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Abstract

Background: A laboratory-free test for assessing recovery from pulmonary tuberculosis (TB) would be extremely beneficial
in regions of the world where laboratory facilities are lacking. Our hypothesis is that analysis of cough sound recordings may
provide such a test. In the current paper, we present validation of a cough analysis tool.

Methodology/Principal Findings: Cough data was collected from a cohort of TB patients in Lima, Peru and 25.5 hours of
recordings were manually annotated by clinical staff. Analysis software was developed and validated by comparison to
manual scoring. Because many patients cough in bursts, coughing was characterized in terms of cough epochs. Our software
correctly detects 75.5% of cough episodes with a specificity of 99.6% (comparable to past results using the same definition)
and a median false positive rate of 4 false positives/hour, due to the noisy, real-world nature of our dataset. We then
manually review detected coughs to eliminate false positives, in effect using the algorithm as a pre-screening tool that
reduces reviewing time to roughly 5% of the recording length. This cough analysis approach provides a foundation to
support larger-scale studies of coughing rates over time for TB patients undergoing treatment.
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Introduction

Tuberculosis (TB) is among the world’s most deadly infectious

diseases despite the long-standing availability of effective treat-

ment. The steady emergence of multi-drug resistant (MDR) and

extremely drug-resistant (XDR) forms of TB is a cause of concern.

Globally MDR TB accounts for roughly 3.6% of all TB cases, but

accounts for up to 28% of TB cases in some regions [1]. The

emergence of MDR and XDR TB is very worrying due to the

increased difficulty of treating these forms of tuberculosis.

The gold standard for TB diagnosis is laboratory culture and

analysis. However, many high-incidence TB regions are in the

developing world, where access to skilled laboratories and culture-

based methods is lacking. Therefore, diagnosis of pulmonary TB is

made exclusively by sputum smear or clinical suspicion alone due

to lack of laboratory access. Following the WHO TB program,

patients start first-line therapy, and treatment failure is only

recognized 4–6 months later. Treatment failure may be due to

MDR TB, lack of patient compliance, or other reasons. Patients

who fail treatment have increased risks of morbidity and mortality,

and also continue to be infectious, spreading disease to others.

Clinicians without access to laboratory culture would benefit

greatly from lab-free early detection methods to identify patients

who are failing treatment. Recent developments in fast DNA-

based screening are promising, but still under development [2].

Our long-term goal is to evaluate whether cough analysis could

provide a low-cost means for detecting treatment failure. This

approach builds on a study that found cough rates (counts/hour)

drop by roughly 50% in the first two weeks of treatment for

patients who are responding to treatment [3]. The infrastructure

needed for an automated cough monitoring system is relatively

simple and low-cost (portable recording units and access to

computers, either locally or via telecommunications).

Our work leverages progress in low-cost consumer electronics

which allows ambulatory systems that can record for extended

time periods [4,5]. We also leverage previous algorithmic work in

automated cough counting [6–11]. Fully automated analysis is key

for protecting patient privacy, but is difficult as patient recordings

may include very large amounts of environmental noise. Our

dataset is fairly challenging and extraneous noises (speech, traffic,

bangs, etc.) are common. Our recordings are made in a mix of

hospital and home environments. Patients showing signs of
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recovery after one week of treatment were sent home with a

recorder and recorded at home while treatment continued, until

the data collection protocol was complete.

This paper reports our results with a pilot data collection and

development of a cough detection algorithm. In this initial phase,

we seek to develop an analysis approach that is sufficiently

accurate to evaluate the clinical utility of cough analysis for TB

patients. Our longer-term goal is development of a fully automated

cough analysis system.

Results

The validation dataset, consisting of 49 mp3 audio files each of

30 minutes duration, was analyzed using the algorithm and also

reviewed manually by two nurses and a specialist. The cough

waveforms reviewed differ depending on the patient and

pathologies, both in terms of pitch, amplitude and frequencies.

Figure 1 shows example coughs from TB and asthma patients.

