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Abstract

We investigate the combinatorial and geometric properties of automorphism groups

of universal right-angled Coxeter groups. McCullough-Miller space is virtually a ge-

ometric model for the outer automorphism group of a universal right-angled Coxeter

group, OutpWnq. As it is currently an open question as to whether or not OutpWnq

is CATp0q or not, it would be helpful to know whether McCullough-Miller space can

always be equipped with an OutpWnq-equivariant CATp0q metric. We show that

the answer is in the negative. This is particularly interesting as there are very few

non-trivial examples of proving that a space of independent interest is not CATp0q.

We also show that an otherwise promising finite index subgroup of OutpWnq is not

a right-angled Coxeter group.
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Chapter 1

Introduction

Geometric group theory studies the large scale geometry of groups, i.e., the geo-

metric properties of an infinite, finitely generated group that do not depend on (at

minimum) a choice of finite generating set. Mikhail Gromov [9] popularized the field

by studying hyperbolic and CATp0q groups, which generalize geometric properties

of the classical theory of the fundamental groups of negatively and non-positively

curved Riemanninan manifolds.

A CATp0q metric space is a geodesic metric space such that geodesic triangles

are no fatter than corresponding Euclidean triangles with the same side lengths.

This condition generalizes many results from the classical theory of non-positively

curved Riemannian manifolds. Groups that act properly discontinuously and co-

compactly by isometries on a CATp0q space are called CATp0q groups, and through

this action, inherit many of the metric properties of the space. CATp0q spaces are

contractible, have quadratic isoperimetric inequalities, admit a natural boundary at

infinity, have a well-defined notion of angle, and have orthogonal projections onto

convex subspaces. The standard reference on CATp0q groups and spaces is [3].

Definition. Let X be a geodesic metric space, and let a, b, c P X. Consider any

geodesic triangle ∆abc (that is, the union of any three geodesic segments: ra, bs,

rb, cs, and ra, cs), and consider the comparison triangle ∆abc in E2. See Figure 1.1.

If p and q are points on ra, bs Y rb, cs Y ra, cs, then there exists comparison points p

and q on the boundary of ∆abc such that distances between corresponding points

measured along the boundaries of the triangles are identical in both spaces.

X is then called a CAT(0) space if for all ∆abc and all such p, q, it is the case

that:

dXpp, qq ď dE2pp, qq.
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Figure 1.1: Comparison triangles for the CATp0q condition in a geodesic metric
space.

Definition. If a finitely generated group G acts on a CATp0q space X properly

discontinuously, co-compactly, and by isometries, then G is called a CAT(0) group.

CATp0q groups are a generalized notion of non-positive curvature for groups.

Unlike Gromov’s δ-hyperbolic groups, the property of being a CATp0q group is not

a quasi-isometric invariant [19]. Furthermore, even if a group has a natural geometric

model, the failure of that model to be CATp0q doesn’t preclude the possibility of

the group acting geometrically on a different metric space which is CATp0q. Thus,

it can be a more subtle question to determine when a group is CATp0q or not.

In the 1930s, H.S.M. Coxeter introduced abstract Coxeter groups as a general-

ization of groups generated by geometric reflections. Their subsequent study has

connected many areas of algebra, geometry, and combinatorics.

Definition. Given a finite simple graph Γ, the right-angled Coxeter group defined

by Γ is the group W “ WΓ generated by the vertices of Γ. The relations of WΓ

declare that the generators all have order 2, and adjacent vertices in Γ commute

with each other.

Right-angled Coxeter groups (commonly abbreviated RACGs) have a rich com-

binatorial and geometric history. They each act properly discontinuously and co-

compactly by isometries on a metric space, called a Davis complex [6]. Gromov [9]

showed this space to be CATp0q for RACGs, and Moussong showed [16] that all

Coxeter groups are in fact CATp0q groups.
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Γ WΓ

Z2 ‹ Z2 ‹ Z2 –W3

Z2 ˆ pZ2 ‹ Z2q

Z2 ˆ Z2 ˆ Z2

Figure 1.2: Some examples of defining graphs Γ and their RACGs WΓ.

The combinatorial nature of RACGs makes them useful in studying their CATp0q

geometry as they admit a biautomatic structure as well as a geodesic normal form.

Thus, they have effective solutions to the word and conjugacy problems. They are

also rigid, which means a given RACG cannot arise from two different defining

graphs [8, 7, 13, 20]. Thus, all of the combinatorial information of the group is

contained in the graph Γ.

Example. One particularly interesting class of examples is the universal right-

angled Coxeter groups, Wn, whose defining graph is the empty graph on n vertices.

For instance, the group W4 “
@

a1, a2, a3, a4 | a
2
1 “ a2

2 “ a2
3 “ a2

4 “ 1
D

is a right-

angled Coxeter group and so is CATp0q.

The automorphisms of right-angled Coxeter groups are generated by automor-

phisms that come in three varieties [4, 8, 12]:

1. Graph symmetries, which are automorphisms of WΓ induced by graph auto-

morphisms of Γ. For instance, if two vertices of Γ are adjacent to the same

set of vertices, then WΓ has an automorphism which exchanges those two

generators and leaves all other generators fixed.

2. Partial Conjugations, which conjugate a certain set of generators, D, by a par-

ticular generator ai while leaving all other generators fixed. The combinatorics

of Γ constrain which subsets D of the generators result in automorphisms of

WΓ for each ai.



5

3. Transvections, which send ai to aiaj for a particular pair of generators and

leave all other generators fixed.

Definition 1.1. Following [18], we denote by xi,D the partial conjugation of WΓ

defined by:

aj ÞÑ

$

’

’

&

’

’

%

aiajai if j P D

aj if j P rnszD

We call xi,D the partial conjugation with acting letter ai and domain D.

If Stpaiq is the star of the vertex ai in Γ, then xi,D is an automorphism of Wn if

and only if D is a union of connected components of ΓzStpaiq.

When D is a single connected component of ΓzStpaiq, we follow [5] and call xi,D

an elementary partial conjugation.

Any automorphism of a group must send involutions to involutions, and the

only involutions of WΓ are conjugates of commuting products of its generators [1].

Furthermore, no commuting products of generators are conjugate to one another

in WΓ [6], and so any automorphism of WΓ must permute the conjugacy classes of

commuting products of the generators. Thus, AutpWΓq acts on the set of conjugacy

classes of commuting products of the generators, whose kernel is denoted Aut0pWΓq.

Definition. Aut0pWΓq consists of all automorphisms of WΓ that map each vertex

to a conjugate of itself.

Aut0pWΓq C AutpWΓq is generated by the set of all partial conjugations or the

set of all elementary partial conjugations [17, 12].

The quotient of Aut0pWΓq by the inner automorphisms gives a subgroup Out0pWΓq

of the full outer automorphism group. This quotient splits, and Out0pWΓq is iso-

morphic to a subgroup of the full automorphism group. In fact, a full decomposition

of the automorphism group was given in [10]:

Theorem (Gutierrez-Piggott-Ruane).

AutpWΓq “
`

Inn pWΓq ¸Out0 pWΓq
˘

looooooooooooooomooooooooooooooon

Aut0pWΓq

¸Aut1 pWΓq
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Now InnpWΓq – WΓ{ZpWΓq, and the center of a RACG is the subgroup gen-

erated by the vertices of Γ connected to all other vertices [10]. WΓ then splits as

WΓ1 ˆZpWΓq, where Γ1 is the induced graph in Γ of the non-central vertices. Thus,

InnpWΓq –WΓ1 is a RACG itself.

Additionally, for a RACG WΓ, Aut1pWΓq is a subgroup of GLpn, 2q, and so is a

finite group [10]. So, both Aut1pWΓq and InnpWΓq have well-understood large scale

geometry. Therefore, studying the geometry of Aut0pWΓq, or even AutpWΓq, relies

on understanding the geometry of Out0pWΓq.

Since Aut0pWΓq and Out0pWΓq are generated by involutions (the partial conju-

gations), it is a natural question to ask:

Question. For a given RACG WΓ, are Aut0pWΓq or Out0pWΓq themselves RACGs

or even just CATp0q groups?

To answer this, we need not just a generating set but a full finite presentation

for Aut0pWΓq and Out0pWΓq and preferably a geometric model for each to act upon.

A full presentation for Aut0pWΓq is given in both [12, 17], and McCullough-Miller

space will give one such potential geometric model for the simpler case of OutpWnq

[18].

For Wn, there are no transvections and Aut1pWnq consists of only the graph sym-

metries and so is isomorphic to Σn, the symmetric group on n letters. Since Wn has

trivial center, InnpWnq –Wn. Thus in the case of Wn, we have the decomposition:

Corollary.

AutpWnq “
`

Wn ¸Out0 pWnq
˘

looooooooooomooooooooooon

Aut0pWnq

¸Σn

OutpWnq “ Out0 pWnq ¸ Σn

Remark. When we write xi,D P Out0pWnq, we can think of Out0pWnq as either

a subgroup of AutpWnq, in which case xi,D is a single automorphism, or else as a

subgroup of OutpWnq, in which case xi,D is an equivalence class of automorphisms
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that differ by inner automorphisms. In the former case, both the acting letter i and

the domain D are uniquely determined by the group element xi,D. In the latter

case, this is almost true. The acting letter i is determined, but there are exactly two

domains that result in the same outer automorphism class, namely xi,D “ xi,Dc ,

where Dc “ rnsztD Y tiuu. If we need to pick a unique representative for xi,D,

we follow [18] and choose the D that does not contain the smallest possible index

(which is usually 1, unless 1 is the acting letter, in which case it is 2).

What about the geometry of Out0pWnq? While AutpW3q is known to be CATp0q

[19] and Out0pW3q –W3, for n ě 4, it was open as to whether or not Aut0pWnq or

Out0pWnq is a right-angled Coxeter group or even a CATp0q group.

For each of the groups G “ Out0pWnq or OutpWnq, we might ask the following

questions:

1. Is G a right-angled Coxeter group?

2. Is G a CATp0q group?

3. Is there an accurate geometric model for G, i.e., a geodesic metric space X

such that IsompXq – G?

Adam Piggott [18] proved that McCullough-Miller space is an accurate combi-

natorial and topological model for OutpWnq, although we show in Chapter 5 that

it cannot be promoted to a true geometric model for either OutpWnq or Out0pWnq.

We also prove in Chapter 4 that Out0pWnq is not a right-angled Coxeter group.

In particular, we prove the following main theorems:

Theorem 4.2. Out0pWnq is not a right-angled Coxeter group.

Theorem 5.12. There does not exist an Out0pWnq-equivariant (or OutpWnq-equivariant)

piecewise Euclidean (or piecewise hyperbolic) CATp0q pCATp´1q q metric on Kn for

n ě 4.
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Chapter 2

Hypertrees

The following Chapter is inspired by the exposition in [18].

An accurate geometric model for Out0pWnq is given by McCullough-Miller space,

which was originally defined using a simplicial complex associated to labeled bipar-

tite trees [15]. However, an equivalent definition of the space is derived through a

complex of labeled hypertrees [14].

The connection between hypertrees and Out0pWnq is encapsulated in the follow-

ing main theorem of this section.

Theorem 2.9. Let xi1,D1 , xi2,D2 , . . . , xip,Dp be partial conjugations in Out0pWnq ď

Aut0pWnq. Then there exists a hypertree Θ P HT n that carries all of the

xi1,D1 , xi2,D2 , . . . , xip,Dp

if and only if they pairwise commute.

