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Abstract:

Statement of the problem: The strength of zirconia custom abutments could
be affected by the thickness of the abutments’ svald/or abutments’
angulations, leading to internal stress build-upd aonsequently affecting

restoration’s life-span.

Purpose: The purpose of thim vitro study was to compare the fractural
strength of zirconia custom abutments with différehicknesses and
angulations.

Materials and methods: Eighty zirconia custom abutments were divided
into two main groups (group | & group I). Each gpowas divided further
into four subgroups. Groups I-A-1, I-B-1, II-A-1né II-B-1 simulated a
clinical situation with an ideal implant positioro a prosthetic point of
view, which allows for the use of a straight zir@oustom abutments with
two different thicknesses (.7 mm and 1 mm). Whegrasips I-A-2, I-B-2,
[I-A-2, and [I-B-2 Simulated a situation with a cpromised implant

position requiring 15 degree angulated abutmentis different thicknesses



(.7 mm and 1 mm). Implant replicas were placeduhic self cure acrylic
jigs to support the abutments in all groups. Theania custom abutments
were engaged to the implant replicas into the cabiylic jigs by using a
manual torque wrench. Each jig was secured and tedun metallic vice.
All groups were subjected to shear stress tilufailwith a crosshead speed
of .5 mm/min with the force transferred to the liag§surface of the zirconia
custom abutments 2 mm below the incisal edge bygusniversal testing
machine. The universal testing machine was coettollia a computer
software system which also completed the stressstdiagram and

recorded the breaking fractural strength.

Results. The mean fractural strength of zirconia custonmt@mlents in group
| (A-1 through B-2) ranged from 162.49 + 63.21 N281.14 + 95.21 N,
whereas in group II (A-l through B-2) ranged fror@1433 + 96.74 N to
745.93 £ 274.79 N. Group [I-B-2 exhibited the high&actural strength

among all the groups, which was statistically digant p=.005.



Conclusions:
= Zirconia custom abutments in group Il exhibited kinghest fractural
strength especially with angulated abutments.
= Zirconia custom abutments in group | exhibited lineest fractural
strength especially the angulated abutments.
» The thickness of zirconia custom abutments in gibinad a positive

influence on the fractural strength, but in groumad no influence.
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Introduction

Dentistry has aimed to replace missing teethesinwas first recognized as
a profession. For centuries, dental practitiorfexge relied on their own
skills and various artifacts to develop esthetid &mctional alternatives to
minimize sequel that occurs as a result of edesmuli Partial, complete,
fixed, or removable dentures are by far the mostrmonly used forms of
tooth replacement applied. In other words, thesgicds have been
incorporated into the oral cavity anchored on eittegnaining teeth and/or
other anatomical structures. Only scarce archecdbgireports have
demonstrated attempts of incorporating prosthediags into the jaws as
more natural and functional replacements. Howemexdictability of these
methods was not achieved until recently.

During the past 40 years the porcelain-fused-toahmieichnique has
been extensively used in fixed partial denturesDEB However, this
technique has improved the demand for more aestimeéiterials with

biocompatible properties for fabricating FPDs. tidiéion, the public scare
1



about side effects of dental metals and alloys haselerated the
development of alternatives to metallic dentalagestion such as different
types of dental ceramids’ One of these alternatives is metal free
restorations; in these types of restorations, lw@escy and opacity can be
controlled based on patients’ needs. Because oftrareslucency of all-
ceramic restorations, it is possible to reprodheglaok of natural teet}.
All-ceramic single crowns are widely used both imesior and posterior
regions; these crowns have been evaluated in malgwfup studies,
mostly showing promising resufts!® During the past decade, all-ceramic
FPDs manufactured using various dental ceramice h&so been evaluated
in in vitro and in short-ternin vivo studies:**® However, dental ceramics
are brittle and their low fractural resistance amthtively low flexural
strength still limits the possibility of manufadiuy FPDs using all-ceramic

frameworks°



Currently, Zirconia has been proven a biocdibfg esthetic, and
functional material for long-lasting restoratiofiis high-strength ceramic
material allows for light transmission at the cati interface between
marginal gingival tissue and prosthetic componer@inical observations
have shown clearly favorable esthetic outcomes lagtter translucency

compared to ceramo-metallic restoratiéhs.



Literature Review

Historical Background:

Zircon has been known as a gem since ancient tiflesname of the metal,
zirconium, comes from the Arabic wordargon(golden in color), which in
turn comes from the two Persian wordgr (Gold) andGun (Color)*
Zirconia, the metal dioxide (Zr{p was identified as such in 1789 by the
German chemist Martin Heinrich Klaproth in the t&@t product obtained
after heating the gems, and was used blended \arth earth oxides as
pigment for ceramic$:

The first paper concerning biomedical applicatioh zirconia was
published in 1969 by Helmer and DriskéliHowever, the first paper
concerning the use of zirconia to manufacture bathds for Total Hip
Replacements (THR), which is the current main &jafibn of this ceramic
biomaterial, was introduced by Christel et al 888’ The first proposal of

the use of zirconium oxide for medical purposes wasde in 1969



concerned orthopedic application. Zr@as proposed as a new material for
hip head replacement instead of titanium or alumip@sthese$:
Orthopedic research focused on the mechanical b@halvzirconia, on its
wear, and on its integration with bone and musklereover, these first
studies were largely carried aatvivo becausén vitro technology was not
yet sufficiently advancet.

Prior to 1990, many other studies were peréal, in which zirconia
was tested on bone and muscle without any unfal®nasults™*° Since
1990, in vitro studies have also been performed in order to mbtai
information about cellular behavior towards zira@tiln vitro evaluation
confirmed that Zr@is not cytotoxic>>*Uncertain results were reported in
relation to zirconia powders that generated an rsgveespons&.* This
was probably due to zirconium hydroxide, which @slonger present after
sintering; thus, solid samples can always be regheas$ safe. Mutagenicity

was evaluated by Silva and Covacci, and both reddtiat zirconia is not



able to generate mutations of the cellular gendffeSpecifically, mutant
fibroblasts found on Zr@were fewer than those obtained with the lowest
possible oncogenic dose compatible with survivathef cells*® Moreover,
zirconia oxide creates less flogistic reactionigsue than other restorative
materials such as titaniuthThis result was also confirmed by a study about
peri-implant soft tissue around zirconia healinggscan comparison with
those around titaniufft. Inflammatory infiltrate, microvessel density, and
vascular endothelial growth factor expression wirend to be higher
around the titanium caps than around the ,Zo@es. Also, the level of
bacterial products, measured with nitric oxide bgse, was higher on
titanium than on zirconium oxidé.

