
DESIGN AND APPLICATION OF TENSOR
DECOMPOSITIONS TO PROBLEMS IN

MODEL AND IMAGE COMPRESSION AND
ANALYSIS

A dissertation

submitted by

Jiani Zhang

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Mathematics

TUFTS UNIVERSITY

May 2017

© Copyright 2017 by Jiani Zhang

Adviser: Professor Misha E. Kilmer



ii

Abstract

Tensor algebra and tensor computations have gained more and more attention in

recent years due to their ability to handle and explore large-scale, high-dimensional

datasets. In this thesis, we present four novel tensor-based methods in the fields of

randomized algorithms, dynamical systems, image processing, and video processing.

In the first chapter, we introduce the history of tensor computation, discuss well-

known tensor operators and decompositions, and demonstrate our motivations to

focus on the t-product-based operators and decompositions designed by Professors

Kilmer and Martin [51]. Then, in Chapter 2, we design a method called randomized

tensor singular value decomposition that can produce a factorization with similar

properties to the tensor SVD (t-SVD) but that is more computationally efficient

on very large datasets. We present the details of the algorithm and the theoretical

results, and we provide numerical results on two public facial recognition datasets.

Chapter 3 addresses the problem of model reduction on dynamical systems. We in-

vestigate the proper orthogonal decomposition (POD) method, compare the approx-

imation errors obtained from truncated SVD and truncated tensor SVD in theory,

and provide an effective projector for the POD method using truncated tensor SVD.

Chapter 4 and Chapter 5 are both devoted to optimization-related problems. In

Chapter 4, for the multi-frame blind deconvolution optimization model, we design a

method to select the most representative frames that is less heuristic in nature than

current methods. In Chapter 5, we use tensor operators to model the video resolu-

tion enhancement problem and leverage the tensor nuclear norm as a regularization

term to minimize the rank of its solution.
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Chapter 1

Background Preparation

In this chapter, we will introduce the preliminary knowledge that is necessary for

the entire thesis. It will include numerical linear algebra preliminaries in Section 1.1,

tensor computation preliminaries in Section 1.2.

First, we give the notations we will use. Boldface lowercase letters indicate

vectors, e.g. a. Boldface uppercase letters indicate matrices, e.g. A. Boldface Euler

script letters indicate tensors, e.g. A.

1.1 Numerical Linear Algebra Preliminaries

Almost all of the methods in data analysis and scientific computing rely on matrix

algorithms [89]. In particular, rank-revealing matrix decomposition plays a crucially

important role. Approximating a matrix by a product of some matrices with a

smaller size may save the storage cost or/and computation cost inside algorithms

that access the matrix. Moreover, these smaller matrices could provide some specific

structures that help analyze the original matrix with better results. In this section,

we will focus on introducing two classical matrix decompositions, which we will often

use in the next four chapters. Let us begin with the singular value decomposition.

Definition 1.1.1 (SVD) Given any matrix A ∈ Rm×n , there exists a singular value

decomposition (SVD) of A. It can be expressed as

A =USVT

where U is an m×m orthogonal matrix, S is an m×n diagonal matrix and V is an

n × n orthogonal matrix. The diagonal entries of S, σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0, where r is

the rank of A, are known as the singular values of A.

The SVD has a number of interesting and useful theoretical properties. We will
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list some of those that are related to this thesis. See [35] for more.

Corollary 1.1.2 If A ∈ Rm×n, then ∥A∥F =
√
∑r

i=1 σ
2
i and ∥A∥2 = σ1.

Corollary 1.1.3 Given A ∈ Rm×n, denote the ith column of matrix U and V as ui

and vi correspondingly. If rank(A) = r, then range(A) = span{u1,u2, . . . ,ur} and

null(A) = span{vr+1,vr+2, . . . ,vn}.

Truncating the SVD to k terms provides the optimal rank k approximation in

both 2-norm and Frobenius norm. Before introducing the Eckart-Young theorem,

we will give the definition of the truncated SVD.

Definition 1.1.4 Given a matrix A ∈ Rm×n, the rank-k truncated Singular Value

Decomposition (SVD) of A can be expressed as

A ≈UkSkV
T
k

where k is the target rank, Uk and Vk have the first k left and right singular vectors,

respectively, and Sk is the k × k leading principal sub-matrix of S.

Theorem 1.1.5 (The Eckart-Young Theorem) Given an m × n matrix A, if

k < r = rank(A) and Ak =UkSkV
T
k , then

min
rank(B)=k

∥A −B∥2 = ∥A −Ak∥2 = σk+1

and

min
rank(B)=k

∥A −B∥F = ∥A −Ak∥F =

¿
ÁÁÀ

r

∑
i=k+1

σ2
i .

The practical importance of SVD is cannot be overstated. It has many applica-

tions in a wide variety of areas. Here, we just list only a few as examples.

• Image Compression: A grayscale digital image can be represented as an m×n

matrix A. The entry of A, A(i, j), corresponds to the measurement of gray

scale. The idea of image compression is to use the truncated SVD of A, Ak,

as an approximation of the original image. The total implicit storage for Ak
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is k(m + n + 1). The choice of k depends on the tradeoff between the cost

of storage and the quality of the compressed image. In many cases, the total

implicit storage can be less than 20% of the storage for the original image before

one would visually see degradation in image quality between the compressed

and uncompressed images. See [18,56].

• Image Restoration: The idea of image restoration is to restore the image by

truncating the small singular values, since the small singular values are known

to magnify the “noise” in the data. See [39].

• Facial Recognition: Principle Component Analysis (PCA) is widely used in

facial recognition. See [80] for an example. The left singular vectors of a

matrix span the range of the matrix, and they are the normalized principle

components [56].

• Natural Language Processing: Consider a database that consists of m keywords

and n documents. It can be represented as an m × n matrix. Each entry is

the frequency of ith keyword in jth document. Latent semantic indexing is a

method to deal with the problem of polysemy and synonyms. It uses truncated

SVD to obtain a well-approximated database that has simpler and more clear

structure. More details can be found in [56].

The standard algorithm to compute the SVD is named Golub-Kahan-Reinsch

algorithm [33,34]. Basically, the algorithm has two phases, reducing to a bidiagonal

form and finding the SVD of the bidiagonal matrix. More details see [18]. The

computation cost of these two phases is O(mn2), which is primarily determined by

the cost of phase 2. The computational cost for truncated SVD is O(mnk). We will

discuss about how to speed up the algorithm to compute SVD in Chapter 2.

QR factorization is also a classical matrix decomposition. The definition of QR

factorization is as follows.

Definition 1.1.6 (full QR factorization) Given a matrix A ∈ Rm×n, there exists
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a decomposition,

A =QR,

where Q is an m×m orthogonal matrix and R is an m×n upper triangular matrix.

If m ≥ n, the matrix R can be partitioned to an n×n matrix R1 and an (m−n)×n

matrix with zeros, R = [RT
1 ,0]

T, Q can be written as [Q1,Q2] correspondingly. In

this case, A =Q1R1, and it is called reduced QR factorization.

Backward stable methods to compute QR factorization include Householder

method and Givens’ method. The computation cost of QR factorization is O(mn2).

The detailed algorithm and comparison in precise flop-count and stability of these

methods can be found in [18].

QR factorization is powerful in the applications of solving linear systems, finding

least square approximations, etc. [38]. We will also use QR factorization for our

application in Chapter 4.

Circulant matrix will be used often in later chapters, so we provide its definition

here.

Definition 1.1.7 The circulant matrix of a vector a ∈ Rn is

circulant(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 ⋯ an−2 an−1

an−1 a0 ⋯ an−3 an−2

⋮ ⋮ ⋱ ⋮ ⋮

a2 a3 ⋯ a0 a1

a1 a2 ⋯ an−1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

1.2 Tensor Computation Preliminaries

A tensor is a multi-way array, and the order of the tensor is the number of dimensions

of this array. For example, a zero order tensor is a scalar, a first order tensor is a

vector, a second order tensor is a matrix, and a third order tensor is a rectangular

box, see Figure 1.1. Typically, the tensor with the order greater than or equal
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to 3 is called higher-order tensor. Many kinds of datasets are inherently higher-

order tensors. For instance, a color image is a third order tensor, and its third

index component represents the intensities on red, green, and blue scales [39]. As

an another example, the color video is a fourth order tensor, and its fourth index

component represents the time sequence of the video clips [93]. Applications of

tensor-based methods can be found in the literature: see for example [23, 28, 41, 75,

81, 87, 93]. Although the methods are different, the results show that retainment of

the multi-way structure inherent in the data instead of its reshaping to vectors or

matrices provides considerable improvement. Therefore, in this thesis, we choose to

represent data and operators in their natural multi-way environment.

Figure 1.1: Zero order, first order, second order and third order tensor examples.

The history of tensor computation can be traced back to 1927 [43, 44]. The

well-known CANDECOMP/PARAFAC (CP) decomposition was proposed by Hitch-

cock [43], and the CP decomposition is a sum of multiway outer products of vectors.

Computing its best rank-k approximation is highly non-trivial, and the best rank-k

approximation of CP decomposition may even not exist without extra assumptions

on the properties of the tensor. Tucker decomposition was proposed by Tucker in

1963 [84], which is an alternative to CP decomposition. For a third order ten-

sor, the Tucker decomposition can be computed in polynomial time. A best rank

(k1, k2, . . . , kn) factorization can always be computed by an iterative algorithm. To

compute an orthogonal Tucker decomposition, one can compute the HOSVD [20].

However, the best rank (k1, k2, . . . , kn) factorization cannot be obtained by truncat-

ing the HOSVD. The papers [19, 53, 81] are good references to learn the detailed

development and history of tensor computation and the applications of tensor com-

putation. For a basic review of tensor computation, Chapter 12 of [35] and Chapter



7

1 of [40] are good references.

More recently, Kilmer and Martin proposed a new framework of tensor com-

putation in 2011 [51]. They presented the concept of a tensor-tensor product (t-

product) with a suitable algebraic structure such that classical matrix-like factoriza-

tions are possible. This new tensor framework has been used in many applications,

see [27,41,42,50,76,82,93].

The reasons we will focus on t-product based operators and decompositions are

as follows.

• Substantial effort in this thesis is related to a compressed representation of

information to a certain degree, and truncating the tensor SVD (t-SVD) defined

on t-product give a compressed result that is optimal in the Frobenius norm.

• The t-SVD has been shown to have superior compression characteristics rel-

ative to the Tucker decomposition in some applications, such as compression

and facial recognition [42].

• There are well-defined mathematical concepts [32, 50, 64], such as transpose,

identity, QR factorization, etc. It is convenient to use for building mathemat-

ical models.

• The t-product based operators can be computed in parallel in a straight forward

way.

To introduce the t-product-based tensor operators, let us first give the notation

for tensors. We will focus on third order tensors A ∈ Rn1×n2×n3 , although much of

what we present can be extended to higher order tensors [64].

Each entry of the tensor A is denoted by Matlab indexing notation, i.e., A(i, j, k).

A fiber of tensor A is a one-dimensional array defined by fixing two indices. As shown

in Figure 1.2, A(∶, j, k) is the (j, k)th column fiber, A(i, ∶, k) is the (i, k)th row fiber,

and A(i, j, ∶) is the (j, k)th tube fiber. A slice of tensor A is a two-dimensional array

defined by fixing one index: A(i, ∶, ∶) is the ith horizontal slice; A(∶, j, ∶) is the jth



8

lateral slice; and A(∶, ∶, k) is the kth frontal slice. For convenience, A(∶, ∶, k) is written

as A(k).

Figure 1.2: Fibers and slices of an n1 × n2 × n3 tensor A
.

A third order tensor A can be seen as an n1×n2 array of tube fibers, each of size

1 × 1 × n3. The t-product of two tube fibers is defined as their circular convolution,

so the t-product between two tensors can be defined as in Definition 1.2.1.

Definition 1.2.1 (t-product) [51] Let A be an n1 × n2 × n3 tensor and B be an

n2 × n4 × n3 tensor. The t-product of A and B, C = A ∗ B, is an n1 × n4 × n3 tensor

C(i, j, ∶) =
n2

∑
k=1
A(i, k, ∶) ∗ B(k, j, ∶) =

n2

∑
k=1
A(i, k, ∶) ○ B(k, j, ∶),

where ∗ denotes the t-product and ○ denotes the circular convolution.

Because the circular convolution of two tube fibers can be computed by dis-

crete Fourier transform, the t-product can be alternatively computed in the Fourier

domain, as shown in Algorithm 1.
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Algorithm 1 t-product [51]

Input: A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3

Output: An n1 × n4 × n3 tensor C, C = A ∗ B

Â← fft(A, [ ],3);

B̂ ← fft(B, [ ],3);

for i = 1 to n3 do

Ĉ(i) = Â(i)B̂(i);

end for

C ← ifft(Ĉ, [ ],3)

There is an equivalent way to define t-product we use in later chapters to better

present ideas or proofs. Let us begin with the definitions of circ, unfold, and fold.

Definition 1.2.2 (circ) [51] Let A be an n1 × n2 × n3 tensor with n1 × n2 frontal

slices A(1),A(2),⋯,A(n3). Then,

circ(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1) A(n3) A(n3−1) ⋯ A(2)

A(2) A(1) A(n3) ⋯ A(3)

⋮ ⋱ ⋱ ⋱ ⋮

A(n3) A(n3−1) ⋯ A(2) A(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is a block circulant matrix of size n1n3 × n2n3.

Definition 1.2.3 (unfold and fold) [51] Let A be an n1 × n2 × n3 tensor with

n1 × n2 frontal slices A(1),⋯,A(n3). Then,

unfold(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1)

A(2)

⋮

A(n3),

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and fold(unfold(A)) = A.

Example (1.2.5) shows how to compute t-product of third-order tensors using
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Definition 1.2.4 .

Definition 1.2.4 [51] Suppose A is an n1 ×n2 ×n3 tensor and B is an n2 ×n4 ×n3

tensor. Then, the t-product A ∗ B is an n1 × n4 × n3 tensor

A ∗ B = fold(circ(A) ⋅ unfold(B)).

Example 1.2.5 [51] Suppose A is an n1 × n2 × 3 tensor and B is an n2 × n4 × 3

tensor. Then,

A ∗ B = fold(circ(A) ⋅ unfold(B))

= fold

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1) A(3) A(2)

A(2) A(1) A(3)

A(3) A(2) A(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(1)

B(2)

B(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

is an n1 × n4 × 3 tensor.

Since circ(A) is a block circulant matrix, it can be block diagonalized as

(F3 ⊗ In1)circ(A)(F
H
3 ⊗ In2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â(1)

Â(2)

A(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ⊗ denotes the Kronecker product, H denotes the conjugate transpose, F3 is a

3× 3 normalized discrete Fourier transform (DFT) matrix and Â(i) is the ith frontal

slice of Â, Â = fft(A, [],3).

circ(A)unfold(B)

= (FH
3 ⊗ In1)(F3 ⊗ In1)circ(A)(F

H
3 ⊗ In2)(F3 ⊗ In2)unfold(B)

= (FH
3 ⊗ In1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â(1)

Â(2)

A(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̂(1)

B̂(2)

B(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= (FH
3 ⊗ In1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â(1)B̂(1)

Â(2)B̂(2)

Â(3)B(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FH
3 Â(1)B̂(1)

FH
3 Â(2)B̂(2)

FH
3 Â(3)B(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where B(i) is the ith frontal slice of B̂, B̂ = fft(B, [],3). Therefore, fold(circ(A) ⋅

unfold(B)) can be computed by Algorithm 1. ♢

Next, we will introduce several definitions based on t-product from [51] and [42]

that will be necessary for the rest of the thesis.

Definition 1.2.6 (Identity tensor) [51] The n1 ×n2 ×n3 identity tensor I is the

tensor whose first frontal slice is the n1 ×n2 identity matrix, and whose other frontal

slices are all zeros.

Definition 1.2.7 (Transpose) [51] If A is an n1 × n2 × n3 tensor, then AT is an

n2×n1×n3 tensor obtained by transposing each of the frontal slices and then reversing

the order of transposed frontal slices 2 through n3 (see Figure 1.3).

