3.11) and this calculation of the pullbacks,
we get

σ(R∗φR)(x, ξ) =
2πφ

(
(x − x3

ξ3
ξ)′, x3|ξ |

|ξ3|
)

|ξ3||ξ | (3.12)

and composing with ∂x3(−�), which has symbol iξ3|ξ |2, gives us the final result (3.2). Finally,
one should note that there is a Maslov symbol ([12] which is discussed in the first full paragraph
in [20, p 338]) but it must be constant because the naively calculated symbol at the start of
the proof can be defined as a function (see also the discussion on [20, p 338]). Note that

7
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different conventions for the definition of symbol can result in different constants in (3.2), but
our conventions are chosen so as to agree with the naive calculations at the start of this proof.

�

Remark 3.3. We will now use the symbol calculation in the proof of theorem 3.2 to explain
why � is smoothing off of the set C(x) (3.3). It is clear from the definition of C(x) that the
symbol σ(�) is zero off of C(x), but since σ(�) is the top order symbol, this implies only
that � smooths one degree more off of C(x) than on C(x) not that it is C∞ smoothing.

We will use the following notation [12]: Ct is C but with the T ∗
R

3 and T ∗Y coordinates
reversed, and for A ⊂ T ∗

R
3,

C ◦ A = {(z, r, η) ∈ T ∗Y |∃(x, τ ) ∈ A, with(z, r, x; η, τ) ∈ C}.
We now show that � is smoothing off of C(x). Let x ∈ R

3
+ and ξ /∈ C(x). First assume

ξ3 	= 0. In this case one can see using (3.7)–(3.10) that �L(�−1
R (x, ξdx)) = (z, r, η) for

some (z, r) ∈ Y and some η ∈ T ∗
(z,r)Y . However, since ξ /∈ C(x) by (3.8)–(3.10), φ is

zero in a neighborhood of (z, r). Therefore, φRf is C∞ in a neighborhood of (z, r) and so
(z, r, η) /∈ WF(φRf ). This shows that

(x, ξdx) = �R

(
�−1

L

(
�L

(
�−1

R (x, ξdx)
))) = �R

(
�−1

L (z, r, η)
)

is not in WF(R∗ (φRf )). Here we are using the following: �L and �R are injective; for
A ⊂ T ∗

R
3
+ \ 0, C ◦ A = �L

(
�−1

R (A)
)

and for B ⊂ T ∗Y , Ct ◦ B = �R

(
�−1

L (B)
)
; and finally

the composition calculus for Fourier integral operators [12]: WF(�(f )) ⊂ Ct ◦ (C ◦ WF(f )).
Therefore, � is smoothing in the codirection (x, ξ dx).

If ξ3 = 0 then by inspecting the expression for C, (3.5), �−1
R (x, ξdx) = ∅ since x3 	= 0.

Therefore, for this ξ , Ct ◦(C ◦ {(x, ξdx)}) = ∅ and � is smoothing in the codirection (x, ξ dx).

4. The approximate inverse: Mollifier ep,s,k and reconstruction kernel ψp,s,k

For an implementation of our local reconstruction operator � we need to stabilize its numerical
evaluation. Several approaches are possible. We follow ideas of the approximate inverse [15]
as it provides a general and well-developed framework for the stable solution of operator
equations of the first kind, see e.g. [22–24].

Instead of computing �f (p) for p ∈ R
3
+ directly, we recover the smoothed version

〈�f, ep,s,k〉L2(R3) (4.1)

where

ep,s,k(x) = Ck,s

{
(s2 − d2)k : d < s,

0 : d � s,
d = |x − p|,

serves as the mollifier with s, k > 0 and

Ck,s =
(∫

Bs(p)

(s2 − d2)k dV

)−1

= �(k + 5/2)

π3/2�(k + 1)s3+2k
.

Observe that ∫
R3

ep,s,k(x)dx = 1 and supp ep,s,k = Bs(p).

Further, the inner product (4.1) can be expressed as a convolution integral:

�f ∗ e0,s,k(p) = 〈�f, ep,s,k〉L2(R3).

8
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The parameter s > 0 scales the mollifier and plays the role of a regularization parameter: the
larger the s the smoother the reconstruction. In what follows we implicitly assume s < p3

yielding supp ep,s,k ⊂ R
3
+ for p ∈ R

3
+. Note that k is merely a design parameter.

In the following theorem we give analytically a so-called reconstruction kernel allowing
the computation of 〈�f, ep,s,k〉L2(R3) from the spherical means of f .

