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Abstract

In this dissertation, we study a problems in smooth ergdtioiy. Given a measuge
on a manifoldM, we wish to characterize all smooth dynamics preseryingve consider
measuresu supported on the two-torus and study the groupugireserving diffeomor-
phisms. Fo invariant under an Anosov diffeomorphism, we find condigiéor which the

group ofu-preserving diffeomorphisms is ‘essentially’ cyclic.
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CHAPTER1

INTRODUCTION

1.1 SvVOOTH DYNAMICS

In general, a smooth dynamical system (of cl&syis defined by specifying the fol-

lowing data:
— amanifoldM equipped with &" differential structure;
— aLie group (or Lie monoid{s;
— agroup actionp: Gx M — M such that the magp is C".
Classically, the study of smooth dynamics has primarilygsz on one-parameter actions:

The discrete case:G is the groupz or the monoidN. Here the action is generated by a

singleC" mapf :=¢(,-): M — M.

The continuous case:G is the grouR or the monoidRsq. In the setting wheré& =R, the
group actiong is aflow—the solution to a system of ordinary differential equagion

specified by the vector fiel@ which in local coordinates is defined by

d¢(t,p)
dr =0

Xp

We note that we lose no generality in assuming the manifalis C*. Indeed anyCk
manifold, k = 1, is C* diffeomorphic toC>® manifold M’.> A C* group action onV then

induces ac* action onM’. Properties we wish to deduce about the actiomdrean be

1see for example [Hir94, Theorem 2.10].



1.2. INVARIANT STRUCTURES IN SMOOTH DYNAMICS

deduced from the action aw’. We thus assume throughout the thesis that the underlying
manifolds are allC*.

In this thesis, the primary interest is on actions of discte-parameter groups. How-
ever, many of the problems presented, particularly thos€hapter 4, are motivated by

results from the theory of actions of higher-rank abeliasugs.

1.2 INVARIANT STRUCTURES IN SMOOTH DYNAMICS

Given a group acting on a manifold, one typically finds many auxiliary structures on
M preserved by the action. The following question providearagigm through which one

might hope to classify and study specific dynamical systems.

Question 1.1. Given a group action on a space, identify, classify, andysthé properties

of various ‘structures’ left invariant by the action.

Examples of auxiliary structures that are of common intarethe dynamics literature

include:

topological structures: including fixed points, periodic orbits, closed subsetsttsms of

the tangent space, and foliations;

geometric structures: including (conformalilty classes of) Riemannian metricsnnec-

tions, and horizontal subbundles;
measure theoretic structures: includingo-algebras, Borel measures, and measure classes.

For many families of dynamical systems, there are well amed theories regarding
the existence and properties of various invariant strestuxVe present a few well-studied

examples from the literature.

One-parameter hyperbolic actions: For an Axiom A diffeomorphism, Anosov diffeo-
morphism, orexpanding mage.g. the mapc — 2x mod 1 on the circleR/Z), on
a compact manifold (see Chapter 2 for definitions) theret @asodic orbits of ar-
bitrarily large period and many distinct closed invarianbsets. Furthermore, there
exist an uncountable number of mutually singular ergodi@suees with positive

3



CHAPTER1. INTRODUCTION

dimension; in particular the equilibrium states for Holdentinuous functions, pre-

sented in Chapter 3, provide a such a family of measures.

Higher-rank abelian actions: In contrast to one-parameter hyperbolic actions is the the-
ory of higher-rank algebraic actions. Unlike the one-pagten setting, for higher-
rank hyperbolic actions there exist relatively few invatianeasures and closed in-
variant subsets. For instance, Rudolph showed that anyureeasR/Z, ergodic

under the abelian semi-group action generated by
x—2x modl and x—3x modl,

is either Lebesgue or has zero dimension [Rud90]. Similenatomies hold for
certain algebrai*-actions, k = 2, on T4 with Anosov elements [KS96] and for
diagonal actions on the homogeneous sgd&, R)/SL(k,Z), k = 3, [EKL06]. Ex-
tensions of these results to non-algebraic and nonunijohyperbolic settings have

also appeared in [KKO1], [KKO7], and [KRH10].

One-parameter unipotent actions: For a Lie groupG and a one-parameter unipotent sub-
group U c G, consider the action o/ on the homogeneous spaGel’ for some
lattice T < G. Such an action is called @nipotent flowg!, on G/T. In contrast to
one-parameter hyperbolic actions, Ratnensasure classification theoreguaran-
tees the existence of relatively few invariant probabititgasures for the flog?,. In
particular, the only ergodig!-invariant probability measures anemogeneoyshat
is, such measures are the image of a Haar measure on a cosgdoséd subgroup.

See for instance [Mor05] for a precise statement.