First, we must define the relevant concepts.

Definition 2.1. A hypergraph Γ is an ordered pair pVΓ, EΓq consisting of a set of

vertices VΓ and a set of hyperedges EΓ, where for each e P EΓ, e Ď VΓ and |e| ě 2.

Often we will label the vertices which leads to a labeled hypergraph, and we say

that Γ is a (labeled) hypergraph on VΓ. A hypergraph in which every edge contains

exactly two vertices is a (simple) graph.

We consider two equivalences on the class of hypergraphs. First, two hypergraphs

Γ and Γ1 are isomorphic as unlabeled hypergraphs if there exists a bijection f : VΓ Ñ

VΓ1 such that for each subset S Ď VΓ, fpSq P EΓ1 if and only if S P EΓ. f is then

called a hypergraph isomorphism. Second, two hypergraphs Γ and Γ1 are isomorphic

as labeled hypergraphs if VΓ “ VΓ1 and the identity map VΓ Ñ VΓ is a hypergraph

isomorphism. Unless stated otherwise, labeled hypergraphs will be considered up to
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Θ0

1 2

3 4

L2,1
3,4

1 2 3 4

S2

23 4

1

Ω3,4

31

2

4

Λ

21

3

4

5
6

Figure 2.1: Examples of hypergraphs: Θ0, S2, L2,1
3,4, and Ω3,4 are hypertrees. S2 and

L2,1
3,4 are trees. Λ is a hypergraph but not a hypertree, since both 4 Ñ 6 Ñ 5 and

4 Ñ 5 are simple walks in Λ.

labeled hypergraph isomorphism.

A simple walk from v to v1 in Γ is a sequence of alternating hypervertices and

hyperedges v “ v0
e1
Ñ v1

e2
Ñ ¨ ¨ ¨

ep
Ñ vp “ v1 where tvi, vi`1u Ď ei`1 for all 0 ď i ď p´1,

vi ‰ vj for all 0 ď i ‰ j ď p, and ei ‰ ej for all 1 ď i ‰ j ď p.

A hypertree is a hypergraph Γ where for all v, w P VΓ, there exists a unique

simple walk from v to w in Γ. A hypertree which is also a graph is a tree.

Remark ([18]). The set of hypertrees on a set S is in one-to-one correspondence

with the set of bipartite labeled trees whose labeled vertices are in bijection with S.

Definition 2.2. For each positive integer n, let rns :“ t1, 2, . . . , nu. Consider HT n,

defined to be the set of hypertrees on rns up to labeled hypergraph isomorphism.

Given hypertrees Θ,Θ1 P HT n, we say that Θ1 is obtained from Θ by a single

fold if there exists distinct hyperedges e, e1 P EΘ such that eX e1 ‰ ∅ and

EΘ1 “
`

EΘzte, e
1u
˘

Y teY e1u,

i.e., EΘ1 is the result of replacing e and e1 in EΘ by their union (which is still a

hyperedge). Since e and e1 are required to intersect, folding a hypertree results in

a hypertree. For each pair Θ,Λ P HT n, we write Θ ď Λ and say that Θ is a result

of folding Λ if Θ may be obtained from Λ by a (possibly empty) sequence of folds.
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Θ0

1 2

3 4

Ω3,4

31

2

4

Ω1,2

13

4

2

L2,1
3,4

1 2 3 4

L1,2
3,4

2 1 3 4

S3

32 4

1

Figure 2.2: The lines represent folding relations on hypertrees in HT 4. So Θ0 ď

Ω3,4 ď L2,1
3,4, S3, L1,2

3,4, while Θ0 ď Ω1,2 ď L1,2
3,4.

Then pHT n,ďq is a partially ordered set called the hypertree poset of rank n. We

will often abuse notation and refer to this partially ordered set by HT n.

Definition 2.3. The simplicial realization of pHT n,ďq is the hypertree complex of

rank n, HTn. This means that HTn is a simplicial complex whose vertices are in

bijective correspondence with the set of hypertrees inHT n and where Θ1,Θ2, . . . ,Θk

span a k-simplex in HTn if and only if (up to reordering) Θ1 ď Θ2 ď ¨ ¨ ¨ ď Θk in

HT n. Since maximal chains in HT n involve folding trees a single fold at a time, the

dimension of HTn is n´ 2.

Remark. For n “ 4, |HT 4 | “ 29 and the height of HT 4 is 3. Thus, HT4 is a

simplicial 2-complex.

Now Σn acts on HT n in an obvious way: Each permutation of rns just permutes

the labels of the hypertrees, which preserves the partial order, and so is an order

automorphism of HT n. This action by order automorphisms of pHT n,ďq naturally

extends to an action by simplicial automorphisms on HTn [18]. One might wonder:

Are there any other hidden automorphisms of either HT n or HTn? It turns out the

answer is “no”.
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Θ0

L2,1
3,4

Ω3,4

Ω2,1

L1,2
3,4

S3

Figure 2.3: A portion of the hypertree complex, HT4.

Theorem 2.4 (Piggott [18]). For all integers n ě 3,

AutpHTnq – AutpHT nq – Σn,

where AutpHTnq is the set of simplicial automorphisms of HTn, AutpHT nq is the

set of order isomorphisms of HT n, and Σn is the symmetric group on n letters.

Thus, HTn provides an accurate (topological) model and HT n provides an ac-

curate (combinatorial) model for Σn. If we endowed HTn with any Σn-equivariant

metric, for instance a piecewise Euclidean one with equilateral triangles, then Σn

would act by isometries and so HTn would be an accurate geometric model for Σn

as well.

Definition 2.5. A hypertree Θ P HT n has between one and n´ 1 hyperedges, and

the height of Θ is defined to be one less than its number of hyperedges. Notice that

hypertrees of height n´ 2 are actually trees.

We note a few special classes of hypertrees:

1. There is a unique hypertree of height zero, denoted Θ0
n.

2. Sn “ tSjn | j P rnsu, the set of star trees, where Sjn is the hypertree of height

n´ 2 (tree) whose hyperedges (edges) are exactly ti, ju for i ‰ j.

3. Ln, the set of line trees, which are the trees (hypertrees of height n ´ 2) in

which exactly two vertices are leaves.
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4. M1
n “ tΩ

i,j
n | i ‰ j P rnsu, the set of omega hypertrees, are those hypertrees of

height 1 that contain the hyperedges ti, ju and rnsztju.

Two elements in one of these classes are isomorphic as unlabeled hypertrees, and

so the action of Σn on HT n acts transitively on each of these classes. Additionally,

in W4, this list actually exhausts all possible hypertrees.

Question. What does HTn have to do with Out0pWnq?

It turns out that hypertrees encode commuting relations in Out0pWnq.

Definition 2.6. A hypertree Θ P HT n carries a partial conjugation xi,D if and

only if for all d P D, j P rnszD, the simple walk from d to j visits i.

A general automorphism α P Out0pWnq is carried by Θ if and only if there exists

partial conjugations xi1,D1 , xi2,D2 , . . . , xip,Dp P Out0pWnq such that α “ xi1,D1xi2,D2 ¨ ¨ ¨xip,Dp

and xij ,Dj is carried by Θ for each 1 ď j ď p.

For this definition, we may think of Out0pWnq as either a subgroup or a quotient

of Aut0pWnq. Inner automorphisms are trivially carried by all hypertrees, since the

only element of rnszD is i. Thus, the notion of a hypertree carrying an automorphism

is actually well-defined up to outer automorphism class. In particular, we can use

this fact to freely switch between representatives xi,D “ xi,Dc in Out0pWnq, where

Dc “ rnsztD Y tiuu. For notation, also let rD “ D Y tiu and ĂDc “ Dc Y tiu.

Remark 2.7. Hypertrees of height h carry 2h automorphisms in Out0pWnq, includ-

ing the identity automorphism, and if Θ ď Λ, then Λ carries all the automorphisms

that Θ does [18]. In fact, the 2h automorphisms carried by Θ all commute and

generate a Zh2 , which follows from Theorem 2.9 below.

Lemma 2.8 (Gutierrez-Piggott-Ruane). Let xi1,D1 and xi2,D2 be partial conjuga-

tions in Out0pWnq ď Aut0pWnq. Then they commute if and only if one of the

following four cases hold:

1. i1 “ i2

2. i1 ‰ i2, i1 P D2, i2 R D1, D1 Ď D2, i.e., i1 ‰ i2, ĂD1 X ĂDc
2 “ ∅.
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Θ0

1 2

3 4
tidu

Ω2,4

21

3

4 Z2 –
 

id, x2,t4u

(

L1,3
2,4

3 1 2 4

Z2
2 –

 

id, x1,t3u, x2,t4u, x1,t3ux2,t4u

(

S2

23 4

1

Z2
2 –

 

id, x2,t3u, x2,t4u, x2,t3ux2,t4u

(

Figure 2.4: A portion of HT 4 and the automorphisms in Out0pW4q carried by each
hypertree.

3. i1 ‰ i2, i1 R D2, i2 P D1, D2 Ď D1, i.e., i1 ‰ i2, ĂDc
1 X

ĂD2 “ ∅.

4. i1 ‰ i2, i1 R D2, i2 R D1, D1 XD2 “ ∅, i.e., i1 ‰ i2, ĂD1 X ĂD2 “ ∅.

Proof. This follows from Lemma 4.3 in [10].

Theorem 2.9. Let xi1,D1 , xi2,D2 , . . . , xip,Dp be partial conjugations in Out0pWnq ď

Aut0pWnq. Then there exists a hypertree Θ P HT n that carries all of the

xi1,D1 , xi2,D2 , . . . , xip,Dp

if and only if they pairwise commute.

Proof. One direction is Lemma 4.4 in [18], and is reproduced here for convenience:

Suppose that Θ carries each of the xij ,Dj for j P t1, . . . , pu. If ik ‰ il, then xik,Dk

and xil,Dl commute by Lemma 1.1 in [15]. Because the Z2 factors in Wn are abelian

(or just directly from the definition of partial conjugation), whenever ik “ il, then

xik,Dk and xil,Dl commute.

Conversely, suppose that xi1,D1 , xi2,D2 , . . . , xip,Dp pairwise commute.

We will build the hypertree Θ inductively.
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Let Θ1 be the hypertree on rns that has two hyperedges: one containing ĂD1 “

D1Yti1u and the other containing ĂDc
1 “ Dc

1Yti1u “ rnszD1. Any simple walk from

D1 to Dc
1 must pass through i, so Θ1 carries xi1,D1 . In fact, the only automorphisms

carried by Θ1 are the identity and xi1,D1 .

Now inductively assume that there is a hypertree Θk´1 on rns that carries

xi1,D1 , xi2,D2 , . . . , xik´1,Dk´1
for 1 ď k ´ 1 ď p ´ 1 and that xik,Dk commutes with

all automorphisms carried by Θk´1. Since Θk´1 is a hypertree, every hypervertex

is in at least one hyperedge, and any two hyperedges are either disjoint or else in-

tersect in exactly one hypervertex. Consider xik,Dk , and denote the hyperedges of

Θk´1 by Ek´1. Now define Ek to be the set of non-empty intersections between the

hyperedges of Θk´1 and either Dk or Dc
k, i.e.,

Ek :“
´!