Note that these waveforms both show one cough episode consisting of

several closely spaced cough events.

Within the cough analysis literature, there are several metrics

used to quantify cough, and to quantify algorithm performance. A

basic metric for quantifying cough is coughs/hour (also called cough

count). As discussed by Smith [4] one can also quantify cough in

terms of cough bouts or episodes, where an episode is defined as one

or more cough events that are closely spaced in time. In [5], a

cough epoch was been defined as a series of coughs in which the end

of one event is separated from the beginning of the next event by

less than 2 seconds. Smith also proposed the cough-second metric, or

the number of 1-second intervals per hour that contain a cough.

As stated in [6], ‘‘there is little to commend any particular method

of quantifying cough over any other’’.

During manual review, individual cough events were identified.

We noted that in some cases, the algorithm tended to unite closely

timed individual cough events (as in Figure 1, and File S1) into a

single detected cough. Because many patients cough in bursts, we

found low sensitivity in detecting individual coughs (51.4%, as

calculated using the Data Analysis and Statistical Software

(STATAH).

While the algorithm could in principle be re-tuned to separate

these events, the literature indicates that counts of cough epochs

appear to be as clinically meaningful as counts of individual

coughs [4,6]. Thus we merged groups of individual coughs into

cough epochs, following two definitions. In the first definition,

(denoted epoch1) we grouped coughs whose start times were within

2 seconds into the same epoch. Under the second definition

(epoch2) we followed the definition in [5], i.e. we grouped coughs

together if the gap between the end of one event and the start of

the next is ,2 sec. While both epoch types can be calculated from

algorithm output (and are compared below), only the event start

times were noted during manual review. Thus, manual epochs can

only be calculated using the epoch1 definition.

The start times of epochs formed from manual review and

algorithm outputs under the epoch1 definition were compared. If

these times matched within +/20.2 sec, we declared that the

algorithm had successfully found a cough epoch, and increased the

number of true positives (TP). Epochs missed by the algorithm

constitute false negatives (FN), while epochs found only by the

algorithm constitute false positives (FP). We therefore calculate

algorithm sensitivity as TP/(TP+FN), and report a rate of false

positives/hour as FP/(# hours of data analyzed). Our algorithm

sensitivity in reporting epochs was 75.5%.

The false positive rate is often captured in terms of specificity

(equal to TN/(TN+FP), where TN is the number of true negative

results). Within the cough literature, there are several approaches

to calculating TN. Matsos et al. [9] proposed a two-stage process,

in which they first detect acoustic events, then classify those events

into cough or non-cough. They then report a classification stage

specificity, i.e. they sort their detected events into TP, FP, TN and

FN. This metric, often known as ‘‘Birring specificity’’, is useful in

comparing different classification approaches. However, as point-

ed out by Vizel et al. [11] this definition does not reflect

performance of the overall system, which is of interest to a clinical

Figure 1. Waveforms of a double-cough from a TB patient (upper) and of an asthma patient (lower).
doi:10.1371/journal.pone.0046229.g001
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end user. Vizel et al therefore calculate TN from the number of 1-

second intervals during which no cough was detected by either

manual or automated means.

Following Vizel et al [11], we defined specificity by first finding

all 1-second intervals during which no coughs were found during

manual review, then partitioning these into true negatives and

false positives. Under this definition our algorithm specificity was

99.6%, which actually exceeded the 96% value reported in [11]

(although [11] examined a very different dataset, and reported

.90% sensitivity). Our ‘‘Birring specificity’’ was 87%. We also

calculated the number of false positives per hour, and found that

we had a median false positive rate of 4/hour (lower quartile of 0/

hour, upper quartile of 8.5/hour), which is higher than the median

1.2 false positives/hour calculated from results in [11] or the

median 0.8 false positives/hour reported by [10].