In contrast to Question 1.1, we also consider the followiatural, but far less studied,

problem:

Question 1.2. Given an auxiliary structure on a manifold, classify—or fimshtrivial con-

straints on—the set of dynamics preserving the structure.

In considering Question 1.2, we often impose additionalliegty or dynamical hy-
potheses to make the problem more tractable. For instare®) the auxiliary structure is a

4



1.3. QUTLINE OF THE MAIN RESULTS

measure, we might focus on classifying all measure-pragglynamics that act with pos-
itive entropy. For closed subsets, orbits, or splittingsheftangent bundle we might focus
only on dynamics that preserve those structures and acisaitte degree of hyperbolicity.
For invariant foliations we might impose some uniform orragyotic volume expansion of

the foliation under the dynamics.

We present some pertinent results from the literature ihdtess Question 1.2.

Codimension-1 basic setsIn [Ply71, Theorem 3] Plykin showed that any basicset M
for an Axiom A diffeomorphism withdim(A) = dim M -1 is either an attractor or a

repeller for the ambient dynamics.

Codimension-1 Anosov maps.The Franks-Newhouse Theorem [Fra70, New70] shows
that any codimension-1 Anosov diffeomorphism is topolaffjcconjugate to a hy-
perbolic toral automorphism. That is, preservation of aicmous invariant splitting
combined with the dynamical hypothesis of uniform expoiamgrowth forces the

system to be, up to a continuous change of variables, aligebra

Invariant connections. In [BL93] Benoist and Labourie show (using the primary résul
from [BFL92]) that any Anosov diffeomorphism with smootlalske and unstable
distributions that preserves a smooth connection is srhootimjugate to an infranil-

automorphism.

1.3 QUTLINE OF THE MAIN RESULTS

Consider a continuous self-map of a compact metric spacée— X. The existence of
at least ongf-invariant Borel probability measure is guaranteed by thdd<-Bogolyubov
theorem. WherX is a manifold andf is a diffeomorphism exhibiting some degree of hy-
perbolicity, there are typically many mutually singulavamiant probability measures. In
Chapter 4 we are interested in understanding to what degodessmeasurg uniquely de-
termines the ambient dynamics. In particular, we are istetkin questions of the following

nature.
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Problem 1.3. Given a Borel probability measune supported on a compact manifol,

describeDiff” (M; u), the group ofu-preservingC” diffeomorphisms.

For instance, ifx is preserved by some diffeomorphisfnfor g € Diff" (M; u) we are inter-
ested in understanding any nontrivial relationships betweandg.

In Chapter 4 we consider Problem 1.3 for measures o2foeus invariant under an
Anosov diffeomorphismf: T2 — T2. For an f-ergodic measur@ we defineLyapunov

exponel 1ts
A (’)— lim —lOg(IIDlx U”) A (’)— lim _1()g(”D’x u||)
I " n—too n I " n>*oo n

wherev € E; ~ {0} andu € E¥ ~{0}. In the case thaf is anisotropic(for y), in the sense
that A7 (f) # —A;,(f), we will show that the grouiff” (T?; u) is ‘essentially’ cyclic. We
note that the anisotropy condition implies thats singular with respect to volume. See

Theorems 4.1 and 4.2 for precise statements.



CHAPTER2

HYPERBOLIC DYNAMICS

The main mechanism for a smooth dynamical system to extulb#os’ is through the pres-
ence of some form of hyperbolicity. Intuitively, hyperhmity reflects an asymptotic expo-
nential separation of nearby orbits under the dynamics. Msegnt an introduction to the
theory of uniform hyperbolicity followed by a brief presatibn of the main results from

the theory of nonuniform hyperbolicity needed in Chapter 4.

2.1 THE THEORY OF UNIFORM HYPERBOLICITY

The most studied notion of hyperbolicity in the literatusethiat of uniform hyperbol-
icity. Let M be a smooth manifold. Fdv ¢ M, and aC” embeddingf: U — M, r = 1,
we say a subset c U is invariant if f(A) = A. A compact invariant seA is said to be
hyperbolicif, for any Riemannian metric o, there are constants andu < 1, and a
continuousD f-invariant splitting of the tangent bundig M = E*(x) ® E“(x) over A such

that for everyxe A andneN

IDfvl < Cu™lvll, forve E*(x), and
IDf "vll < Cu"llvl, forve E“(x).
The compactness of allows us to find a metric on, called theadapted metricsuch

that we may take” = 1 above. For the remainder, when working with a hyperbolionset

always fix the adapted metric and tenote the induced distance dh



CHAPTER2. HYPERBOLIC DYNAMICS

We set

neN

WhenA is hyperbolic, there exists an> 0 such that the sets

WS (x):={ye V™ 1d(f" ), f"(y) <e, forall n=0}, and

WH(x):={ye VT d(f "), f ") <e, for all n =0}

areC" embedded open disks, called tbeal stableandunstablemanifolds. Furthermore,

there arel <1 <« such that forx € A, y € W (x), z€ WH(x) andn = 0 we have

d(f" (), f"(y) <A'd(x,y), and (2.1)

a(f" 0, f (=) =x "d(x, 2). (2.2)

Note that (2.1) and (2.2) imply thgt(W:(f~1(x)) € WS(x) and WH(x) = fFIWH*(f L (x)).