In the early stages of development, several sablditions (ZrQ-MgO,
Zr0O,-Ca0, and Zr@Y20s,) were tested for biomedical applicatio“ﬁs'l?heir
mechanical properties are the highest ever repdotedny dental ceramic.

This may allow the realization of posterior fixedrfpal dentures and permit



a substantial reduction in core thickness. Thegealwaties are highly
attractive in prosthetic dentistry, where strengéimd esthetics are

paramounf?
Properties of Zirconia:

Zirconia is a crystalline dioxide of zirconium. Itsechanical properties are
very similar to those of metals and its color isi&r to tooth colof? In
1975, Garvie proposed a model to rationalize thagoechanical properties
of zirconia and by virtue of which, it has beerleal‘ceramic steel”*®
Zirconia crystals can be organized in three diffengatterns: monoclinic
(M), cubic (C), and tetragonal (T). By mixing ZrGvith other metallic
oxides, such as MgO, CaO, or YZQreater molecular stability can be
obtained”

Yttrium-stabilized zirconia is presently the mostdied combinatio® The

aforementioned three phases are present in a cor@n@ncrystal. Every

transition between the different crystalline refations is due to a force on



the zirconia surface, and this produces a volumetnange in the crystal
where the stress is applied. When a stress ocaura mirconia surface,
cracking energy creates a T-M transition. This tafjise modification is
followed by an expansion that seals the crack ~4“5260, stabilized with
Y O3 has better mechanical properties than other caatibims; although its
sintering is much more difficult, this is the pnpal kind of zirconia
considered for current medical use.

Physical Properties of Zirconia:

Zirconia’s resistance to traction can be as hig9@0-1200 MPa and its
compression resistance is about 2000 KfPACyclical stresses are also
tolerated well by this material. Cales etfalind that with applying an
intermittent force of 28 KN to zirconia substrat&§, billion cycles were
necessary to break the samples, however, withce fior excess of 90 KN

S50

structural failures of the samples occurred aftist L5 cycles:” Surface

treatments can modify the physical properties @tania. Exposure to



wetness for an extended period of time can havet@ntental effect on its
properties’ This phenomenon is known as zirconia aging. Moreoaiso
surface grinding can reduce toughn®s&osmac et alconfirmed this
observation and reported a lower mean strengthrarability of zirconium
oxide after grinding>®

Zirconia Polymorphs:

At ambient pressure, unalloyed zirconia can asstinree crystallographic
forms as it has been mentioned, but this formateomepending on the
temperaturé? At room temperature and upon heating up to 1176H€,
symmetry is monoclinic. Between 1170°C and 2370f@, structure is
tetragonal, and 2370°C to melting point is cuBivhile cooling down, the
transformations from the tetragonal to the monaclphase occurs and they
are accompanied with a substantial increase invitlame (about 4-5
percent) which is sufficient to lead to catastrepHiailure®® The

transformation is irreversible and begins at 950p8n cooling. In order to



prevent this transformation, a procedure of allgyjpure zirconia with
stabilizing oxides such as CaO, MgO,0¢, or CeQ allows the retention of

the structure at room temperatdfé®

Among the three classes, the Tetragonal ZirconiycBatalline (TZP)
materials have the best fractural toughness andhamémal strength,
especially when 3 mol % vyttria is used as stabiliZeich results are related
to the greater extent of yttria’s solubility inr@gonal zirconia solid solution

when compared to others oxidés.

The 3 mol% vyttria-stabilized zirconia (3Y-TZP) elkhs a very important
feature related to the polymorphic transformati@nrmhonoclinic phase when
a mechanical stress is applied. This phenomenanyikras transformation
toughening, can prevent crack growth, which resuolts material with high
toughness and mechanical strerfgtAt a crack tip, the matrix constraint on
the tetragonal particles of 3Y-TZP is reduced hysile stresses so that a

transformation to the monoclinic structure takescpl This transformation

10



produces a local 4-5 percent increase in volumejclwiresults in
compressive stresses within the matrix, therebyesming the energy
necessary for further crack growfff? On the other hand, this
transformation also altering the phase integrityhef material and increasing
the susceptibility to aging. Aging (the low tempeara degradation) of
zirconia is a well-documented phenomenon exaceatbabéiceably by the
presence of watéf:®> The consequences of aging are many and include
surface degradation with grain pullout and micracking as well as strength

degradatiorf’

The flexural strength of zirconia oxide (3Y-PTZ)irsthe range of 900 to
1100 MPa, which is approximately twice as strong ahsmina oxide
ceramics, and five times greater than standard glasamic$®®’ Also, the
fractural strength of fully sintered 3Y-TZP may inereased further by hot

isostatic pressing (HIP). Under a hot isostatespr3Y-TZP, the material is

11



compressed under a pressure of 1,000 bar at 50 I|&vbis sintering

temperaturé®

The mechanical properties of 3Y-TZP stronglpetal on its grain siZ&:
% Above a critical grain size, 3Y-TZP is less statel more susceptible to
spontaneous—tm transformation, whereas smaller grain sizes (Qlara
associated with a lower transformation f&tdloreover, below a certain
grain size (<0.2um), the transformation is not pgmssleading to reduced
fracture toughnes$.Consequently, the sintering conditions have a gtron
Impact on both the stability and mechanical prapsif the final product as
they dictate the grain size. Higher sintering terapges and longer
sintering times lead to larger grain siZE& Also, due to its
biocompatibility; zirconia is used as a prosthatplant for many medical
and dental applications. Its chemical stability hmade it an optimal
material particularly in corrosive environments. fdaver, zirconia has a

hard and dense surface that is ideal for resistiegr and contact damage,

12



which together have made zirconia the material lobi@ where high

functional demands are to be satisfied.