E X ĂDk | E P Ek´1

)

Y

!

E X ĂDc
k | E P Ek´1

)¯

z∅,

and let Θk be the hypergraph defined on rns with Ek as its hyperedges. Suppose

that both E1 “ E X ĂDk and E2 “ E X ĂDc
k are non-empty. We claim that ik P E

and so E1 X E2 “ tiku:

Θk´1 is a hypertree that carries at least one non-identity automorphism, so it

has at least 2 hyperedges, and thus there is a neighboring hyperedge to E, E1, such

that E X E1 “ tmu for some m P rns. If m “ ik, then ik P E. Otherwise, suppose

that m ‰ ik. Since Θk´1 is a hypertree, Θk´1ztmu is disconnected. Let Dm be the

connected component of Θk´1ztmu that contains Eztmu and Dc
m be the union of

the rest of the components. Then Θk´1 must carry xm,Dm . Thus, by assumption,

xik,Dk commutes with xm,Dm . If ik R E, then ik R Dm since E Ď Dm. Also, the

non-empty element of E1 can’t be ik, so it must be an element of E X Dk, i.e.,

E XDk ‰ ∅. But the same is true for E2, E XDc
k ‰ ∅. By Lemma 2.8, this leaves

only the option that m P Dk and Dm Ď Dk, which contradicts that E X Dc
k ‰ ∅.

Thus, ik must be in E.

Suppose that v “ v0
e1
Ñ v1

e2
Ñ ¨ ¨ ¨

ep
Ñ vp “ v1 is the unique simple walk in

Θk´1 from v to v1. In Θk, each ej is partitioned into (at most) two hyperedges,
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e1
j “ ej X ĂDk and e2

j “ ej X ĂDc
k. If vj´1 and vj are both in the same hyperedge,

say e1
j , then just replace ej with e1

j in the walk above. Otherwise, without loss

of generality, vj´1 P e
1
j and vj P e

2
j . Since both e1

j and e2
j are non-empty, from

above we know that e1
j X e2

j “ tiku. Now replace vj´1
ej
Ñ vj in the walk with

vj´1

e1j
Ñ ik

e2j
Ñ vj . This can only happen once in the walk since otherwise ik would

be in two non-consecutive hyperedges, and a different, shorter simple walk would

have been possible in Θk´1. So this construction shows that Θk is a hypertree. It

carries xik,Dk since if v0 P Dk and vp P D
c
k, then there must be some point in the

walk where the hyperedges go from the e1
j to the e2

j , at which point either ik was

already in the walk or else it gets inserted in the construction.

It is immediate that Θk´1 ď Θk since folding E X ĂDk and E X ĂDc
k into E is

necessary only when both are non-empty. In particular, that means that Θk carries

all of the automorphisms that Θk´1 carried. Recall that xij ,Dj is carried by a

hypertree Λ if and only if Dj is a union of connected components (other than the

one containing the lowest index of rnsztiju) of Λztiju ([18]).

Let Dm1 , Dm2 , . . . , Dml be the connected components of Θkztiku other than the

one with minimal index. These exactly correspond with the analogous connected

components in Θk´1 except that one is added each time a hyperedge (which had

to contain ik) was split. Since the number of outer automorphisms carried by a

hypertree is 2h (where h = height = number of hyperedges minus one), this unfolding

increases the height by exactly the number of edges with e1
j X e

2
j “ tiku. All of the

xik,Dj carried by Θk´1 are products of the xik,Dms . So by a counting argument, all

of the automorphisms carried by Θk are given by products of the xij ,Dj (with ij ‰ ik

and 1 ď j ď k) and the xik,Dms (with 1 ď s ď l). It suffices to prove that all of

these commute with the remaining automorphisms on our list.

Now, let 1 ď j ď p, 1 ď s ď l and consider xij ,Dj and xik,Dms . By construction,

Dms Ď Dk or Dms Ď Dc
k. It suffices to show that xij ,Dj or xij ,Dcj commutes with

xik,Dms or xik,Dcms since Out0pWnq as a quotient is isomorphic to Out0pWnq as a

subgroup of Aut0pWnq. So without loss of generality, suppose that Dms Ď Dk,

and so ĆDms Ď
ĂDk. If ik “ ij , this is trivial, so suppose not. By the definition
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of xik,Dms , there is some component D of Θk´1ztiku such that Dms “ Dk X D,

and thus ĆDms “
ĂDk X rD. xik,D is then carried by Θk´1 and so commutes with

xij ,Dj . Now ĆDms X
ĂDj “

´

ĂDk X ĂDj

¯

X

´

rD X ĂDj

¯

, and if this is empty, we are

done. Similarly, ĆDms X
ĂDc
j “

´

ĂDk X ĂDc
j

¯

X

´

rD X ĂDc
j

¯

, and if this is empty, we are

done. Otherwise, all four intersections must be non-empty. But by Lemma 2.8,

this forces ĂDc
k X

ĂDj “ ∅ and ĂDc X ĂDj “ ∅, i.e., ik R Dj , ij P Dk, Dj Ď Dk and

ik R Dj , ij P D, Dj Ď D. Thus, ik R Dj , ij P Dms , Dj Ď Dms , and so we are done

again. Thus, every automorphism on our list commutes with every automorphism

carried by Θk. This completes the induction.

In fact, examining the proof of Theorem 2.9, we actually proved a stronger

corollary.

Corollary 2.10. Given a hypertree Θ P HT n and a partial conjugation xi,D, then

there exists an unfolding of Θ to a hypertree Λ ě Θ that carries xi,D if and only if

xi,D commutes with every automorphism carried by Θ.

Now that we know how the hypertree complex encodes the commuting infor-

mation of Out0pWnq, we can use this to build a complex that Out0pWnq can act

on.
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Chapter 3

McCullough-Miller Space

McCullough and Miller originally [15] defined their complex using labeled bipartite

trees, but McCammond and Meier [14] showed an equivalent way to define the space

usingHT n. Adam Piggott [18] then characterized the automorphism groups of these

spaces.

McCullough-Miller space is constructed by taking a copy of HT n for each ele-

ment of Out0pWnq and then gluing these copies together according to the hypertree

carrying relation.

Definition 3.1. First, define an equivalence relation „ on Out0pWnq ˆ HT n as

follows: pα,Θq „ pβ,Λq if and only if Θ “ Λ and α´1β is carried by Θ. Write rα,Θs

for the „-equivalence class of pα,Θq and let Kn be the set of „-equivalence classes.

Now, define a partial order ď on Kn: rα,Θs ď rβ,Λs if and only if Λ folds to Θ

and α´1β is carried by Λ, i.e., Θ ď Λ in HT n and rα,Λs “ rβ,Λs.

McCullough-Miller space Kn is the simplicial realization of pKn,ďq. We will

often abuse notation and have rα,Θs refer to both its equivalence class in Kn as well

as its corresponding vertex in Kn.

Remark 3.2. For a hypertree Θ of height h in HT n, Θ carries 2h automorphisms,

and so rα,Θs will be glued to 2h ´ 1 other copies of Θ. In particular,
“

α,Θ0
n

‰

is

a singleton, is not glued to any other element, and
“

α,Θ0
n

‰

ď rβ,Λs if and only if

rα,Λs “ rβ,Λs. These are called nuclear vertices of Kn. So Kn consists of partially

glued copies of HTn indexed by Out0pWnq.

Recall that Σn acts onHT n by permuting labels, and that OutpWnq – Out0pWnq¸

Σn. So any α P OutpWnq has a unique representative φσ, where φ P Out0pWnq,

σ P Σn, and α “ φσ in OutpWnq.
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Definition 3.3. OutpWnq acts on Out0pWnq ˆHT n by:

φσ ¨ pα,Θq “
`

φpσασ´1q, σΘ
˘

Since Out0pWnq Ĳ OutpWnq, pσασ
´1q P Out0pWnq, and so φσασ´1 P Out0pWnq.

The action of σ on Θ is by permuting the labels.

This action of OutpWnq preserves „ as well as the partial order ď. Thus, this

descends to an action of OutpWnq on Kn by order automorphisms as well as Kn by

simplicial automorphisms [18].

Example. Let p1 2q P Σ4 be the transposition that exchanges 1 and 2, and let

p1´ 2´ 3´ 4q be the line (hyper)tree that contains the edges t1, 2u, t2, 3u, t3, 4u.

`

x1,t3u, p1 2q
˘

¨
“

x2,t4u, p1´ 2´ 3´ 4q
‰

“
“

x1,t3u

`

p1 2qx2,t4up1 2q´1
˘

, p1 2q ¨ p1´ 2´ 3´ 4q
‰

“
“

x1,t3ux1,t4u, p2´ 1´ 3´ 4q
‰

“
“

x1,t3,4u, p2´ 1´ 3´ 4q
‰

As with HTn, this action induces an injective map from OutpWnq into both

AutpKn,ďq and AutpKnq, and one might wonder whether or not there any other

other hidden symmetries in these spaces. The answer is once again in the nega-

tive, and so these spaces serve as accurate combinatorial and topological models for

OutpWnq.

Theorem 3.4 (Piggott [18], Thm 1.1). For n ě 4,

AutpKn,ďq – AutpKnq – OutpWnq.

Remark 3.5. As in the case of HTn and Σn, this shows that Kn is an accurate com-

binatorial model and Kn is an accurate topological or simplicial model for OutpWnq.
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In fact, OutpWnq acts on Kn properly discontinuously and co-compactly by simpli-

cial automorphisms ([18]), but Kn has no a priori metric on it. To be an accurate

geometric model, we will need to endow Kn with a metric to turn it into a geodesic

metric space such that the action of OutpWnq is by isometries. Then Kn will be

quasi-isometric to OutpWnq (and also its finite index subgroup, Out0pWnq), and

they will have the same large-scale geometry. There are many ways to do this, such

as assigning the piecewise Euclidean metric with equilateral triangles to Kn, and we

shall return to this idea in Chapter 6.

However, this metric does not turn Kn into a CATp0q space. If we wish to use

this space to show that OutpWnq is a CATp0q group, then we will need to pick a

different metric. The metric will need to be CATp0q as well as equivariant with

respect to the OutpWnq or Out0pWnq action on Kn. As we show in Chapter 5, no

such (piecewise Mκ) metric turns out to exist.

Now, let rα,Θs P Kn and suppose that rβ,Θ1s is another point where Θ and Θ1

are isomorphic as unlabeled hypertrees. Since Θ1 differs from Θ only in its labeling,

there is a permutation σ P Σn such that σ¨Θ “ Θ1 [18]. Since Out0pWnq Ĳ OutpWnq,

σα´1σ´1 P Out0pWnq, and thus φ “ βσα´1σ´1 P Out0pWnq. Then we have that

φσ ¨ rα,Θs “
“

φpσασ´1q, σΘ
‰

“
“

βσα´1σ´1pσασ´1q,Θ1
‰

“
“

β,Θ1
‰

.

Thus, OutpWnq acts transitively on the subsets of Kn where the Out0pWnq la-

bels can be anything and the unlabeled hypertree isomorphism classes are preserved.

Since the action of Σn on HT n only permutes labels, it preserves unlabeled isomor-

phisms classes, and so the full action of OutpWnq on Kn must as well. Thus, the

quotient of Kn by OutpWnq consists of one simplex for each unlabeled isomorphism

class in HT n, glued along common edges.