For x € A we also have the sets

WSx) :={ye V™ 1d(f"x), f () — 0 as n— oo}, and

W x):={ye V' 1d(f"x),f ") —0as n— oo}

called theglobal stable and unstable manifolds. Bdth(x) andW*(x) areC" injectively
immersed submanifolds. Note that in the case fhatinvertible (i.e. whery' (U) = U), we
have

neN

neN

For proofs and more background in the theory of invariantifolds for uniformly hyper-

bolic dynamics, we refer to [HP70].

2.1.1 Anosov diffeomorphisms. The principal examples of uniformly hyperbolic dyn-
amics the are Anosov diffeomorphisms of compact manifdids.a compact manifold/,
we say that a diffeomorphisrfi: M — M is Anosovif the entire manifoldM is a hyper-
bolic set. The standard examples of Anosov diffeomorphigraperturbations of algebraic
actions on tori and infranil-manifolds. Furthermore, thrartks-Manning Theorem shows

8



2.1. THE THEORY OF UNIFORM HYPERBOLICITY

thatany Anosov diffeomorphism of an infranil-manifold is, up to antmuous change of

variables, algebraic. We make this precise via the follgwdefinition.

Definition 2.1. Given topological spaceX and Y and continuous mapg: X — X and
g: Y — Y, we sayf andg aretopologically conjugatef there exists a homeomorphism

h: X — Y such that the diagram

commutes.

The Franks-Manning Theorem thus states that an Anosowdifbephism of an infranil-
manifold is topologically conjugate to a hyperbolic infilaamutomorphism [Man74, Theo-
rem C ]. Among of the oldest problems in modern dynamics iscthigecture that every
Anosov diffeomorphism is conjugate to a hyperbolic inflamitomorphism; in particular

it is believed that only infranil-manifolds support Anosgi¥feomorphisms.

2.1.2 Dynamical foliations. By a d-dimensionalC”¥ foliation % of an n-dimensional
manifold M we mean a partition o#f by immersed submanifolds? (x)} <y, and a cover

of M by open set$Ug} such that

1. the connected component®f(x) n Ug containingx, which we denote by, (x), is

aC’ injectively immersed copy d&? for all § and everyx e Ug;

2. there are coordinate maps
¢p: R xR — Uy
such that

Pp®R? x {y}) = Fu, (Pp(0,y));

3. on the intersectio/g n U, the transition maps
5 odat b5 (Ua) R — R"

areck.
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Here # (x) is called theleaf throughx, Zy,(x) is called thelocal leaf throughx, and Uy

is called &foliation chart In general, given a foliatio# of M and an open sét ¢ M we
denote by#y thelocal foliation of V whose leaf througkx is the connected component of
& (x) NV containingx.

For f an Anosov diffeomorphism of a manifolel, the partitions ofM into stable and
unstable manifolds induce foliatior#* and &#“. When working with the foliationsz*
andZ*" and an open sét < M we write Wy (x) for the local leaf of% throughx. By a
C" bifoliation chart for the foliations%* and #* we mean an open sé c M and aC”
diffeomorphism

¢:R“xR°* -V
with
¢: {x} xR — W{j(([)(x,O)) and ¢: R x {y} — W‘L,‘(([)(O,y)).
Hereu = dim E* ands = dim E°.

In general, one must be careful with the regularity of theaf@ns &% and % *: typi-
cally each foliation is at best!*Holder gnd one can only obtai@!der pifoliation charts
for the foliations&* and #“. However for codimension-1 Anosov diffeomorphisms and,
in particular, for Anosov diffeomorphisms @, we obtain stronger transverse regularity
of the foliations. The following proposition is well knowma can be recovered, for ex-
ample, from [PR02] and [PSW97, Theorem 6.1]. We note thgp&sition 2.2 requires the
hypothesis that the dynamics is at leadt®. We recall that a diffeomorphism is said to
be of classCk*@ for k e N anda € (0,1) if its derivatives of order exist and are Holder

continuous with exponent at least

Proposition 2.2. Let f: M — M be aC'*® Anosov diffeomorphism such thditn £ =
dim M — 1. Then the unstable foliatiog * is C1*%1*+¢ for somea’.