Fabrication of Zirconia Restorations:

3Y-TZP is available in dentistry for the fabricatiof custom abutments and
fixed partial dentures. Zirconia frame works canbet manufactured by
dental technicians using the traditional methodpofvder/liquid slurry.
Frameworks have to be milled from prefabricatedhksausing a digital
process called Computer Aided Design/Computer Aidiéaihufacturing

(CAD/CAM).

The Accuracy of Digital Scannersin CAD/CAM:

The guidance provides the FDA’'s recommendationsnémufacturers for
evaluating and labeling optical impression systéonsCAD/ CAM dental
restorations.” An optical impression system for CAD/CAM dental
restorations is a device used to record the topbgral characteristics of

teeth, dental impressions, or stone models by gnalor digital methods for

13



use in the computer assisted design and manufagtofidental restorative
prosthetic device§ Such systems may consist of a camera, a scanner or
equivalent type of sensor, and a computer withwaok’® Accuracy is a
measure for the digitizing quality of the measummints. An existing
standard for characterizing ‘Digitizing quality’ afoordinate measuring
machines has already been devised in an interétsdandard, but the test
methods are laborious and not dedicated to the gem® and undercut
measurements that are encountered in dental sutigitieation.”* "> May et
al measured the precision of fit of the crown fabedawith CAD/CAM
technology for the premolar and molar teeth fiatdie and found that the
mean gap dimensions for marginal openings, intermptation, and
precision of fit for the crown groups were below . "® Mehl et al
reported that the accuracy of digital scanners lwarup to 13, 2 +/- 3.6

micrometers’’

14



Digital Data Acquisition and Virtual Design:

Computer Aided Design (CAD). CAD/CAM systems are based on the
optical or mechanical acquisition of topographi¢adéor the surfaces of
specific objects. The scanning of casts is widesprand has been
successfully used for many years. Impressions nenalso being scanned,
followed by direct intraoral data acquisition coogic holography®
Conoscopic Holography: this is a precision scanning process introduced
into dentistry to meet a wide range of requiremecdpturing data at a very
high level of accuracy. Like the triangulation nadhmost dental scanner
systems employ, this method works by directing anbef laser light at the
object’” The most important difference between the two westhis that
with conoscopic holography, the source of light #mel sensor is not placed
at an angle, but the light reflected by the scanmlgidct is parallelized®
Once the laser beam passes through the specidhlcrgs-called fringe

patterns are created directly on the seffs@he co-linear property of the

15



beams makes for precise measurements and robusirtesscase of optical
disturbances and has the added advantage of dandjtthe capture of a
great variety of geometric shapes such as very sepes or depressioffs.
There are no limiting optical shadows such as thbaé invariably occur
with the triangulation method when attempting tptaege deep cavities with
a small opening radius. This makes the technologgfull for scanning
Impressions. However, an efficient working and pcitbn process does not
solely depend on how the components are fabricdtedother important
aspect is a software user interface that suppbesperator in the virtual
design task. Today, appropriate software not omips define the most
suitable shapes and sizes for crowns and bridgest #lso facilitates, based
on a scanned bite record, representing the occlosaiphology and
indicating and planning occlusal contacts adaptedhe situation in the
antagonistic jaw. In the second step, the virteataration is automatically

cut back to reflect the future ceramic veneer, gnguan ideal and

16



homogenous thickness—indispensable for long-terrmical success,
especially when using frameworks made of high-gfiteroxides such as
zirconia’®

Computer Aided Manufacture (CAM):

After receiving the information as digital file wdin has been designed by
the digital scanners, the restorations are prodessthe manufacture either
by soft machining of pre-sintered blanks followed by simgrat high

temperature, or by hard machining of fully sintebéatks’®

Soft Machining: This technique allows the frameworks to be grountiad

zirconia in the pre-sintered, soft stage. The mmeesed frameworks,
however, have to be sintered to full density ineordo reach optimal
material properties. This sintering procedure isoaganied with high
sintering shrinkage of zirconia of about 22 percémtorder to compensate
for the shrinkage, the size of the milled, preeiietl frameworks has to be

larger by this differenc®®

17



Typically, the 3Y-TZP powder used in the fabricatiaf the blanks contains
a binder that makes it suitable for pressing. Tihddy is eliminated during a
pre-sintering heat treatment. This step has to dwralled carefully by
manufacturers, particularly the heating rate ande tpre-sintering
temperaturé’ If the heating rate is too fast, the eliminatidrite binder and
associated burn out products can cause the blank®t¢k. Therefore, slow
heating rates are preferred. The pre-sintering éeatpre of the blanks
affects the hardness and machinabffftfrlhese two characteristics act in
different ways: an adequate hardness is neededhé&rhandling of the
blanks, but if the hardness is too high, it miglet thetrimental to the
machinability. The temperature of the pre-sinterimgat treatment also
affects the roughness of the machined bf8rRverall higher pre-sintering
temperatures lead to rougher surfaces. The chdieepooper pre-sintering
temperature is thus criticdl. The density of each blank should carefully be

measured so that the appropriate compensatingksigenis applied during

18



final sintering” The final density of the pre-sintered blanks i®wtb40
percent of the theoretical density (6.08 gicriThe density gradient within
the blanks is lower than 0.3 percent of the thémaktdensity in all
directions. Machining is better accomplished im tsteps® A first rough
machining is done at a low feed rate while the Ififi@e machining is
performed at a higher feed rdté* Soft machining techniques prevent the
stress-induced transformation from tetragonal taxocbnic and leads to a
final surface virtually free of monoclinic phasaless grinding adjustments
are needed or sandblasting is perforifiedlost manufacturers of 3Y-TZP
blanks for dental applications do not recommenddyng or sandblasting to
avoid both the T M transformation and the formation of surface Saivat
could be detrimental to the long-term performangdespite the apparent
increase in strength due to the transformationdedu compressive

stresse&®

19



Hard Machining of (Y-TZP): 3Y-TZP blocks are prepared by pre-sintering
at temperatures below 1500°C to reach a densi#y lsfast 95 percent of the
theoretical density® The blocks are then processed by hot isostat&sjmg
at temperatures between 1400°C and 1500°C undempnegsure in an inert
gas atmospherelhis latter treatment leads to a very high densitgxcess

of 99 percent of the theoretical density.