Theorem 4.1. We have that

〈�f, ep,s,k〉L2(R3) = 〈Rf,ψp,s,k〉L2(R2×[0,∞[,r2dzdr) (4.2)

with the reconstruction kernel

ψp,s,k(z, r) = φ(z, r)
Ck,skp3A

k−2

L

[
(2k + 1)A

[
1

Lk

(
k − 2 +

B

2rL

)
− 1

r

]

+ 2(k − 1)s2

[
1

r
− 1

L(k − 1)

(
k − 3 +

B

2rL

)] ]
(4.3)

for r ∈ [L − s, L + s] where

L = |(z, 0) − p|, A = s2 − (L − r)2 and B = (r + L)2 − s2.

For r 	∈ [L − s, L + s]: ψp,s,k(z, r) = 0.

The proof of the theorem can be found in the appendix.

5. Reconstructions

In this section we give numerical reconstructions using the approximate inverse. We will
also interpret the results in terms of the microlocal properties of R and � that were given in
section 3.

We want to approximate

�f (p) ≈ 〈�f, ep,s,k〉L2(R3) = 〈Rf,ψp,s,k〉L2(R2×[0,∞[,r2 dzdr) (5.1)

from the discrete data

g(i, j, k) = Rf (zi,j , rk), i, j = 1, . . . , Nz, k = 1, . . . , Nr, (5.2)

where

{zi,j } ⊂ [−zmax, zmax]2 and {rk} ⊂ (0, rmax] (5.3)

are Cartesian grids with uniform step sizes hz and hr, respectively. A straightforward
discretization of the triple integral on the right of (5.1) yields

�f (p) ≈ �̃f (p) := h2
zhr

Nz∑
i=1

Nz∑
j=1

Nr∑
k=1

g(i, j, k)ψp,s,k(zi,j , rk)r
2
k

= h2
zhr

Nz∑
i=1

Nz∑
j=1

∑
rk∈Li,j (p)

g(i, j, k)ψp,s,k(zi,j , rk)r
2
k

with Li,j (p) = [L−s, L+s] and L = |(zi,j , 0)−p|. Thus, the numerical effort for computing
�̃f (p) takes O

(
sN2

z ) floating point operations when neglecting the evaluation of the kernel
ψp,s,k at (zi,j , rk). Note that the computation of �̃f at different reconstruction points can be
done in parallel.

9
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x2
x1

x3

cent
er plane

ocean floor

Figure 1. Visualization of the function (5.4) to be reconstructed. The two balls slightly intersect.

For our numerical computations presented in this section we have chosen the following
cutoff function φ (2.2). Given 0 < δ < M and T > 0 we define

φ(z, r) = α(z)β(r)

where

β(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 : r � δ or r � M + 1,

1 : 2δ � r � M,

p(r,M) : M < r < M + 1,

q(r, δ) : δ < r < 2δ,

with

p(r,M) = u(M + 1 − r)

u(M + 1 − r) + u(r − M − 1/2)
, q(r, δ) = u(r/δ − 1)

u(r/δ − 1) + u(2 − r/δ)
,

and

u(x) =
{

exp(−1/x) : x > 0,

0 : x � 0.

Further,

α(z) = α̃(z1)α̃(z2) and α̃(x) =

⎧⎪⎨⎪⎩
1 : |x| < T ,

p(|x|, T ) : T � |x| � T + 1,

0 : |x| > T + 1.

Thus,

φ ∈ C∞(R3), supp φ ⊂ [−T − 1, T + 1]2 × [δ,M + 1] and φ|[−T ,T ]2×[2δ,M] = 1.

We always set M := rmax − 1, δ := 0.01 and T := zmax − 1.

10
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Figure 2. Reconstructions �̃f (0.25, ·, ·), f from (5.4), where rmax = 10 and zmax = 3 (top left),
zmax = 6 (top right) and zmax = 12 (bottom) with Nz = 301 and Nr = 250, see (5.2) and (5.3).
The parameters used for the reconstruction kernel are s = 0.8 and k = 3. The dashed black lines in
the bottom reconstruction indicate the singular support of f and are not part of the reconstruction.

The function f : R
3
+ → R to be reconstructed is a superposition of three-indicator

functions given by

f = χB1(0,0,3) − χB0.5(0.25,1,4) + 0.3χx3�6 (5.4)

whose sonar transform can be calculated analytically. The rightmost indicator function models
a flat ocean floor at x3 = 6, see figure 1 for a visualization.

