Gerald Shively & Alecia Evans

Purdue University

6th Annual Scientific Symposium on Agriculture-Nutrition Pathways, Kathmandu November 28, 2018

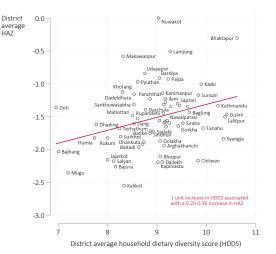
(with thanks to S. Gosh, R. Shrestha & P. Webb)

Outline

Introduction

motivation & background research questions data

Dietary Diversity

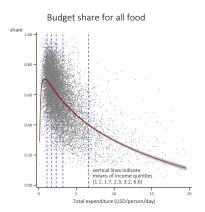

by location by income by year

Regression Results

elasticities main findings

Appendix

Motivation: Dietary Diversity & HAZ



Source: 2016 DHS and 2015-16 AHS; population weighted

Changes in Income Drive Changes in Diet

Engel's Law (left) and Bennett's Law (right)

Budget share for starchy staples share 1.00 0.20 -

Expenditure quintile

Research Questions

1. How diverse are diets in Nepal?

ō

Research Questions

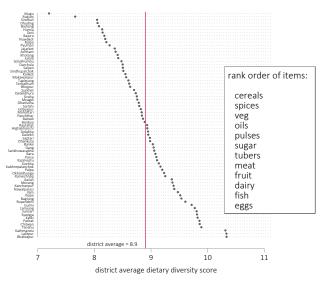
- 1. How diverse are diets in Nepal?
- 2. What explains observed patterns of food expenditures, household dietary diversity sources (hdds) and consumption of animal sourced food (asf)?

three rounds of Nepal AHS (2013/14, 2014/15, 2015/16)

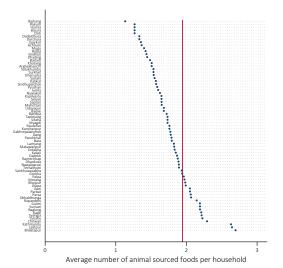
- three rounds of Nepal AHS (2013/14, 2014/15, 2015/16)
- 11,809 households (5,892 urban; 5,917 rural)

- three rounds of Nepal AHS (2013/14, 2014/15, 2015/16)
- 11,809 households (5,892 urban; 5,917 rural)
- food and non-food expenditures (7-day and 30-day recall) mapped into 12 diet categories (hdds)

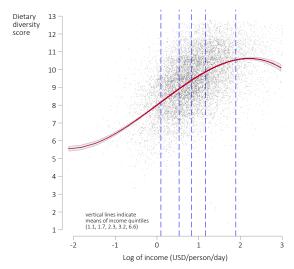
- three rounds of Nepal AHS (2013/14, 2014/15, 2015/16)
- 11,809 households (5,892 urban; 5,917 rural)
- food and non-food expenditures (7-day and 30-day recall) mapped into 12 diet categories (hdds)
- OLS regressions for budget shares
 Poisson regressions for hdds
 Probit regressions for asf consumption

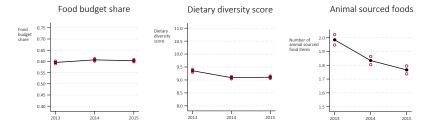

- three rounds of Nepal AHS (2013/14, 2014/15, 2015/16)
- 11,809 households (5,892 urban; 5,917 rural)
- food and non-food expenditures (7-day and 30-day recall)
 mapped into 12 diet categories (hdds)
- OLS regressions for budget shares
 Poisson regressions for hdds
 Probit regressions for asf consumption

Notes:


- calculations exclude in-kind food expenditures
- expenditures converted to adult-equivalents
- results population weighted (using AHS sample weights)
- 4 districts (Rasuwa, Manang, Mustang, Dolpa) excluded (incomplete data)

Dietary diversity by district


Animal sourced food consumption by district


Dietary diversity and income

Source: population weighted AHS 2013-2015

Indicators by year

Source: population weighted AHS 2013-2015; open circles represent 95% confidence bands

	food	staples	hdds	pr(asf)
All	0.68	0.24	0.14	0.14
Male	0.68	0.24	0.14	0.15
Female	0.70	0.25	0.13	0.13
Urban	0.64	0.17	0.12	0.10
Rural	0.72*	0.34*	0.14*	0.16
Terai	0.64	0.19	0.14	0.17
Hills	0.71*	0.26*	0.15*	0.12
Mountains	0.84*	0.58*	0.11*	0.13

^{*} significantly different from comparison group at 95% confidence level; estimates based on unconditional, population-weighted regressions; n=11,771; OLS regression used for food and staple shares, poisson regression used for hdds, probit regression used for pr(asf).

	food	staples	hdds	pr(asf)
All	0.68	0.24	0.14	0.14
Male	0.68	0.24	0.14	0.15
Female	0.70	0.25	0.13	0.13
Urban	0.64	0.17	0.12	0.10
Rural	0.72*	0.34*	0.14*	0.16
Terai	0.64	0.19	0.14	0.17
Hills	0.71*	0.26*	0.15*	0.12
Mountains	0.84*	0.58*	0.11*	0.13

^{*} significantly different from comparison group at 95% confidence level; estimates based on unconditional, population-weighted regressions; n=11,771; OLS regression used for food and staple shares, poisson regression used for hdds, probit regression used for pr(asf).

	food	staples	hdds	pr(asf)
All	0.68	0.24	0.14	0.14
Male	0.68	0.24	0.14	0.15
Female	0.70	0.25	0.13	0.13
Urban	0.64	0.17	0.12	0.10
Rural	0.72*	0.34*	0.14*	0.16
Terai	0.64	0.19	0.14	0.17
Hills	0.71*	0.26*	0.15*	0.12
Mountains	0.84*	0.58*	0.11*	0.13