To eliminate false positives, we implemented a simple user

interface for manually reviewing detected coughs. This review

required approximately 0.63 minutes per hour of audio recording,

representing a speedup of roughly 96-fold as compared to

reviewing the full recording at normal playback speed. This

speedup compares favorably to the semi-automated HACC system

[8], for which ,1.5 minutes was reported for reviewing one hour

or recording. Use of this system in this way, as a pre-screening

step, eliminates false positives while not affecting sensitivity. After

review, sensitivity remains 75.5%, our ‘‘Birring specificity’’ is

99.3%, our 1-sec interval specificity (following Vizel) was 99.9, our

median false positive rate was 0/hour, our mean false positive rate

was 0.5/hour, and our mean true positive rate was 6.8/hour. We

refer to these results as ‘semi-automated’.

Semi-automated output and manual results are compared in a

Bland-Altman plot in Figure 2. For each 30 minute recording, the

mean of the manual and semi-automated epoch counts are

compared to the difference. A bias of 0.9 epochs is seen,

corresponding to the fact that algorithm detection sensitivity is

,100%. The bias is not statistically significant (limits of agreement

are 22 to 3.7 epochs/hour), and there is no evidence that the

performance depends on the underlying cough rate. A Bland-

Altman analysis for the fully automated result (i.e., no review)

shows much larger spread (limits of agreement 222 to 17 epochs).

By design, the validation dataset included two data files per day

for each subject to allow repeatability to be explored. We

examined the repeatability of epoch counts, for the semi-

automated approach as compared to the nurses, by identifying

pairs of files for which results where available (both files were

recognized by the algorithm as having good quality data). Figure 3

shows a Bland-Altman plot comparing repeatability of both the

algorithm and nurses in determining cough epochs. There is little

bias and the limits of agreement and data scatter are comparable

for both nurse and semi-automated algorithm repeatability. This

suggests the repeatability of manual and semi-automated analysis

is similar. When re-analyzing a single file, the algorithm

repeatability is 100%.

Figure 4 compares the number of epoch calculated under the

epoch1 and epoch2, for semi-automated outputs. As expected, the

epoch1 definition is more restrictive and therefore results in fewer

epochs being found. However, correlation of the measures is high

(Spearman correlation coefficient .0.97) suggesting that our

validation using the epoch1 definition suggests similar results for the

epoch2 definition.

Finally, we compared results for treatment day 0 (baseline) vs.

day 14. In total on day 14, the nurses detected 10 cough epochs, 6

of which were detected by the algorithm, giving a sensitivity of 0.6.

However, the four undetected epochs were spread across four

different recordings. Figure 5 shows a boxplot of the number of

cough epochs per file, for all drug-susceptible patients at treatment

day 0 (baseline) vs. day 14 (because we have only one MDR

patient in the study, it is not meaningful to examine MDR

statistics). While the sample size for the validation study is small,

there is a clear drop in cough. Post-treatment, the 25th, median,

and 75th percentiles for cough epochs are all 0; two patients were

outliers with 3 coughs/file. The Kolmogorov-Smirnov two-sample

test rejected the hypothesis that the pre- and post-treatment cough

epochs are drawn from the same population (p,0.02), i.e. it

indicates that the distributions are different.

Discussion

We have developed a cough analysis system that builds on

previous approaches [8–10] and have applied it to a cohort of TB

patients. In developing a cough analysis system, our near-term

goal is to develop an automated tool for characterizing changes in

cough events/hour for patients being treated for tuberculosis. This

will allow us to test our hypothesis that cough analysis can provide

a laboratory-free tool for tracking patient recovery.

A challenging (and realistic) aspect of our dataset is that patients

are wearing recording systems while going about their daily

activities (note that in Peru, TB patients are not routinely

hospitalized). Our recordings include extensive recordings of

speech as well as traffic and construction noise, barking dogs,

children playing musical instruments, etc. Thus the number of

recorded acoustic events exceeds the number of coughs by orders

of magnitude, meaning that the analysis algorithm must be

extremely specific to avoid high false alarm rates. Within the

current study, this led us to conclude that the algorithm should be

used in a semi-automated manner, essentially as a prescreening

step to identify candidate coughs. While this solution is clearly not

optimal, the speedup obtained is significant enough that it provides

a manageable path to our initial goal, which is quantifying clinical

cough changes in subjects enrolled in our pilot study. Encourag-

ingly, Figure 5 shows a marked decrease in cough after treatment

within our validation study data, though of course a much larger

data study is needed.