In our first set of experiments we will demonstrate which singularities of f can be detected
depending on the available data. To this end we note that the wavefront set of f (compare
(3.1)) is

WF(f ) = {(x, ξ)|x ∈ ∂B1(0, 0, 3), ξ = λ(x − (0, 0, 3)), λ 	= 0}
∪{(x, ξ)|x ∈ ∂B0.25(0.25, 1, 4), ξ = λ(x − (0.25, 1, 4)), λ 	= 0}
∪{(x, ξ)|x3 = 6, ξ1 = ξ2 = 0, ξ3 	= 0},

11
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Figure 3. Cross sections �̃f (0.25, ·, ·), f from (5.4), where rmax = 4.5 (left) and rmax = 5.5
(right). Further, zmax = 3, Nz = 301 and Nr = 200, see (5.2) and (5.3). The parameters used for
the reconstruction kernel are s = 0.8 and k = 3. The dashed black lines in the left reconstruction
indicate the singular support of f and are not part of the reconstruction.

that is, the wavefront set consists of all pairs (x, ξ) where x is on the boundary of either one
of the two balls or of the ocean floor and ξ is normal to the boundary at this point5.

Figure 2 displays cross sections �̃f (0.25, ·, ·) for three different sets of limited data:
zmax = 3 (top left), zmax = 6 (top right) and zmax = 12 (bottom). Further, rmax = 10 in all
three settings. All cross sections have been computed from N2

z Nr = 3012 ·250 = 22, 650, 250
spherical means.

To understand the extent to which our results from section 3 are reflected in our
reconstructions, we inspect the set C(x) (3.3) on which � is elliptic of order 1. The wavefront
(x, ξ) ∈ WF(f ) will be visible in �f (or �̃f ) if ξ ∈ C(x), that is, ξ3 	= 0 and

xi − zmax

x3
<

ξi

ξ3
<

xi + zmax

x3
, i = 1, 2, and

δ

x3
<

|ξ |
|ξ3| <

rmax

x3
.

Thus, wavefronts for which ξ has dominant horizontal components (|ξ3| is small compared to
|ξ |) will not be recovered. The visible wavefronts have dominant vertical components and the
smaller zmax and rmax are and the larger x3 is, the more dominant the vertical components have
to be to be visible.

This fact is illustrated by the reconstructions shown in figures 2. With increasing zmax

(top-left, top-right, bottom) more and more singularities of f are recovered. In the bottom
reconstruction only the singularities with almost horizontal directions are missing. The ocean
floor {(x, ξ)|x3 = 6, ξ1 = ξ2 = 0, ξ3 	= 0} is visible because we have

xi − zmax

6
< 0 <

xi + zmax

6
(⇔ −zmax < xi < zmax) and

0.01

6
< 1 <

10

6
.

In figure 3 we again display �̃f (0.25, ·, ·) with zmax = 3, however, with clearly reduced
maximal radii: rmax = 4.5 and rmax = 5.5. The ocean floor is not recovered by either
reconstruction. For rmax = 4.5 even the bottom hemisphere of the smaller ball is missing and
a strong artifact corrupts the reconstruction.

5 The two-boundary spheres intersect in a small circle. At each intersection point are two ‘singularity directions’
corresponding to normals to the two spheres.
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Figure 4. Cross sections �̃f (x1, ·, ·), f from (5.4), for several x1’s. Here, rmax = 10, zmax = 12,
Nz = 301 and Nr = 250, see (5.2) and (5.3). The parameters used for the reconstruction kernel
are s = 0.8 and k = 3. Please note the different color scales for each reconstruction.

We have realized the evaluation of �̃f in a subroutine written in the C programming
language and compiled by the mex-command under MATLAB 7.8 (R2009a). Within this MATLAB

environment each of the reconstructions from figure 2 required about 12 h 30 min CPU-time on
an AMD Athlon(tm) 64 Processor 3800+ with 2.5 GHz and 1 GB RAM where �̃f (0.25, ·, ·)
has been computed on a 200 × 400 grid. Most of the CPU-time was consumed by evaluating
the reconstruction kernel. Precomputing the kernel together with a clever interpolation scheme
might reduce the run time considerably.