In particular, if M = T2 then both the stable and unstable foliations arg®1+®’,

For U a foliation chart for#* and D, D’ < U with D and D’ transverse to each of the

local leaved.Zy (x)}veu, We define theunstable holonomy maps

I’ZD,D/Z GCD—>D/

10



2.1. THE THEORY OF UNIFORM HYPERBOLICITY

by

hD,DfI Z— D, ﬂgu(z)

when defined. As a consequence of Proposition 2.2 we obtairthib unstable holonomy
mapshp,y areC'*® for a C'** Anosov diffeomorphism off2; in particular they are bi-

Lipschitz. Stable holonomy mase defined similarly.

2.1.3 Local product structure. Given a compact hyperbolic satc M, it is always pos-
sible to findo < 6 <7 such that forx, y € A, d(x,y) <6 implies the intersectioV,’(x) N

Wy (y) is a singleton.

Definition 2.3. We say that a hyperbolic s&t haslocal product structuref, for n,6 as
above,d(x, y) <8 implies W' (x) n W, (y) < A. In particular, this implies that the map

¢: (WE@)NA) x (WS ()N A) — A

given by
¢: (y,2) — W,;(y) N Wn”(z)
is well defined and maps its domain homeomorphically ontiritge.
A compact hyperbolic seA is calledlocally maximalif there exists an open sét
containing A such thatA = N,z f"(V). For compact hyperbolic sets, local maximality
is equivalent to the existence of a local product structsee (for example [KH95]). In

particular, for an Anosov diffeomorphisms, the entire mf@dihas local product structure.

We make the following definitions.

Definition 2.4. Given a setA with local product structure anélandn as above, we say a

closed seRk c A is arectangleor alocal product chartif
1. sup{d(x,y) | x,ye R} <6,
2. Ris proper, that isR is equal to the closure of its interior (i),
3. x,y e Rimplies Wy'(x) n Wy (y) < R.

If Ris arectangle, we writéVy (x) := W (x) N R.

11



CHAPTER2. HYPERBOLIC DYNAMICS

2.1.4 Recurrence and spectral decompositionConsider a metric spacéand a contin-
uous mapf: X — X. A point x € X is said to benonwanderingor f if for any open setU
containingx, there is some > 0 such thatf"(U)nU # &, otherwise it is calledvandering
We denote byNW(f) the set of all nonwandering points fgr We call an invariant set

nonwanderingf A c NW(f).

An invariant setA is said to betopologically transitiveunder f if it contains a dense
orbit. Alternatively, an invariant subsatc X is topologically transitive if for all pairs of
nonempty open setd, V c A, there is some: such thatf*(U)nV # @. An invariant set
A is said to beaopologically mixingif, for all pairs of nonempty open set$, V c A, there
is someN such thatf*(U)nV # @ for all n = N. We note that it follows from [Man74,
Theorem C] that Anosov diffeomorphism on tori (or more gatigiinfranil-manifolds) are

topologically transitive.

We say a diffeomorphisnfi: M — M is anAxiom Adiffeomorphism if 1) the sefW(f)
is hyperbolic and 2per(f) is dense ilNW(f). Given an Axiom A diffeomorphism, (resp.
a locally maximal hyperbolic set = N,ez f"(V)) we have a partition, called thepectral
decompositionof the nonwandering pointSW(f) = Q; U--- U Qg (resp.NW(f[y) =Q; U
---UQy) where eachf); is a transitive hyperbolic set fof (see [KH95], [Sma67]). Given
the spectral decomposition, we call the partition elementabovebasic setsIn general,
by abasic setve mean a locally maximal, topologically transitive, cortipayperbolic set
Q c NW(f). In particular, for a transitive Anosov diffeomorphismetantire manifold is a

basic set.

2.2 FACTS FROM NONUNIFORM HYPERBOLICITY

Let f: M — M be ac'*% diffeomorphism of a Riemannian manifold. We recall that
there exists a Borel subsétc M, called the set afegular points Borel functionsr: A — N
and

Ap(x) <A1 (%) <+ <Ay (%)

12



2.2. FACTS FROM NONUNIFORM HYPERBOLICITY

on A, and a decomposition of the tangent space

M= @ E©

O<j=<r(x)

over A such that (among other properties) for A andv € EJ (x) ~ {0}
— i 1 n
Aj(x) = nl—lglooﬁl()g(”Dfx ).