We note that many published results [8–10] are also semi-

automated (note that [10] includes a learning phase that helps the

algorithm improve as manual review is done, but roughly 1/3 of

detected events were still manually reviewed). Our sensitivity of

75.5% is similar to other semi-automated approaches ([8] reported

80% cough sensitivity, while [9] reported 71–82% depending on

settings). Fully automated systems we are aware of include [11] as

well as the VitaloJAK and Lifeshirt systems [4] but these systems

are much more expensive, exploiting multiple sensors.

Prior to prescreening, our algorithm had a significant number of

false positives. We strongly suspect that our dataset was noisier

with less well controlled recordings than some other datasets

reported in the literature, as microphone placement was done by

patients, not healthcare workers. However, this is difficult to verify

objectively (although sample audio clips are available with this

article). While our training data contained a reasonable diversity of

cough and non-cough noises, it has long been recognized that

larger training sets are beneficial in speech processing [12], so

gains could be likely realized given a larger training set.

Several of the algorithmic approaches used here may be of use

to other cough analysis efforts. In our initial work, we implement-

ed an algorithm combining methods used in previous semi-

automated approaches [8–10]. While performance was good in

quiet recordings, we observed high false positive rates in other

recordings. As a result, we developed two modifications that

allowed us to improve performance. First, we developed event

Cough Detection for Tuberculosis Monitoring
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Figure 2. Bland-Altman plot comparing the number of epochs (definition epoch1) found by the nurses and the reviewed algorithm
(i.e. semi-automated approach). The mean of the two estimates (used in place of a gold standard) is plotted vs. the difference between nurse and
semi-automated results. The mean bias and limits of agreement (+/21.96 s) are also shown. The plot shows the bias is not statistically significant and
there is no evidence of changing agreement as a function of cough epoch count.
doi:10.1371/journal.pone.0046229.g002

Figure 3. Bland-Altman plot comparing repeatability of semi-automated results (blue circles) to repeatability of nurse findings (red
squares). In this comparison, the first and second files for each day (‘file1’ and ‘file2’) were compared. Repeatability is similar for nurse assignments
and semi-automated algorithm results.
doi:10.1371/journal.pone.0046229.g003
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detection logic that only triggers on events exhibiting the time

evolution expected for cough, i.e. a rapid increase in acoustic

energy relative to the noise floor. Second, we developed logic for

automatically flagging sections of the recording during which there

are technical problems, or during which the background noise is

rapidly varying, indicating an extremely noisy acoustic environ-

ment or technical recording problems. Audio examples are

provided along with the article. These flagged data sections could

be manually reviewed, though they are infrequent enough that we

have instead chosen to discard them from analysis. Importantly,

these data sections are flagged automatically without need for

manual input. We have a large clinical dataset consisting of

continuous 24-hour recordings over multiple days for each patient.

We therefore anticipate being able to assess changes in cough

during recovery even if some noisy portions are not analyzed.

In addition, we describe a ‘divide-and-conquer’ clustering

algorithm that identifies the most informative data examples for

machine learning algorithms. This approach was necessary to

reduce memory requirements for classifier training to a manage-

able size. It may prove useful for applications where the classifier is

updated as new data become available, as it only requires storing a

single representative of each previously identified cluster.

Materials and Methods

Here we describe the methods used in our study, focusing on

two key areas: data collection and manual review, and the

algorithm used for automated analysis. An earlier version of the

algorithm is described in [13]. Here we focus our algorithm

discussion on new data quality metrics as well as giving a more

detailed discussion of novel parts of the algorithm.

Ethics statement
This study received IRB approval from Hospital Nacional Dos

de Mayo, Associacion Benéfica Prisma (Lima, Peru), and Johns

Hopkins University.