Figure 1.3: Transpose of an n1 × n2 × n3 tensor A
.
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Definition 1.2.8 (Orthogonality) [51] An n1×n2×n3 tensor A is called orthog-

onal, if the t-product of AT and A is equal to the identity tensor, i.e.,

AT ∗A = I.

Definition 1.2.9 (f-Diagonal) [51] An n1 ×n2 ×n3 tensor A is called f-diagonal,

if each frontal face of A is diagonal.

Definition 1.2.10 (f-upper triangular) [51] An n1 × n2 × n3 tensor A is called

f-upper triangular, if each frontal face of A is upper triangular.

We now introduce the t-QR, pivoted t-QR, t-SVD, and truncated t-SVD, which

builds on the above operations of tensors.

Definition 1.2.11 (t-QR factorization) [51] Given an n1×n2×n3 tensor A, the

t-QR factorization of A is

A = Q ∗R,

where tensor Q is orthogonal and R is f-upper triangular.

According to the definition and algorithm of t-product, the procedure to compute

t-QR is shown in Algorithm 2.

Algorithm 2 t-QR factorization [51]

Input: A ∈ Rn1×n2×n3

Output: An n1 × n1 × n3 tensor Q, and an n1 × n2 × n3 tensor R

Â← fft(A, [ ],3);

for i = 1 to n3 do

Â(i) = Q̂(i)R̂(i);

end for

Q← ifft(Q̂, [ ],3)

R← ifft(R̂, [ ],3)
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Definition 1.2.12 (Permutation tensor) [42] The n1×n2×n3 permutation ten-

sor P is the tensor whose entries consist of only zeros and 1′s and PT∗P = P ∗PT =

I.

Theorem 1.2.13 (Pivoted t-QR factorization) [42] Given an n1×n2×n3 ten-

sor A, it can be factorized as

A ∗P = Q ∗R,

where tensor Q is orthogonal, R is f-upper triangular, and P is a permutation tensor.

Definition 1.2.14 [51] Let A be an n1 × n2 × n3 tensor. The t-SVD of A is

A = U ∗ S ∗ VT

where U ∈ Rn1×n1×n3, V ∈ Rn2×n2×n3 are orthogonal, and Sk ∈ Rn1×n2×n3 is a f-diagonal

tensor.

Figure 1.4: The t-SVD of an n1 × n2 × n3 tensor A.

Definition 1.2.15 [51] Given a tensor A ∈ Rn1×n2×n3 , define the truncated t-SVD

of A as

Ak = Uk ∗ Sk ∗ VTk

where k is a target truncation term, Uk ∈ Rn1×k×n3, Vk ∈ Rn2×k×n3 are orthogonal,

and Sk ∈ Rk×k×n3 is a f-diagonal tensor.

The procedure to compute the k-term truncated SVD is given in Algorithm 3.

For a tensor A ∈ Rn1×n2×n3 , computing a k-term truncated t-SVD takes O(n1n2n3k)

flops. Detailed flop-count see Table 1.1. For a matrix A ∈ Rn1n2×n3 , computing a
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k-term truncated SVD takes O(n1n2n3k) flops as well. However, Algorithm 3 can be

computed in parallel over the frontal slices on a cluster, whereas typical algorithms

used for the truncated SVD of a matrix cannot be computed in parallel. We will

show numerical results in Chapter 2.

Algorithm 3 k-term truncated t-SVD [51]

Input: A ∈ Rn1×n2×n3 and target truncation term k

Output: Uk ∈ Rn1×k×n3 , Sk ∈ Rk×k×n3 , and Vk ∈ Rn2×k×n3

Â← fft(A, [ ],3);

for i = 1 to n3 do

[U,S,V] = svd(A(i));

Form Uk, Sk, Vk by truncating U, S, and V with target truncation term k;

Û(i)k =Uk;

Ŝ(i)k = Sk;

V̂(i)k =Vk;

end for

Uk ← ifft(Ûk, [ ],3);

Sk ← ifft(Ŝk, [ ],3);

Vk ← ifft(V̂k, [ ],3);

Table 1.1: Operation Counts of t-SVD

Steps Operation Counts
1. Â = fft(A, [ ],3) O(n1n2n3log(n3))
2. [U ,S,V] = svds(Â(i)) O(n1n2k)
3. For loop i = 1 ∶ n3, repeat step 2 n3 ⋅O(n1n2k)
4. ifft(U , [ ],3) O(n1n3klog(n3))
5. ifft(S, [ ],3) O(k2n3log(n3))
6. ifft(V, [ ],3) O(k2n3log(n3))

The optimality of the error in the truncated t-SVD is presented below, which is

a generalization of the well-known result of optimality of the truncated SVD in the

Frobenius norm, see Theorem 1.1.5.
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Definition 1.2.16 [53] Given a tensor A ∈ Rn1×n2×n3, the Frobenius norm of tensor

A is the square root of the sum of the squares of all its entries, i.e.

∥A∥F =
¿
ÁÁÀ

n1

∑
i=1

n2

∑
j=1

n3

∑
k=1
(A(i, j, k))2.

Here, and henceforth, we will use the short-hand notation ∑j>k to represent

∑min{n1,n2}
j=k+1 for clarity.

Theorem 1.2.17 [51] Given a tensor A ∈ Rn1×n2×n3 , Ak = argminÃ∈M ∥A − Ã∥F,

where M = {C = X ∗ Y ∣ X ∈ Rn1×k×n3 ,Y ∈ Rk×n2×n3}. Therefore, ∥A −Ak∥F is the

theoretical minimal error, given by

∥A −Ak∥F =
⎛
⎝
1

n3

n3

∑
i=1
∑
j>k
(σ̂(i)j )

2⎞
⎠

1/2

, (1.1)

where σ̂
(i)
j ≡ Ŝ(j, j, i) is the ith component of fft(S(j, j, ∶), [ ],3).

In the thesis, we will also need to use two operators, squeeze and twist (see

Figure 1.5), that could go back and forth between elements in Rn1×1×n2 and Rn1×n2

[50].

The squeeze(A) produces a matrix A such that

A(i, j) =A(i,1, j).

The twist(A) operation is the inverse of squeeze, i.e.

twist(squeeze(A)) = A.

1.3 Outline of the Thesis

The structure of the thesis is as follows. After introducing the preliminary knowledge

in Chapter 1, Chapter 2 presents a novel randomized tensor singular value decompo-

sition to compute the approximated t-SVD. Chapter 3 presents a new tensor-based
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Figure 1.5: The operators squeeze and twist.

model reduction method, tensor proper orthogonal decomposition, to solve dynam-

ical systems. Chapter 4 illustrates a new method to select essential frames for the

application of multi-frame blind deconvolution. Chapter 5 introduces a new tensor-

based model to enhance the resolution of multiple video clips simultaneously using

the information of their neighbor frames. Final discussions, conclusions, and future

works are given in Chapter 6.
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Chapter 2

Randomized Tensor Singular Value

Decomposition

In this Chapter, we will introduce a novel method that extends a well-known ran-

domized matrix method to the tensor Singular Value Decomposition (t-SVD). We

will start with the motivation and background in Section 2.1 and review the matrix-

based randomized SVD in Section 2.2. Our main method and algorithms will be

discussed in Section 2.3. Numerical results and summary will be provided in Section

2.4 and Section 2.5.

2.1 Motivation and Background

As we discussed in Chapter 1, matrix decompositions are essentially important in

both theory and practice. However, in this era of “big data,” it is not uncommon for

the size of a matrix operation or a dataset to reach the scale of petabytes or even

exabytes. By 2013, for example, Facebook already used 1.5 petabytes to store about

10 billion photos, and Netflix had used 3.14 petabytes to store available shows and

movies [86]. In the field of quantum chromodynamics, the size of matrix operator is

on the order of several millions, or even billions [31]. On the one hand, there still

seems to be a push to obtain ever more information by collecting more data. On the

other hand, current data analysis and scientific computing methods are continually

challenged by the expanding sizes of the models and datasets.

In data analysis and scientific computing, almost all of the methods rely on

matrix algorithms [89]. In particular, the low-rank matrix approximation,

Am×n ≈ Bm×kCk×n, (2.1)
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where k < min{m,n}, is used often, because it allows us to store or analyze the

matrix A by the smaller-size factor matrices B and C instead of the full matrix,

which is more efficient when k is much less than min{m,n}. Moreover, these smaller

matrices can provide some specific information about the original matrix.

In Chapter 1, we mentioned that truncating the matrix singular value decompo-

sition to k terms provides the optimal rank-k approximation to a matrix in both the

matrix 2-norm and Frobenius norm, and the algorithms for computing the approxi-

mation are numerically robust. It has many applications, but the cost of accurately

computing the truncated matrix SVD can be prohibitively expensive, making it un-

suitable for some current large-scale applications [78].

Therefore, much work has been devoted to the development of randomized al-

gorithms for computing low-rank matrix approximations but which are cheaper to

compute. As a trade-off, one gives up the optimality property at some level for

nearly optimal results.

For computing low-rank approximations more efficiently, randomized algorithms

have been proposed in recent years. Randomized algorithms are based on random

sampling and random projection. The main idea of random sampling methods is

to construct a smaller matrix which is close to the original matrix and contains

the information from selected and rescaled columns or rows of the original matrix,

see [21]. The idea of random projection methods is to project the original matrix

to a lower dimensional space by multiplying from the right by a random projection

matrix, see [37]. The work in [63] summarizes different ways of constructing the

random projection matrix are used for different purposes, see also [3, 5, 6, 17,30].

Randomized algorithms work efficiently in the context of a matrix, but as we

discussed in Chapter 1, not all of the datasets are natively represented in matrix

form at the outset. It is therefore natural to extend randomized algorithms to the

tensor computation. The authors in [22] appear to have pioneered the generalization

of random sampling methods to tensors. Specifically, they extended random sam-

pling methods to the Tucker decomposition, and provided a guide to the theoretical

analysis for the tensor-based decomposition via random sampling methods. In [83],
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the authors provide numerical examples of Tucker decomposition with the random

sampling method. A literature search also reveals attempts to extend the random

sampling approach to tensor-based on CP decomposition and Tucker decomposi-

tion [9, 10,77,88].

In this section, we extend a well-known random projection method, the ran-

domized SVD (r-SVD) [37], to the t-SVD for tensors using the algebra induced by

the t-product. The motivation for focusing our efforts on the randomization of the

t-SVD are as follows:

• Theoretical and computational advantages provided by the t-SVD. For exam-

ple, we can utilize the optimal property we introduced in Theorem 1.2.17, and

we can exploit parallelization for computing the t-SVD.

• Under the t-product, there are well defined concepts of orthogonality, identity

and orthogonal projections, QR factorizations, and the like [32,50,64].

• In many applications, such as compression and facial recognition, the t-SVD

has been shown to have superior compression characteristics [42] relative to

the Tucker decomposition. When they use some storage, the t-SVD has better

performance in term of the recognition rate.

2.2 Randomized Singular Value Decomposition

The randomized Singular Value Decomposition (referred to as r-SVD), was proposed

in a series of papers published over the last decade (see e.g., [59,90]) and was popu-

larized by the review paper [37]. The first step in computing the r-SVD is generating

several Gaussian random vectors stored in the columns of W ∈ Rn×(k+p) that are,

with high probability, linearly independent. Here, k is the desired target truncation

term of the approximation and p is a non-negative integer oversampling parame-

ter. The matrix Y ∶= AW ∈ Cm×(k+p) thus contains random linear combinations

of the columns of A. By computing the QR factorization of Y, we can obtain a

well-approximated basis Q, whose columns form an orthonormal basis for the range
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of Y. If A has rapidly decaying singular values, the columns of Q are the dominant

left singular vectors of A, i.e. A ≈QQHA. Thus, one computes B ∶=QHA followed

by the compact SVD of B, B = UkSkV
H
k . The estimated desired singular values of

A are the diagonals of S, while QUk gives the estimated left singular vectors of A.

Algorithm 4 summarizes the procedure described above.

Algorithm 4 r-SVD method [37]

Input: A ∈ Cm×n, target truncation term k, and oversampling parameter p

Output: Uk ∈ Cn×k, Sk ∈ Ck×k, and Vk ∈ Cn×k

Generate a Gaussian random matrix W ∈ Rn×(k+p)

Form a matrix Y =AW

Construct matrix Q ∈ Cn×(k+p) via the QR factorization of Y

Form B ∈ C(k+p)×n, B =QHA

Compute B = ŨS̃ṼH

Set U = Ũ(∶,1 ∶k), Sk = S̃(1 ∶k,1 ∶k), Vk = Ṽ(∶,1 ∶k)

Form Uk =QkU.

When A is dense and of size n × n, this algorithm can take O(n2k) flops. For

more details, see [90]. The expected error in the low-rank approximation measured

using the Frobenius norm can be bounded, as a result below shows.

Theorem 2.2.1 [37] Given a matrix A ∈ Cm×n and a Gaussian random matrix

W ∈ Rn×(k+p). Suppose that Q is computed as in Algorithm 4, then the expected

approximation error is

E∥A −QQHA∥2F ≤ (1 +
k

p − 1
)
⎛
⎝

min{m,n}
∑

j=k+1
σ2
j

⎞
⎠

(2.2)

where σj is the jth singular value of A, p is an oversampling parameter, and E

denotes the expected value.

Proof: The proof follows readily from [37, Theorem 10.5]. ◻
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From the inequality (2.2), the value of E∥A − QQHA∥2F depends on ∑j>k σ
2
j .

When the singular values of A decay gradually, ∑j>k σ
2
j can be large, and therefore

the low-rank approximation as computed above may not be sufficiently accurate. In

this situation, Algorithm 5, which is based on subspace iteration, may be preferred.

Algorithm 5 r-SVD method with subspace iteration [37]

Input: A ∈ Cm×n, target truncation term k, a parameter q, and an oversampling

parameter p

Output: An orthogonal column basis Q of Y

Generate a Gaussian random matrix W ∈ Rn×(k+p)

Form a matrix Y0 =AW and compute the QR factorization of Y0 =Q0R0

for i = 1 to q do

Form Ỹi =AHQi−1 and compute the QR factorization of Ỹi = Q̃iR̃i

Form Yi =AQ̃i and compute the QR factorization of Yi =QiRi

end for

Form a matrix Q =Qq

Assume that k is the target truncation term, and the singular value gap τk ≡ σk+1
σk

.

Theorem 2.2.2 provides the error bound of Algorithm 5 in Frobenius norm.

Theorem 2.2.2 [92] Let A ∈ Cm×n and W ∈ Rn×(k+p) be a Gaussian random

matrix with p ≥ 2 being the oversampling parameter. Suppose Q is obtained from

Algorithm 5, then

E∥A −QQHA∥2F ≤ (1 +
k

p − 1
τ4qk )

⎛
⎝

r

∑
j=k+1

σ2
j

⎞
⎠
,

where k is a target truncation term, r is the rank of A, q is the number of iterations,

σj is the jth singular value of A, and τk = σk+1/σk ≪ 1 is the singular value gap.

Proof: See [36, Theorem 5.7] and Appendix of [92]. ◻

The error due to the randomized subspace iteration is similar to Theorem 2.2,

except for the term τ4qk . As the number of subspace iterations q increases, the term
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k
p−1τ

4q
k decreases and the subspace iteration approaches to the optimal error of the

SVD. When q = 0, Theorem 2.2.2 presents the same result as Theorem 2.2.1.

2.3 Randomized Tensor Singular Value Decomposition

In this section, we will present the rt-SVD method, which extends the matrix r-SVD

method to the t-SVD. The goal of the rt-SVD method is to find a good approximate

factorization of tensor A ∈ Rn1×n2×n3 , Uk ∗ Sk ∗ VTk . There are two main steps. The

first step is to find a tensor Q with orthogonal lateral slices such that

∥ A −Q ∗QT ∗A ∥F≤ ϵ ∥ A ∥F,

and the second step to obtain the approximate factorization of rt-SVD with a small

amount of calculation. We outline these steps in Algorithm 6.

Let us give the definition of Gaussian random tensor here that is first defined

in [92]. The motivations to define the Gaussian random tensor this way are as follows.