For x € A, the numbersl;(x) are called theLyapunov exponentst x and the subspaces
EJ(x) are called thd_yapunov subspacest x. By Oseledec’s Theorem [Ose68] the set
of regular pointsA hasfull probability in the sense that for ang-invariant Borel proba-
bility measurey we have thaju(A) = 1. Furthermore, we have that the splittimfgM =

Do<j<rwo El(x) dependsu-measurably on the point

For everyx e A and0 < i < r(x) with 1;(x) < 0 there exists &' *¢ injectively immersed

(Z;p,-(x)sa,-(x) dimEf(x))—dimensionaI manifoldV’ (x) defined by
. 1
Wh(x):= {ye M |limsup ;log(d(f”(y),f”(x))) < Ai(x)}

with

W= @ Ew
/1]' (x)Z/l,- (x)

called thei'" stable Pesin manifold Similarly, unstable Pesin manifold&/’ (x) exist for

x € A with A;(x) > 0 defined by
—~— 1
Wh(x):= {ye M| limsup;log(d(f_”(y),f_”(x))) < —Ai(x)}.

See, for example, [Rue79, Section 6] for statements raggttie existence and properties
of local and global stable and unstable manifolds for ndioumily hyperbolic diffeomor-

phisms. A standard reference on the theory of nonunifornetygicity is [BPO7].

We note that thee! ** regularity of the dynamics is essential to obtain Pesin folts.
(See, for example, [Pug84].) In contrast, a diffeomorphisrembedding need only &'

to obtain stable and unstable manifolds at every point ofifoumly hyperbolic set.

In Chapter 4 we will primarily be interested in applying Resitheory to Anosov dif-
feomorphisms of the 2-torus. We observe that #6e= T? and f Anosov, at any regular
point x we haver(x) =1 and 19(x) < 0 < A;(x). In this context and writel® = A, and

13



CHAPTER2. HYPERBOLIC DYNAMICS

A% = A; for the stableandunstable Lyapunov exponent€learly in this context, for any

regular pointx € T2 we haveW! (x) ¢ W¥(x) andW°(x) ¢ W*(x).

14



CHAPTER 3

FACTS FROM MEASURE THEORY

In this chapter we present some of the basic results andraotishs from the theory of
measure-preserving transformations. All finite measuseag X, o7, u) will be assumed

to beLebesguer standardmeasure spaces, in that they are measurably isomorphie to th
union of the interval0, 1] equipped with the Lebesgue measure and a countable number of
atoms. We refer to [Roh52] for background and proofs of elgarg results. Our primary
interest will be in measures spaces obtained by equippingrédfaid with the completion

of a Borel probability measure; these measure spaces arkneain to be Lebesgue.

3.1 TRANSFORMATIONS OF MEASURE SPACES AND POINTWISE DIMENSION

OF MEASURES

We begin with some elementary definitions. Consider meaguispacesX, «/) and

(Y, 8)andamag: X — Y.
— We say the transformatiog is measurabléf g~!(B) € « for all B € %.

— For a measurg on (X, <) and measurablg: X — Y, we define thgpush-forward

measureg, i on (Y, %) by (g.1)(B) = u(g~ ' (B)).
— Forg: (X,¢f) — (X, /) measurable, we sgyis u-preservingif g.(u) = u.

— Forg: (X,¢f) — (X, ) ap-preserving transformation we sayis g-ergodic (or, less
commonly, thafg is u-ergodic) if the onlyg-invariant subsets aof are null or conull.

Formally, we mean that(AAg~1(A)) = 0 implies u(A) = 0 or u(X ~ A) = 0.
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— For measures, u defined on(X, «f) we sayv is absolutely continuous with respect

to uif u(A) =0 impliesv(A) =0 for all A€ o/. We denote this by « p.

— Forv « u we denote by;i—: (y) the uniqueu-integrable function with the property

that

dav
v(A) =fd—(y) au(y)
4 1%

called theRadon-Nikodym derivative

Pointwise dimension of measures

For a metric spac& and a locally finite Borel measuyewe define the extended-real-

valuedupperandlower pointwise dimensiofunctions

—_— . log (B (x,€))
d ,x) =1 _—
ik 9= ISP foge

log u(B(x,¢€))

dim(y, x) := liminf
dim(y, x) := limin loge

whereB(x, ) denotes the metric ball of radiesat x and thepointwise dimension

1 B(x,
dim(y, x) :=lim logp(B(x,6))
e—0 loge

wherever the limit is defined.
The above quantities are related to the more familiar Hadffsdisnension of a subset

of R” via the following well known proposition.

Proposition 3.1([You82, Proposition 2.1])Let u be a non-atomic, finite Borel measure on

R”™ and letu(A) > 0. Suppose there are uniform estimates

od

I B(x, | B(x,
6sliminf—0g(’u( (x, 7)) < limsup —og(,u( (x, 7)) <
- r—0 logr r—0 logr

for everyx e A. Thend < dimg(A) < & wheredimy denotes the Hausdorff dimension of

the setA.

Behavior of pointwise dimension under bi-Lipschitz maps

In Chapter 4 we will be interested in the behavior of the peis¢ dimension functions
under bi-Lipschitz (and hence Borel measurable) transitions. We state the following
definitions and Proposition which will be of use in Chapter 4.