Data collection and manual review
The data collection was conducted at Hospital Nacional Dos de

Mayo in Lima, Peru. This public national tertiary referral hospital

also operates as a community hospital for the surrounding inner-

city area.

Figure 4. Scatterplots showing the number of epochs found under ‘epoch1’ and ‘epoch2’ definitions, for semi-automated algorithm
results. Note that the ‘epoch2’ definition cannot be applied to nurse assignments in our dataset. The correlation coefficient between the two
definitions is 0.97.
doi:10.1371/journal.pone.0046229.g004

Figure 5. Boxplot comparing semi-automated estimate of
cough count at day 0 and day 14. The plot shows 25th, 50th, and
75th percentiles, with outliers (1.5*IQR) are shown as ‘+’. At Day 14, the
box collapses as 25th, 50th, and 75th percentiles are all zero.
doi:10.1371/journal.pone.0046229.g005

Cough Detection for Tuberculosis Monitoring

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e46229



We collected a large dataset of patients for our study. Exclusion

criteria included pregnancy, previous TB treatment, history of

taking medication within the last month, and age less than 18 years

old. From this dataset, fifteen patients were randomly selected who

had full 24-hour acoustic recordings corresponding to two specific

days of treatment in the pilot study (as a note, [14] also used 15

subjects). Of these patients, 4 were female, 4 were HIV positive,

and one was multi-drug resistant. Median age of the 15 patients

was 33 (range 19–47). Recordings were obtained using a Marantz

PMD 620 handheld recorder and an Audio-Technica AT899 sub-

mini microphone attached at the patient’s lapel.

From each patient’s data, two 30-minute subsets on day 0 (start

of treatment) and on day 14 (well into treatment) were randomly

selected, yielding a total of 60 30-minute cough recordings. Each

recording was screened to ensure that sounds were recorded (that

the recording was not merely silent), resulting in elimination of one

recording, leaving 59 files. By choosing data from day 0 and day

14, we sought to capture performance at different times during

treatment.

Because our recordings were ambulatory and often contained

significant environmental noise, the remaining 59 recordings were

screened for quality by our analysis algorithm using automated

methods described below. Of these recordings, ten were automat-

ically flagged as having data quality issues (two with recording

levels too low, and eight with noise levels too high). Thus the

working dataset consisted of 49 recordings.

Manual review. Two nurses independently reviewed these

dataset files using Audacity software [15] to record the start time of

every cough event during each recording. This was repeated three

months later, giving a total of four reviews of each recording. The

coughs were tabulated by the nurses in a spreadsheet. The nurses

generally ranged within 0.2 seconds of each other in detecting

cough events. Discordant events were resolved by the two nurses

and one of the authors (SL) who came to consensus about the

event’s status as a cough or non-cough. Discordant events were

relatively few (19 of 1493 events) and the kappa statistic measuring

agreement between nurses was 0.85. The average cough time of

the four time values for each event (the two independent nurses at

two different times) was computed and this value was considered

as the ‘‘true’’ time for each cough event.

Algorithm description
Our overall algorithm flow is shown in Figure 6. Like previous

approaches [8–11], processing is divided into an event detection stage,

followed by an event classification stage. As described in detail below,

we initially detected events using a simple energy detector, but

found better results with an approach that seeks events whose

onset shows the rapid energy increase typical of cough.

An earlier version of our algorithm is described in [13]. An

important algorithmic concept added since that publication is the

concept of data quality flags. Our dataset contains a minority of

recordings in which there are either significant technical problems

(typically, extremely low signal level due to microphone problems)

or extremely high variable levels of background noise. By adding

automated flags to detect these conditions, we can either trigger a

manual review or discard the data files (as was done for ten files as

described above).