Zirconia processing in its density sintered stagekes the grinding
procedures difficult; it is time-consuming and lsaid the high wear of
milling instruments. Also, the restorations prodiid®y hard machining of
fully sintered 3Y-TZP blocks have been shown totamna significant
amount of monoclinic zirconid. This is usually associated with surface
micro cracking higher susceptibility to low tempera degradation and

lower reliability %8
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Zirconia Custom Abutments:

The good long-term clinical results of dental imm#& allow their
applications in various regions of the arches anddivers indication&> *°
Following the functional and biologic success ofplamt supported
restorations, additional criteria (primarily esthedspects) gain importance.
Standardized titanium abutments exhibit high swalvrates because of their
excellent physical properti@5.However; their application can impair the
esthetic resuf In the case of soft tissue recession, exposurgefgray
titanium abutment can lead to failure of the restion in highly visible
anterior regions. Furthermore, when titanium abuti@re used in patients
with a thin labial mucosa, a grayish discoloratadithe mucosa can occur,
owing to the gray metal color showing through®*it®® The esthetic
shortcomings of titanium led to the development@&famic materials as an
alternative for esthetically demanding anterior @neimolar region® The

first of all ceramic implant abutments were develdpn 1993 and were

21



made of alumina, a high-strength cerafii@mong the ceramics, alumina
exhibits favorable physical material properti&® The bending strength of
alumina reaches 547 MPa and its fractural toughiee&55 MPa %
These early abutments were customized manually det rthe anatomical
requirements of each individual site vitro studies demonstrated high
fractural resistance of alumina abutmefitdn clinical investigations,
however, abutment fractures were observed in 1/&epe of implant
supported fixed dental prosthesg®’ In the search for ceramic abutment
material with improved physical properties, yttstabilized zirconia was
introduced in 1998%° This high strength ceramic exhibits fractural
toughness and bending strength that are almose taschigh as alumina
ceramic’®'® The bending strength of zirconia is 900 MPa amdr#ctural
toughness reaches 9 MP&4 Zirconia abutments showed resistance to a
high load of up to 730N in oria vitro study:>n comparison, the naturally

occurring mean inciso-occlusal loads in anterigiars amount to 110N for

22



teeth and 370N for implant§:'® With this data fromin vitro studies,
zirconia was expected to reduce the risk of fractlirindeed, no fracture of
zirconia abutments were reported after four yeérslinical service in one
study!® Because of its different material properties, thechanism of
ceramic abutment failure differs from what can ls®rs with titanium
abutments. Ceramics are brittle and therefore devitbstand tensile forces
very well.'® Fracture occurs when the tensile forces exceetirtits given
by the fracture toughness. In contrast, metalsdareile. Their ductility
enhances the tolerance for compressive and teosdes. Prior to fracture,
the first elastic deformation followed by plastiefdrmation occurs. This
property is the reason for the excellent loadingacity of metals:’’ The
nature and the direction of the load have a majitwuence on the stability of
ceramic implant abutments. During the occlusal ilogdof an implant
supported reconstruction, the region around theénadmt screw head is the

area of the highest torque and stress concentsatiand it has been

23



demonstrated to be the most critical region for ghability of ceramic
abutments® High tensile forces occurring in the region durifumction
were the most frequent origin of fracture of ce@alutments in severad
vitro studies>>*°” With metal abutments, the same forces first led to
deformation and then to fracture of the abutmentwss'® Consequently,
the type and architecture of the implant abutmemnection might have a
substantial influence on the stability and fixatiai Dbrittle ceramic
abutments. Implants are designed with differenesypf implant—abutment
connection$? The abutments can either be fixed onto an exteorahecting
part of the implant or internally into the impldftThe internal connection
of zirconia abutments can be accomplished eithethieyabutment itself
(one-piece) or by means of secondary components-fftace). One piece
abutments are made entirely of ceramic, whereasworpiece abutments,

the internal connecting part can be either a semgniitanium abutment or

separate metallic insert mounted on the implanettogy with the abutment
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and fixed by means of one abutment sct\irhe influence of the type of
connection on the long term stability of the abuttrenplant complex has
been analyzed for titanium abutments in severalissi'* With these types
of abutments, mechanical problems such as looseamirfgacturing of the
abutment screw can occur with external connectithis? In one clinical
study of an external connection implant systemtrabat screw loosening
was the most frequent technical complication olegrafter three years of
servicet'"**?In contrast, the internal connection was demotesirto exhibit
significantly higher strengtim vitro than the external hexagonal connection,
owing to its higher resistance to bendifThe occurrence of abutment
screw fractures were lower with an internal conioect>**°In one clinical
study analyzing an internal-connection implant eyst the cumulative
survival rate for the abutment screws and the rastms supported by
titanium abutments was 100 percent after 18 mon#m] no screw

loosening or fracturing occurré The stability of zirconia abutments with
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external connections has been analyzed in d8tafl’ In contrast, to date,
the stability of internally connected ceramic abemts has not been
specifically investigated’ It might be expected that one-piece and two-
piece internally connected zirconia abutments akkifferent resistance to

loading as a result of a different distributiortieé loading forces"’

Zirconia Abutments’ Survival Rate:

Little data is available on the survival rate angrage lifetime of zirconia
custom abutments® The incidence of complications associated with
zirconia abutments was determined by evaluating ftam three studieS®

120 One article presented the clinical success of @femmental zirconia
abutments on single-tooth implants, after a meaeation period of 49.2

monthst!®

No abutment fractures were observed during clinicading,
resulting in a cumulative survival rate of 100 merc Abutment screw

loosening was reported for two restorations (oneigitt months, and one at

27 months)*® Healthy peri-implant mucosa and stable marginakblevels
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were documented at zirconia abutmenisin another study, 30 zirconia
abutments on single-tooth implants were observest af follow-up period
of 40 months™® No abutment fractures or screw loosening were rtedp
resulting in a cumulative survival rate of 100 merc™ Finally, a third
study evaluated the success rate of 37 zirconigsalu composite
abutments (ZirAce, Acucera Inc., Reno, NV). Nineplamts were single-
tooth, and 28 implants were FPDs. After a 12-mdollow-up, no abutment
fractures, cracks, screw loosening, or peri-implaréection signs were
reported'®® Also, neither zirconia—alumina abutment failures mdverse
soft tissue reactions were observed at 12 mdhthEhese studies indicate

that zirconia abutments could be suitable for cihiise-?°
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Objectives.