16



3.1. TRANSFORMATIONS OF MEASURE SPACES AND POINTWISE DIMENSIONFOMEASURES

Let v and u two locally finite Borel measures dR” with v < p. Recall that for a

measurable set c R™, a pointy is said to be a-density point ofa if

r—0  w(B(y, 1)

For a locally finite Borel measure @®f, it is well known that any measurable set is equiva-
lent, modulo a null set, to its set of density poihtéve say that is aboundedv, u)-density

pointif there is somaV € (0,00) such thaty is both au- andv-density point of the set
{xEIRm | 1 <ﬂ(x) <N}
N du "~ )
We note that « u impliesv-a.e. point is a bounde@, p)-density point.

Proposition 3.2. Let u and v be locally finite Borel measures @f{". Letg: R — R™ be
a bi-Lipschitz homeomorphism wigh (1) < v. Then for each bounde@. (1), v)-density

point y we have

1. dim(v, y) = dim(g, g (»));

2. dim(v, y) = dim(y, g~ (1))
In particular, 1 and 2 hold for(g. p)-a.e. pointy.
ag

d*'u(y). For N € N, define

Proof. Write J(y) for the Radon-Nikodym derivativg(y) := "

Vn:={y|1/N < J(y) < N}. Consider the inequality

gHBY) _Jyn/@ dvE 1 vB(y,nnVN)

v(B(y,1) v(B(y,r) N v(B(yr)
Sincey is av-density point ofVy for someN, we have tha% is bounded away
from0 asr — 0.
Similarly,
8:1BYy, 1) _ N 8« 1(B(y, 1) <N §HBYy, ) N 8« 1(B(y, 1)
v(B(y, 1)) Jpn N dv(2) Jennv, J(2) dv(2) g« 1By, r)NVy)
which implies that% is bounded away fromo asr — 0 sincey is a(g. u)-density

point of V for someN.

1see for instance the Lebesgue-Besicovitch Differentiefibeorem [Tay06, Theorem 11B.4].
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CHAPTER3. FACTS FROM MEASURE THEORY

In particular the expression
(g*,u(B(y, r)) )
v(B(y, 1)

is bounded above and below for sufficiently smaH 0. Hence

log(w) 1 flog(g*“(B(y'”))

. v(B(y,r) .. v(B(y,1)
limsup ———— = =liminf ———= =0.
r—0 logr r—0 logr
We havé
S I B(y,
r—0 logr
g« 1(B(y,r)
. log(v(B(y,1) .. log( VB, )
=limsup ——— +lim ———
r—0 logr r—0 logr
| « (B (y,
= limsup 0g(g«u(B(y,1)))
r—0 logr
and similarly

log(g:«u(B(y,1)))
logr '

dim(v, y) = liminf
r—0
Sinceg is assumed bi-Lipschitz, for eaghwe may findL > 0 and0 < C < 1 such that

d(y,z) < Limplies
1
= dig 'y, g (2) < Cd(y,2).

Thus, for sufficiently small > 0 we have
B(g ', riC)c g™ (B(y,r) =B(g™ (1), Cr)

and thus

log(u(B(g‘l(y),é))) - log(g«1(B(y,1)) - log(u(B(g~(y),Cr))) (3.1)
logt +logC logr ~  log(Cr)-logC ’

Applying thelimsup andlim'glf operators to both sides of (3.1) yields the desired results.
r—0 r—
O

3.2 CONDITIONAL MEASURES AND ENTROPY

Given a Lebesgue spac¥, <f, 1), we consider a partitiod of X by measurable sets.
Givenx € X we write é(x) for the partition element af containingx. We denote the space

of equivalence classes 1¥/¢, and the projection map by: X — X/¢. Theo-algebrass/

2\We use here the identitymsup ay, +liminf by, <limsup (a, + by) < limsup ay, +limsup by,.
n—00 n—oo n—oo n—oo n—oo
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3.2. CONDITIONAL MEASURES AND ENTROPY

then induces a-algebras//¢é on X/¢. Defining the push-forward measupeu = po p™!
on X/¢ we have thatX/¢, o/ /&, p. ) is @a measure space.

Our primary interest will be in partitions that aneeasurablan the sense that the-
algebrass /& on X/¢ is countably generated. More preciselys measurable if there exists
a countable collectiofA;} of measurable subsets &f¢ such that for anyc € X there is a
sequencg. with {(x) = Nren A, Equivalently,¢ is a measurable partition of the Lebesgue
space(X, </, u) if and only if the induced measure spac&/é, of /¢, p. ) is Lebesgué.