Out0pWnq acts transitively on the labels of Kn but doesn’t change the hypertree.
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Thus, the quotient of Kn by Out0pWnq is the full hypertree complex HT n.

As noted in Definition 2.5, the unlabeled isomorphism classes in HT 4 are pre-

cisely
 

Θ0
4

(

,S4, L4, M1
4 [18]. When we are only concerned with n “ 4, we will

drop the subscripts and use a more descriptive notation.

Notation 3.6. We will denote the hypertrees in HT 4 as follows:

1. The hypertree with one hyperedge will be denoted Θ0.

2. The star tree in S4 with central vertex i (generally called Si4) will be denoted

Si.

3. The line tree in L4 with hyperedges tj, iu, ti, ku, tk, lu will be denoted Li,jk,l.

4. The hypertree in M1
4 which contains the hyperedges ti, ju, rnsztju will be

denoted Ωi,j .

Remark 3.7. The following describes the poset structure on the 29 elements of

HT 4 as well as the carrying relation. See also Figure 2.2. (Note that each listed

partial conjugation might need to replace its domain with its complement to pick

the representative not containing the minimal index.)

1. Θ0 is a ď-minimal element that only carries the identity.

2. Ωi,j carries only the identity and xi,tju. It folds into Θ0.

3. Si carries the Klein 4-group of
 

id, xi,tju, xi,tku, xi,tj,ku
(

, where j and k are

the non-minimal elements of r4sztiu (and l is the minimal one). It folds into

Ωi,j , Ωi,k, Ωi,l, and Θ0.

4. Li,jk,l carries the Klein 4-group of
 

id, xi,tju, xk,tlu, xi,tjuxk,tlu
(

. It folds to Ωi,j ,

Ωk,l, and Θ0.

Examining the maximal chains in HT 4, we see that every simplex in HT4

has a vertex Θ0, a vertex of the form Ωi,j , and a vertex of the form either Li,jk,l

or Si. See Figure 2.3. Thus, every simplex in K4 has a vertex rα,Θ0s, a ver-

tex of the form rα,Ωi,js, and a vertex of the form either rα,Li,jk,ls or rα, Sis for
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“

α,Θ0
‰

”

α,Li,jk,l

ı

“

α,Ωi,j
‰

“

α,Si
‰

αL βL

γL

αS βS

γS

Figure 3.1: The fundamental domain for the OutpW4q action on K4, with associated
angles after metrizing.

some α P Out0pW4q. Since the action of OutpW4q is transitive on these classes, a

fundamental domain for the OutpW4q action on K4 is given by the union of the

simplices spanned by
!

“

id,Θ0
‰

,
“

id,Ω1,3
‰

,
”

id, L1,3
2,4

ı)

(called an L-simplex) and
 “

id,Θ0
‰

,
“

id,Ω1,3
‰

,
“

id, S1
‰(

(called an S-simplex). See Figure 3.1.

This description of K4 and the action of OutpWnq will be useful in Chapter 5.
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Chapter 4

Out0
pWnq is not a Right-Angled

Coxeter Group

Another approach to determine whether or not Out0pWnq is CATp0q would be to

prove that it was a right-angled Coxeter group itself, since all RACGs are CATp0q.

A presentation for Aut0pWΓq (what Mühlherr calls SpepW q) is given in [17] as a

semidirect product InnpWΓq¸Out0pWΓq and so a finite presentation can be extracted

for Out0pWΓq (after a few elementary Tietze transformations).

Recall that a generating set for Out0pWnq is given by the set of partial conju-

gations P0 “ txi,Du, where i P rns, j is the minimal index in rnsztiu, and D is

a non-empty subset of rnszti, ju ([10]) . Also remember that rD “ D Y tiu and

ĂDc “ Dc Y tiu. There are also some obvious classes of relations in Out0pWnq:

1. (R1) xi,Dxi,D “ id

2. (R2) xi,Dxi,D1 “ xi,pDYD1qzpDXD1q

3. (R3) rxi,Di , xj,Dj s “ 1 if ĂDi X ĂDj “ ∅, ĂDc
i X

ĂDj “ ∅, or ĂDi X ĂDc
j “ ∅. (See

Lemma 2.8).

Some elementary Tietze transformations on the main Theorem in [17] give the

following.

Theorem 4.1 (Mühlherr [17]). A finite presentation for Out0pWnq is given by the

generators P0 and the set of relations given by the union of the classes (R1), (R2),

and (R3).

Now, we are in the situation where we have a finite presentation for a group

and wish to know whether or not it is a RACG. It is generated by involutions, its

abelianization is Znpn´2q
2 , and there are no obvious automorphisms of a finite order

greater than 2. So the obvious invariants do not rule out the possibility yet.
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In joint work with Andy Eisenberg, Kim Ruane, and Adam Piggott [5], we show

that given a finite presentation of a group, there is a procedure that can determine

whether or not that group is a right-angled Coxeter group and if so, construct the

defining graph Γ. It uses a new invariant of a group, its involution graph, which is

a graph that corresponds to all of the conjugacy classes of involutions of a group

and the commuting relations between them. While our procedure is not in general

a computable algorithm, in many particular instances of interest it is computable,

and can prove that either the group is not a RACG or else construct its defining

graph and often an explicit isomorphism.

Let us attempt to apply this theorem to our presentation for Out0pWnq and

prove the following theorem.

Theorem 4.2. Out0pWnq is not a right-angled Coxeter group.

To do this, we will construct a portion of the involution graph and show that

such a graph cannot appear as an induced subgraph of the involution graph of any

right-angled Coxeter group. All of the following definitions are from [5].

Definition 4.3. Let G be a group. The involution graph of G, denoted ∆G, is a

graph defined as follows. The vertices are the conjugacy classes of involutions in

G. Two vertices rxs and rys are connected by an edge if there exist representatives

gxg´1 and hyh´1 which commute with each other.

The involution graph of a right-angled Coxeter group is a special type of graph

called a clique graph.

Definition 4.4. Let Γ be a finite simple graph. A clique in Γ is a set of pairwise

adjacent vertices. The clique graph of Γ is the finite simple graph ΓK “ pVK , EKq

whose vertices correspond to nonempty cliques in Γ, and such that vertices are

adjacent if the corresponding union of cliques is also a clique in Γ.

Definition 4.5. Let Γ be a graph with maximal cliques Γi, and write ΓI for the

intersections of maximal cliques.
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1. We say that Γ satisfies the maximal clique condition if, for all I, there exists

an integer kI such that |ΓI | “ 2kI ´ 1.

2. If Γ satisfies the maximal clique condition, we will say that Γ satisfies the

inclusion-exclusion condition if, for each J ,

ÿ

IĽJ

p´1q|IzJ |`1kI ď kJ .

Theorem 4.6 (C.-Eisenberg-Piggott-Ruane [5]). The involution graph of any right-

angled Coxeter group is a clique graph, and any clique graph satisfies the maximal

clique condition as well as the inclusion-exclusion condition.

The following are some useful facts, which we will need later, abouts certain

right-angled Coxeter quotients of Out0pW4q.

Remark 4.7. Following the presentation of Out0pW3q from Theorem 4.1 (and using

generators yi,D instead of xi,D to distinguish the n “ 3 and n “ 4 cases), we find

that P0 “
 

y1,t3u, y2,t3u, y3,t2u

(

. For each of these automorphisms, rD and ĂDc contain

at least two indices each, but since there are only three indices total in r3s, these

extended domains can never be disjoint. Thus, there are no relations of the form

(R3). Also, there are no partial conjugations in P0 that have the same acting letter,

and so there are no relations of the form (R2) either. Thus, the full presentation for

Out0pW3q is given by:

Out0pW3q “

A

y1,t3u, y2,t3u, y3,t2u | y
2
1,t3u “ y2

2,t3u “ y2
3,t2u “ id

E

–W3.

Thus, Out0pW3q –W3 and so is a right-angled Coxeter group.

We also remark that nothing was special about naming the vertices of W3 as

t1, 2, 3u. The same analysis holds if they are named t1, 2, 4u, t1, 3, 4u, or t2, 3, 4u.

Definition 4.8. For each k P r4s, consider the copy of Out0pW3q that has vertex

names j P r4sztku. Let mk be the minimal index in r4sztku.
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Let ϕk : Out0pW4q ÞÑ Out0pW3q be defined as

ϕkpxi,Dq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

id if i “ k, D “ tku, or Dc “ tku

yi,Dztku if otherwise and mk R Dztku

yi,Dcztku if otherwise and mk P Dztku

By checking that each of the relation families (R1), (R2), and (R3) are preserved

under the operations of either removing k from D or Dc or by sending certain

generators to the identity, we can see that each map ϕk is a surjective homomorphism

onto Out0pW3q –W3.

Remark 4.9. From the definition of ϕk, we collect the following facts. The proofs

are elementary group theory exercises and left to the interested reader.

1. The kernel of ϕk, kerϕk, is the normal closure of the subgroup of Out0pW4q

generated by the partial conjugations of the form xk,D, xi,tku, and xi,r4sztku.

There are six such generators (and one of them is redundant). For instance,

kerϕ4 is the normal closure of the subgroup generated by

tx4,t2u, x4,t3u, x4,t2,3u, x1,t4u, x2,t4u, x3,t4uu.

2. The images of kerϕk under the abelianization map of Out0pW4q Ñ Z8
2, denoted

kerϕk, is isomorphic to Z5
2.

3. The intersection of two of these abelianization images of kernels, say, kerϕk

and kerϕj , is isomporhic to Z2
2. For instance, kerϕ2X kerϕ4 “ xx2,t4u, x4,t2uy.

The intersection of three of them (and thus of all four of them) is trivial. Thus,

the intersection of any three kerϕk is contained in the commutator subgroup

of Out0pW4q.

4. Each xi,D P Z8
2 is contained in exactly two kerϕk.

5. For i, j, k, and l distinct in r4s, xi,tju, xi,tj,ku R kerϕk.
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We will also need the following lemmas.

Lemma 4.10. Every involution in Out0pWnq is conjugate to a unique (up to re-

ordering) product of commuting partial conjugations from P0.

Proof. Suppose that α P Out0pWnq is an involution, and let G “ xαy – Z2. Recall

that McCullough-Miller space, Kn, is a contractable, finite dimensional simplicial

complex that admits an action by Out0pWnq by simplicial automorphisms [15]. This

restricts to an action of G on Kn by simplicial automorphisms.

Suppose that G acts freely on Kn. All of the claims below are from [11]. Then

in fact this is a covering space action, and so G – π1pKn {Gq. But since Kn is con-

tractible, Kn {G is a KpG, 1q space. Kn {G, like Kn, must also be a two dimensional

∆-complex, which thus has trivial ith simplicial homology for i ą 2. Since this is

a KpG, 1q space, that implies that G – Z2 has trivial homology for i ą 2. But

an actual KpZ2, 1q space is the infinite-dimensional real projective space, which has

non-trivial homology at arbitraily high orders. This is a contradiction, and so G

cannot act freely on Kn, and so α must fix a point in Kn.