To prove that we really perform fully 3D reconstructions we display several cross sections
�̃f (x1,i , ·, ·) for x1,i = −1 + 0.25i, i = 0, . . . , 8, in figure 4. Here we like to emphasize
the following observation: the boundaries of the two balls in the different cross sections are
reconstructed with different intensities (note the different color (gray) scales). The reason
for this fact is that the 3D-direction of the corresponding wavefront does not agree with the
2D-normal on the ball in the displayed cross section6. The more the wavefront direction

6 We have two exceptions: for x1 = 0 the 2D-normals on the large ball in the cross section agree with the
corresponding directions of the wavefronts. The same holds true for the small ball at x1 = 0.25.
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Figure 5. Reconstructions �̃f (0.25, ·, ·), f from (5.4), under 3% relative noise for different
scaling parameters: s = 1.1 (top-left), s = 1.5 (top-right), s = 2 (bottom-left) and s = 2.5
(bottom-right). Further, rmax = 10, zmax = 12, Nz = 301, Nr = 250, see (5.2) and (5.3), and
k = 3. The dashed black lines in the bottom-left reconstruction indicate the singular support of f

and are not part of the reconstruction.

differs from the 2D-normal in the cross section the less pronounced is the singularity in the
respective cross section.

We finish the numerics section by demonstrating how the algorithm performs with noisy
data. To this end we perturb the exact data g (5.2) according to

gε(i, j, k) = g(i, j, k) + ε‖g‖�

noise(i, j, k)

‖noise‖�

, ε > 0,

where noise is an Nz ×Nz ×Nr array of uniformly distributed random numbers7 with values
in [−1, 1] and where the discrete norm

‖g‖2
� := h2

zhr

Nz∑
i=1

Nz∑
j=1

Nr∑
k=1

|g(i, j, k)|2r2
k

7 In all computations we used the same noise array.
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Figure 6. Cross sections �̃f (x1, ·, ·), f from (5.4), for several x1’s under 3% relative noise. Here,
rmax = 10, zmax = 12, Nz = 301 and Nr = 250, see (5.2) and (5.3). The parameters used of
the reconstruction kernel are s = 1.6 and k = 3. Please note the different color scales for each
reconstruction.

approximates the norm in L2
(
[−zmax, zmax]2 × [0, rmax], r2 dz dr

)
. We have that

‖g − gε‖�

‖g‖�

� ε.

Thus, ε measures the relative noise. In all experiments below we worked with ε = 3%.
First, the smoothing or regularizing effect of the scaling parameter s is illustrated.

Figure 5 contains reconstructions of a cross section (x1 = 0.25) from the same perturbed
data for four different scaling parameters. As s increases the noise gets reduced at the price of
blurred and fuzzy contours.

Finally, in figure 6 we present the same cross sections of �̃f as in figure 4, however,
reconstructed from noisy data with the scaling parameter s = 1.6.

At the moment we lack a rigorous theory for selecting the regularization parameter s as
a function of the discretization step sizes hz and hr and on the noise level ε. The asymptotic
theory developed in [22] cannot straightforwardly extended to the present situation. Therefore,
in our numerical experiments we have chosen s by trial and error inspecting the reconstructions
visually. Such a selected parameter s for a certain configuration hz, hr, ε, noise characteristic
and f is anticipated to deliver decent reconstructions also for different f that are of the same
smoothness class. We propose this modus operandi in real applications.
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Appendix. The proof of theorem 4.1

To find ψp,s,k , we start from (4.2) and by duality, we must have

ψp,s,k(z, r) = φ(z, r)R(∂x3�ep,s,k)(z, r). (A.1)

So as not to deal with too many constants, we consider an unnormalized version of ep,s,k and
define

ẽp,s,k = ep,s,k/Ck,s .

Now we state the pieces we need to prove the expression for ψp,s,k in theorem 4.1, and we use
(A.1).

Lemma 5.1. Let k ∈ N, k � 3. Then,

R(∂x3�ẽp,s,k)(z, r) = [4k(2k + 1)(k − 1)[R(x3ẽp,s,k−2) − p3R(ẽp,s,k−2)]

+ 8k(k − 1)(k − 2)s2[p3R(ẽp,s,k−3) − R(x3ẽp,s,k−3)]]. (A.2)

For � a nonnegative integer

Rẽp,s,�(z, r) = A�+1

4(� + 1)rL
r ∈ (L − s, L + s) (A.3)

and

R(x3ẽp,s,�)(z, r) = p3A
�+1

4L2(� + 1)(� + 2)

(
� +

B

2rL

)
r ∈ (L − s, L + s). (A.4)

where L = |(z, 0)−p|, A = s2 − (L− r)2 and B = (r +L)2 − s2 and where r ∈ (L− s, L+ s)

and the functions in (A.3) and (A.4) are zero outside this interval.