• Generate as few random numbers as possible. It reduces the storage cost for

the applications that have to save the Gaussian random tensor for later use.

• Being able to use the conclusions of literature on Gaussian random matrices.

Definition 2.3.1 (Gaussian random tensor) An n1 ×n2 ×n3 tensor W is called

a Gaussian random tensor, if the elements of W(1) satisfy the standard normal dis-

tribution, and the other frontal slices are all zeros.

The Fourier transform of W along the 3rd dimension is denoted as Ŵ such that

every frontal slice is an identical copy of the first slice W(1), see Figure 2.1.
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Figure 2.1: A third order Gaussian random tensor and its Fourier transform.

Algorithm 6 rt-SVD, spatial domain presentation
Input: A ∈ Rn1×n2×n3 , target truncation term k, and oversampling parameter p

Output: Uk ∈ Rn1×k×n3 , Sk ∈ Rk×k×n3 , and Vk ∈ Rn2×k×n3

Generate a Gaussian random tensor W ∈ Rn2×(k+p)×n3

Form a random projection of the tensor A as Y = A ∗W

Construct the tensor Q by using t-QR factorization of tensor Y

Form a tensor B = QT ∗A, whose size is (k + p) × n2 × n3

Compute t-SVD of B, truncate it with target truncation term k, and obtain U ,

Sk, and Vk

Form the rt-SVD of A, A ≈ (Q ∗ U) ∗ Sk ∗ VTk = Uk ∗ Sk ∗ V
T
k .

For the convenience of error analysis, Algorithm 6 can be written based on each

frontal slice and using r-SVD for each slice as in Algorithm 7, which allows for the

application of the theoretical results for the matrix randomized algorithm to each

frontal slice.
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Algorithm 7 rt-SVD, Fourier domain implementation
Input: A ∈ Rn1×n2×n3 , target truncation term k, and parameter p

Output: Uk ∈ Rn1×k×n3 , Sk ∈ Rk×k×n3 , and Vk ∈ Rn2×k×n3

Generate a Gaussian random tensor W ∈ Rn2×(k+p)×n3

Â← fft(A, [ ],3) and Ŵ ← fft(W, [ ],3)

for i = 1 to n3 do

Ŷ(i) = Â(i)Ŵ(i)

[Q̂(i), R̂(i)] = qr(Ŷ(i),0)

B̂(i) = (Q̂(i))HÂ(i)

[Û(i), Ŝ(i), V̂(i)] = svd(B̂(i))

Û(i)k = Q̂(i)Û(i); Ŝ(i)k = Ŝ
(i)(1 ∶ k,1 ∶ k); V̂(i)k = V̂

(i)(∶,1 ∶ k).

end for

Uk ← ifft(Ûk, [ ],3); Sk ← ifft(Ŝk, [ ],3); Vk ← ifft(V̂k, [ ],3).

In Theorem 2.3.3, we give the expected error of ∥ A −Q ∗QT ∗A ∥F where the

tensor Q is computed by using Algorithm 6 or Algorithm 7.

Lemma 2.3.2 Given a real n1 × n2 × n3 tensorA,

∥A∥2F =
1

n3

n3

∑
i=1
∥Â(i)∥2F (2.3)

Proof: According to [51, Equation 3.1],

(Fn3 ⊗ In1)circ (A) (F
H
n3 ⊗ In2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â(1)

Â(2)

⋱

Â(n3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

circ(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1) A(n3) A(n3−1) ⋯ A(2)

A(2) A(1) A(n3) ⋯ A(3)

⋮ ⋱ ⋱ ⋱ ⋮

A(n3) A(n3−1) ⋯ A(2) A(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This equality implies that

∥(Fn3 ⊗ In1)circ (A) (F
H
n3 ⊗ In2)∥

2

F
=

n3

∑
i=1
∥Â(i)∥

2

F
.

The Frobenius norm is unitarily invariant

∥(Fn3 ⊗ In1)circ (A) (F
H
n3 ⊗ In2)∥

2

F
= ∥circ (A)∥2F ,

therefore

∥circ (A)∥2F =
n3

∑
i=1
∥Â(i)∥

2

F
. ◻

Since ∥circ (A)∥2F = n3 ∥A∥2F, the desired result follows.

Theorem 2.3.3 Given an n1 × n2 × n3 tensor A and an n2 × (k + p) × n3 Gaussian

random tensor W, if Q is obtained by the t-QR of Y = A ∗W, then

E ∥ A −Q ∗QT ∗A ∥F≤
1
√
n3
(1 + k

p − 1
)
1/2
(
n3

∑
i=1
∑
j>k
(σ̂(i)j )

2)1/2.

where k is a target truncation term, p is the oversampling parameter, and σ̂
(i)
j is the

ith component of fft(S(j,j, ∶), [ ],3).

Proof: Let R = A −Q ∗QT ∗A. According to Lemma 2.3.2,

∥ A −Q ∗QT ∗A ∥2F=∥R ∥2F=
1

n3

n3

∑
i=1
∥R̂(i)∥2F.

By linearity of expectation,

E ∥R ∥2F=
1

n3
E(

n3

∑
i=1
∥R̂(i) ∥2F) =

1

n3

n3

∑
i=1

E(∥ R̂(i) ∥2F). (2.4)
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Then, by the inequality (2.2),

E ∥ R̂(i) ∥2F≤ (1 +
k

p − 1
)∑
j>k
(σ̂(i)j )

2. (2.5)

Substitute inequality (2.5) into inequality (2.4), then

E ∥R ∥2F≤
1

n3
(1 + k

p − 1
)

n3

∑
i=1
∑
j>k
(σ̂(i)j )

2.

Using Hölder’s inequality,

E ∥R ∥F≤
1
√
n3
(1 + k

p − 1
)
1/2
(
n3

∑
i=1
∑
j>k
(σ̂(i)j )

2)1/2. ◻

Theorem 2.3.3 is important because it shows that, in expectation, the error in the

rt-SVD algorithm is within a factor
√

1 + k

p − 1
of the optimal result in Theorem

2.2.1. Note that this is the same multiplicative factor that one obtains in the matrix

case, see Theorem 1.2.17.

Theorem 2.3.3 also shows how the bound of ∥ A −Q ∗QT ∗A ∥F relies on the

decay of the singular values of Â(i). If the singular values decay rapidly, we can

bound ∑j>k(σ̂
(i)
j )

2 by (σ̂(i)k+1)
2. Therefore, the above equation becomes

E ∥A −Q ∗QT ∗A∥F ≤
√

1 + k

p − 1
max
1≤i≤n3

σ̂
(i)
k+1.

If the singular values of Ŝ(i) decay gradually, then we can instead use the following

approximation ∑j>k(σ̂
(i)
j )

2 ≈ (n−k)(σ̂(i)k+1)
2 where σ̂

(i)
k+1 is the (k+1)th singular value

of the ith frontal slice in the Fourier domain, and n =min{n1, n2}. However, σ̂(i)k+1 can

be large, in this case, the accuracy of rt-SVD can be lost. We present a new algorithm

(Algorithm 8) based on the t-product that applies the randomized subspace iteration

to each frontal slice in the Fourier domain to improve the accuracy for this case.
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Algorithm 8 rt-SVD with subspace iteration, spatial domain presentation
Input: A ∈ Rn1×n2×n3 , target truncation term k, oversampling parameter p, the

number of iterations q

Output: Uk ∈ Rn1×k×n3 , Sk ∈ Rk×k×n3 , and Vk ∈ Rn2×k×n3

Generate a Gaussian random tensor W ∈ Rn2×(k+p)×n3

Form a tensor Y0 = A ∗W and compute the t-QR factorization Y0 = Q0 ∗R0

for i = 1 to q do

Ỹi = AT ∗Qi−1 and compute the t-QR factorization Ỹi = Q̃i ∗ R̃i

Yi = A ∗ Q̃i and compute the t-QR factorization Yi = Qi ∗Ri

end for

Form a tensor Q = Qq

Form a tensor B = QT ∗A, the size of B is (k + p) × n2 × n3 which is smaller than

tensor A

Compute t-SVD of B, truncate it, and obtain U , Sk, Vk

Form the rt-SVD of A, A ≈ (Q ∗ U) ∗ Sk ∗ VTk = Uk ∗ Sk ∗ V
T
k .

The Algorithm 8 works efficiently even when the singular values of Ŝ(i) decay

gradually for each frontal slice i. However, when the singular values of Ŝ(i) decay

gradually only for some slices, the Algorithm 8 may spend some unnecessary com-

putational effort. This can be avoided if a different number of iterations, qi, is used

for each frontal slice. Let us define the iteration vector as q = (q1, q2, . . . , qn3)T. We

present an algorithm (Algorithm 9) that employs different iteration count in each

frontal slice.
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Algorithm 9 rt-SVD with subspace iterations, Fourier domain implementation
Input: A ∈ Rn1×n2×n3 , target truncation term k, oversampling parameter p, and

the iterations vector q

Output: Uk ∈ Rn1×k×n3 , Sk ∈ Rk×k×n3 , and Vk ∈ Rn2×k×n3

Generate a Gaussian random tensor W ∈ Rn2×(k+p)×n3

Â← fft(A, [ ],3) and Ŵ ← fft(W, [ ],3)

for i = 1 to n3 do

Ŷ(i) = Â(i)Ŵ(i)

[Q̂(i)j−1,∼] = qr(Ŷ
(i),0)

for j = 1 to qi do

Ẑ(i)j = (Â
(i))HQ̂(i)j−1

[Ĝ(i)j ,∼] = qr(Ẑ(i),0)

Ŷ(i)j = Â
(i)Ĝ(i)j

[Q̂(i)j ,∼] = qr(Ŷ(i),0)

end for

Form Q̂(i) as Q̂(i) = Q̂(i)j
B̂(i) = (Q̂(i))TÂ(i)

[Û(i), Ŝ(i), V̂(i)] = svd(B̂(i))

Û(i)k = Q̂(i)Û(i); Ŝ(i)k = Ŝ
(i)(1 ∶ k,1 ∶ k); V̂(i)k = V̂

(i)(∶,1 ∶ k).

end for

Uk ← ifft(Ûk, [ ],3);

Sk ← ifft(Ŝk, [ ],3);

Vk ← ifft(V̂k, [ ],3).

The expected error of the probabilistic part of Algorithm 9 is given in Theorem

2.3.4. We focus on the case where the oversampling parameter p ≥ 2. The cases

where p = 0 and p = 1 can be found in the Appendix of [92].

Theorem 2.3.4 Given an n1 ×n2 ×n3 tensor A and an n2 × (k + p)×n3 tensor W,
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if Q is obtained from Algorithm 9, then

E ∥ A −Q ∗QT ∗A ∥F≤
⎛
⎝
1

n3

n3

∑
i=1
(1 + k

p − 1
(τ (i)k )

4qi)
⎛
⎝∑j>k
(σ̂(i)j )

2⎞
⎠
⎞
⎠

1/2

, for p ≥ 2,

where k is a target truncation term, p is the oversampling parameter, q is the itera-

tions vector, σ̂(i)j is the ith component of fft(S(j,j, ∶), [ ],3), and τ̂
(i)
j = σ̂

(i)
k+1

σ̂
(i)
j

.

The proof is similar to the proof of Theorem 2.3.3 with the exception of attention

to the variation in qi parameters allowed across frontal slices, and therefore omitted.

If the iteration count qi = q for all i = 1, . . . , n3, then the bound in Theorem 2.3.4

can be simplified as

E ∥A −Q ∗QT ∗A∥
F
≤
√

1 + k

p − 1
(τmax

k )4q
⎛
⎝
1

n3

n3

∑
i=1
∑
j>k
(σ̂(i)j )

2⎞
⎠

1/2

, (2.6)

where τmax
k = max1≤i≤n3 τ

(i)
k is the largest singular value gap. In particular, q = 0

gives the same result as Theorem 2.3.3.

In [92], we explain how the truncation parameter should be related to the singular

value gaps according to

qi = ⌈
1

4
log

ϵ(p − 1)
k

/log τ
(i)
k ⌉ ,

to ensures that the error in E ∥A −Q ∗QT ∗A∥
F

is at most
√
1 + ϵ of the optimal

result in Theorem 1.2.17, where 0 < ϵ < 1.

Theorems 2.3.3 and 2.3.4 provide average behavior in accuracy, and Theorem

2.3.5 provides bounds on the tail of the probabilistic error.

Theorem 2.3.5 [92] With the assumptions of Theorem 2.3.4, let 0 < δ < 1 be the

failure probability and define the constant

Cδ =
e
√
k + p

p + 1
(2
δ
)

1
p+1 ⎛
⎝
√
n2 − k +

√
k + p +

√
2 log

2

δ

⎞
⎠
.
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Then, with probability at most 1 − δ,

∥A −Q ∗QT ∗A∥2
F
≤ 1

n3

n3

∑
i=1
(1 +C2

δ (τ
(i)
k )

4qi)
⎛
⎝∑j>k
(σ̂(i)j )

2⎞
⎠
.

Proof: See Appendix of [92]. ◻

Theorem 2.3.5 shows that the result holds with high probability, and the chance

that the upper bound cannot hold is very small.

2.4 Numerical Experiments

In this section, we provide some numerical results on the accuracy of the proposed

low-rank representations, as well as on the computation time of the proposed meth-

ods. We also test our algorithms on an application to facial recognition. The datasets

for the experiments are a subset of the Cropped Extended Yale Face Dataset B [1]

(abbreviated as Cropped Yale B dataset) and the dataset of faces maintained at

AT&T Laboratories Cambridge [13] (abbreviated as AT&T dataset). The Cropped

Yale B dataset has 1140 images that contains the first 30 possible illuminations of 38

different people. Each image has 192× 168 pixels in a grayscale range. We form the

Cropped Yale B dataset as a 192 × 1140 × 168 tensor, and this tensor is denoted by

B. The AT&T dataset has 400 images that contains 10 different poses of 40 people.

Each image has 112 × 92 pixels in a grayscale. We form the AT&T dataset as a

112 × 400 × 92 tensor, denoted as E . The experiments were run on a laptop with 2.3

GHz Intel Core i7 and 8 GB memory.

2.4.1 Error Analysis

In Section 2.3, we derived theoretical results for the expected approximation errors

of rt-SVD with and without subspace iteration. Here, we provide some numerical

results to demonstrate their comparative performance. We compare the relative

errors obtained by using rt-SVD, rt-SVD with subspace iteration, and the respective

relative theoretically minimal errors on the dataset B. The target truncation term
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k is allowed to vary between 50 and 180. We define the relative errors obtained by

using the rt-SVD with subspace iteration (see Algorithm 8) as eqk,

eqk =
∥(I −QQT)A∥F

∥A∥F
, (2.7)

where q represents the number of iterations and k denotes the target truncation

term. Because the rt-SVD with q = 0 is a specific case of rt-SVD with subspace

iteration, we will use e0k to denote the relative errors obtained by using rt-SVD with

no subspace iteration.

Theorem 1.2.17, gives us the best possible relative error ek, as a function of the

target truncation term k.

ek =
∥A −Ak∥F
∥A∥F

= ∥Ŝ(k + 1 ∶ n, k + 1 ∶ n, ∶)∥F
∥Ŝ∥F

(2.8)

Figure 2.2: (left) The comparison of the exact error and the errors of rt-SVD with
subspace iterations. (right) A zoomed in version of the left panel.

In Figure 2.2, it shows that all of the errors eqk’s, with different number of it-

erations, have the similar convergence trajectories and are quite close to the best
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possible theoretical error ek. In other words, rt-SVD and rt-SVD with subspace iter-

ation are both comparable in accuracy with the truncated t-SVD. Moreover, Figure

2.2 shows that eqk approaches ek when the number of iterations q increases, that

demonstrates the theoretical error bound behavior, which suggests that the rt-SVD

with subspace iterations can force the singular values of B̂(i) decay more rapidly and

give a more accurate approximation.

2.4.2 Facial Recognition

In this section, we apply the rt-SVD and rt-SVD with subspace iterations on the

Cropped Yale B dataset and AT&T Dataset for the application of facial recognition.