To aid in event classification, time-frequency analysis is used to

capture the acoustic characteristics of the detected event. Events

are broken up into 50% overlapped frames of 32 ms length, and

are analyzed by computing the Mel frequency cepstral coefficients

(MFCC), defined as:
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log Skð Þcos
np

K
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Here, N is the number of coefficients to be calculated, and Sk are

the outputs of K different filterbanks, found by weighted sums of

the short-time Fourier transform magnitude over a set of

frequency bands with center frequencies chosen to approximate

the human auditory system response [16]. First and second time

derivatives of the MFCC coefficients are then numerically

calculated, and the MFCC coefficients and their time derivatives

are collected into a feature vector:
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While these features were originally developed for speech analysis,

they have also been proven to be useful for cough sounds analysis

[8–10]. These features for individual frames are fed into a classifier

(trained offline) to determine whether or not the frame has the

characteristics of cough. Finally, the decisions for individual frames

are combined to arrive at an overall decision for the event.

Event detection. Our first implementation of a cough

analysis algorithm detected acoustic events using a simple energy

detector, following previous work [8–10]. In this approach, a

signal envelope was estimated by squaring the input signal and

smoothing it with a centered moving average filter (a rectangular

filter of length 0.05 s). The detector then identified events as

regions of time where the signal exceeded an energy threshold.

Events that were separated by a very small gap in time (0.1 s) were

merged together into one event (similar to a morphological closing

operation in image processing).

We found several difficulties with this approach, illustrated in

Figure 7. In some cases the energy threshold was not crossed until

partway through the event. This is undesirable as the initial

portion of the event is important for cough classification, as the

initial explosive phase is highly characteristic of cough. More

commonly, the energy detector triggered on speech signals, as

shown in the Figure. Speech signals may have significant energy,

but typically show a more gradual change in signal energy than

coughs. These detected speech events were then passed through

the second event classification stage. Although the large majority

of these speech events were correctly rejected, the overall effect

was to increase the number of false positives. We note that in most

of our recordings, speech events outnumber cough events by 1–2

orders of magnitude, so even a small rate of misclassification can

have significant consequences for overall performance. A final

difficulty (not shown in the figure) is that the background noise

levels differ greatly for various recordings in our dataset, so use of a

fixed noise threshold is problematic.

We therefore developed an improved detection scheme which

searches for the rapid increase in signal energy that is character-

istic of cough. To account for the variety of noise environments in

our dataset, we make use of a time-varying estimate of the noise

background. Pseudo-code for the detection algorithm is shown in

Figure 8. The parameters shown were determined empirically. To

reduce computation, percentiles were calculated for a subset of

windows with 75% overlap and then interpolated to each time

sample.

Event classification: off-line training. A subset of the

recorded data was used as training data. Because of data

availability at the time training was done, the training data is

mainly taken from two male subjects. However, the training data

Cough Detection for Tuberculosis Monitoring

PLOS ONE | www.plosone.org 6 October 2012 | Volume 7 | Issue 10 | e46229



included a wide diversity of non-cough events, and we actually saw

slightly better sensitivity with female patients (81%). A graphical

user interface was built to support classifier training. Recordings

were processed to identify events, which were then played for the

user. To create a large library of both cough and non-cough

events, the simple energy threshold detector described above was

used, with a low threshold to allow sensitive detection of events.

Events were manually reviewed classified as ‘cough’, ‘not cough’,

or ‘unclear’. ‘Unclear’ events were either ambiguous in nature or

were coughs with other sounds in the background, such that they

were judged unsuitable for classifier training. This process yielded

418 cough events, 1980 ‘not cough’ events, and 75 ‘unclear’

events.

Once each event was manually labeled, it was split into frames

and the feature vector shown in Eq. 2 was calculated. All frames

within the event were labeled as ‘cough’ or ‘noncough’ based on

the manual classification of the overall event. This yielded a total

of 13,429 cough frames and 43,925 non-cough frames for training.

There is a possibility for misclassification in the training data, as

not every frame in a ‘cough’ event may contain cough sounds.

However, the large number of example frames should help

mitigate this problem.