The proof of (A.2) follows by a calculation and for k = 3 noting that the derivatives are
distributional derivatives (since ẽp,s,0 is not continuous). Using (A.3) and (A.4) for various
values of � in (A.2), one proves (4.3) in theorem 4.1.

To prove the lemma, first recall that p is the center of the mollifier ẽp,s,�. We assume the
sphere we are integrating over has radius r and is centered at z = (z1, z2) on the x1x2-plane.
Furthermore, we denote the distance from z to p by

L := |(z, 0) − p|.
The condition for the integral to be nonzero is r ∈ (L−s, L+s), so assume r is in this interval.
Also, L � p3 since z is on the x1x2-plane and p3 > 0.

The calculation of R(∂x3�ẽp,s,k) reduces to expressions involving R(ẽp,s,�) and R(x3ẽp,s,�)

for � = k − 3, k − 2, k − 1 if one uses that ẽp,s,k is radial about p, and one uses the radial form
of the Laplacian � = ∂2

∂d2 + 2
d

∂
∂d

where d = |x − p|. One uses this observation to calculate
(A.2).
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We now prove (A.4) by rotating and translating the picture and then using spherical
coordinates. The proof of (A.3) uses similar arguments but is simpler. If we take a point v on
S(z, r) then the x3 coordinate of v is simply v · e3. This is the same as

x3 = v · e3 = (v − z) · e3

since z is on the x1x2-plane.
Let α ∈ (0, π/2] be the angle between the vectors ((p′, 0) − z) and (p − z). Note that

sin α = p3/L . (A.5)

We make a rigid motion of R
3 so that (z, 0) is mapped to the origin, p to (0, 0, L) and

(p′, 0) to the point in the x1x3-plane:

(0, 0, L) + p3(cos α, 0,− sin α).

Under this transformation, e3 is mapped to the unit vector in the direction from (0, 0, L) −
x3(cos α, 0,− sin α) to (0, 0, L). That is,

e3 �→ (− cos α, 0, sin α). (A.6)

If v ∈ S(z, r) let ṽ be the point on S(0, r) to which it is mapped under this rotation. Then
the x3-coordinate of v is

x3 = v · e3 = (v − (z, 0)) · e3 = (ṽ − (0, 0, 0)) · (− cos α, 0, sin α) (A.7)

since the dot product does not change under rigid motion and because under this rigid motion
e3 gets mapped to the vector in (A.6).

We can use spherical coordinates about the x3-axis to integrate so an arbitrary point on
the sphere of radius r centered at the origin is

(θ, φ) �→ ṽ = r(cos θ sin φ, sin θ sin φ, cos φ).

Using (A.7), we see that, in these new coordinates, x3 is

x3 = r(cos θ sin φ, sin θ sin φ, cos φ) · (− cos α, 0, sin α)

= −r cos α sin φ cos θ + r cos φ sin α.

When we put this into the integral of the spherical mean, we get

R(x3ẽp,s,�)(z, r) = 1

4π

∫ �

φ=0

∫ 2π

θ=0
[−r cos α sin φ cos θ + r cos φ sin α]

× (s2 − d2)� sin φ dθ dφ (A.8)

where � is the upper limit of integration. Since � is the angle at the origin of the triangle with
vertices the origin and (0, 0, L), and with sides r, L s, the law of cosines shows that

s2 = r2 + L2 − 2rL cos �,

cos � = L2 + r2 − s2

2rL
.

(A.9)

Now, we do some simple calculations. First, recall that in integral (A.8), φ is the angle of
inclination from the x3-axis to the point being integrated, so d2 = r2 + L2 − 2rL cos φ and
using (A.9) we see

s2 − d2 = 2rL(cos φ − cos �) (A.10)

and integral (A.8) becomes

R(x3ẽp,s,�)(z, r) = (2rL)�

4π

∫ �

φ=0

∫ 2π

θ=0
[−r cos α sin φ cos θ + r cos φ sin α]

× (cos φ − cos �)� sin φ dθ dφ.
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First, note that after we integrate in θ , the first term in brackets drops out, so we are left with

R(x3ẽp,s,�)(z, r) = r(2rL)�

2

∫ �

φ=0
[cos φ sin α](cos φ − cos �)� sin φ dφ.

Now, if we make the substitution u = cos φ − cos � (and cos φ = u + cos �) and use the
expression (A.5) for sin α, then we get (A.4).

If one goes through a calculation using the same steps but without the factor of x3, then
one gets (A.3). In both (A.3) and (A.4), it helps to simplify 1 − cos � and 1 + cos � using
(A.9).
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