Given a measurable partitioh of Lebesgue spaceX, u), it is well known (see, for
example, [Roh52]) that we may find a collection of measuféssxex, called afamily of

conditional probability measuresvith the following properties:
1. @ =@ for ye &(x);
2. i) =1 andi{ (X ~&x) =0 for p-a.e.x;
3. for measurable subsets= X, the functionx — ,ai(A) is measurable and
p(A) = f [i5(A) dp(x);
X

4. the family is unique in the sense that any other colleatibmeasures satisfying (1)-

(3) is equivalent td/i%} e x on a set of full measure.
We will need the following straightforward observation.

Claim 3.3. Let (X,u) be a Lebesgue spacé,a measurable partition, ang: X — X a
measure-preserving transformation. Write= g~1(¢) := {g71(C) | C € &}. Let{fi}}cx and
{ﬂj}ye x be families of conditional measures for the partitiopand &, respectively. Then
for u-a.e.x we have

M = ¢
8 (i) = fig -

Proof. If the claim fails, then there is a s&tc X of positive measure with the property that

for eachx € Y there is a sefl,, c ¢(x) with

G ) (A) # B (AL).

3Indeed if(X/& 91 1¢, ps«p) is Lebesgue (in particular, separable) tideis countably generated; the other
direction follows from [Roh67, Section 1.5].
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CHAPTER3. FACTS FROM MEASURE THEORY

(We note that even in the case tlgais not invertible, the notatio;ﬁ;’_l(x)) is unambiguous

since fory,y’ € g~ (x) we haven(y) = n(y) whencefi) = 'aZ") We suppose without loss
of generality thaig. (,ag_l(x))(Ax) > ﬂi(Ax) for all x in a subsety’ c Y of positive measure.

Letting A=U,ey' Ay we have
-1 ~
g+ (fiy)(A) = Fetx (A)

for all x, where the inequality is strict on a set of positive measWe then have
f g (EN(A) dp(x) > f o (A) dpa(x) = f f5(A) du(x) = p(A.
X X X

We use here thag.u = 1, and hence ¢(x) du(x) = [ P(g(x)) du(x) for any measurable
X X

function ¢. Finally, we have
f 2. (AN (A) du(x) = f A (g N (A) dulx) = u(g~tA)).
X X

Hence
1(g ™ (A) > u(A),

a contradiction. O

3.2.1 Dimension of measures along dynamical foliationsConsiderf: M — M aC'*¢
diffeomorphism and denote by its set of regular points (see Section 2.2). ebe an
f-ergodic Borel probability measure a1, and note that the functiongx), 1;(x), and
dim E*(x) are constant on a set of full measuxéc A. For x € A’ with A;(x) > 0 write
Wi(x) for the ith unstable Pesin Manifold. The collectioW? (x)} e (and the measure-
zero complement of its union) provides a partitioméf We say that a measurable partition
¢ is subordinate to W (x)} e if, for y-a.e.x, we havet(x) ¢ Wi(x) andé(x) contains an

open neighborhood of in Wi(x).

Let ¢ be a measurable partition subordinate{’ (x)} e, and consider a family of

conditional measurei’} xen. We define measurable functions
—7 . 1 ~E B ’
5" (x) := Tm(g, x) = limsup 28Fx BLo€)
e—0 loge

log i (B(x,¢€))

8 (x):= di_m(,ai,x) = lirellionf loge
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3.2. CONDITIONAL MEASURES AND ENTROPY

Up to null sets, the functions (x) andé’ (x) are independent of the choice of the partition

¢. Furthermore, by [LY85] we have equality
3 0=0'w

for u-almost everyy; we defined’ (x) to be this common value.

Since the functions’ (x) are f-invariant, the assumption thatis f-ergodic guarantees
they are constant-almost everywhere. In the case thats non-ergodic, the functions
Ei(x) and§'(x) are defined by first passing to an ergodic decomposition (3¢85] for
details). For a regular point, andi with 1;(x) <0, we may similarly construct pointwise
dimension functionﬁi(x) andéd’(x). Finally, we define thetableandunstablepointwise

dimensions of the measugeto be the measurable functions
8%(x) = max{6’ (x) | A;(x) > 0}, and

6%(x) = max{6’(x) | A;(x) <O}

A measureu is said to benyperbolicfor a C'** diffeomorphismf: M — M (or simply
hyperbolicwhen the ambient dynamics is understood);ifx) # 0 for u-a.e. regular point

x and eveny < i < r(x). From [BPS99], for any ergodic hyperbolic measuree have
dim(u) = dim(u) = 6% +6°, (3.2)

wheredim(u), dim(u), 5%, andd* are the constant values attained.e. by the correspond-

ing functions; in particulap is exact dimensionah the sense that
dim(u, x) = dim(u, x) = dim(u, x)

on a set of full measure.