Since α acts as a simplicial automorphism, if it fixes a point, it must fix a simplex,

i.e., either a vertex, an edge, or an entire face of Kn. But then G is a subgroup of

the stabilizer of that simplex, and so G is conjugate to the stabilizer of a simplex in

the fundamental domain for the action. However, the stabilizers of the fundamental

domain given by the copy of the hypertree complex with vertices rid,Θs are exactly

the automorphisms carried by the hypertree Θ. But the hypertrees at height h

carry exactly 2h automorphisms, and these are exactly given by the products of

commuting partial conjugations from P0 (Theorem 2.9 and [18]). Thus, α must be

conjugate to one of these products of commuting partial conjugations. Since they

each project to distinct elements in the abelianization, this product is unique, up to

reordering.

Lemma 4.11. In Out0pWnq, if α and β are distinct products of commuting partial

conjugations from P0, then there exist conjugates of α and β that commute if and
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only if α and β commute.

Proof. One direction is trivial. Conversely, assume that conjugates x “ γαγ´1 and

y “ δβδ´1 commute. Since these are involutions, that means that their product

z “ xy is an involution as well. By Lemma 4.10, z is conjugate to a product of

commuting partial conjugations from P0, namely the reduced word c1c2 ¨ ¨ ¨ ck. α

and β are also products of commuting generators from P0, namely, α “ a1a2 ¨ ¨ ¨ am

and β “ b1b2 ¨ ¨ ¨ bl with both words reduced.

Letting the generators that appear both among the ai and bj move to the end

of α and the beginning of β, we see that αβ “ a1a2 ¨ ¨ ¨ atbsbs`1 ¨ ¨ ¨ bl is a reduced

product of distinct generators, and so it maps into the abelianization with a 1 in

each component for a remaining ai or bj . But z “ c1c2 ¨ ¨ ¨ ck is a reduced word that

maps to the same element in the abelianization as αβ, and so the cp correspond

exactly to the remaining ai and bj . But the cp were all pairwise commuting, and so

the same is true for the remaining ai and bj . But then α and β commute.

Proof of Theorem 4.2. Suppose for the sake of contradiction that Out0pWnq were

a right-angled Coxeter group. Then by Theorem 4.6, its involution graph would

satisfy the inclusion-exclusion condition. Let us build part of the involution graph

of Out0pWnq.

First to see how this works, we’ll do it for n “ 4, and we’ll build the entire

involution graph.

Consider the product of commuting involutive generators in P0.

Lemma 2.8 tells us which pairs of involutions in this set commute with each

other. We collect this information in Figure 4.1. Lemma 4.11 tells us that the

missing edges are truly missing in the involution graph, i.e., Figure 4.1 is the full

involution graph of Out0pW4q. Lemma 4.10 tells us that the cliques in Figure 4.1

are maximal, since there are no other conjugacy classes of involutions in Out0pWnq

other than commuting products of partial conjugations.

Now, let Γ1 be the maximal clique in ∆Out0pW4q
containing tx1,t3u, x1,t4u, x1,t3,4uu,

and consider all of the maximal cliques that intersect Γ1 in at least one vertex. Γ2



28

rx1,t4us

rx1,t3us

rx1,t3,4us

rx3,t2us

rx1,t4ux3,t2us

rx2,t3us

rx1,t4ux2,t3us

rx4,t2,3us
rx2,t3ux4,t2,3us rx3,t2ux4,t2,3us

rx2,t4us

rx1,t3ux2,t4us

rx4,t2us

rx1,t3ux4,t2us

rx3,t2,4us

rx2,t4ux3,t2,4us

rx3,t2,4ux4,t2us

rx3,t4us

rx1,t3,4ux3,t4us

rx4,t3us

rx1,t3,4ux4,t3us rx2,t3,4us

rx2,t3,4ux3,t4us

rx2,t3,4ux4,t3us

Γ1

Γ2

Γ3

Γ4Γ5

Γ6

Γ7

Figure 4.1: The full involution graph of Out0pW4q, ∆Out0pW4q
. The triangles are the

maximal cliques, and the seven of them intersecting the clique Γ1 are named. Note
that the dotted lines are connected to the solid lines of the same color on the other
side of the graph.
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will be the maximal clique in ∆Out0pW4q
containing tx1,t3u, x4,t2u, x1,t3ux4,t2uu, Γ3 will

be the maximal clique in ∆Out0pW4q
containing tx1,t3u, x2,t4u, x1,t3ux2,t4uu, Γ4 will be

the maximal clique in ∆Out0pW4q
containing tx1,t4u, x3,t2u, x1,t4ux3,t2uu, Γ5 will be the

maximal clique in ∆Out0pW4q
containing tx1,t4u, x2,t3u, x1,t4ux2,t3uu, Γ6 will be the

maximal clique in ∆Out0pW4q
containing tx1,t3,4u, x4,t3u, x1,t3,4ux4,t3uu, and Γ7 will

be the maximal clique in ∆Out0pW4q
containing tx1,t3,4u, x3,t4u, x1,t3,4ux3,t4uu. The

intersections of these maximal cliques are denoted ΓI where I Ď t1, 2, 3, 4, 5, 6, 7u.

For instance, Γ1 X Γ2 “ Γ1,2. See Figure 4.1.

Since we are assuming that Out0pW4q is a RACG, Theorem 4.6 says that it

satisfies the maximal clique condition, so let kI be the integer such that |ΓI | “ 2kI´1.

From Figure 4.1, we see that k1 “ 2, k1,i “ 1 for i P t2, 3, 4, 5, 6, 7u, k1,i,i`1 “ 1 for

j P t2, 4, 6u, and kI “ 0 for all other intersections.

So we see that

ÿ

IĽt1u

p´1q|IzJ |`1kI “
7
ÿ

i“2

k1,i ´ k1,2,3 ´ k1,4,5 ´ k1,6,7 “ 6´ 3 “ 3 ě 2 “ k1,

contradicting the inclusion-exclusion condition of Theorem 4.6. Thus, Out0pW4q

must not have been a RACG after all.

Now, we’ll generalize the proof for Out0pWnq. Suppose that Out0pWnq is a right-

angled Coxeter group. By Lemmas 4.10 and 4.11, a full system of representatives

(see [5]) for the involution graph of Out0pWnq is given by commuting products

from P0. By Theorem 2.9 and Remark 2.7, intersections of maximal cliques in the

involution graph correspond to commuting products of partial conjugations, which

correspond to the automorphisms carried by a hypertree, except the identity. Since

HT n is a lattice ([14]), every intersection of maximal cliques can be associated to a

hypertree, and the intersection relationships are exaclty encoded in the partial order

in HT n. Thus, the maximal cliques are of size 2n´2 ´ 1 and correspond to labeled

trees, and the intersection of maximal cliques given by the automorphisms carried

by a hypertree Θ at height h is of size 2h ´ 1.

Consider the intersection of maximal cliques given by the automorphisms carried
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by the hypertree Θ with hyperedges tt1, 3u, t1, 4u, t1, 2, F uu, where F “ t5, 6, . . . nu.

Then Θ carries xx1,t3u, x1,t4uy – Z2
2. If this intersection of maximal cliques is ΓJ ,

then kJ “ 2. Each of the involution graph vertices x1,t3u, x1,t4u, x1,t3ux1,t4u generate

a further intersection of maximal cliques of size 2, since there is a partial conjugation

that commutes with each one of them but not the other two, e.g., x4,t2u commutes

with x1,t3u but not x1,t4u nor x1,t3ux1,t4u. Each of these intersection of maximal

cliques is associated to a hypertree, e.g., the hypertree Ω1,3
n is associated to its

carried automorphism x1,t3u.

However, we have an indexing problem, since the same set of vertices might

show up in different intersection of maximal cliques, and we need to count each one

of these (with parity) in the inclusion-exclusion formula. To do so, we note that

the maximal cliques containing a vertex correspond to the trees above the relevant

hypertree. So in the indexing, the I Ľ J correspond with all non-empty subsets

of the collection C of trees Λ above Ω1,3
n but not above Θ in HT n, with the odd

subsets of C contributing a `1 and the even subsets of C contributing a ´1 to the

inclusion-exclusion sum. As already noted, C is non-empty and finite for each of

the three vertices, and the set of odd subsets of a non-empty finite set is always

bijective with the set of even subsets. Thus, since we exclude the empty subset,

which is even, there is always a net of `1 in the sum for each vertex.

Since there are three such vertices, we have again the inclusion-exclusion formula

ÿ

IĽJ

p´1q|IzJ |`1kI “ 1` 1` 1 “ 3 ě 2 “ kJ ,

which contradicts Theorem 4.6. Thus, Out0pWnq cannot be a right-angled Coxeter

group after all.
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Chapter 5

Metrizing McCullough-Miller Space

In this chapter, we show that Kn admits no G-equivariant CATpκq Mκ-polyhedral

structure for G – OutpWnq or G – Out0pWnq, n ě 4, and κ ď 0.

This is analogous to a result in Bridson’s thesis [2] for OutpFnq (for n ě 3).

We shall need the following foundational theorem on curvature in polyhedral

complexes. Gromov stated it without proof in [9], and Bridson proved it in full

generality in [2].

Theorem 5.1 (Gromov’s Link Condition [9, 2, 3]). For κ ď 0, a 2-dimensional

Mκ-complex with finitely many isometry classes of polyhedrons is CATpκq if and

only if it is simply connected and the link of each vertex is globally CATp1q if and

only if it is simply connected and for each vertex v, every injective loop in the link

of v, Lkpvq, has length at least 2π.

For 2-dimensional complexes, this condition reduces to the following.

Theorem 5.2 (Gromov, Bridson [9, 2, 3]). If X is a 2-dimensional CATpκq simpli-

cial Mκ-complex for κ ď 0, and αi P p0, πs are the angles at each corner of a simplex

in the complex, then ΣTαi ď π, where T are the interior angles of a simplex, and

Σγαi ě 2π, where γ are the angles around an injective loop in a link of a vertex.

In particular, if the system of inequalities in the αi given by Theorem 5.2 is

unsatisfiable, then X admits no Mκ-polyhedral structure of non-positive curvature.

5.1 The Out(W4) Case

We would now like to use Theorem 5.2 to show that no appropriate CATpκq metric

can be assigned to K4. So suppose that K4 has been given an OutpW4q-equivariant

metric that makes K4 a CATpκq Mκ-simplicial complex.
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Definition 5.3. Since the metric is OutpW4q-equivariant, it suffices to assign an

angle to each corner of each simplex in the fundamental domain of the action in

order to specify an angle in every corner of every simplex of K4. So let the angles

be defined as follows:

1. In any L-simplex, let αL be the vertex angle of
“

α,Θ0
‰

, let βL be the vertex

angle of
“

α,Ωi,j
‰

, and let γL be the vertex angle of
”

α,Li,jk,l

ı

.

2. In any S-simplex, let αS be the vertex angle of
“

α,Θ0
‰

, let βS be the vertex

angle of
“

α,Ωi,j
‰

, and let γS be the vertex angle of
“

α, Si
‰

.

By Theorem 5.2, we know that the angles must satisfy the following inequalities:

αL ` βL ` γL ď π (5.1)

αS ` βS ` γS ď π (5.2)

To determine the other inequalities, we need to understand what the links of

the vertices in K4 look like. It suffices to consider the links of the vertices in a

fundamental domain.

Example 5.4. We start with the link of
“

id,Ω1,3
‰

.