We process the training dataset and store a projector tensor Uk and a coefficient

tensor C with smaller size. Also, there is a test dataset including new images. We

determine which person each new image belongs to in the training dataset by com-

paring the tensor coefficients. The procedures for training dataset and test dataset

are shown in Table 2.1.

Table 2.1: The procedure of facial recognition based on t-SVD method

Facial Recognition Procedure
For the training Dataset: For a test image from test dataset:
1. Form the training dataset into a three
dimensional tensor and calculate the mean
lateral slice through the second dimension;

1. Form the new image as a tensor with
only one lateral slice and subtract the
mean lateral slice from it;

2. Calculate standard mean-shifted tensor
and denote it as tensor A;

2. Compute the standard mean-shifted
lateral slice and denote it as T ;

3. Compute the truncated t-SVD of A or
the approximated truncated t-SVD of A
with target truncation term k;

3. Compute the coefficient tensor Ct = UTk ∗
T ;

4. Compute the coefficient tensor C = UTk ∗
A, and store it with projector tensor Uk.

4. Find the smallest distance of Ct with
each lateral slices of C.

To measure the performance more rigorously, we use 10-fold cross-validation.

In 10-fold cross-validation, the dataset is randomly partitioned into 10 equal-size

subsets. In the kth trial, the kth subset (also referred to as a fold) is used as the
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test dataset, whereas the other 9 subsets are simultaneously used as training dataset.

Therefore, the algorithm will be tested 10 times with 10 different combinations of the

same dataset. The randomized algorithms are run 20 times for each fold to compute

the mean, maximum, and minimum of recognition rates. The recognition rate here

is defined as

r = the number of images recognized correctly
the number of test images

.

2.4.2.1 Cropped Yale Face B Dataset

There are 1140 images in Cropped Yale B Dataset, so the size of the training dataset

is 192×1026×168 and the size of the test dataset is 192×114×168 in each fold. We

display a few sample images of the Cropped Yale B dataset under different illumi-

nations in Figure 2.3.

Figure 2.3: Sample images from Cropped Yale B Dataset
.

Table 2.2 shows the accuracy of the rt-SVD algorithm in terms of recognition

rate, whereas Table 2.3 shows the accuracy of rt-SVD with simultaneous iterations.

The computational times are reported in Figure 2.4. As expected, up to a point,

the larger the truncation term is, the higher the recognition rate and respectively

the higher the computation cost can take. In practice, the value of truncation term

depends on the tradeoff between recognition rate and computational time. Here, we

list the results with target truncation terms equal to 25 and 50 to fairly show the

performance and provide choices for needs.
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Table 2.2: Recognition Rates on Cropped Yale B dataset with k = 25

r fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10
The t-SVD method

0.9912 1.0000 0.9211 1.0000 1.0000 0.9912 0.9035 0.9737 0.7368 0.9825
The rt-SVD method

min∗ 0.9123 0.9912 0.9737
mean 0.9912 1.0000 0.9175 0.9943 1.0000 0.9912 0.9035 0.9737 0.7368 0.9772
max 0.9211 1.0000 0.9912

The rt-SVD method with simultaneous iterations q = 1
min 0.9737
mean 0.9912 1.0000 0.9211 1.0000 1.0000 0.9912 0.9035 0.9737 0.7368 0.9833
max 0.9912

The rt-SVD method with simultaneous iterations q = 2
min 0.9825
mean 0.9912 1.0000 0.9211 1.0000 1.0000 0.9912 0.9035 0.9737 0.7368 0.9882
max 0.9912

Table 2.3: Recognition Rates on Cropped Yale B dataset with k = 50

r fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10
The t-SVD method

0.9912 1.0000 0.9298 1.0000 1.0000 0.9912 0.9035 0.9825 0.7368 0.9912
The rt-SVD method

min
mean 0.9912 1.0000 0.9298 1.0000 1.0000 0.9912 0.9035 0.9825 0.7368 0.9912
max

The rt-SVD method with simultaneous iterations q = 1
min
mean 0.9912 1.0000 0.9298 1.0000 1.0000 0.9912 0.9035 0.9825 0.7368 0.9912
max

The rt-SVD method with simultaneous iterations q = 2
min
mean 0.9912 1.0000 0.9298 1.0000 1.0000 0.9912 0.9035 0.9825 0.7368 0.9912
max

In table 2.2, we have the following observations.

• The minimum and maximum recognition rates are very close to the mean

recognition rate in the series of rt-SVD methods.

• Comparing the recognition rate between t-SVD and the series of rt-SVD meth-

ods, they are identical in 7 out of 10 folds. In the other 3 folds (fold 3, fold 4,

and fold 10), the difference is very slight, less than .01.

• In fold 10, the maximum recognition rates of the series of rt-SVD method are

even slightly higher than the recognition rate of t-SVD.
∗When the minimum, maximum, and mean recognition rates are identical, we only list the mean

recognition rate.
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Figure 2.4: (left) Running time to process the training dataset of Cropped Yale B
with k = 25. (right) Running time to process the training dataset of Cropped Yale
B with k = 50. Randomized algorithms are presented via the error-bar plots.

Table 2.3 provides similar results to Table 2.2. In particular, the recognition

rates are identical in each fold.

Regarding the running time to process the training dataset, Figure 2.4 shows

that:

• In the context of running time, rt-SVD < rt-SVD with subspace q = 1 < rt-SVD

with subspace q = 2 < t-SVD.

• The rt-SVD method takes about a third of the time to compute as the t-SVD

does.
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2.4.2.2 AT&T Dataset

For the AT&T Dataset, there are 400 images, so the size of training dataset in each

fold is 112 × 360 × 92 and the size of test dataset in each fold is 192 × 40 × 168.

In contrast to the Cropped Yale B dataset, the AT&T dataset has images with

different poses, see Figure 2.5. As we discussed in subsection 2.4.2.1, we provide

results with two different target truncation terms, 15 and 25. Table 2.4 and 2.5

show the performance of rt-SVD and rt-SVD with subspace iteration. Figure 2.6

shows the comparison of running times. The numerical results are consistent with

the numerical results on the Cropped Yale B dataset, therefore demonstrating our

algorithms have good performance both on illumination varying datasets and pose

varying datasets.

Figure 2.5: Sample images from AT&T dataset.

2.4.3 Computation Time in Parallel on a Cluster

In the facial recognition application, the most computation time is spent on com-

puting the exact or approximated truncated t-SVD, so in this subsection, we give

the computation times of computing truncated t-SVD, rt-SVD, and rt-SVD with

subspace iterations in parallel on a cluster. The dataset we use as an example is

the Cropped Yale B dataset B, and the target truncation term (i.e., k) is 50. The

experiments are run by Matlab 2015a in (Tufts cluster with Intel(R) Xeon(R) CPU
†When the minimum, maximum, and mean recognition rates are identical, we only list the mean

recognition rate.
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Table 2.4: Recognition Rates on AT&T dataset with k = 15

r fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10
The t-SVD method

0.9750 1.0000 1.0000 0.9750 0.9750 0.9500 0.9250 1.0000 0.9750 0.9000
The rt-SVD method

min† 0.9750 0.9500 0.9000
mean 0.9750 1.0000 1.0000 0.9775 0.9750 0.9537 0.9250 1.0000 0.9750 0.9013
max 1.0000 0.9750 0.9250

The rt-SVD method with simultaneous iterations q = 1
min
mean 0.9750 1.0000 1.0000 0.9750 0.9750 0.9500 0.9250 1.0000 0.9750 0.9000
max

The rt-SVD method with simultaneous iterations q = 2
min
mean 0.9750 1.0000 1.0000 0.9750 0.9750 0.9500 0.9250 1.0000 0.9750 0.9000
max

Table 2.5: Recognition Rates on AT&T dataset with k = 25

r fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10
The t-SVD method

0.9750 1.0000 1.0000 0.9750 0.9500 0.9500 0.9250 1.0000 0.9750 0.9000
The rt-SVD method

min
mean 0.9750 1.0000 1.0000 0.9750 0.9587 0.9500 0.9250 1.0000 0.9750 0.9000
max

The rt-SVD method with simultaneous iterations q = 1
min
mean 0.9750 1.0000 1.0000 0.9750 0.9500 0.9500 0.9250 1.0000 0.9750 0.9000
max

The rt-SVD method with simultaneous iterations q = 2
min
mean 0.9750 1.0000 1.0000 0.9750 0.9500 0.9500 0.9250 1.0000 0.9750 0.9000
max

X5675 running at 3.07 GHz (8 cores)). We give results for serial and parallel imple-

mentations. In the parallel implementations, we used 2-8 processors. The t-SVD is

computed by Algorithm 3, the rt-SVD is computed by Algorithm 7, and the rt-SVD

with subspace iterations is computed by Algorithm 9. The results are shown in Fig-

ure 2.7. As can be seen, when the number of processors increases, the running time

using parallel computing decreases on average.

2.5 Summary

In this Chapter, we discussed the advantages and limitations of the matrix based

randomized algorithms and deterministic tensor-based algorithms. The algorithms
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Figure 2.6: (left) Running time to process the AT&T training dataset with k = 15.
(right) Running time to process the AT&T training dataset with k = 25. Randomized
algorithms are presented via the error-bar plots.

Figure 2.7: The computation time of t-SVD, rt-SVD, and rt-SVD in subspace iter-
ations with and without parallel computing. Randomized algorithms are presented
via the error-bar plots.
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we design combines both of the advantages. We extend the randomized SVD method

to third order tensors and provides both of the basic version algorithm (rt-SVD)

and the more general version algorithm (rt-SVD with subspace iterations). We

theoretically showed the expected errors of both rt-SVD and rt-SVD with subspace

iterations that approximate the deterministic t-SVD can be bounded in Frobenius

norm, and provide the numerical support in the application of facial recognition with

two commonly used pubic datasets, Cropped Yale B dataset and AT&T Dataset, in

respective of recognition rate and computation speed. Moreover, all the rt-SVD series

algorithms can be done in parallel on a cluster. This makes our algorithm efficient

in practice. In particular, if the application is running on a distributed memory

machine, the approximation factorization can be separately stored on the different

processors and this is convenient for later use without additional computation cost.
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Chapter 3

Tensor-based Model Reduction

In this chapter, we will consider a dynamical system of the form:

∂u(r, t)
∂t

− gu(r, t) − f(u(r, t)) = q(r, t), (3.1)

where r = (x, y), g and f are the linear and nonlinear operators on u(r, t), and q(r, t)

is the non-homogeneous term.

This system can be solved numerically by discretizing u(r, t) both in space and

time. However, the scale of the discrete problem is often challenging for processing,

which motivates the need for reduced space representation of the discrete problem.

In this study, we shall resort to projection based methods, and in particular, proper

orthogonal decomposition (POD). The basic idea of POD is to project the original

large system to a smaller system by using the basis obtained by singular value de-

composition with a small number of snapshots of the solution. The POD method

was developed by several researchers: Kosambi, Loéve, Karhunen, Pougachev and

Obukhov in the 1940s and 1950s [57, 62] (for more details see [61]). It has been ap-

plied in a variety of fields, including fluid dynamics (see, eg. [45,79]), control theory

(see, eg. [4, 58]), inverse problems [8], random variable [70], image processing [72],

data compression [7], and oceanography [71].

The performance of the POD method depends on the availability of snapshots

and the effectiveness of the basis. In this chapter, we present a method that uses the

t-SVD to generate a more effective basis with a limited number of snapshots. We

will start with introducing some preliminary knowledge about the discretization and

proper orthogonal decomposition in Section 3.1. In Section 3.2, we will introduce the

tensor POD method and include a comparison of the basis from POD and t-POD

in Subsection 3.2.1, the method to construct projector in Subsection 3.2.2, and the

numerical experiments in Subsection 3.2.3. A summary follows in Section 3.3.
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3.1 Introduction

Solving the dynamical system (3.1) means finding the unknown stateu(r, t) that sat-

isfies the equation. The analytical (exact) solution can be difficult to obtain or even

not exists in practice, so leveraging numerical methods to compute an approximated

solution is necessary.

3.1.1 Discretization Method

Instead of providing the variation of dependent variables continuously throughout

the domain as analytical solutions, the numerical solutions can only provde answers

at discrete points on a grid that is defined as follows.

Definition 3.1.1 (Grid) A grid on a domain Ω ∈ Rd is a finite or countable col-

lection of points, x⃗j ∈ Ω, such that the distance between points,

d(x⃗i, x⃗j) > 0,

for any i and j.

Definition 3.1.2 (Regular Grid) A regular grid on a domain Ω ∈ Rd is a grid

such that writing x⃗j = (xj1, x
j
2, . . . , x

j
d) for each j gives x⃗j − x⃗i =mijhk for each k and

all i, j, where mij ∈ Z, hk ∈ R.

Partial derivatives of the discrete dynamical system at each grid point can be

approximated based on Taylor’s Theorem.

Theorem 3.1.3 (Taylor’s Theorem with Remainder) Let n ∈ Z+. If f ∶ [a, b]→

R is n + 1 times continuously differentiable on [a, b] and x,x0 ∈ [a, b], then

f(x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)
2!

(x−x0)2+⋅ ⋅ ⋅+
fn(x0)

n!
(x−x0)n+∫

x

x0

fn+1(t)
n!

(x−t)ndt.

Using Taylor’s theorem, we can write

f(x0 + h) = f(x0) +
f ′(x0)
1!

h + f ′′(x0)
2!

h2 + . . .
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and

f(x0 − h) = f(x0) −
f ′(x0)
1!

h + f ′′(x0)
2!

h2 − . . . ,

which directly provide three ways to approximate f ′(x0),

f ′(x0) =
f(x0 + h) − f(x0)

h
−O(f

′′(x0)
2!

h2),

f ′(x0) =
f(x0) − f(x0 − h)

h
+O(f

′′(x0)
2!

h2),

and

f ′(x0) =
f(x0 + h) − f(x0 − h)

2h
−O(f

′′′(x0)
3!

h3).

By discretizing the Partial Differential Equation (PDE) system (3.1) on a grid in

the spatial domain (i.e. semi-discretization), the system becomes an Ordinary Dif-

ferential Equation (ODE) system. Let us use a regular grid, introduced in Definition

3.1.2, as an example for the discussion.

Define the space grid,

ri,k = (xi, yk) = (ihx, khy),

where i ∈ [0, nx], k ∈ [0, ny]. See Figure 3.1

Figure 3.1: The grid for spatial domain.
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The respective PDE system (3.1) discretized on the grid can be written as

∂ū(t)
∂t

=Aū(t) + f(ū(t)), (3.2)

where the size of A is nxny × nxny and ū(t) is a column vector with size nxny

constructed by raster scanning the semi-discretized u(r, t).

To solve this ODE, we also discretize it in the time domain and then approximate
∂ū(t)
∂t . Define the time grid

tj = jht,

where j ∈ [0, ts]. In approximating ∂ū(t)
∂t , explicit Euler method, implicit Euler

method, and Crank-Nicolson method are commonly choices.

Explicit Euler method uses forward approximation, implicit Euler method uses

backward approximation, and Crank-Nicolson method uses the average of forward

approximation and backward approximation. They have their own advantages and

disadvantages, and we do not discuss them here. As examples, if we use implicit

Euler method to approximate ∂ū(t)
∂t , then the discretized ODE system (3.2) can be

written as
ūj+1 − ūj

ht
=Aūj+1 + f(ūj+1). (3.3)

The cost of each step of the implicit Euler method is the cost of solving the system

(3.3). The order of this system is nxny, it can be expensive to solve it when nxny is

large. Moreover, there are ts time steps, so the system has to be solved ts times.

In next section, we will introduce the POD method, which is used to reduce the

computational cost. The main idea of the POD is projecting the original large system

to a smaller system by forming a basis of the state space from a small number of

snapshots of the solution. In the following section, an introduction to the keywords

(snapshots, basis, and projection) is provided.
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3.1.2 Proper Orthogonal Decomposition

The POD method has been used commonly to deal with reducing this computational

cost by reducing the order of the system. It constructs a smaller size approximation

system of order r ≪ n by projecting the original large system with a reduced order

orthonormal projection matrix Wr.