The aim of thisin vitro study was to compare the fractural strength of

zirconia custom abutments with different thicknessend angulations

Hypothesis

There is no difference between the zirconia cusitbotments with different

angulations and thicknesses.

Clinical significance of the study

The results of thign vitro study will help the dental practitioners with thei
decision making process in selecting the typembmnia custom abutment to

be used clinically.
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Materials and Methods

Experimental design: This in vitro study measured and compared the
fractural strength of zirconia custom abutments AZC made in two
different angulations (straight and 15 degreead two different thicknesses
(.7 mm and 1 mm) in two different designs one-pi&€As (Straumann,
Minuteman Road Andover, Mass), and two-piece ZCHsbgl Biocare,
Yorba Linda, Calif), Table 1.

This study was conducted by using 80 (n= 80) CADMC& omputer Aided
Design / Computer Aided Manufacturing) Zirconia @us Abutments
(ZCAs). The samples were divided into two main gueach main group
represented different implant system [Group |: @trann system, and group
II: Nobel Biocare system]. Each group was dividetb itwo subgroups (A
and B). Each subgroup had ZCAs made with two dffeithicknesses (.7
mm, and 1mm). These also divided further into geolased on the

angulations (dand 18), Figures 1 & 2.
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Table 1: Type of zirconia abutments and their corresponding implants, corettion
design, and torque used for fixation of the abutments

Groups

[-A-1

I-A-2

I-B-1

I-B-2

[I-A-1

[I-A-2

[I-B-1

[I-B-2

A*

15°

15°

OO

15°

OO

15°

T

./mm

/mm

1mm

Imm

Jmm

./mm

1mm

Imm

Abutments

Cares RC

Cares RC Straumann Bone level

Cares RC Straumann Bone level

Cares RC Straumann Bone level

Procera
RP

Procera
RP

Procera
RP

Procera
RP

Implants

Type of connection

Straumann Bone level Internal connection

RC 4.1x12mm

RC 4.1x12mm

RC 4.1x12mm

RC 4.1x12mm

NobelReplace Select

straight TiUnite RP,
4.3x13mm

NobelReplace Select

straight TiUnite RP,
4.3x13mm

NobelReplace Select

straight TiUnite RP,
4.3x13mm

NobelReplace Select

straight TiUnite RP,
4.3x13mm

(cone & octagonal)
Internal connection
(cone & octagonal)
Internal connection
(cone & octagonal)
Internal connection
(cone & octagonal)
Internal connection

(Triangle)

Internal connection

(Triangle)

Internal connection

(Triangle)

Internal connection

(Triangle)

Secondary
component

None

None

None

None

Metallic

Insert

Metallic

Insert

Metallic

Insert

Metallic

Insert

RC= regular crossfit; RP= Regular plateform, A*= Angulation, TsTticknesses
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Group | I

. (A) (B)
Thickness
0.7mm 1.0mm
|| 1 | | || 1 | |
(1) (2) (1) (2)
Angulation straight 15 straight 15
degree degree
Group I |
| |
| |
A B
Thickness (A (B)
0.7mm 1.0mm
|| . | || . |
(1) (2) (1) (2)
Angulation straight 15 straight 15
degree degree

Figure 1. Groups distribution

Group |1

[1eni

-—

Figure 2. Detalled View of the elght types of zitzo abutments and thelr types of implant-abutment
connection design.
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Samples Preparation

Group I: Forty Implant replicas (n= 40) (10 for each sulgoStraumann

implant replica, 4.1mml2mm regular crossfit (RC) octagon restorative
platform, Andover, Mass] were placed in cubic selfre acrylic jigs
[DENTSPLY Caulk, Caulk® Orthodontic Resin, York, PAThe acrylic
jigs were standardized with dimensions 2.5 cm xc2bx 2.5 cmTo make
sure that the implant replicas were adjusted tpdy@endicular to the jig's
surface (90degrees), every replica was attached to a lalegaryDentsply
Netech Yucaipa, California] by using@ guide pin [Impression post
Straumann RC 4.1 mm, Andover, Mass]. A water seals used to adjust

the implant replicas with the surveyor’s pen, FegB, 4,5 & 6.
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Figure 3. A guide pen gute 4. Implant analog was attached Figufelacing the implant analog
attached to lab surveyor. thvthe a guide pen to be perpendicular inside the acrylic jig.
to the base which were adjusted with
a watscale.

Figure 6. Acrylic jig after replacing the implamadog.
Zirconia Custom Abutments group I:

The implant replicas which were placed in cubicybc jigs were scanned
in order to design custom abutments digitally a thanufacture facility
(Straumann, Andover, Mass) by a single operatangusi surface scanner

(Straumann® Cares® Scan CS2, Andover, Mass), Figure
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Figure 7. Straumann® Cares® Scan CS2.

This scanner uses a laser beam to trace a custotmetit and render a
digitized image of the implant analog; then desigres custom abutments
digitally. The finish line was set and adjusted reecessary using three-
dimensional (3-D) imaging design software (Straun@&rCares® Visual
6.0, Andover, Mass). The scanned information wasstierred electronically
to the production facility (Straumann, Andover, asZCAs were
standardized to be .7 mm and 1 mm in thickness iantivo different

angulations (Straight angle and 15 degree angle).
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Group Il :

Forty Implant replicas (n= 40) (10 for each sulgro[Nobel Biocare, Nob
RpL RP 4.%311mm, REF 29502 LDT436479, Yorba Linda, CA] were
placed in cubic self cure acrylic jigs [DENTSPLYaw@k, Caulk®
Orthodontic Resin] same as group |I.

Zirconia Custom Abutments group II:

The implant replicas which were placed in cubig/Beijigs were scanned in
order to design custom abutments digitally at tresthodontics Department
(Tufts University School of Dental Medicine) by egle operator using a
surface scanner (NobelProcera™ Scanner, Yorba | @al#), Figure 8.