In K4,
“

id,Ω1,3
‰

is adjacent to rα,Λs whenever either Ω1,3 ď Λ and id´1α “ α is

carried by Λ, or else Θ ď Ω1,3 and id´1α “ α is carried by Ω1,3. In the former case,

since rid,Λs “ rα,Λs for any α carried by Λ, it suffices to consider the representatives

rid,Λs. In the latter case, α might not be carried by Θ, so the different rα,Θs will

result in different vertices.

Since Ω1,3 carries the identity and x1,t3u,
“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

, and so
“

id,Ω1,3
‰

is adjacent to
“

id,Θ0
‰

and
“

x1,t3u,Θ
0
‰

, which are different vertices.

On the other hand, the hypertrees greater than Ω1,3 in HT 4 are the ones that it

can unfold into, namely, L1,3
2,4, L1,3

4,2, and S1. So
“

id,Ω1,3
‰

is also adjacent to
”

id, L1,3
2,4

ı

,
”

id, L1,3
4,2

ı

, and
“

id, S1
‰

. These 5 vertices are the only ones adjacent to Ω1,3 in K4.
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“

id,S1
‰

“
“

x1,t3u,S
1
‰

”

id,L1,3
2,4

ı

“

”

x1,t3u,L
1,2
3,4

ı”

id,L1,3
4,2

ı

“

”

x1,t3u,L
1,3
4,2

ı

“

id,Θ0
‰

“

x1,t3u,Θ
0
‰

Figure 5.1: The link of
“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

in K4. The blue stars are star trees,
the green diamonds are line trees, and the purple circles are nuclear vertices.

In the link, vertices are connected by an edge if they share a simplex in K4 and

the length of that edge is given by the angle with vertex
“

id,Ω1,3
‰

in that simplex.

So the line trees and star tree are never connected to each other, but the nuclear

vertex is connected to each whenever the label matches up. The link is shown in

Figure 5.1.

Reading off the injective loops that go around the large square as well as one of

the smaller squares, we use Theorem 5.2 to get the inequalities:

βL ` βL ` βL ` βL ě 2π (5.3)

i.e., βL ě
π

2

βL ` βL ` βS ` βS ě 2π (5.4)

i.e., βL ` βS ě π
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Example 5.5. Next, we examine the link of
”

id, L1,3
2,4

ı

.

Since L1,3
2,4 carries

 

id, x1,t3u, x2,t4u, x1,t3ux2,t4u

(

,
”

id, L1,3
2,4

ı

“

”

x1,t3u, L
1,3
2,4

ı

“
”

x2,t4u, L
1,3
2,4

ı

“

”

x1,t3ux2,t4u, L
1,3
2,4

ı

, and so
”

id, L1,3
2,4

ı

is adjacent to
“

id,Θ0
‰

,
“

x1,t3u,Θ
0
‰

,
“

x2,t4u,Θ
0
‰

, and
“

x1,t3ux2,t4u,Θ
0
‰

which are different vertices.
”

id, L1,3
2,4

ı

is also adjacent to the vertices with these same four labels and with

hypertree Ω1,3 or Ω2,4, but since each of these vertices has two representatives (e.g.,
“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

), this results in only four new adjacent vertices in K4.

In total, there are 8 adjacent vertices. In the L-simplices in K4, the nuclear

vertices are connected to both Ωi,j vertices, and each of those vertices carry one non-

identity automorphism, and so are connected to two nuclear vertices. Calculating

all of these adjacencies, we see that the link graph is a single cycle of length 8, as

shown in Figure 5.2.

Reading off the single injective loops in the cycle, we use Theorem 5.2 to get the

inequality:

8γL ě 2π (5.5)

i.e., γL ě
π

4

Example 5.6. Now, we construct the link of
“

id, S1
‰

.

Since S1 carries
 

id, x1,t3u, x1,t4u, x1,t3ux1,t4u

(

,
“

id, S1
‰

“
“

x1,t3u, S
1
‰

“
“

x1,t4u, S
1
‰

“

“

x1,t3ux1,t4u, S
1
‰

, and so
“

id, S1
‰

is adjacent to
“

id,Θ0
‰

,
“

x1,t3u,Θ
0
‰

,
“

x1,t4u,Θ
0
‰

, and
“

x1,t3ux1,t4u,Θ
0
‰

which are different vertices.
“

id, S1
‰

is also adjacent to the vertices with these same four labels and with

hypertree Ω1,2, Ω1,3, or Ω1,4, but since each of these vertices has two representatives

(e.g.,
“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

), this results in only six new adjacent vertices in K4.

In total, there are 10 adjacent vertices. In the S-simplices in K4, the nuclear

vertices are connected to all three Ωi,j vertices, and each of those vertices carry one

non-identity automorphism, and so are connected to two nuclear vertices. Calculat-

ing all of these adjacencies, we see that the link graph is three cycles of length 6,
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“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

“

id,Θ0
‰

“

id,Ω2,4
‰

“
“

x2,t4u,Ω
2,4
‰

“

x2,t4u,Θ
0
‰

“

x2,t4u,Ω
1,3
‰

“
“

x1,t3ux2,t4u,Ω
1,3
‰

“

x1,t3ux2,t4u,Θ
0
‰ “

x1,t3ux2,t4u,Ω
2,4
‰

“
“

x1,t3u,Ω
2,4
‰

“

x1,t3u,Θ
0
‰

Figure 5.2: The link of
”

id,L1,3
2,4

ı

“

”

x1,t3u,L
1,3
2,4

ı

“

”

x2,t4u,L
1,3
2,4

ı

“

”

x1,t3ux2,t4u,L
1,3
2,4

ı

in K4. The purple circles are nuclear vertices, and the red triangles are elements of
M1

4.

each glued to each other along paths of length 2, as shown in Figure 5.3.

Since all of the edges in the link have length γS , finding the smallest injective

loop will give us an inequality that will imply all of the others. So, reading off the

smallest injective loop in the link, which is a cycle of length 6, we use Theorem 5.2

to get the inequality:

6γS ě 2π (5.6)

i.e., γS ě
π

3

Example 5.7. Finally, we construct the link of
“

id,Θ0
‰

.

Since Θ0 only carries the identity but is in every simplex in HT4,
“

id,Θ0
‰

is

adjacent only to vertices with the same label but any hypertree, i.e., the vertices

trid,Λs | Λ P HT 4u in K4. So its link in K4 is identical to its link in HT4, which is

given in Figure 5 in [18] and reproduced below in Figure 5.4.

It has 4 star vertices, 12 omega vertices, and 12 line vertices, for a total of 28.

The star vertices are each connected to three omega vertices, the line vertices are
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“

id,Ω1,4
‰

“
“

x1,t4u,Ω
1,4
‰

“

id,Θ0
‰

“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

“

x1,t3u,Θ
0
‰

“

x1,t3u,Ω
1,2
‰

“
“

x1,t4u,Ω
1,2
‰

“

x1,t4u,Θ
0
‰ “

x1,t4u,Ω
1,3
‰

“
“

x1,t3,4u,Ω
1,3
‰

“

x1,t3,4u,Θ
0
‰

“

id,Ω1,2
‰

“
“

x1,t3,4u,Ω
1,2
‰

“

x1,t3u,Ω
1,4
‰

“
“

x1,t3,4u,Ω
1,4
‰

Figure 5.3: The link of
“

id, S1
‰

“
“

x1,t3u, S
1
‰

“
“

x1,t4u,S
1
‰

“
“

x1,t3,4u, S
1
‰

in K4. It
consists of three hexagons glued together. The purple circles are nuclear vertices,
and the red triangles are elements of M1

4.
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each connected to two omega vertices, and the omega vertices are each connected

to one star and two line vertices. The link is made up of glued octagons, and we

only need the smallest injective loops which wrap around each octagon. There are

two types, so we once again use Theorem 5.2 to get the inequalities:

8αL ě 2π (5.7)

i.e., αL ě
π

4

4αL ` 4αS ě 2π (5.8)

i.e., αL ` αS ě
π

2

This is enough information to show that no angle solutions are possible.

Theorem 5.8. There does not exist an OutpW4q-equivariant piecewise Euclidean

(or piecewise hyperbolic) CATp0q pCATp´1q q metric on K4.

Proof. If there did exist such a metric, then by Theorem 5.2, there would exist

angles αL, αS , βL, βS , γL, γS P p0, πs that satisfy Inequalities (5.1) - (5.8) above. Let

us show that these are inconsistent.

π ě αL ` βL ` γL ě
π

4
`
π

2
`
π

4
“ π by (5.1), (5.7), (5.3), (5.5)

ùñ αL ` βL ` γL “ π (5.9)

ùñ αL “ π ´ βL ´ γL ď π ´
π

2
´
π

4
“
π

4
ď αL by (5.3), (5.5), (5.7)

ùñ αL “
π

4
(5.10)
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Ω1,4

Ω1,3 Ω1,2

S1

Ω3,2

L1,4
3,2

Ω2,3

L1,4
2,3

Ω4,1

L2,3
4,1 L3,2

4,1

Ω2,4
L1,3

2,4

Ω4,2

L1,3
4,2

Ω3,1

L2,4
3,1

L3,1
4,2

Ω3,4
L1,2

3,4

Ω4,3

L1,2
4,3

Ω2,1

L2,1
3,4

L2,1
4,3

S2 S3

S4

Figure 5.4: The link of
“

id,Θ0
‰

in K4. All of the adjacent vertices are labeled with
id P Out0pW4q, so this is the same as the link of Θ0 in HT4. The vertices are
labeled with their corresponding hypertree. The blue stars are star trees, the green
diamonds are line trees, and the red triangles are hypertrees in M1

4. Dashed lines
connect to the other side of the link. (See Piggott [18] for another picture.)
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βL “ π ´ αL ´ γL “
3π

4
´ γL ď

3π

4
´
π

4
“
π

2
ď βL by (5.9), (5.10), (5.5), (5.3)

ùñ βL “
π

2
(5.11)

γL “ π ´ αL ´ βL “ π ´
π

4
´
π

2
“
π

4
by (5.9), (5.10), (5.11)

ùñ γL “
π

4
(5.12)

αS ě
π

2
´ αL “

π

2
´
π

4
“
π

4
by (5.8), (5.10)

ùñ αS ě
π

4
(5.13)

βS ě π ´ βL “ π ´
π

2
“
π

2
by (5.4), (5.11)

ùñ βS ě
π

2
(5.14)

γS ď π ´ αS ´ βS ď π ´
π

4
´
π

2
“
π

4
by (5.2), (5.13), (5.14)

ùñ γS ď
π

4
(5.15)
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6
π

3
ď γS ď

π

4
by (5.6), (5.15)

This is a contradiction, and so we are done.

5.2 The Out0
pW4q Case

Since being a CATpκq group is not a property that is in general preserved under

finite extension, it is possible that Out0pW4q is a CATpκq group, but OutpW4q is

not. So while K4 could not be made into a CATpκq Mκ-simplicial complex that was

equivariant with respect to the full OutpW4q action, it is a priori possible that we

could relax the requirement and obtain a metric only equivariant with respect to

the induced Out0pW4q action. It turns out that this is still impossible.