Consider a set of snapshots of the solution {ū1, ū2, . . . , ūµs}, that is a small size

subset of solution. A basis for this set of snapshots is the solution to the following

optimization problem [16].

arg min
{ϕi}

r
i=1

µs

∑
j=1

XXXXXXXXXXX
ūj −

r

∑
i=1
⟨ūj ,ϕi⟩ϕi

XXXXXXXXXXX

2

F

s.t. ϕ⊺iϕj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if i ≠ j,

1, if i = j,
i, j = 1, . . . , r.

(3.4)

The optimal solution of (3.4) is given by the first r left singular vectors of a

matrix X constructed using {ūj}µs

j=1 as the columns. As we introduced in Chapter

1, the truncated singular value decomposition (SVD) of n × µs matrix X is

X ≈WrSrVr
⊺,

where r ≤ µs, the columns of Wr ∈ Rn×r are called left singular vectors, and they are

orthogonal.

Therefore,

ūj ≈WrWr
⊺ūj ,

is the optimal approximation of ūj (in the least square sense) in span of

{Wr(∶,1),Wr(∶,2),⋯,Wr(∶, r).}
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The error of (3.4) is

µs

∑
j=1

XXXXXXXXXXX
ūj −

r

∑
i=1
⟨ūj ,Wr(∶, i)⟩Wr(∶, i)

XXXXXXXXXXX

2

F

=
µs

∑
i=r+1

σ2
i , (3.5)

where σ1, σ2, . . . , σr are the diagonal entries of Sr.

Let ũj =Wr
⊺ūj . Assume ū =Wrũ. Then, apply Galerkin projection: multiply

from the left by Wr
⊺. The system (3.2) is replaced by the reduced order model,

∂ũj

∂t
=Wr

⊺AWrũ
j +Wr

⊺f(Wrũ
j), (3.6)

where the size of Wr
⊺AWr is r × r. We solve (3.6) at the cost of solving a smaller

system with order r, and at each time step estimate ū by ū ≈Wrũ. The procedure

is presented in Algorithm 10.

Algorithm 10 Proper Orthogonal Decomposition

1: Input: Snapshots of solution {ū1, ū2, . . . , ūµs}, µs is the number of snapshots,

matrix A, and ts is the length of time grid

2: Output: Solution {ūµs+1, ūµs+2, . . . , ūts}

3: Set X = [ū1, ū2, . . . , ūµs] ∈ Rn×µs

4: Compute the reduced SVD of X, [W,S,V] = svd(X,0);

5: Set projector as Wr =W(∶,1 ∶ r)

6: Project ūj to lower dimension, ūj =Wrũ
j

7: Solve ũj in the reduced size system (3.6) when j = µs + 1, µs + 2, . . . , ts by using

the implicit Euler method

8: Compute ūj =Wrũ
j when j = µs + 1, µs + 2, . . . , ts

The POD method has been successfully applied in many fields, but we can see

its performance of POD depends on the availability and the quality of snapshots

to some certain degree from our analysis. However, in practice, there may only

limited number of snapshots available to use and the behavior of the POD based

approximation may not be directly applicable to its “nearby” state space [55]. This
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motivates us to generate a basis that could capture enough information using limited

number of snapshots to approximate the solutions off the snapshots. In next section,

we will present our method to build a basis with theoretical support and numerical

results.

3.2 Tensor POD

In this section, we will present a tensor-based method that constructs a better basis

of the snapshots. For convenience, we will begin with setting up the notation for

this section.

Given a tensor X ∈ Rn1×n2×n3 , we denote its jth lateral slice as X j ∈ Rn1×n3 . Set

X̄j ∈ Rn1×n3 as the matrix representation of X j , and X̂ ∈ Rn1n2×n3 as the matrix that

concatenates X̄1, X̄2, . . . , X̄n2 along first dimension.

Dynamical system (3.1) describes the evolution of a field in the 2D spatial do-

main. In other words, at each single time point, the solution of the dynamical

system is 2D. This motivates us to store the snapshots in the lateral slices instead of

reshaping them and storing them in vectors, and we then obtain a basis from them.

Suppose there are µs snapshots. Store them in a tensor X ∈ Rnx×µs×ny , where

jth snapshot is in lateral slice U j ∈ Rnx×1×ny . The basis for these snapshots is the

solution of the following optimization problem.

arg min
{Bl}

k1
l=1

µs

∑
j=1

XXXXXXXXXXX
U j −

k1

∑
l=1
Bl ∗ B⊺l ∗ U

j
XXXXXXXXXXX

2

F

s.t. B⊺l Bm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ∈ R1×1×ny , if l ≠m,

I ∈ R1×1×ny , if l =m,

l,m = 1, . . . , k1.

(3.7)

This is equivalent to finding an small optimal tensor B containing the basis
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{B1,B2, . . . ,Bk1} as lateral slices.

argmin
B

XXXXXXXXXXX
U j − B ∗ B⊺ ∗ U j

XXXXXXXXXXX

2

F

s.t. B⊺ ∗ B = I ∈ Rk1×k1×ny

(3.8)

Based on Theorem 1.2.17, the optimal solution B is the first k1 left singular slices

of U . The t-SVD of X is

X =W ∗ S ∗ V⊺,

where we shall denote the first k1 left singular slices as Wk1 .

3.2.1 Basis Comparison

Both SVD and tensor SVD can provide a basis for the snapshots. Here, we will

compare the bases in accuracy, i.e compare the approximation errors ∥X −Wk1 ∗

W⊺k1 ∗X ∥F and ∥X −WrW
⊺
rX∥F. The following conclusions does not only work for

the model reduction of dynamical systems, but also applies in general regarding to

comparison of SVD and tensor SVD in accuracy, we use more general notations to

discuss it.

Lemma 3.2.1 [91] Given an n1 ×n2 ×n3 tensor X , the first k terms of the t-SVD

is Xk = ∑k
i=1W(∶, i, ∶)∗(S(i, i, ∶) ∗ V(∶, i, ∶)⊺) = ∑k

i=1W(∶, i, ∶)∗C(i, ∶, ∶). The matrix Xj

represents the jth lateral slice of X can be approximated as

Xj ≈
k

∑
i=1

Wicirc(c(j)i ) (3.9)

where c
(j)
i = C(i, j, ∶) is the (i, j)th tube fiber.

Proof: Since Xj represents the jth lateral slice of X , Xj = squeeze(X (∶,j, ∶)). Based
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on the definition of t-product,

Xj ≈
k

∑
i=1

squeeze (W(∶,i, ∶) ∗ C(i,j, ∶)) =
k

∑
i=1

squeeze (W(∶,i, ∶) ∗ c(j)i )

=
k

∑
i=1

squeeze (fold(circ(W(∶,i, ∶)) ⋅ unfold(c(j)i ))) .

To prove Xj ≈ ∑k
i=1Wicirc(c(j)i ), we need to show

squeeze (fold(circ(W(∶,i, ∶)) ⋅ unfold(c(j)i ))) =Wicirc(c(j)i ).

The part, circ(W(∶,i, ∶)) ⋅ unfold(c(j)i )), is a block matrix with n3. To better

illustrate the proof, here we set n3 = 3. The logic holds for any n3 in general.

circ(W(∶,i, ∶)) ⋅ unfold(c(j)i ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W(∶, i,1) W(∶, i,3) W(∶, i,2)

W(∶, i,2) W(∶, i,1) W(∶, i,3)

W(∶, i,3) W(∶, i,2) W(∶, i,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
(1)
i

c
(2)
i

c
(3)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W(∶, i,1)c(1)i +W(∶, i,3)c
(2)
i +W(∶, i,2)c

(3)
i

W(∶, i,2)c(1)i +W(∶, i,1)c
(2)
i +W(∶, i,3)c

(3)
i

W(∶, i,3)c(1)i +W(∶, i,2)c
(2)
i +W(∶, i,1)c

(3)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W(∶, i,1)c(1)i +W(∶, i,2)c
(3)
i +W(∶, i,3)c

(2)
i

W(∶, i,1)c(2)i +W(∶, i,2)c
(1)
i +W(∶, i,3)c

(3)
i

W(∶, i,1)c(3)i +W(∶, i,2)c
(2)
i +W(∶, i,3)c

(1)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since Wi is the matrix that represents W(∶, i, ∶), Wi(∶,m) = W(∶, i,m) for any

mth column of Wi. Then,

circ(W(∶,i, ∶)) ⋅ unfold(c(j)i ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wi(∶,1)c(1)i +Wi(∶,2)c(3)i +Wi(∶,3)c(2)i

Wi(∶,1)c(2)i +Wi(∶,2)c(1)i +Wi(∶,3)c(3)i

Wi(∶,1)c(3)i +Wi(∶,2)c(2)i +Wi(∶,3)c(1)i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The squeeze and fold of this block matrix is equivalent to concatenating them
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along second dimension, i.e.

squeeze (fold(circ(W(∶,i, ∶)) ⋅ unfold(c(j)i )))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
(1)
i Wi(∶,1) c

(3)
i Wi(∶,2) c

(2)
i Wi(∶,3)

+c(1)i Wi(∶,1) +c(3)i Wi(∶,2) +c(2)i Wi(∶,3)

+c(1)i Wi(∶,1) +c(3)i Wi(∶,2) +c(2)i Wi(∶,3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [ Wi(∶,1) Wi(∶,2) Wi(∶,3) ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
(1)
i c

(3)
i c

(2)
i

c
(2)
i c

(1)
i c

(3)
i

c
(3)
i c

(2)
i c

(1)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=Wicirc(c(j)i ) ◻

Definition 3.2.2 [85] An n × n matrix A is called circulant downshift matrix, if

A = [ e2 e3 ⋯ en e1 ] ,

where ei is ith column of the n × n identity In.

Remark 3.2.3 The matrix Wicirc(c(j)i ) can be written as

c
(1)
i Wi + c(2)i WiZ +⋯ + c(n3)

i WiZ
n3−1,

where Z is the circulant downshift matrix, that is also the generator for the cyclic

group. ♢

Theorem 3.2.4 provides the theoretical comparison of truncated t-SVD and trun-

cated SVD in accuracy. It is essentially important since it provides theoretical means

explain why the basis obtained from truncated t-SVD is more effective to use.

Theorem 3.2.4 [91] Suppose there is an n1 × n2 × n3 tensor X , denote matrix Xj

as the matrix that represents the jth lateral slice of X and X̂(∶, j) = vec(Xj). If

Xk = ∑k
i=1W(∶, i, ∶)∗(S(i, i, ∶) ∗ V(∶, i, ∶)⊺) = ∑k

i=1W(∶, i, ∶)∗C(i, ∶, ∶) and X̂k = ∑k
i=1Q(∶
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, i) (Σ(i, i)V(∶, i)⊺) = ∑k
i=1Q(∶, i)D(i, ∶), then

∥X −Xk∥F ≤ ∥X̂ − X̂k∥F,

when k ≤min(n1, n2, n3) and k ≤min(n1n3, n2) simultaneously.

Proof: [91] Since X̂k = ∑k
i=1Q(∶, i) (Σ(i, i)V(∶, i)⊺) = ∑k

i=1Q(∶, i)D(i, ∶), the jth col-

umn of X̂k is approximated as

X̂k(∶, j) ≈
k

∑
i=1

Q(∶, i)dij , j = 1, . . . , n2 (3.10)

where dij is the (i, j)th entry of D. As X̂(∶, j) = vec(Xj), reshape Q(∶, i) into

Qi ∈ Rn1×n3 , we can write (3.10) as

Xj ≈
k

∑
i=1

Qidij =
k

∑
i=1

Qicirc(dije1), (3.11)

From Lemma (3.2.1), equation (3.11) can be converted into tensor form,

X ≈
k

∑
i=1
Q̃(∶, i, ∶) ∗ D̃(i, ∶, ∶) =∶ Zk. (3.12)

where D̃ is a tensor with the matrix D on the front face and zeros elsewhere. There-

fore,

∥X −Xk∥F ≤ ∥X −Zk∥F = ∥X̂ −
k

∑
i=1

Q(∶, i)Σ(i, i)V(∶, i)⊺∥F.
◻

3.2.2 Projector Construction

In the previous section, we gave the theoretical proof that shows the basis obtained

from the t-SVD is more accurate than the basis obtained from SVD for the same k.

Here, we will present how to use it to construct the projector. Recall the basis we

obtain from t-SVD is Wk1 ∈ Rnx×k1×ny . So, the tensor U that stores the snapshots
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of the solution is approximated as

X ≈Wk1 ∗W
⊺
k1
∗X . (3.13)

Let C =W⊺k1 ∗X . Then,

U j ≈Wk1 ∗ C(∶, j, ∶). (3.14)

From Lemma (3.2.1), the matrix that represents jth lateral slice, in matrix form, is

Uj ≈
k1

∑
i=1

Wicirc(C(i,j, ∶)) =
k1

∑
i=1

Wicirc(c(j)i ) =
k

∑
i=1

WiF
Hdiag(fft(c(j)i ))F

where c
(j)
i ∈ R

1×1×ny is (i, j)th tube fiber C, and F is the normalized DFT matrix.

Therefore, from Remark (3.2.3), we can derive

Uj =
k1

∑
i=1

WiZ
j−1c̄

(j)
i ,

where c̄
(j)
i is the squeeze of c(j)i .

This means

vec(Uj) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

We

We(Ik ⊗Zn2)

⋮

We(I⊗Z
(n2−1)
n2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c̄j,

where c̄j = [c̄(j)⊺1 , c̄
(j)⊺
2 , . . . , c̄

(j)⊺
k1
]⊺ and We = [W1, . . . ,Wk] ∈ Rnx×k1ny .

As we know, vec(Uj) is ūj . This implies that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

We

We(Ik ⊗Zn2)

⋮

We(I⊗Z
(n2−1)
n2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

can be used as the projector. For convenience, we denote it as B. The matrix B is
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structured and

B⊺B = I.

Recall the discretized ODE system (3.2) using the implicit Euler method is

ūj+1 − ūj

ht
=Aūj+1 + f(ūj+1). (3.15)

Since ūj = Bc̄(j), we replace ūj by Bc̄(j) in equation (3.15). Then, it can be

written as
Bc̄j+1 −Bc̄j

ht
=ABc̄j+1 + f(Bc̄j+1).

Using the Galerkin projection, multiplying by B⊺ from left side, the above equa-

tion becomes
B⊺Bc̄j+1 −B⊺Bc̄j

ht
= B⊺ABc̄j+1 +B⊺f(Bc̄j+1),

that due to the orthogonality, is equivalent to

c̄j+1 − c̄j

ht
= B⊺ABc̄j+1 +B⊺f(Bc̄j+1),

where the size of BTAB is k1n2 × k1n2 and size of c̄j is kn2 × 1.

3.2.3 Numerical Experiment

In this section, we will present the numerical results for the 2D diffusion system,

∂u(r, t)
∂t

−∇ ⋅ (κ(r, t)∇u(r, t)) = q(r, t), (3.16)

where u(r, t) is the state, r = (x, y) denotes the spatial coordinates, κ is the diffusion

coefficient, and q(r, t) is the source term.

The gradient of u is defined as ∇u(r, t) = (∂u(r,t)∂x ,
∂u(r,t)

∂y ). Using the grid we

defined in Section 3.1 and employing a second order finite difference discretization

scheme, the components of the discrete gradients are as follows.
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∂u(r, t)
∂x

≈ 1

hx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1 1

−1 ⋱

⋱ ⋱

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(nx+1)×nx

u(r∶,k, t), (3.17)

with a fixed k,

and

∂u(r, t)
∂y

≈ 1

hy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1 1

−1 ⋱

⋱ ⋱

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(ny+1)×ny

u(ri,∶, t), (3.18)

with a fixed i.

For convenience, we denote the (nx + 1) × nx and (ny + 1) × ny lower bidiagonal

matrices in equations (3.17) and (3.18) as Gx and Gy. Let n = nxny, and ū(t)

be a column vector with size n constructed by raster scanning u(ri,k, t) column by

column, then

∇ū(t) ≈ Lū(t),

where L = ( 1
hx
Iny ⊗Gx,

1
hy
Gy ⊗ Inx)

⊺
is a n × n matrix, Is denotes the identity

matrix with size s, and ⊗ denotes the Kronecker product.