This scanner uses a laser beam to trace abutmsitibpdocator (RP 35551
Nobel biocare, Yorba Linda, CA) and render a digdi image of the
implant analog, It then designs the custom abutmigsitially. The finish line
was set and adjusted as necessary using threesionah (3-D) imaging
software (NobelProcera® 3D GUI, Yorba Linda, Califfhe scanned

information transferred electronically to the protion facility (Nobel-
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Figure 8. A, B, C, and D scanning process for gridup

-Biocare, Yorba Linda, CA). ZCAs were standardigethe .7 mm and 1mm
in thickness with two different angulations (stfigingle, and 5degree
angle), Figure 1.

Testing of fractural strength:

After receiving the ZCAs from the manufacturerseTACAs were engaged
to the implant replicas into the cubic acrylic jigg using a manual torque
wrenchs prosthetic (L 84 Stainless steel, Straumamaover, Mass and

Nobel Biocare stainless steel L84, Yorba Linda,ifCdlhe torque wrench
36



was used to tighten abutments to the desired tompesurement based on

manufacturer’'s recommendations (35Ncm for Groupd group 1), Figure

122,123
9.

A B

Figurel10. Metallic Vice
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Each jig was secured and mounted in metallic \Figure1G. The mounted
Jigs adjusted at 30 degrees relative to mechamdante for groups I-A-1,
I-B-1, 1I-A-1, and I-B-1, Figure 11. However, thenounted jigswere

adjusted at 15 degreesr groups I-A-2, 1-B-2, 1I-A2, and I-B-2, Figure

124-12
17 124-129

<—

30
e
152 1 R/
P Z L T
e
B D
Figure 11. (A, B Metallic vice adjusted to be ° Figure 12. @), Metallic vice adjusted to be °
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The indenter was covered by a resilient materiargsoft; scheu Dental
GmbH, Iserlohn, Germany). The indenter contactsehire mesio-destal
occluding surface in a contact width of approxima®4 mm. The resilient
material is a co-extrusion compound material camgs of a hard
polycarbonate base and soft polyester uretharteadtbeen used to reduce
localized contact stress intensities, and to ¢hste stress over the complete
testing unit, including screws and abutméentsfter that, the shear stress
was measured by loading the samples until failutle & crosshead speed of
.5 mm/min with the force transferred to the lingsaiface of the ZCA 2 mm

below the incisal edge by using Universal Testingchine (Model 5566;

Instron, Canton, Mass), Figure .13he universal testing machine was

controlled via a computer software system (Blu@dllSoftware, Mass),
which also completed the stress-strain diagram randrded the breaking

load.
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Figure 13 Universal testing machine.
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Samples Size and Power Calculation

For the sample size calculation, some studiese@l&d the present study
were reviewed and the closest study was choseressumne the strength of
the relationship between variables (effect si2€¥® With a sample size of
80 (10 per group) 80 percent power was achigweedetect a difference
among the group$tatistical software (R 2.11.1) was used to cateulhe
sample size required to achieve an alpha = .0%gver of 80 percent.
Statistical Analysis:

Descriptive statistics have been reported for egidup (mean, standard
deviation, minimum values, and maximum values)w&-tvay analysis of
variance was performed separately for groups | gnodp Il to assess the
statistical significance of each factor. Then, foudependent samples t-tests
were performed in order to compare group | and grduunder each
possible condition (thickness and angulations)net®ugh we knew that

the results might not be reliable due to the faet the ZCAs were from
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different manufactures. A Kolmogorov-Smirnov testswperformed to

check the normal distribution of residuals in gro@md group |l.

Results

In group |, the mean fractural strength of group4 #rough B-2 ranged
from 162.49 + 63.21 N to 231.14 £ 95.21 N (Tablevihile in group I, the
mean fractural strength of groups A-1 through BaAged from 431.83 +

96.74 N to 745.93 + 274.79N (Table 3).

Table 2.Fractural strength (individual values, means, SD, minimum, anc
maximum values, in newton ) in group |
Groups A-1 A-2 B-1 B-2
Means 226.59 162.49 231.14 168.13
SDs 73.37 63.21 95.21 59.18
Min 141.09 104.38 111.26 108.78
Max 360.42 313.60 406.01 307.68

In group I, a Kolmogorov-Smirnov test was performexd check the
normality distribution of the residuals across gineups. In this group, the p-

value was p=.301, which means there was no eviddérateghe assumption
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of normal distribution of the residuals is violat&hsed on this, a two-way

ANOVA was performed for this group.

In group I-A-1 and group I-B-1, one-piece straightitments groups showed

a higher fractural strength compared to group I-A€2d group I-B-2

angulated one—piece ZCAs. The mean fractural sinen@gs respectively

from higher to lower 231.14 + 95.21(B-1), 226.59338 (A-1), 168.13 +

59.18 (B-2), 162.49 = 63.21 (A-2). When the tess wanducted for the first

time, the interaction was not significant betwelea variables (p= .981), so

the test was performed for second time withoutitiberaction, and the one-

piece straight ZCAs exhibited a significantly higlieactural strength than

angulated ZCAs (p= .009). The box plots below repn¢ the data that

shows the difference between groups and the loaidvibs applied to each

group Figure 14 No statistically significant difference was foundtiveen

groups with different thicknesses, group I-A-1 &gp |- A-2, and group I-

B-1 & groupl-B-2 where p=.827.
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Figure 14 - Fractural strength (S) in Newton faouyp | (A-1, A-2, B-1 & B-2).
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Table 3.Fractur al strength (individual values, means, SDminimum, and
maximum values, in newton) in group |l
Groups A-1 A-2 B-1 B-2
Mean 431.83 586.54 643.05 745.93
SD 96.74 187.54 193.36 274.79
Min 272.83 434.57 249.77 462.43
Max 598.27 1022.00 997.86 1233.49

In group Il, a Kolmogorov-Smirnov test was usedtést the normality
distribution of residuals. There was no evidencat tthe assumption of
normal distribution of the residuals is violatep=(609) which based on this,
a two-way ANOVA was performed for this group. Twieqe angulated
abutment group IlI-A-2 and group II-B-2 showed ahmigfractural strength
compared to group IlI-A-1 and group II-B-1 straighio—piece abutments.
The mean fractural strengths were respectively fnagher to lower 745.93
+ 274.79 (B-2), 643.05 + 193.36 (B-1), 586.54 + B7(A-2), and 431.83 +
96.74 (A-1). When the test was conducted for th&t fime, the interaction
was not significant between the variables (p= .68%) the test was
performed for the second time without the interagtiand it was found that

the two-piece 1 mm thickness ZCAs exhibited sigaifitly higher fractural

45



strength compared to .7 mm thickness ZCAs (p= .00Be box plots

represent the data that show the difference betweegroups and the load

that was applied to each groupigure 15. Also, there were statistically

significant differences found between groups witffedent angulations

(p=.045). Group 1I-B-2 and group II-A-2 showed glmer fractural strength

than group I1-B-1 and group II-A-1. The maximumduaral strength was

achieved in group 11-B-2.
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Figure 15 - Fractural strength (S) in Newton faogy Il (A-1, A-2, B-1 & B-2).
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In order to compare the two main groups (Group d gmoup Il) four

different independent—samples t-tests were perfdrri(ieable 4) under

different conditions (angulations and thickness).