^{*} significantly different from comparison group at 95% confidence level; estimates based on unconditional, population-weighted regressions; n=11,771; OLS regression used for food and staple shares, poisson regression used for hdds, probit regression used for pr(asf).

	food	staples	hdds	pr(asf)
All	0.68	0.24	0.14	0.14
Male	0.68	0.24	0.14	0.15
Female	0.70	0.25	0.13	0.13
Urban	0.64	0.17	0.12	0.10
Rural	0.72*	0.34*	0.14*	0.16
Terai	0.64	0.19	0.14	0.17
Hills	0.71*	0.26*	0.15*	0.12
Mountains	0.84*	0.58*	0.11*	0.13

^{*} significantly different from comparison group at 95% confidence level; estimates based on unconditional, population-weighted regressions; n=11,771; OLS regression used for food and staple shares, poisson regression used for hdds, probit regression used for pr(asf).

Conditional Marginal Effects

(change in y for a change in x at the sample mean)

	hdds	pr(asf)
Income	0.113*	0.135*
Urban	0.022*	0.002
Agricultural	-0.011*	-0.012*
Female head	0.021*	0.012*
HH size	0.042*	0.049*
Education	0.014*	0.007*
Wealth	0.001*	0.003
Food away	0.060*	0.024*
Road density	0.014*	0.006*

^{*} significantly different from zero at 95% confidence level; population-weighted regressions include year & zone controls; n=11,771; Poisson regression used for hdds, probit regression used for pr(asf)

Conditional Elasticities & Marginal Effects

(change in y for a change in x)

	hdds	pr(asf)
Income	0.113*	0.135*
Urban	0.022*	0.002
Agricultural	-0.011*	-0.012*
Female head	0.021*	0.012*
HH size	0.042*	0.049*
Education	0.014*	0.007*
Wealth	0.001*	0.003
Food away	0.060*	0.024*
Road density	0.014*	0.006*

^{*} significantly different from zero at 95% confidence level; population-weighted regressions include year & zone controls; n=11,771; Poisson regression used for hdds, probit regression used for pr(asf)

 household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income

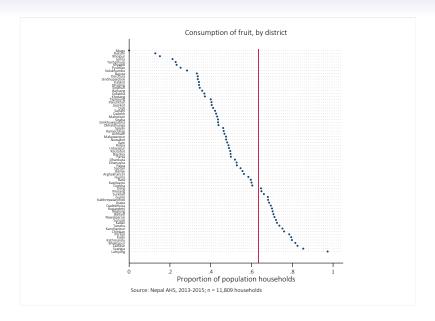
- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined

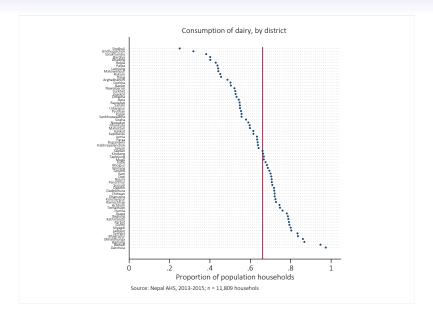
- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption

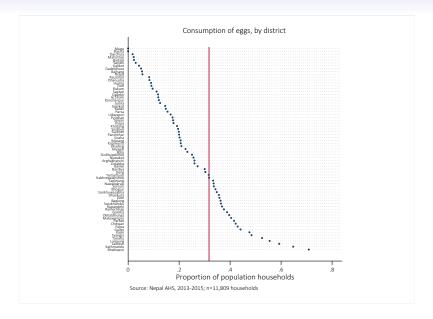
- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption
- controlling for time and location, the main factors correlated with dietary diversity and ASF are:

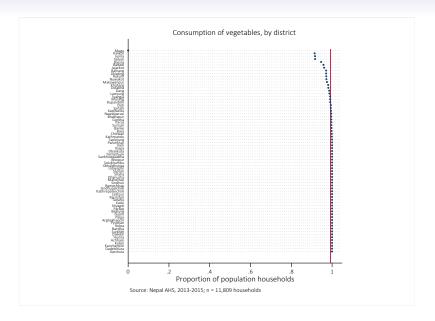
- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption
- controlling for time and location, the main factors correlated with dietary diversity and ASF are:
 - 1. income, wealth, family size & education consistently positive

- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption
- controlling for time and location, the main factors correlated with dietary diversity and ASF are:
 - 1. income, wealth, family size & education consistently positive
 - 2. female headship positive but modest in magnitude


- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption
- controlling for time and location, the main factors correlated with dietary diversity and ASF are:
 - 1. income, wealth, family size & education consistently positive
 - 2. female headship positive but modest in magnitude
 - 3. rural & agricultural negative associations


- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption
- controlling for time and location, the main factors correlated with dietary diversity and ASF are:
 - 1. income, wealth, family size & education consistently positive
 - 2. female headship positive but modest in magnitude
 - 3. rural & agricultural negative associations
 - 4. road density & consumption outside home, both correlated with greater dietary diversity: market access matters!




- household diets in Nepal are relatively diverse, on average, but patterns vary considerably across location and income
- location explains roughly as much of the variation in diversity scores as income, wealth and education combined
- evidence suggests dietary diversity has fallen slightly over time, due largely to a modest decline in ASF consumption
- controlling for time and location, the main factors correlated with dietary diversity and ASF are:
 - 1. income, wealth, family size & education consistently positive
 - 2. female headship positive but modest in magnitude
 - 3. rural & agricultural negative associations
 - 4. road density & consumption outside home, both correlated with greater dietary diversity: market access matters!
- policy challenge: hdds & asf are not very responsive...