The divergence of u(r, t) is

∇ ⋅ (u(r, t)) = ∂u(r, t)
∂x

+ ∂u(r, t)
∂y

≈ L⊺ū(t),

therefore we can write

∇ ⋅ (κ(r, t)∇u(r, t)) ≈ L⊺K(t)Lū(t),

where K(t) is a n × n diagonal matrix with entries of semi-discretized κ(r, t).
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The 2D diffusion system (3.16) becomes an ODE,

∂ū(t)
∂t

= L⊺K(t)Lū(t) + q̄(t), (3.19)

where L⊺K(t)L corresponds to the matrix A in (3.2) and the size of L⊺K(t)L is

n × n.

When using the implicit Euler method, equation (3.19) can be written as

uj+1 − uj

ht
= L⊺K(t)Luj+1 + q̄j+1.

Then, given a ūj , at each time step j + 1, ūj+1 can be solved by

(I − htL⊺K(t)L)ūj+1 = ūj + htq̄j+1. (3.20)

Thus, the cost of each step of implicit Euler method is the cost of solving the n × n

system (3.20).

Set nx, ny and nt as 150, and the diffusion coefficient κ(r, t) as κ(x, t) = 5 and

κ(y, t) = 2.

Collect a set of snapshots of the solution {ū1, ū2, . . . , ūµs}. Figure 3.2 shows

some samples of the snapshots. From the sample snapshots, we can observe the

diffusion process. Since κ(x, t) ≥ κ(y, t), the diffusion process rate along x direction

is faster than the diffusion diffusion process rate along y direction.

Figure 3.3 and Figure 3.4 show the plot of first 3 terms of POD basis and tensor

POD basis. In Figure 3.4, the first basis can capture the peak values of snapshots

data, the second basis can present the contour of snapshots data, and the third

basis can identify the main diffusion direction to be the x direction. One might

deduce from the comparison between Figures 3.3 and 3.4 that such information is

not revealed by expanding using the matrix-based basis.

To compare the performance of POD and tensor POD when there are only limited

number of snapshots, set r = k1 = µs. Figure 3.5 shows tensor POD method has a

smaller error than POD method in approximating the solution of a 2D diffusion
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Figure 3.2: The sample snapshots of solution ūj , j = 1 , 3, 7, 9, 12, 15

system. Here, the measurement is defined in Frobenius norm. Moreover, as can be

seen, with increasing the number of snapshots, the errors of tensor POD method

decreases more rapidly than the errors of POD method. For example, when the

number of snapshots equals to 5, both of the relative errors of tensor POD and POD

are about 10−1, but when the number of snapshots equals to 40, the relative error of

tensor POD method dropped fast to (10−7 to 10−8) while the relative error of POD

method is about 10−4. Therefore, from Figure 3.5, it is evident that the tensor POD

method is more effective to use when r = k1 = µs.

The main computation cost is due to the computation of the basis and solving

the reduced model. Table 3.1 shows the comparison of main computation costs of

POD and tensor POD. Per the step of basis computation, using SVD and using

t-SVD have same computation cost, however, it is important to recall that t-SVD

can be computed in parallel over the frontal slices on a cluster, whereas typical

algorithms used for the computation of matrix based SVD cannot be performed in

parallel. In the step of computing the reduced model, the size of reduced model in

tensor POD method is larger than it in POD method although it can provide lower

approximation error for the solutions off the snapshots.
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Figure 3.3: The first three basis vectors from SVD.

Figure 3.4: The first three basis slices from t-SVD.

We propose two improvements to reduce the computation cost of the tensor POD

additionally.

1. Reduce model from two directions.

2. Leverage a method named t-SVD II, see [42], to compute basis.

Table 3.1: Main computation costs comparison of POD and tensor POD

Steps Matrix POD Tensor POD
compute basis O(n2

xn
2
yµs) O(n2

xn
2
yµs)

size of reduced model µs nyµs

Based on these two improvements, the computation cost of computing basis will

maintain the same, but the size of reduced model will be ck1 where c≪ ny. Figure



57

Figure 3.5: The comparison of POD and tensor POD in accuracy.

3.6 shows the experimental result of comparing accuracy with c = 30. The results

indicate that the relative error of tensor POD method is substantially smaller than

the relative error of POD method.

3.3 Summary

In this Chapter, we proposed a method named tensor POD, that is based on the

t-SVD, to reduce the order of the dynamical system. We gave a comparison of

approximation accuracy between SVD and t-SVD in theory as a theoretical supports

to show tensor POD can generate a better basis for the snapshots in accuracy.

We provided the numerical experiments on a 2D diffusion system, and illustrated

the tensor POD basis can reveal more information than the POD basis from the

snapshots of solutions, for example, the third basis of the tensor POD can identify the

main diffusion direction clearly. Moreover, we showed the tensor POD formulation

entails solutions superior level of accuracy compared to matrix based POD.
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Figure 3.6: The comparison of POD and tensor POD in accuracy with c = 30.

Computation cost is predominated by the computing cost associated with deriva-

tion of the POD and solving the reduced model. Using SVD or t-SVD to compute

basis has the same computational cost. However, the t-SVD can be computed more

efficiently since it is straight forward to be computed in parallel over the frontal

slices on a cluster, whereas typical algorithms used for computing SVD cannot be

computed in parallel. The size of the reduced model obtained by the tensor POD

may be larger than that given by the POD. However, when there are a limited num-

ber of snapshots, the extra computation cost from tensor POD may be accepted

considering its advantage in approximating the solutions off the snapshots.
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Chapter 4

Tensor Multi-frame Blind Deconvolution

In this chapter, we will introduce a tensor-based method (t-PQR) to select the most

representative frames (images) for solving the multi-frame blind deconvolution prob-

lem. We will start with introducing the multi-frame blind deconvolution in Section

4.1. Then, we will discuss our method in Section 4.2 and present the numerical

results in Section 4.3. The summary follows in Section 4.4.

4.1 Multi-frame Deconvolution

Image deblurring is one of the most important topics in image processing. It seeks to

recover the original image using a mathematical model of the blurring process [39].

As we introduced in Chapter 1, an image can be represented as a matrix. Figure

4.1 shows the process of blurring an image. The matrix X represents the true image

and the matrix B represents the blurred image. Since in our model blurring an

image does not change the image size, the size of X and the size of B are same.

Matrix P represents the point spread function whichs describes the blurring and the

resulting image of the point source [39]. By convolving P and X, the blurred image

Figure 4.1: The process of blurring image [73].
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B is obtained. The convolution of P and X is written as P ⋆X,

B(x, y) = P(x, y) ⋆X(x, y)

= ∫
R2

P(x′, y′) ⋆X(x − x′, y − y′)dx′dy′,

where (x, y) denotes the pixel index of an image.

The idealized model of the blurring process can be expressed by matrix-vector

multiplication,

b =Ax, (4.1)

where b and x are vectorized B and X, b = vec(B), x = vec(X). The matrix A

is derived from the point spread function P with assuming a boundary condition of

the image.

With different boundary conditions assumptions, A has different structures. We

list a few as examples,

• Zero boundary condition: A is a block Toeplitz with Toeplitz block (BTTB)

matrix;

• Periodic boundary condition: A is a block circulant with circulant block

(BCCB) matrix;

• Reflective boundary condition: A is sum of four matrices with structures

of block Toeplitz with Toeplitz blocks(BTTB), Block Toeplitz with Hankel

blocks(BTHB), Block Hankel with Toeplitz blocks(BHTB), and Block Hankel

with Hankel blocks(BHHB).

Here, we focus on the case of periodic boundary condition - matrix A has BCCB

structure. As an illustration, let us use a 3×3 image to show the structure in equation
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(4.1),
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11

b21

b31

b12

b22

b32

b13

b23

b33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p22 p12 p32 p21 p11 p31 p23 p13 p33

p32 p22 p12 p31 p21 p11 p33 p23 p13

p12 p32 p22 p11 p31 p21 p13 p33 p23

p23 p13 p33 p22 p12 p32 p21 p11 p31

p33 p23 p13 p32 p22 p12 p31 p21 p11

p13 p33 p23 p12 p32 p22 p11 p31 p21

p21 p11 p31 p23 p13 p33 p22 p12 p32

p31 p21 p11 p33 p23 p13 p32 p22 p12

p11 p31 p21 p13 p33 p23 p12 p32 p22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

x31

x12

x22

x32

x13

x23

x33.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From equation (4.1), it shows deblurring an image requires the solution of an

inverse problem, b = Ax. When the matrix A is square and well-conditioned, the

solution is x =A−1b. However, in practice, A is ill-conditioned or rectangular, so the

image deblurring problem (4.1) is usually translated to a regularized optimization

problem,

min
x
∥Ax − b∥22 +R(x), (4.2)

where R(x) is a regularization term.

When multiple blurred images of the same object are available for reconstruc-

tion of the original image, this is referred as multi-frame image deblurring. The

mathematical model is

min
x

m

∑
j=1
∥Ajx − bj∥22 =min

x

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

⋮

Am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2

2

+R(x), (4.3)

where m is the number of blurred images, yj is jth blurred image, Aj is the corre-

sponding blur matrix, and x is the true image.

Sometimes, only the blurred image is known, and we need to reconstruct both

of the true image and the point spread function. This kind of problem is referred as
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“blind deconvolution” [29]. If we know a parametrized formula of the point spread

function, the mathematical model is

min
x,ϕ
∥A(ϕ)x − b∥22, (4.4)

where ϕ is a vector of unknown parameters characterizing the blurring process. For

example, if the point spread function is a Gauss function, then

ϕ = [µ1, µ2, σ]. (4.5)

With a boundary condition, the matrix A(ϕ) can be derived by the point spread

function

P(x, y) = 1

2πσ2
exp(−(x − µ1)2 + (y − µ2)2

2σ2
).

The multi-frame blind deconvolution is a blind deconvolution problem with mul-

tiple blurred images. The model combines (4.3) and (4.4), as

min
x,ϕj

m

∑
j=1
∥A(ϕj)x − bj∥22 =min

x

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(ϕ1)

A(ϕ2)

⋮

A(ϕm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2

2

. (4.6)

To solve the multi-frame blind deconvolution problem, one could use Gaussian-

Newton method with Tikhonov regularization and GCV (MFBD method) [65]. How-

ever, this can be computationally expensive. To reduce the computation cost, the

compact multi-frame blind deconvolution (CMF) method was proposed in [47] and

compact single frame blind deconvolution (CSF) method based on compact multi-

frame blind deconvolution was proposed in [73]. However, these methods require

choosing a control frame (contains most independent information), which is typ-

ically selected empirically. In [73], results show that information loss may entail

degraded that reduces accuracy in the reconstructed image when a poor control
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frame is chosen. This motivates us to design a principled method to select an ap-

propriate control frame. We derive an approach less heuristic in nature than the

method employed currently [73].

4.2 Frame Selection

Suppose that m blurred images are available for reconstructing the true image, and

the size of each image is n1×n2. For convenience, set n = n1 = n2. Form an n×m×n

tensor Y that stores these m blurred images, where the jth lateral slice, Yj , stores

the jth blurred image, see Figure 4.2. Also, for jth blurred image, form an n × n × n

point spread function tensor Pj , where P(i)j = Pi(ϕj) and i = 1, . . . , n. Denote the

true image as an n × 1 × n tensor X .

Figure 4.2: A tensor Y stores blurred images.

As illustrated in Chapter 1, x is obtained by vectorizing the true image, i.e.

x = unfold(X ).

Similarly, for jth blurred image,

yj = unfold(Yj).



64

Due to the structure of A(ϕj) (BCCB), it can be written as

A(ϕj) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1(ϕj) Pn(ϕj) ⋯ P2(ϕj)

P2(ϕj) P1(ϕj) ⋯ P3(ϕj)

⋮ ⋱ ⋱ ⋮

Pn(ϕj) Pn−1(ϕj) ⋯ P1(ϕj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= circ(Pj),

where Pj is jth corresponding point spread function matrix.

Therefore, equation (4.6) can be expressed in a tensor form,

min
x,ϕj

m

∑
j=1
∥Yj −Pj ∗X ∥2F, (4.7)

where X stores the true image and Yj stores the jth blurred image.

The t-PQR method is motivated by pivoted tensor QR factorization. In Chapter

1, we introduced its definition. Here, we present the algorithm to shows its procedure,

see Algorithm 11.

Algorithm 11 pivoted t-QR method [37]
Input: an n1 × n2 × n3 tensor A

Output: an n1 × n2 × n3 orthogonal tensor Q, an n2 × n2 × n3 upper triangular

tensor R, and an n1 × n1 × n3 permutation tensor E

Generate a n1 × n1 × n3 zero tensor E ;

Â = fft(A, [ ],3);

[Q̂(1), R̂(1), Ê(1)] = qr(A(1),0);⇒ Â(1)Ê(1) = Q̂(1)R̂(1);

for i = 2 to n3 do

[Q̂(i), R̂(i)] = qr(A(i)Ê(1));

end for

Q← ifft(Q̂, [ ],3)

R← ifft(R̂, [ ],3)

E(1) = Ê(1)

The t-PQR method uses a part of the pivoted t-QR factorization and combine it
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with the spectral analysis of the data tensor using t-SVD. It could determine which

frame is the control frame, and the procedure is shown in Algorithm 12. Beyond

the use of the method for selection of the control frame, it can also determine how

many frames resolve a given threshold of the total energy and which frames are the

most representative frames. Therefore, it can be used to choose a few representative

images and use them as input for the MFBD method.

Algorithm 12 t-PQR method
Input: an n ×m × n tensor Y

Output: a vector s storing the indices of representative frames and a control frame

Ŷ ← fft(Y, [ ],3);

Compute the singular values of Ŷ(1), s = svd(Ŷ(1));

Determine the number of frames, l, by setting an energy threshold τ , such that
∥s(1∶l)∥F
∥s∥F

≥ τ ;

Compute pivoted QR decomposition on Ŷ(1), [Q̂(1), R̂(1), Ê(1)] = qr(Ŷ(1),0);

Store the indices of most representative frames E = diag(Ê(1))(1 ∶ l);

Set E(1)th lateral slice of Y as the control frame

4.3 Numerical Experiments

In this section, we will present the numerical experiments on method t-PQR with 50

blurred images. These images are blurred by a sharpe image of size 256 × 256 with

50 Gaussian PSFs. To test the performance rigorously, we add four different levels of

white noise into the blurred images. The white noise containing the pseudo-ransom

values drawn from a normal distribution with mean zero and standard deviation one.

The levels of white noise specifying the percentage of noise added to the blurred

images. Level 000 here means no white noise added, level 001 means .01% of white

noise added, level 010 means .1% white noise added, and level 100 means 1% white

noise added. We label these test datasets as noise 000, noise 001, noise 010, and

noise 100. Form them as tensors. The size of each tensor is 256 × 50 × 256. Figure
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4.3 plots the singular values of Ŷ(1), s, that suggests how many images to use for

constructing the true image. We found that only 2 to 5 images are enough to use for

covering the information from 50 blurred images. Table 5.1 shows the images t-PQR

method suggests to use, and they are marked by red color.

Figure 4.3: Plot of the singular values, s, in a log scale.

Table 4.1: The most representative frames.

datasets number of images to use
Noise 000 2 or 3

Noise 001 4 or 5

Noise 010 3 or 4

Noise 100 2 or 3

datasets The first 5 elements of E
Noise 000 1, 50, 22, 12, 41

Noise 001 1, 50, 22, 11, 40

Noise 010 1, 50, 21, 24, 8

Noise 100 8, 50, 4, 40, 1
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Define the relative reconstruction error as

e =
∥X −Xapprox∥F

∥X∥F
,

where X is the true image and Xapprox is the reconstructed image.

Table 4.2 presents the relative reconstruction errors of multi-frame blind decon-

volution method (MFBD), compact single frame blind deconvolution method (CSF),

and t-PQR. MFBD method does not require control frames, and it uses all of the

blurred images as input, and the CSF requires one control frame. We make following

observations:

• MFBD has the smallest relative reconstruction error.