Table 4. Summary of the tests which have been performed to compare
group | (GI) & group Il (GII)
Test Glvs Gl Thickness Angulations P-value (0.05)
1 GI-A-1 vs GII-A-1 .7 mm i) <0.001
2 Gl-A-2 vs GlI-A-2 .7 mm 1% <0.001
3 GI-B-1 vs GlI-B-1 .7 mm 0] <0.001
4 GI-B-2 vs GlI-B-2 .7 mm 15 <0.001

Group I-A-1 vs group II-A-1: Levene’s test was performed to check for

equality of variances; equal variances were assype®13). Group II-A-1

showed a higher fractural strength (Mean=431.833Dd96.74) compared

to group I-A-1 (Mean=226.59 and SD=73.37). Theres vea statistically

significant difference between group I-A-1 and groll+A-1, with same

thicknesses and angulations p<.001. The box plmsaming whiskers and
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outliers that represent the fractural strengthifS)ewton and groups with

different thicknesses and angulations showed gyréi 16.

Group I-A-2 vs group II-A-2: Levene’s test was performed to check for
equality of variances; equal variances were natrassl (p=.036). Group II-
A-2 showed a higher fractural strength (Mean=586a#l SD=187.54)
compared to group I-A-2 (Mean=162.49 and SD=63.Zl)ere was a
statistically significant difference between grolp-2 and group II-A-2

with the same thicknesses and angulations (p<.001).

Group I-B-1 vs. group |I-B-1: Levene’s test was performed to check for
equality of variances; equal variances were assypre@331). Group II-B-
1 showed a higher fractural strength (Mean=643.08 &D=193.36)
compared to group I-B-1 (Mean=231.14 and SD=95.20%kre was a
statistically significant difference between grolsB-1 and group II-B-1

with the same thicknesses and angulations (p<.001).
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Group I-B-2 vs. group |I-B-2: Levene’s test was performed to check for
equality of variances; equal variances were natrassl (p<.001). Group II-
B-2 showed a higher fractural strength (Mean=745298 SD=274.79)
compared to group I|-B-2 (Mean=168.13 and SD=59.18)ere was a
statistically significant difference between grolsB-2 and group 1I-B-2

with the same thicknesses and angulations (p<.001).

1200 00 I
i
1000007 *

200007
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GI-A-1 GI-A2 GI-B1 GI-B2 GII-A1 GlI-A2 GIlIB1 GlIB2

GROUPS
Figure 16 - Box plots with whiskers and outliergiud load strength (S) in newtons,

and the 8 different groups
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Discussion:

Researchers highlighted the importance of tow-pa&kone-piec ZCAS

133 The majority of published investigations on altamaic implant
abutments made from zirconia dioxide, examined kited single incisor
replacements>***'These papers reported fractural strengths betd2@ro
793 N under load angles that ranged from 30° to.'83%" Strong
correlation exist between measured fractural strengnd the type of
implant-abutment connectidff In the present study, the mean fractural
strength for ®and 15in group | (one-piece ZCAs) ranged fra62.49 +
63.21 N to 231.14 £ 95.21 N. And in group Il (twege ZCAs) ranged
from 431.83 £ 96.74 N to 745.95 £ 274.79 N. A sienphlr graph was used

to represent the differences between the meansd-igy .
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Figure 17. Simple bar graph representing the diffee between the means.

Due to the various range of angles and differancirce application, in
addition to different study designs, it is difficab compare our values for
fractural strength with results from other studieg?*

The moment of force (Torque moment) played an ingmbrrole in the
present study; and had an important effect on thetdral strength of the
ZCAs. The strength of the specimens might be aftecby three

quantitiest?’ the force applied to the specimens, the lengthheflever
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armconnecting the axis to the point of forapplication,and the angle

between the force vector and the lever, Figure, 18.

4
t""’:l[)
A
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e
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Figue18. T =T X F 7 =rFsinf

T =is the torque vector a 7 is the magnitude of the torque,

r =is the displacement vector (a vector from the pfvorh whict torque is measured to the po
where force is applied), ar is the length (or magnitude) of the lever arm vg
F=is the force vector, al F is the magnitude of the force,

6 =is the angle between the force vector and the lexmarvectol

For onepiece ZCAs the length cthe lever arm victor wa%2.6 mn, with
thickness of .4 mm and mm in the area of implargbutment connectiol

Figure, 19. Thighickness designed by the manufacture arstandard and

unchangeable.
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1 C2

Figure 19:A; the length of the lever arm vector =1 mm.B; The length of the implardbutment connection 5.5
mm. C; the thickness oimplant abutment connection which in C1= .6 pand C2=. mm

The thinnest part in o-piece ZCAs is in the implargbutment connectic

area (.4 mm and mm. However,this area is the most critical area in

abutments because of the force concentr which might be one othe

reasons of théailuresin this area.Based on this finding one can interg

that the thickness of ZCAs in this designd no influenceon the fractural

strength sincehe thickness of impla-abutment connection istandard.

However, the anglulation h a negative influence on the fractural strer

because when the forwas appliedon angulated abutmenthe angle )

between the force vector (f) and the lever arr was increase, which

decreasedhe force required to break tlspecimens whicltould be one ¢
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the reasons for failure in this design. Whereasympiece ZCAs the length
of lever arm victor is 6 mm (which much shorterrtlane-piece ZCAS). In
addition, the thickness of the ZCAs had a staastsgnificant and positive

influence on the strength of the two-piece ZCAguire 20.