In Section 5.1, the quotient of K4 by OutpW4q consisted of two simplices, and

so only eight angle variables were necessary to consider. On the other hand, the

quotient of K4 by OutpW4q is a full copy of HT4, which consists of 24 L-simplices

and 12 S-simplices, for a total of 36 simplices and so 108 angles. Our number of

inequalities will rise as well. For instance, there will be 24 of type (5.1), 12 of

type (5.2), and so on. There will even be additional forms of inequalities such

as β
Li,jk,l

` β
Li,jk,l

` β
Li,jl,k

` β
Li,jl,k

ě 2π, since in the link of
“

id,Ωi,j
‰

, the vertex angles

connecting to the different line graphs could now be different. So our direct approach

in Theorem 5.8 is too cumbersome to try again identically. Instead, we’ll use the

additional Σ4 symmetry in the quotient HT4 to simplify the calculations and prove

the following theorem.

Theorem 5.9. There does not exist an Out0pW4q-equivariant piecewise Euclidean

(or piecewise hyperbolic) CATp0q pCATp´1q q metric on K4.

First, we need to find a convenient way to name these 108 variables and describe

their inequalities.

Definition 5.10. Suppose K4 has been given an Out0pW4q-equivariant metric to
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turn it into a Mκ-polyhedral complex. Since the metric is Out0pW4q-equivariant, it

suffices to assign an angle to each corner of each simplex in the fundamental domain

of the action in order to specify an angle in every corner of every simplex of K4. The

fundamental domain is isometric to the quotient HT4. So let the angles be defined

as follows:

1. In any L-simplex, there are vertices of the form
“

α,Θ0
‰

,
”

α,Li,jk,l

ı

, and either
“

α,Ωi,j
‰

or
“

α,Ωk,l
‰

. Since Li,jk,l is the same labeled hypertree as Lk,li,j , we usually

restrict the indexing to i ă k, i.e., the smaller of the two is in the superscript.

However, in the L-simplex, we also want to keep track of which Ω vertex is

present. So we will subscript the angles in this simplex with Li,jk,l where the

ti, ju superscript indicates which Ωi,j is present. So for instance, α
L1,3

2,4
will

be the vertex angle of
“

α,Θ0
‰

, β
L1,3

2,4
will be the vertex angle of

“

α,Ω1,3
‰

, and

γ
L1,3

2,4
will be the vertex angle of

”

α,L1,3
2,4

ı

. On the other hand, α
L2,4

1,3
will be the

vertex angle of
“

α,Θ0
‰

, β
L2,4

1,3
will be the vertex angle of

“

α,Ω2,4
‰

, and γ
L2,4

1,3

will be the vertex angle of
”

α,L2,4
1,3

ı

“

”

α,L1,3
2,4

ı

.

2. In any S-simplex, there are vertices of the form
“

α,Θ0
‰

,
“

α,Ωi,j
‰

, and
“

α, Si
‰

.

The indexing is much easier here, since adding the ti, ju superscript uniquely

specifies the star tree. So for instance, αS1,3 will be the vertex angle of
“

α,Θ0
‰

,

βS1,3 will be the vertex angle of
“

α,Ω1,3
‰

, and γS1,3 will be the vertex angle of
“

α, S1
‰

.

Notation. Throughout the rest of this section, we adopt the convention that when

indexes i, j, k, and l appear in subscripts and superscripts of the hypertree or angle

notation, it is assumed that the indexes are drawn from r4s, are distinct, and that

the listed inequalities hold for all such choices of the indices.

By Theorem 5.2, we get these inequalities for each simplex in HT4:

α
Li,jk,l

` β
Li,jk,l

` γ
Li,jk,l

ď π (5.16)
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“

id,S1
‰

“
“

x1,t3u,S
1
‰

”

id,L1,3
2,4

ı

“

”

x1,t3u,L
1,2
3,4

ı”

id,L1,3
4,2

ı

“

”

x1,t3u,L
1,3
4,2

ı

“

id,Θ0
‰

“

x1,t3u,Θ
0
‰

β
L1,3

4,2

β
L1,3

4,2
β

L1,3
2,4

β
L1,3

2,4

βS1

βS1

Figure 5.5: Another picture of the link of
“

id,Ω1,3
‰

in K4 with angle variables
eqivariant with respect to the action of Out0pW4q. For the OutpW4q case, the
picture is the same but we can ignore the indexing on the angles.

αSi,j ` βSi,j ` γSi,j ď π (5.17)

Now we need to re-examine injective loops in the links of vertices in K4 to

find appropriate inequalities. All of the links of vertices look identical to the links

is Section 5.1 except that the angle labels now have (possibly different) indices.

These indices are determined by the indices of the adjacent hypertrees but not the

Out0pW4q label. See Figure 5.5.

β
Li,jk,l

` β
Li,jk,l

` β
Li,jl,k

` β
Li,jl,k

ě 2π (5.18)

i.e., β
Li,jk,l

` β
Li,jl,k

ě π
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“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

“

id,Θ0
‰

“

id,Ω2,4
‰

“
“

x2,t4u,Ω
2,4
‰

“

x2,t4u,Θ
0
‰

“

x2,t4u,Ω
1,3
‰

“
“

x1,t3ux2,t4u,Ω
1,3
‰

“

x1,t3ux2,t4u,Θ
0
‰ “

x1,t3ux2,t4u,Ω
2,4
‰

“
“

x1,t3u,Ω
2,4
‰

“

x1,t3u,Θ
0
‰

γ
L1,3

2,4

γ
L2,4

1,3

γ
L1,3

2,4

γ
L2,4

1,3

γ
L1,3

2,4

γ
L2,4

1,3

γ
L1,3

2,4

γ
L2,4

1,3

Figure 5.6: Another picture of the link of
”

id,L1,3
2,4

ı

in K4 with angle variables

eqivariant with respect to the action of Out0pW4q. For the OutpW4q case, the
picture is the same but we can ignore the indexing on the angles.

β
Li,jk,l

` β
Li,jk,l

` βSi,j ` βSi,j ě 2π (5.19)

i.e., β
Li,jk,l

` βSi,j ě π

Notice that β
Li,jl,k

` βSi,j ě π, which is also an inequality derivable from that

link, is included in Inequality (5.19) since our notation implicitly quantifies over the

different possibilities for k and l.

We continue to examine injective loops in the links of vertices.

See Figure 5.6.

4γ
Li,jk,l

` 4γ
Lk,li,j

ě 2π (5.20)

i.e., γ
Li,jk,l

` γ
Lk,li,j

ě
π

2

See Figure 5.7.
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“

id,Ω1,4
‰

“
“

x1,t4u,Ω
1,4
‰

“

id,Θ0
‰

“

id,Ω1,3
‰

“
“

x1,t3u,Ω
1,3
‰

“

x1,t3u,Θ
0
‰

“

x1,t3u,Ω
1,2
‰

“
“

x1,t4u,Ω
1,2
‰

“

x1,t4u,Θ
0
‰ “

x1,t4u,Ω
1,3
‰

“
“

x1,t3,4u,Ω
1,3
‰

“

x1,t3,4u,Θ
0
‰

“

id,Ω1,2
‰

“
“

x1,t3,4u,Ω
1,2
‰

“

x1,t3u,Ω
1,4
‰

“
“

x1,t3,4u,Ω
1,4
‰

γS1,4

γS1,3

γS1,3

γS1,2

γS1,2 γS1,3

γS1,3

γS1,2

γS1,2

γS1,4

γS1,4 γS1,4

Figure 5.7: Another picture of the link of
“

id, S1
‰

in K4 with angle variables eqivari-
ant with respect to the action of Out0pW4q. For the OutpW4q case, the picture is
the same but we can ignore the indexing on the angles.
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2γSi,j ` 2γSi,k ` 2γSi,l ě 2π (5.21)

i.e., γSi,j ` γSi,k ` γSi,l ě π

See Figure 5.8.

α
Li,jk,l

` α
Lk,li,j

` α
Lk,lj,i

` α
Lj,ik,l

(5.22)

` α
Lj,il,k

` α
Ll,kj,i

` α
Ll,ki,j

` α
Li,jl,k

ě 2π

α
Li,jk,l

` α
Lk,li,j

` αSk,l ` αSk,j (5.23)

` α
Lk,ji,l

` α
Li,lk,j

` αSi,l ` αSi,j ě 2π

On its own, the system of inequalities (5.16) - (5.23) is too complicated to try

to solve by hand. However, we can exploit an additional unused symmetry, not of

the metric space K4, but of the inequalities themselves, namely that the system is

invariant under the action of Σ4 that permutes the labels in the subscripts. In fact,

we have been implicitly using this symmetry to avoid the explicit quantification over

i, j, k, l P r4s in the different classes of inequalities.

So now we explicitly note that Σ4 acts on the set of 108 angles given in Definition

5.10 as follows. For any σ P Σ4:

σ ¨ α
Li,jk,l

“ α
L
σpiq,σpjq
σpkq,σplq

σ ¨ β
Li,jk,l

“ β
L
σpiq,σpjq
σpkq,σplq

σ ¨ γ
Li,jk,l

“ γ
L
σpiq,σpjq
σpkq,σplq

σ ¨ αSi,j “ αSσpiq,σpjq σ ¨ βSi,j “ βSσpiq,σpjq σ ¨ γSi,j “ γSσpiq,σpjq

Definition 5.11. Given the angles defined in Definition 5.10, we define the following
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Ω1,4

Ω1,3 Ω1,2

S1

Ω3,2

L1,4
3,2

Ω2,3

L1,4
2,3

Ω4,1

L2,3
4,1 L3,2

4,1

Ω2,4
L1,3

2,4

Ω4,2

L1,3
4,2

Ω3,1

L2,4
3,1

L3,1
4,2

Ω3,4
L1,2

3,4

Ω4,3

L1,2
4,3

Ω2,1

L2,1
3,4

L2,1
4,3

S2 S3

S4

αS1

αS1

αS1

αS2

αS2

αS2

αS2

αS3

αS3

αS3

αS3

αS4 αS4

αS4

αS4

α
L1,4

2,3

α
L1,4

2,3

α
L1,4

3,2

α
L1,4

3,2

α
L2,3

4,1

α
L2,3

4,1

α
L3,2

4,1

α
L3,2

4,1

α
L1,3

2,4

α
L1,3

2,4

α
L1,3

4,2

α
L1,3

4,2
α
L3,1

4,2

α
L3,1

4,2

α
L2,4

3,1

α
L2,4

3,1

α
L1,2

3,4

α
L1,2

3,4

α
L1,2

4,3

α
L1,2

4,3

α
L2,1

4,3

α
L2,1

4,3

α
L2,1

3,4

α
L2,1

3,4

Figure 5.8: Another picture of the link of
“

id,Θ0
‰

in K4 with angle variables eqi-
variant with respect to the action of Out0pW4q. For the OutpW4q case, the picture
is the same but we can ignore the indexing on the angles.
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six average angles.

αL :“ 1
24

ÿ

σPΣ4

σ ¨ α
L1,2

3,4
αS :“ 1

24

ÿ

σPΣ4

σ ¨ αS1,2

βL :“ 1
24

ÿ

σPΣ4

σ ¨ β
L1,2

3,4
βS :“ 1

24

ÿ

σPΣ4

σ ¨ βS1,2

γL :“ 1
24

ÿ

σPΣ4

σ ¨ γ
L1,2

3,4
γS :“ 1

24

ÿ

σPΣ4

σ ¨ γS1,2

Note that some angles might appear more than once in these sums as Σ4 does

not act freely on the set of angles. Also, notice that since Theorem 5.2 implies that

each angle from Definition 5.10 is in p0, πs, then the new average angles in Definition

5.11 are also in p0, πs, since |Σ4| “ 24.