• The relative reconstruction errors of CSF and t-PQR with 1 image are close.

• The relative reconstruction errors of t-PQR with 4 images and t-PQR with 5

images are more close to the relative reconstruction error of MFBD than CSF.

• Using t-PQR method with one frame can have an as small error as the CSF

method has except the dataset with 1% white noise level.

• In the dataset with 1% white noise level, using the t-PQR method with 5 frames

of 50 frames can achieve smaller construction error than the CSF method.
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Table 4.2: Comparison in Relative Reconstruction Errors

Methods/datasets Noise 000 Noise 001 Noise 010 Noise 100

MFBD .2095 .2410 .2611 .2919

CSF .2165 .2504 .2673 .3101

t-PQR with 1 image .2165 .2452 .2673 .3266

t-PQR with 2 images .2154 .2452 .2673 .3266

t-PQR with 3 images .2122 .2452 .2674 .3106

t-PQR with 4 images .2140 .2451 .2673 .3105

t-PQR with 5 images .2153 .2451 .2665 .3016

As we know computing the solution using MFBD method is accurate but com-

putationally expensive, while CSF method is more efficient, but requires to choose a

control frame empirically.The following example shows the empirically chosen control

frame has larger reconstruction error than t-PQR chosen frame. This example is not

constructed with specific setting, it shows the possible scenarios we could encounter

in real practice.

Given 10 satellite blurred images that are blurred by 10 Gaussian PSFs and added

.01% white noise, the singular values of Ŷ(1), s are plotted in Figure 4.4. Since the

CSF method involves the information from all of the frames and the t-PQR method

with 1 frame only involves the information from one frame, the CSF method was

supposed to have smaller reconstruction error. However, the CSF method has larger

reconstruction error, see Table 4.3.
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Figure 4.4: Plot the singular values of Ŷ(1) in a log scale.

Table 4.3: Comparison of Relative Reconstruction Errors

Methods Relative errors

Use all frames .1706

CSF .1864

PQR with 1 frames .1806
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Figure 4.5: True image and the reconstructed images using MFBD, CSF, and t-PQR.

Figure 4.5 shows the true image and the reconstructed images using MFBD, CSF,

and t-PQR. We could see that

• The image reconstructed by MFBD method contains more information about

details than other methods. For example, see the lines and patterns on the

bottom right solar panel.

• The boundaries of the satellite on the image constructed by CSF is not as

sharp as it is on on the image constructed by t-PQR.

4.4 Summary

In this chapter, we investigated the mathematical model for the multi-frame blind

deconvolution problem. To solve it, one could use the MFBD method, but it is

computationally expensive. The CMF method and CSF method are computationally

efficient, but they require to choose a control frame, which is typically selected
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empirically. We proposed a method that is less heuristic to choose the control frame,

that avoids information loss caused by inappropriate choice of the control frame in

the CMF method and CSF method. Moreover, our method can be used to choose

several most representative frames, and use them as new inputs for the MFBD

method directly. Thanks to Professor James Nagy for supplying the codes of the

MFBD method and CSF method, as well as the codes to build experiments.
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Chapter 5

Video Enhancement

5.1 Introduction and Motivation

Enhancing resolution is an important topic in the field of image processing. High-

resolution images are desired in many situations while they are not always available

due to the hardware limitations, therefore a method to provide enhanced resolution

image from available low resolution ones is necessary. In this chapter, we will present

a method to enhance the resolution of video frames using tensor modeling and a

tensor nuclear norm as a regularization term.

A video is a representation of moving still frames (images), so we will begin the

discussion with the resolution enhancement of images. The resolution of an image

is the finest level of details the image can hold, and it is denoted by the number of

pixel columns by the number of pixel rows. The earliest formula for the resolution

enhancement problem was motivated by the need of improved resolution images of

the Landsat images [48]. The idea was extended to noisy and blurry images using

least-squares minimization in [49, 52]. In [74], the authors put the high-resolution

enhancement problem into the Bayesian framework using a Huber-Markov random

field model. Iterative spatial domain methods are other popular direction for solving

the problems of resolution enhancement [11, 24–26, 46, 54, 60, 66–69], see [12] for

more details. Wavelets and tight frames can also be used to improve the quality of

images [12,14].

For video resolution enhancement, one can enhance the resolution of each frame

as a single image. However, it obviously ignores the information its nearby frames

can provide. Typical digital video records 30 frames per second when the video is

playing. Each frame can be seen as a perturbation of its nearby frames. Figure

5.1 shows an example. The camera panned along a stack of books and one can see
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the scenes of 10 continuous frames (from 100th to 109th) are almost same except for

some small displacements.

Figure 5.1: Some sample frames of a video for a stack of books.

The authors of [15] proposed a method to construct a high-resolution frame by

considering the low resolution nearby frames as the images taken by other sensors.

Therefore, the nearby frames could be used to provide independent information to

improve the quality of the original frame. However, when the nearby frames are

included to construct the high-resolution image, redundant information may also be

included simultaneously.

To reduce the redundant information of the nearby frames and regularize the

problem, we will use the tensor nuclear norm as a regularization tool, which has

been proved the efficiency for the large data set with low rank [40,93].

The structure of this chapter is as follows. In Section 5.2, we will review the

definition and relevant properties of the tensor nuclear norm. Then, in Section

5.3, we will discuss the blurring operator construction and introduce a method to

preprocess the video frames. In Section 5.4, we will build the model and provide the

algorithm to solve the model. In Section 5.5, we will present the numerical results

on two video clips. A summary follows in Section 5.6.
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5.2 Tensor Nuclear Norm

Since we will be considering image frames together as a single tensor, and the frames

contain very similar information, we expect that the existence of redundant infor-

mation in the tensor. To reduce it, we will use the tensor nuclear norm as a tool,

defined as follow.

Definition 5.2.1 [40] Given an n1×n2×n3 tensor A and A = U ∗S ∗VT , its tensor

nuclear norm (TNN) is

∥A∥∗ =
n3

∑
k=1

⎛
⎝

min(n1,n2)
∑
i=1

Ŝ(i, i, k)
⎞
⎠

(5.1)

where Ŝ is the Fourier transform of S through third dimension.

We will also use the following results for solving our resolution enhancement

model later in the Section 5.4.2.

Theorem 5.2.2 [40] Given an n1 × n2 × n3 tensor A,

n3

∑
k=1

⎛
⎝

min(n1,n2)
∑
i=1

Ŝ(i, i, k)
⎞
⎠
= ∥circ(A)∥∗ = ∥(F⊗ I)circ(A)(FH ⊗ I)∥∗,

where F is the normalized discrete Fourier transform matrix.

Remark 5.2.3 [40] Given an n1 × n2 × n3 tensor A, ∥A∥∗ is a well defined norm,

i.e.

• For any A, ∥A∥∗ ≥ 0, and ∥A∥∗ = 0 only when A = 0;

• Let τ ∈ R, then ∥τA∥∗ = ∣τ ∣∥A∥∗;

• Given two tensors A and B with same size, ∥A + B∥∗ ≤ ∥A∥∗ + ∥B∥∗. ♢

Theorem 5.2.4 If h0(A) = ∥A∥∗ + 1
2∥A − B∥

2
F , then h0(A) is strictly convex.
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Proof: For any A1 ≠ A2 and any t ∈ (0,1),

h0(tA1 + (1 − t)A2) = ∥tA1 + (1 − t)A2∥∗ +
1

2
∥tA1 + (1 − t)A2 − B∥2F

<
n3

∑
k=1

⎛
⎝

min(n1,n2)
∑
i=1

tŜ1(i, i, k) + (1 − t)Ŝ2(i, i, k)
⎞
⎠

+ 1

2
∥tA1 − B∥2F +

1

2
∥(1 − t)A2 − B∥2F

= ∥tA1∥∗ + ∥(1 − t)A2∥∗ +
1

2
∥tA1 − B∥2F +

1

2
∥(1 − t)A2 − B∥2F

= th0(A1) + (1 − t)h0(A2).

Therefore, h0(A) is strictly convex. ◻

Theorem 5.2.5 [?] For each parameter τ > 0, and Y ∈ Rn1×n2×n3,

Aopt = argminA {
1

2
∥A − B∥2F + ∥A∥∗} , (5.2)

where Aopt = U ∗ S γ
η
∗ V.

5.3 Preparations

We will now describe a method in subsection 5.3.1 to construct the high resolution

image following the approach in Bose and Boo [11]. The construction of the high-

resolution image can be modeled by solving a linear system Lf = g, where L is

blurring operator, g is a vector constructed from the low resolution images, and f is

the vectorized desired high resolution image.

Since the video has its own properties comparing to the low-resolution images

used in the resolution enhancement model, we cannot use the video frames directly in

the resolution enhancement model. In subsection 5.3.2, we will discuss the properties

of the video in details and give a introduction on the method proposed in [15] to

preprocess video frames.
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5.3.1 Blurring Operator Construction

Low-resolution images can be viewed as outputs of an original high resolution image

passing through a low-pass filter. Suppose the resolution of the low resolution images

obtained from sensor is M1 ×M2 and that the actual length and width of the each

pixel is T1×T2. The resolution of the high resolution image is assumed to be N1×N2

where N1 =K1M1, N2 =K2M2, and K1×K2 is the number of sensors. The length and

width of each high resolution pixel is T1/K1 and T2/K2 respectively. For simplicity,

we set K =K1 =K2 = 2, M =M1 =M2, N = N1 = N2 , and T = T1 = T2.

We denote the scene we are interested in as S, and write

S = {(n1, n2) ∈ R2∣0 ≤ n1 ≤ TN, 0 ≤ n2 ≤ TN}

Let F(x, y) be the intensity of the scene S at any point (x, y), see Figure 5.2.

The discrete high resolution image has value at (n1, n2) as

F(n1, n2) =
1

T 2 ∫
(n2+ 1

2
)T

(n2− 1
2
)T
∫
(n1+ 1

2
)T

(n1− 1
2
)T

F(x, y)dxdy,

which is the average intensity of all of the points inside the (n1, n2)th high-resolution

pixel, i.e.

[(n1 −
1

2
)T,(n1 +

1

2
)T ] × [(n2 −

1

2
)T,(n2 +

1

2
)T ] .

Figure 5.2: The high resolution image F(n1, n2)

Let us suppose there is no displacement error of the sensors first, then for the
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low resolution image taken from (i, j)th sensor, the average intensity at (n1, n2) is

given by

Gi,j(n1, n2) =
1

4T 2 ∫
(2(n2+ 1

2
)+i)T

(2(n2− 1
2
)+i)T

∫
(2(n1+ 1

2
)+j)T

(2(n1− 1
2
)+j)T

F(x, y)dxdy (5.3)

where 0 ≤ i, j <K and n1, n2 ∈ Z. See Figure 5.3.

Using the midpoint quadrature rule on (5.3),

Gi,j(n1, n2) ≈ F (T (2n1 + i), T (2n2 + j)) . (5.4)

Thus, the observed high resolution image G is formed by composing all the low

resolution images Gij ,

G (2n1 + i,2n2 + j) =Gij (n1, n2) , 0 ≤ i, j < 2 and (n1, n2) ∈ S

Figure 5.3: The low resolution images G00, G01, G10, and G11 taken by four different
sensors with sub-pixel displacements.

We define the 2D downsampling matrix Di,j and the upsampling matrix Ui,j ,

for 0 ≤ i, j < 2, as

Di,j =Dj ⊗Di,
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Ui,j =Uj ⊗Ui,

where Di = IM ⊗ e⊺i , Ui = IM ⊗ ei, e0 = [1,0]⊺, and e1 = [0,1]⊺.

Remark 5.3.1 The 2D downsampling matrix Di,j and the upsampling matrix Ui,j

have following properties.

• ∑1
i,j=0UijDij = IN2

• DijUij = IM2

• DijUi′j′ = 0 if i ≠ i′ and j ≠ j′. ♢

Since each low resolution image Gij can be seen as down-sampled from the

observed high resolution image G and the observed high resolution image G can

also be seen as up-sampled from the low resolution images {Gij ∣0 ≤ i, j < 2}, by

leveraging the 2D sampling matrix Di,j and the upsampling matrix Ui,j , the matrix

Gi,j and G can be written as

Gi,j =DijG, 0 ≤ i, j < 2,

and

G =
1

∑
i,j=0

UijGij .

Using the periodic boundary condition (see Figure 5.4) and ordering the values

of F and G row by row as f and g correspondingly, we obtain a linear system

Lf = g, (5.5)

where L is a blurring operator,

L = Lx ⊗Ly, (5.6)

and Lx = Ly = circulant([1, 12 ,0, . . . ,0,
1
2
,1]).
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Figure 5.4: Example of periodic boundary conditions in 2D.

If there is displacement error, then the average intensity at (n1, n2) is given by

Gi,j(n1, n2) =
1

4T 2 ∫
(2(n2+ 1

2
)+i)T+ϵyij

(2(n2− 1
2
)+i)T+ϵyij

∫
(2(n1+ 1

2
)+j)T+ϵxij

(2(n1− 1
2
)+j)T+ϵxij

F(x, y)dxdy,

where (ϵx, ϵy) denotes the displacement error through x direction and y direction [14].

Correspondingly,

Lx = circulant([1,
1

2
+ ϵx 0, . . . , 1

2
− ϵx]]),

Ly = circulant([1,
1

2
+ ϵy 0, . . . , 1

2
− ϵy]]).

For each low resolution image gi,j ,

Di,jLf = gi,j ,

so the new blurring operator can be constructed as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Di,jL
(0)

Di,jL
(1)

Di,jL
(2)

Di,jL
(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.7)

.
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Construct the vector b by

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g
(0)
i,j

g
(1)
i,j

g
(2)
i,j

g
(3)
i,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.8)

then the new system is

Af = b. (5.9)

5.3.2 Video Frame Preprocessing

In the previous section, we introduced the model to construct high resolution image

by using low resolution images captured by sensors. These sensors are fixed at

some specific positions, so the model assumes that the perturbation of sensors are

associated merely with translation. However, in video clips, the camera pans along

with some directions, so it contains some motion effects. We need to eliminate these

motion effects first, and then estimate sensor position and transitional displacement

errors. The method to remove the motion effects we will use is proposed in [15].

Here, we briefly introduce the algorithm.

Given a reference frame g(0), denote its nearby frames as {g(k)}
k≠0. Assume the

motion effects of frames {g(k)}
k≠0 can be measured by a coordinate transforms of

g(0), so they can be written as

g(k)(Rkxj − rk) ≈ g(0)(xj), (5.10)

where Rk is a 2 × 2 matrix, rk is a 2 × 1 vector, xj = [x, y]⊺ is the coordinate of the

pixel, and

(x′, y′) =Rkxj − rk =
⎡⎢⎢⎢⎢⎢⎣

c0 c1

c3 c4

⎤⎥⎥⎥⎥⎥⎦
xj +

⎡⎢⎢⎢⎢⎢⎣

c2

c5

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

c0 c1 c2

c3 c4 c5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

xj

1

⎤⎥⎥⎥⎥⎥⎦
,

for all xj ∈ S.

The purpose is to estimate Rk and rk for each k such that the approximation
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of (5.10) is as accurate as possible, so Rk and rk could be obtained by solving an

optimization problem that minimize the difference of g(k)(Rkxj − rk) and g(0)(xj)

for all pixels {xj ∣j ∈ I, I is the index set of pixels} in region S as follows.

minc(k)E(g
(k),g(0)) = ∑

x∈S
(g(k)(Rkxj − rk) − g(0)(xj))

2
=∑

j∈I
e2j , (5.11)

where c(k) = [c0, c1, c2, c3, c4, c5] are the entries of Rk and rk, S can be part of the

frame or the entire frame and the E can be seen as the residual.