A B B2

Figure 20. A; the length of the lever arm victor= 6 mm
B; the thickness of implant-abutment connection WhitB1= .7 mm and B2= .7 mm

These findings gave an explanation that the angula significant in two-
piece ZCAs. The angl#) [between the force vector (f) and the lever arm
(], did not change when force was applied to &gd abutments, which
can be one of the reasons for high fractural stheaghieved by this design.

In this study, static loading was applied slowlythwa crosshead speed of .5
mm/min. This corresponds to the load in a paratfanal situation rather
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than chewing. Ferrario et al, measured single-tduwit# forces in healthy
young adults and they reported results of 150 N B4@ N for the central
and lateral incisors respectively in méh.Higher bite forces are to be
expected in subjects with functional disorders,hsas bruxism® In the
present study the means of fractural strengthassahe groups exceeded
the average biting force (140 N to 150 RHowever, we are uncertain in
predicting the performance of one-piece ZCAs inviadials with functional
disorders. We emphasize the need to pay specaitiaih to the occlusal
relationship of the lower and upper jaw whenevessgde, and we
recommend keeping such abutments free from dynaoulkusion. The two-
piece angulated ZCAs exhibited higher mean fratstrangth compared to
straight abutments in two-piece ZCAs, which wewdistically significant.
This data leads us to reject our null hypothesisorie-piece ZCAs, stress
concentration was higher in the area of the apieadagon, which is the
thinnest portion of the abutment. In this studyastificial dynamic thermal

ageing was not applied to the specimens sinceawniquis studies artificial

56



aging failed to exert a statistically significamtfluence on the fractural
strength of either straight or angulated abutméhts:*° Static loading was
performed at an angle of 30° to the long axis ef dbbutments in order to
simulate a worst-case scenario. In the preseny stind most typical fracture
pattern (95 percent of the samples in this gromgyroup | (one-piece ZCAS)

was an oblique fracture line below the implant stley Figure 21.
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Figure 21: A, B, C, and D Fracture pattern appeaaran oblique line below the abutment’s shoulder.
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These findings are in agreement with Adatia etiraljcates that certain
grinding procedures above the level of the impkEmulder for customize
the abutments have no impact on fractural resistaifddowever, this claim
may be only valid for one-piece ZCAs of implant-abant connection
tested in this study.

Two-piece ZCAs exhibited significantly higher fral strength compared
to one-piece ZCA internally connected abutmentser&fore, it can be
concluded that the type of connection to the impiafluences the stability
of ceramic abutments regardless of the thicknesh@fZCAs in group |,
while the thickness had a positive influence on skeility of ZCAs in
group Il. However, there was a significant effettiee angulations on the
strength of the ZCAs in group | and group II.

Metallic internal connections have aldmeen associated with a more

favorable load distribution in the connection aféa finite element
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Figure 22. Load distribution in two-piece ZCAs. &ack propagate through ZCA in screw-metallic ihser

area. B; multiple cracks as result of force-duttion.

analysis demonstrated high tensile stress in tharant screw threads upon
lateral loading in the implant-abutment connectemea, whereas in the
metallic internal connection, lateral loading wakein up by the metallic
connection, thus protecting the thread portion e abutment from load
transferé®® The present study is in agreement with theseirfigsd
The results of this studdemonstrated a superior distribution of the loaith wi
an internal implant- abutment connection for toweai ZCAs.

Additionally, the metallic insertion seems to berautageous to transfer the

forces comparing to one-piece ZCAs. The one-piesgulated ZCAs

60



exhibited the lowest fractural strength in the pr#sstudy. The two-piece
ZCAs exhibited a fractural strength mean rangewéen431.83 £ 96.74 N
to 745.95 £ 274.79 N under static loading which stasistically significant.
In comparable investigation, the fractural strengththe same type of
abutments was 738 + 245 N under static force agiic*® Generally, it is
difficult to compare the data between studies tleddted to the fractural
stability of ZCAs, because of different study desigand the direction of
load application with different lever arms. Furtimere, variations in the
angle of the applied load, static or dynamic testinethods, the size and
shape of the abutments, could all have an impati®nesults.

The fractural strength of the abutments with metatiserts was within the
range of the values reported in other studi®s!®®In these studies, the
stability of zirconia, alumina, and titanium abutrtee was analyzed after

connection to the same type of implaftfs'®°
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A B
Figure 23. A & B: plastic deformation of the meimtomponents

In two-piece ZCAs groups, plastic deformation @ thetallic insertions and
abutment screws of the samples were observed,d~Rfur

That could be one of the reasons for the higherdsia deviations in these
groups. In group I, the failure pattern encompdstee fracture of the
zirconia abutments, and/or deformation of the me#ats. A variation in the
fracture pattern was also observed in other studipsrting on alumina,
zirconia, and titanium abutments with internal cection’°®°°In only one
of those studies, however, an implant neck disiortwas found in a
specimen bearing a titanium abutm&ffThe abutment screw was identified
as the weakest component in previous study exaginitianium

abutments® In another investigation testing alumina and ziiao
62



abutments, fracture of the abutment and/or fraa@il®th the abutment and
crown were the main reasons for failtteln contrast to these results, in the
present study, only ceramic components failed lbgtére in both groups
with ceramic or metal insertion, but the fracturaswsignificantly higher in
the groups with ceramic insertion . One reasontherdifference found in
these investigations might be associated to thderdiice in force
application.

Whereas dynamic loads were used in the two pusvstudies, static loads
were applied in the present study, allowing higleads before failure.
Nevertheless, naturally occurring forces in pasergmain far below the
forces recorded in these vitro studies: In clinical situations, therefore, a

plastic deformation of the metallic componentsnikely to occur.
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Limitations:

-The present study have been conductenh agtro studyand there was no
control group
- The specimens have been tested without artifec@ivns.

- There was no artificial cyclic loading.

Conclusions

Within the limitations of thisn vitro study, the following conclusions can be
drawn:
» ZCAs with secondary metallic component exhibitec thighest
fractural strength, especially with angulated alartts.
» One-piece ZCAs were the lowest of those investigati especially
the angulated abutments.
» The thickness of two-piece ZCAs had a positiveumfice on the

fractural resistance but not in one-piece ZCAs.
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