We can now prove Theorem 5.9:

Proof of Theorem 5.9. For each class of Inequalities (5.16) - (5.23), we take one

instance of the inequality for each of the 24 possible assignments of distinct i, j, k, l

from r4s “ t1, 2, 3, 4u, and then add the instances together.

For instance, consider a particular instance of Inequality (5.16):

α
L1,2

3,4
` β

L1,2
3,4
` γ

L1,2
3,4
ď π

Each of the other 23 instances of this inequality is obtained by permuting the labels,

i.e., by acting on each variable in the inequality by σ P Σ4. When we add the 24

instances of this inequality together, we get

ÿ

σPΣ4

σ ¨
´

α
L1,2

3,4
` β

L1,2
3,4
` γ

L1,2
3,4

¯

ď
ÿ

σPΣ4

π

ùñ
ÿ

σPΣ4

σ ¨ α
L1,2

3,4
`

ÿ

σPΣ4

σ ¨ β
L1,2

3,4
`

ÿ

σPΣ4

σ ¨ γ
L1,2

3,4
ď

ÿ

σPΣ4

π

ùñ 24αL ` 24βL ` 24γL ď 24π

ùñ αL ` βL ` γL ď π,

i.e., we recover Inequality (5.1).
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In fact, this is general. For each class of inequalities (5.16) - (5.23), adding

together all 24 instances of them indexed by the action of Σ4 and then divid-

ing by 24 implies the Inequalities (5.1) - (5.8) in the six average angles variables

tαL, βL, γL, αS , βS , γSu.

So assuming the existence of an Out0pW4q-equivariant metric on theMκ-simplicial

complex K4 (for κ ď 0) allowed us to derive six real numbers αL, βL, γL, αS , βS , γS P

p0, πs that simultaneously satisfy Inequalities (5.1) - (5.8). But the proof of Theorem

5.8 shows that no such six numbers exist. This completes the proof.

Note that these results do not immediately extend to Kn for n ě 5 since there

is no analogue of Theorem 5.2 for higher dimensional Mκ-polyhedral complexes. So

the analogous theorem to Theorem 5.8 for n ě 5 needs a different approach.

5.3 The Out0
pWnq and OutpWnq Case

To extend the results of this section to a general n ě 5, we first notice that Kn has

K4 as a full subcomplex which is left invariant by Out0pW4q sitting as a subgroup

in Out0pWnq. We then wish to prove the following theorem.

Theorem 5.12. There does not exist an Out0pWnq-equivariant (or OutpWnq-equivariant)

piecewise Euclidean (or piecewise hyperbolic) CATp0q pCATp´1q q metric on Kn for

n ě 4.

Note that Theorem 5.12 suffices for both the Out0pWnq as well as the OutpWnq

case, since if there were an OutpWnq-equivariant piecewise Euclidean (or piece-

wise hyperbolic) CATp0q pCATp´1q q metric on Kn, then it would be Out0pWnq-

equivariant as well.

By Theorem 4.1, there are higher dimensional analogues to Definition 4.8.

Definition 5.13. Consider the subset F “ t5, 6, . . . , nu Ă rns. Denote the partial

conjugation generators of Out0pWnq by the usual xi,D, and let the partial conjuga-

tion generators of Out0pW4q now be denoted as yi,D.
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Let ϕ5` : Out0pWnq Ñ Out0pW4q be defined as

ϕ5`pxi,Dq :“

$

’

’

&

’

’

%

id if i ě 5, D Ă F , or Dc Ă F

yi,DzF otherwise.

Remark 5.14. By checking that each of the relation families (R1), (R2), and (R3)

are preserved under the operations of either removing F from D or by sending

certain generators to the identity, we can see that each map ϕ5` is a surjective

homomorphism onto Out0pW4q.

Furthermore, consider the map: ψ5` : Out0pW4q Ñ Out0pWnq which is defined

as ψ5`pyi,Dq :“ xi,D. For each yi,D, xi,D “ ψ5`pyi,Dq trivially satifies relation

families (R1) and (R2), and since F Ă Dc for all images of the map, the disjointness

conditions in (R3) remain satisfied as well. (It’s critically important here that none

of the three disjointness conditions is ĂDc
i X

ĂDc
j “ ∅). Thus, ψ5` is a section of ϕ5` ,

and so Out0pWnq splits as a semidirect product. In particular, it contains Out0pW4q

as a subgroup, which by abuse of notation we also denote by Out0pW4q.

Now, we embed HT 4 into HT n.

Definition 5.15. Let Θ P HT 4 be a hypertree. Then to Θ, associate a hypertree

rΘ P HT n, which is defined to be the hypertree on rns with the same hyperedges as

Θ as well as the additional hyperedges tt1, fu | f P F u “ tt1, 5u, t1, 6u, . . . , t1, nuuu,

i.e., put each remaining vertex in a hyperedge with the vertex 1. Denote the subset

of HT n given by all such rΘ as ĆHT 4.

Remark 5.16. By adding or removing these hyperedges, we see that there is a

bijection between HT 4 and ĆHT 4, this bijection respects folding, and so it is order-

preserving from pHT 4,ďq to pHT n,ďq. Thus, it is also a simplicial automorphism

from HT4 into HTn.

In order to see how this subcomplex sits in Kn, we need to see which partial

conjugations are carried by each hypertree. For each rΘ P ĆHT 4, if yi,D is carried by

Θ, then xi,D is carried by rΘ, since for i ‰ 1, 1 P Dc, and for i “ 1, F is its own
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union of connected components of rΘztiu. This also shows that rΘ carries x1,F 1 for

any F 1 Ď F , which thus commutes with all the other carried partial conjugations

by Theorem 2.9. If Θ is at height h and so has 2h carried automorphisms, then rΘ,

with its n´ 4 additional hyperedges, is at height h` n´ 4, and so the 2h`n´4 au-

tomorphisms given by txi,Dx1,F 1 | xi,D P Out0pW4q carried by Θ, F 1 Ď F u exhaust

all the automorphisms carried by rΘ.

Next, we embed K4 into Kn. Consider the subgroup G “ xx1,tfu | f P F y Ă

Out0pWnq, which is a product of n ´ 4 commuting non-conjugate involutions, and

so is isomorphic to Zn´4
2 . G is thus a finite group acting on Kn by simplicial

automorphisms.

Theorem 5.17. The fixed point set of G in Kn is the set of simplices spanned by

rα, rΘs, where α P Out0pW4q and rΘ P ĆHT 4. This set is simplicially isomorphic with

K4.

Proof. If a simplicial automorphism fixes a simplex pointwise, then it fixes each

vertex in that simplex. Conversely, since Kn is a flag complex, any simplicial au-

tomorphism that fixes each of the vertices in a simplex will fix the simplex they

span.

So suppose that rα,Λs is a vertex of Kn that is fixed by every element of G, i.e.,

for each subset F 1 Ă F ,

x1,F 1 ¨ rα,Λs “ rx1,F 1α,Λs.

By the definition of Kn, this happens precisely when α´1x1,F 1α is carried by Λ.

But the automorphisms carried by a hypertree are products of pairwise commuting

partial conjugations from P0 (by Theorem 2.9), and these commuting products all

project injectively into the abelianization of Out0pWnq. Thus, α´1x1,F 1α must be

equal to x1,F 1 , i.e., α commutes with every x1,F 1 .

Additionally, this implies that Λ carries x1,tfu for each f P F . Thus, tfu must

be a connected component of Λzt1u, i.e., t1, fu is a hyperedge of Λ for each f P F .

Therefore, Λ “ rΘ for some Θ P ĆHT 4.
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Now, since α commutes with every x1,F 1 , we claim that α P Out0pW4q ˆG. We

will induct on the word length of α.

If α “ xi,D, then we know that 1 R D (by our naming convention for D). If

i P F , then xi,D will not commute with x1,tiu by Lemma 2.8, which contradicts our

assumption. So i R F . If i ‰ 1, then since 1 R D, i R F , for xi,D to commute

with x1,F , Lemma 2.8 forces D X F “ ∅, and so xi,D P Out0pW4q. If i “ 1, then

xi,D “ x1,Dx1,F 1 , where D1 X F “ ∅ and F 1 Ă F (either might be empty). In that

case, xi,D is again in Out0pW4q ˆG.

Now, inductively assume that α “ α1xi,D, where α1 “ βx1,F 2 P Out0pW4q ˆ G.

Then xi,D “ α´1βx1,F 2 also commutes with every x1,F 1 . But then by the base case,

xi,D P Out0pW4q ˆG, and thus so is α.

Thus, we now have that every vertex in the fixed point set of G is of the form

rβx1,F 1 , rΘs for β P Out0pW4q and F 1 Ă F . But since β´1βx1,F 1 “ x1,F 1 is carried

by each rΘ, we have that in Kn, rβx1,F 1 , rΘs “ rβ, rΘs, and so the fixed point set

of G is generated by rOut0pW4q,ĆHT 4s. Since the carrying partial order of ĆHT 4 is

isomorphic to HT 4, we have that the fixed point set of G is a simplicially isomorphic

copy of K4 which admits the same action of Out0pW4q. By abuse of notation, we

call this subcomplex K4.

Now we can prove the main theorem of the section.

Proof of Theorem 5.12. Suppose that for κ ď 0, there existed an Out0pWnq-equivariant

CATpκq Mκ-simplicial metric on Kn. Since there are only finitely many shapes, the

metric is complete (Theorem 7.50 in [3]). Then the action by Out0pWnq would

be by isometries, and so G is a finite group of isometries of the complete CATp0q

space Kn, and so the fixed point set of G, namely K4 Ă Kn by Theorem 5.17, is

a convex subspace of Kn (by Corollary 2.8 in [3]), and so would inherit a CATp0q

Mκ-simplicial metric. Since the metric on Kn is Out0pWnq-equivariant, and since

Out0pW4q leaves K4 invariant, the induced metric on K4 is Out0pW4q-equivariant as

well. But this contradicts Theorem 5.9.
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Chapter 6

Future Research

From Chapter 4, we know that Out0pWnq is not a right-angled Coxeter group, and

by Chapter 5, we know that its natural combinatorial model Kn cannot show it to

be CATp0q. So now we are left with two options.

1. If Out0pWnq is CATp0q, then we will need to investigate a different geometric

model space in order to prove it.

2. If Out0pWnq is not CATp0q, then perhaps that can be detected with known

invariants of CATp0q geometry.

Both options are interesting areas for future research. In particular, all CATp0q

groups and CATp0q metric spaces are known to satisfy an at most quadratic isoperi-

metric inequality [3]. Since isoperimetric inequality is a quasi-isometry invariant,

we can study it either directly in the group Out0pWnq or in the model Kn by en-

dowing it with any Out0pWnq-equivariant metric, such as by declaring every edge

to have length 1 and then taking the induced path metric. This turns all simplices

into equilateral Euclidean simplices. This metric won’t be CATp0q as Theorem 5.12

promises, but it is still quasi-isometric to Out0pWnq via the action, and so will have

the same optimal class of isoperimetric inequalities. Thus, we wish to in the future

compute the isoperimetric inequality of either Kn or else Out0pWnq directly by more

combinatorial and geometric methods. In particular, we will need to find a normal

form for Out0pWnq and calculate its algorithmic and combinatorial group theoretic

properties.
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