Remark 5.3.2 If the components of [x′, y′]⊺ =Rkxj−rk are not integers, g(k)(x′, y′)

is evaluated by interpolation in 2 dimensions, i.e.

g(k)(x′, y′) = (1 − t)(1 − u)g1 + t(1 − u)g2 + tug3 + (1 − t)ug4,

where (x′, y′) is bounded by the nearest four pixels (x1, y1), (x2, y1), (x1, y2), and

(x2, y2) , i.e. x1 ≤ x′ ≤ x2 and y1 ≤ y′ ≤ y2. The values of gi, i = 1, . . . ,4 are defined

as

g1 = g(k)(x1, y1),

g2 = g(k)(x2, y1),

g3 = g(k)(x1, y2),

g4 = g(k)(x2, y2),

and the values of t and u are defined as

t = x′ − x1
x2 − x1

,

u = y′ − y1
y2 − y1

.

. ♢
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One can use various non-linear optimization approaches to solve (5.11) to esti-

mate Rk and rk. Updates ∆c to the solution c(k), where ∆c is computed by solving

(JTJ + βI)∆c = −JTe where the jth element of e is ej . The procedure is shown in

Algorithm 13.

Algorithm 13 Evaluating the coefficients of coordinate transforms [15]

Input: initial guesses of c and β, where c = [1,0,0,0,1,0] and β = 0.001 are

suggested in [15].

Output: optimal solution c

for xj ∈ S do

Compute Rjxj − rj and g(k)(Rjxj − rj)

Compute the error ej and ∂ej
∂ck

and use them to form J and e

end for

Compute ∆c by solving (JTJ + βI)∆c = −JTe and update c(k) = c +∆c(k)

Continue the above for-loop until the error E(g(k),g(0)) is below a threshold or a

fix number of iterations has been reached.

If the error E(g(k),g(0)) diverges through iterations, set β = 100β, as suggested

in [15], to recompute ∆c.

Then we need to determine if g(k)(Rkxj − rk) is close enough to g(0)(xj). We

set threshold τ = 25 and if the PSNR, defined in Definition 5.3.3, of g(k)(Rkxj − rk)

and g(0)(xj) is greater than τ , then we discard that frame.

Definition 5.3.3 [15] The peak signal-to-noise ration (PSNR) is defined as

PSNR of [F −F∗] = 10 log10
2552

1
3mn ∑

m
i=1∑n

j=1∑k=r,g,b (Fi,j,k −F∗i,j,k)
,

that compares the reconstructed image F∗ with the original image F.

By Algorithm 13, it applies a affine transform to translate {g(k)}
k≠0 to g(0).

Then, we will determine the sensor index (sxk, s
y
k) and displacement error (ϵxk, ϵ

y
k).

By (5.10),

g(0)(x) ≈ g(k) (Rk(x −R−1k rk)) (5.12)
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Algorithm 14 writes R−1k rk as

R−1k rk = u +
1

2

⎡⎢⎢⎢⎢⎢⎣

sx

sy

⎤⎥⎥⎥⎥⎥⎦
x + 1

2

⎡⎢⎢⎢⎢⎢⎣

ϵx

ϵy

⎤⎥⎥⎥⎥⎥⎦
, (5.13)

where sx, sy ∈ 0,1, ∣ϵx∣ < 1
2 , and ∣ϵy ∣ < 1

2 . We can then obtain the preprocessed low

resolution frames {ĝ(k)}
k≠0 whose the motion effects are removed.

Algorithm 14 Removing motion effects [15]

Input: Rk, rk, g(k), and g(0)

Output: ĝ(k), sx, sy ,ϵx, and ϵy

Compute [r′1, r′2]
⊺ =R−1r

Set u = [⌊r′1 + 1
4⌋, ⌊r

′
2 + 1

4⌋]
⊺, and let [d′1, d′2] = [r′1, r′2] − uT

Form [sx, sy] = [⌊2d′1 + 1
2⌋, ⌊2d

′
2 + 1

2⌋]

Form [ϵx, ϵy] = [⌊2d′1 − sx⌋, ⌊2d′2 − sy⌋]

Compute ĝ(k) = ĝ(k)(Rk(x − u))

5.4 Enhancing Resolution of Video Clips

5.4.1 Model Setup

Given video frames {g(k)}, by using Algorithm 13 and Algorithm 14, we obtain

the sensor index (sx, sy), displacement errors (ϵx, ϵy), and the preprocessed low

resolution frames {ĝ(k)}. Then, we could form the b(k) in the linear system (5.9) by

concatenating four column vectors ĝ(4k), ĝ(4k+1), ĝ(4k+2), and ĝ(4k+3) and along the

1st dimension, where k is from 0 to n, and n is the number of observed high resolution

frames, {b(k)}, we will use. The corresponding blurring operator matrix A(k) is

constructed using the information of the sensor index (sx, sy) and displacement

errors (ϵx, ϵy).

The optimization problem is as follows. For k = 1 ∶ n,

min
x1,x2,x3

1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + ∥X (k)∥∗, (5.14)
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where x1,x2, and x3 are the components of the vectorized desired high resolution

reference frame in red, green, and blue bands. When k = 0, X (0) = X is a third order

tensor which includes the lateral slices constructed by unknown x1,x2, and x3 we

need to solve. Figure 5.5 shows how to construct a lateral slice from a vectorized

frame and Figure 5.6 illustrate the construction of X (0).

Figure 5.5: The relationship between xi and Xi.

Figure 5.6: The third-order tensor X (0).

When k ≠ 0, X (k) is a third order tensor which includes the lateral slices con-

structed by unknown x1,x2, and x3 we need to solve and known X (0),⋯,X (k−1).

Figure 5.7 shows the construction of X (k). By this setting, X (k) can involve more

different frames by iterations.

Figure 5.7: The third order tensor X (k).

5.4.2 Algorithm

To solve the optimization problem, we use alternating direction method of multi-

pliers (ADMM) method. Here, we give a detailed analysis for the kth step, i.e.
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the optimization function (5.14), that is equivalent to solve the following objective

function.

minx1,x2,x3

1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + ∥Z(k)∥∗

s.t. X (k) = Z(k) ,

where Z is an auxiliary splitting parameterization that enabling the decoupling op-

timization problem.

The augmented Lagrangian for this problem is

minL(X (k),Y(k),Z(k)) = 1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + γ∥Z(k)∥∗

+ ⟨Y(k),X (k) −Z(k)⟩ + η

2
∥X (k) −Z(k)∥2F,

where Y stores dual variables, η
2∥X

(k) −Z(k)∥2F is the penalty termand η > 0 is the

penalty parameter.

The solution of L(X (k),Y(k),Z(k)) is obtained by the ADMM method in the

following steps,

X (k)m+1 = argminX (k)L(X
(k),Y(k)m ,Z(k)m ) (5.15)

Z(k)m+1 = argminZ(k)L(X
(k)
m+1,Y

(k)
m ,Z(k)) (5.16)

Y(k)m+1 = Y(k)m + η(X (k)m+1 −Z
(k)
m+1). (5.17)

First, we can simplify (5.15) due to ∥Z(k)∥∗ being a constant here.

X (k)m+1 = argminX (k)L(X
(k),Y(k)m ,Z(k)m )

= argminx1,x2,x3

1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + γ∥Z(k)m ∥∗

+ ⟨Y(k)m ,X (k) −Z(k)m ⟩ +
η

2
∥X (k) −Z(k)m ∥2F
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= argminx1,x2,x3

1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2

+ ⟨Y(k)m ,X (k) −Z(k)m ⟩ +
η

2
∥X (k) −Z(k)m ∥2F (5.18)

Moreover, from the setting of X (k), we know the following equivalence property,

min
1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + ∥Z(k)∥∗

s.t. X (k) = Z(k)

is equivalent to

min
1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + ∥Z(k)∥∗

s.t. X = Z ,

due to

X = X (k)(∶,1 ∶ 3, ∶),

Z = Z(k)(∶,1 ∶ 3, ∶),

and X (k) and Z(k) are constants except the first lateral slices.

Thus, we can simplify (5.18) further as

X (k)m+1 = argminx1,x2,x3

1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 + ⟨Ym,X −Zm⟩ +

η

2
∥X −Zm∥2F

= argminx1,x2,x3

1

2

3

∑
i=1
∥A(k)xi − b(k)i ∥

2
2 +

3

∑
i=1

yT
i (xi − zi) +

η

2

3

∑
i=1
∥xi − zi∥2F,

and then solve it by LSQR. When we have x1, x2, and x3, we reshape them to X1,

X2, and X3 and form the tensor X (k)m+1 as explained in Figure 5.7.
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To solve the Z(k)m+1 in equation (5.16), it is equivalent to solve

argminZ(k)L(X
(k+1)
m+1 ,Y(k)m ,Z(k))

= argminZ(k) γ∥Z
(k)∥∗ + ⟨Y(k)m ,X (k+1) −Z(k)⟩ + η

2
∥X (k+1) −Z(k)∥2F

= argminZ(k) γ∥Z
(k)∥∗ + ⟨Y(k)m ,X (k+1)⟩ − ⟨Y(k)m ,Z(k)⟩

+ η

2
(⟨X (k+1),X (k+1)⟩ − 2⟨X (k+1),Z(k)⟩ + ⟨Z(k),Z(k)⟩)

= argminZ(k) γ∥Z
(k)∥∗ +

η

2
∥Z(k) − (Y

(k)

η
+X (k+1)m )∥

2

F

(5.19)

According to Theorem 5.2.5, the solution of Z(k)m+1 is

Z(k)m+1 = U ∗ S γ
η
∗ V,

where U , S and V are from the t-SVD of (Y
(k)
m

η +X
(k)
m+1),

S γ
η
(∶, ∶, i) = diag({σij −

γ

η
}+) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, ifσij − γ
η ≤ 0

σij − γ
η ,ifσij −

γ
η > 0,

and the σij ’s are the singular values of the ith frontal slice of S.

5.5 Numerical Experiments

In this section, we implement the algorithm described in the previous section on two

video datasets. The first video, named Barbara, is made of images with resolution

240×240. We use the 1st video frame, as an example frame, to enhance its resolution,

see Figure 5.8. Its nearby images are shown in Figure 5.9, and the pre-processed

images of nearby images are shown in Figure 5.10. By comparing the left boundaries

of the frames in Figure 5.8 and Figure 5.10, we can see the motion effects has

been removed. The enhanced image by using our method in Figure 5.12. Bilinear

interpolation is a classical method to enhance resolution from low resolution frames.

Here, we show the enhanced frame using bilinear interpolation in Figure 5.11 for
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reference. One can see, in general, Figure 5.12 is more clear than Figure 5.11. In

particular, the Figure 5.12 preserves some detailed information. For example, the

tiny black texts on the blue book on the bookshelf. A difference image between

Figure 5.11 and Figure 5.12 is shown in Figure 5.13, and it could present the places

of preserved information to some extent.

Figure 5.8: The original 1st video frame.

The second video is panning a stack of books and it can be download at [2]. The

video is in CIF format with resolution 352 × 288. We use the 100th video frame, see

Figure 5.14, as an example frame to enhance its resolution. The nearby images we

will use are plotted in Figure 5.15, and the pre-processed images of nearby images are

shown in Figure 5.15. One can find that the pre-processed images are transformed

to have almost the same scene of 100th video frame.

The parameters obtained from Algorithm 14 are shown in Table 5.1. The first

column is frame index, the second column is the position index, and the third column

is the displacement error. The 97th frame and 103th frame are discarded by the

threshold τ defined in subsection 5.3.2.

The enhanced image by using bilinear interpolation is shown in Figure 5.17, and

the enhanced image by using our method in Figure 5.18. Comparing to Figure 5.17,

Figure 5.18 is more clear and the boundary of letters and numbers printed on the

books are easier to be recognized, for instance, the number of 98 on the yellow book.
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Figure 5.11: The enhanced 1st video frame by using bilinear interpolation.

Figure 5.12: The enhanced 1st video frame by using tensor algorithm.
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Figure 5.13: The difference image between Figure 5.11 and Figure 5.12 (Figure 5.12
- Figure 5.11).

Table 5.1: Parameters of Nearby Frames

Frame Index (sx, sy) (ϵx, ϵy)
99 (0,1) (-0.3669, 0.4279)
101 (0,1) (0.0072, -0.2228 )
98 (1,1) (0.2642, -0.4646)
102 (0,1) (-0.3914, 0.4008)
96 (1,1) (0.3149, 0.4955)
104 (0,1) ( -0.0490, 0.3675)
95 (1,1) ( 0.4284, 0.4830)
105 (0,1) (-0.1857, -0.3150)
94 (1,1) (0.3343, 0.0110 )
106 (0,0) (-0.1230, -0.1803)
93 (1,1) (0.4555, -0.1103)
107 (0,1) ( -0.0182, 0.1526)
92 (1,0) (0.4698, 0.0845)
108 (0,0) ( -0.3148, 0.4120)
91 (1,0) (0.3183, 0.0104)
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Figure 5.14: The original 100th video frame.

5.6 Summary

In this chapter, we developed a model to enhance the resolution of video clips using

t-product based operators and a tensor nuclear norm. It could involve the indepen-

dent information from nearly frames, and reduce the redundant shared information

at the same time. The model we set up is aimed to be general. It can be extended

to enhance the resolution of several frames simultaneously and include different de-

blurring and denoising techniques in the model.
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Figure 5.17: The enhanced 100th video frame by using bilinear interpolation.

Figure 5.18: The enhanced 100th video frame by using tensor algorithm.
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Chapter 6

Conclusions and Future Work

In this thesis, we presented four novel tensor-based methods in the field of random-

ized algorithms, dynamical system, image processing and video processing.

The randomized tensor singular value decomposition (rt-SVD) we designed com-

bines both of the advantages of the matrix version randomized algorithms and t-SVD.

It can produce a factorization with similar properties to the tensor SVD (t-SVD),

but is more computationally efficient on very large datasets. We applied it in the

application of facial recognition, and the numerical results show its superiority in

computation speed.

The tensor proper orthogonal decomposition (POD) method is designed for the

model reduction of dynamical systems. We proved by theory that the representation

accuracy of the t-SVD is superior to that of the matrix based SVD. These theoretical

results substantiated the conclusion that tensor POD generate a better basis for the

snapshots in accuracy. We also provided the numerical experiments on a 2D diffusion

system, and illustrated the tensor POD basis can reveal more information than the

POD basis from the snapshots of solutions. It implies the t-SVD may provide a

superior compressed representation of information for the time-related data, which

is promising in applications where limited number of snapshots are available to form

a reduced dynamic system..

The t-PQR method and the tensor-based video resolution enhancement model

were both articulated as optimization problems. They leverage tensor operators to

solve problems or build models. For the multi-frame blind deconvolution optimiza-

tion model, the t-PQR method can be used to select most representative frames in

a principled manner, as opposed to the heuristic nature of the methods employed

currently while avoiding information loss caused by the inappropriate choice of the
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control frame. The video resolution enhancement model we design, effectively com-

piles independent information from nearby frames while reducing the redundant

information simultaneously. The model is aimed to be general. It can be extended

to enhance the resolution of several frames simultaneously and include different de-

blurring and denoising techniques in the model.

Much work remains to be done in the future. For instance, we have covered

projection based randomized tensor approaches, and in particular Gaussian random

projections. It would be interesting to explore how other projectors (e.g. Subsampled

Randomized Hadamard Transform, Count Sketch) as well as non-projection based

tensor sketching propositions (e.g. Column Selection), perform. Moreover, the t-

SVD II method provides good performance to deal with the singular values decaying

at different rates as a deterministic method. It would be very interesting to apply

randomized algorithms on t-SVD II to possibly have higher recognition rate and less

computation cost.

Regarding the tensor POD section, we were mainly focusing on the linear dy-

namical systems. Extension of the approach to efficiently solve non-linear dynamical

systems would be of great importance. In addition, further attempts to reduce the

size of reduced model with tensor POD method are desired.

On the tensor blind deconvolution work, an L2 noise model was assumed, exten-

sion of the framework to robust (e.g. L1) noise models, or other exotic noise models

would further extend the robustness of the approach.

Per video enhancing, our current video resolution enhancement model does not

involve modern technologies in deblurring and denoising, and we are interested in

including them to further improve the quality of the video clips. Furthermore, it

may be possible to derive a more general model and perform enhancement for all of

the video frames simultaneously.
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