Figure 6. High-level flowchart of cough detection algorithm.
doi:10.1371/journal.pone.0046229.g006

Figure 7. Example issue with simple energy detector. The threshold may miss the start of the acoustic event and is frequently crossed during
speech events (shown above), increasing the chance of misclassification.
doi:10.1371/journal.pone.0046229.g007

Cough Detection for Tuberculosis Monitoring
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Classifier training was performed using the Weka 3.6 software

[17] which allows testing of a wide range of different machine

learning algorithms. Training using the full dataset of over 57,000

frames is computationally infeasible, and also of limited value as

many frames are very similar. Thus, we applied a previously

developed ‘divide and conquer’ clustering method suitable for

large datasets [18]. During the algorithm, representative ‘cluster

centers’, or exemplar frames of different types of sounds, are

computed. New frames are associated with these centers if they

have correlation .0.95, i.e. if

rfg~
f
IT

g
I

f
I���
��� g

I
���
���

§0:95 ð3Þ

where f and g are feature vectors of the form shown above, and I
I denotes the 2-norm of the vector. Pseudo-code for the clustering

algorithm is shown in Figure 9. For our training data, this

clustering approach yielded 2074 vectors, representing half cough

events and half non-cough.

Using 10-fold cross-validation, we compared performance of

neural networks, support vector machines (SVM), and sequential

minimal optimization (SMO) algorithms. Details of the compar-

ison are in [13]. Performance of the various methods was similar,

so we chose the SMO approach for ease of implementation.

On-line event classification. During on-line processing, the

SMO classifier trained as described above was used to classify

individual frames with each detected event. In a final step, the

decisions for individual frames within each event are combined to

classify the overall event. A previously proposed approach [8] is to

average classifier scores from all frames within an event. We found

improved performance by first identifying the 1/3 of contiguous

frames that have the most ‘cough-like’ scores, then averaging the

classifier outputs for those frames. This approach helped avoid

misclassification when the detected event contained a mix of cough

and other vocalizations.

Data quality flags. While an ideal cough detection algorithm

would rival the abilities of a human listener, certain types of files

have the potential to cause significant problems for automated

analysis. A final analysis stage is therefore the calculation of data

quality flags. Our software outputs one of three flags, defined as

follows:

N Type 0: normal file

N Type 1: low-amplitude file (technical problem with recorder);

maximum value in file,threshold (threshold is 30% of full

dynamic range; note that typical files use full dynamic range)

N Type 2: high-noise file; variation (max-min) in estimated noise

floor during the file exceeds a threshold. Triggered by very

noisy environments or by technical problems (intermittent

electrical connections)

Figure 8. Pseudo-code for event detection logic.
doi:10.1371/journal.pone.0046229.g008
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Thresholds for these tests were found through engineering

judgment. Files S2, S3, S4 contain example audio clips of all three

types of files.

While algorithmically very simple, the concept of flagging

difficult data cases proved very helpful practically. Because much

of our dataset was collected in daily-life settings, microphone

placement and other important determinants of data quality

depend on the patients wearing the microphone, rather than on

specially trained clinical staff. Low amplitude Type 1 files

constitute roughly 4% of our dataset. In these files, the algorithm

detects few acoustic events, increasing the false negative (FN) rate.

High noise Type 2 files constitute roughly 17% of our dataset. In

these files, our event detection logic (which relies on a smooth

noise estimate) does not perform well, increasing the rates of both

false positives and false negatives. As noted above, the data quality

flag can either trigger manual review or discarding of the file from

analysis results.

Supporting Information

File S1 This file contains an example of a double-cough
from a TB patient. Several patients (such as this one) nearly

always cough in a characteristic double-cough pattern.

(WAV)

File S2 This file is an example of a file that was rejected
due to very large changes in the background noise level,
in this case caused by traffic noise.
(WAV)

File S3 This file was judged by the algorithm to be
analyzable (i.e., variations in the background noise level
were below the threshold level) but contains a variety of
potentially confusing noises. Unlike audio file S2, this file

contained several regions of fairly stable background noise which

allows the noise floor to be estimated.

(WAV)

File S4 This file was rejected because the maximum
signal level was quite low, leading to poor SNR. The low

recording levels represent a technical problem in recording.

(WAV)
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