For x € A we write u(x) :=inf{l0 < i < r(x) | 1;(x) > 0}. We say a measurg is a
u-measurdf, for any {W*™ (x)}-subordinate measurable partitisrand a corresponding
family of conditional probability measureﬁi}, for y-a.e.x the measureifc is absolutely
continuous with respect to the induced Riemannian volum@8t¥ (x). This is equivalent

to the property that fop-a.e.x

)= Y dimE/(x)

j=u(x)
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CHAPTER3. FACTS FROM MEASURE THEORY

which, in turn, is equivalent to the property that foia.e.x andj = u(x)

. 8l (x)-67t(x) j<r(x),
dimE’ (x) =
87 (x) j=r).

We similarly defines-measures

3.2.2 Entropy, dimension, and Lyapunov exponents.Consider a measure-preserving
transformationT of a Lebesgue probability spa¢®, u). Let ¢ be a countable partition of

X by measurable sets. We define the entropy of the partjtiorbe the quantity

H(&):= ) u(C)logu(C) =flog(u(€(x))) du(x)
X

Ceé
(where by convention we defirtdog0 = 0.) Forn e N defineT~"(¢) to be the partition of
X consisting of the sets

{TT"(C) | Ceg).
For two partitionsy and¢ we define thgoint partition
Evn:={CnD|Ce¢ Den}
and dynamical partitions
n-1 i
Eni= \/ T (.
j=0
is d

Theentropy ofT relative to the partitior¢ is defined to be

ML= lim %H(é_n).

Note that the assumption thais finite or countable is needed in the above definition. How-
ever, alternative definitions of the quantityT, £)—coinciding with the above for countable
partitions—allow one to extend the definition BT, ¢) to uncountable partitions. See for

example [Roh67].
We define thaneasure-theoretic entromf the transformatiorf” to be
hu(T) =sup{h(T,¢) | H(S) < oo}.

The measure theoretic entropy should be interpreted as anmwahmeasurement of the
complexity of a measure-preserving transformation, arscbiegome a fundamental tool in
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3.3. EQUILIBRIUM STATES

the modern theory of dynamical systems. The measure theerdtopy satisfies a number

of natural properties:
1. hy(T™) =nhy(T) forneN;
2. if T is invertible then,(T) = hy(T™Y);
3. for two T-invariant measureg andA andp € [0,1] we have

ph,u(T) +(1- P)h/l(T) = hpp+(1—p)/l(T)-

In general, entropy is difficult to calculate. However, ie tbontext of ac'*¢ diffeo-
morphism preserving a Borel probability measure, the ¥alg formula, first presented in
[LY85], provides an elegant relationship between entrgmmntwise dimension, and Lya-
punov exponents. Fora regular point of a'*¢ diffeomorphismf we define functions

8" (x) j=r),

Yj(x):=
81 (x) =6/t (x) u(x)<j<r(x).

Note in the case that is ergodic, the functiong;(-) are a.e. constant. We then have the

equality

Y YA p ergodic,
A]'>0

hu(f) = (3.3)

Y yj®A;(x) du(x)  pnon-ergodic
A;(x)>0

known as thd_edrappier—Young entropy formulé3.3) was first established in [You82] for
C? surface diffeomorphisms and in [LY85] for gene€zi diffeomorphisms. For a statement
and proof in theC!*¢ setting, we refer to [BP07]. By passing fo! a similar result to (3.3)
holds for negative Lyapunov exponents anddefined with respect to the corresponding

stable pointwise dimension functions.

3.3 EQUILIBRIUM STATES

Considerf: X — X a homeomorphism of a compact metric space @éndk — R a
continuous function. We say afrinvariant measurg is anequilibrium state forgp with
respect tof—or simply anequilibrium state forp when the dynamics is understood—gif
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CHAPTER3. FACTS FROM MEASURE THEORY

maximizes the expression
hu(f)+f<p du
over all f-invariant probability measures.

We are primarily interested in the setting wheteM — M is aC! transitive Anosov
diffeomorphism andb: M — R is Holder continuous or, more generally, wh&ns a basic
set for aC! embeddingf and¢: A — Ris Holder continuous. Itis well known in this setting
that there exists a unique equilibrium state, often denpjgdor ¢. Furthermore, the equi-
librium statesu, are f-ergodic, have full support inh, and have positive entropy,, (/).

In addition, the equilibrium states exhibitlacal product structure—defined formally in
Theorem 3.4(e)—which mimics the topological local prodsicticture ofA. We refer to
[Bow08] for more background in the theory of equilibriumtsgand [KH95, Chapter 20]
for a more contemporary treatment.

For a transitive Anosov diffeomorphisify there are three equilibrium states which are

in some sense ‘natural’:

— theforwards SRBneasure, the equilibrium state for
" :=—log(det(Df Igu));
— thebackwards SRBeasure, the equilibrium state for
¢*:=—log(det(Df ' I));
— themeasure of maximal entropthe equilibrium state fop = 0.

We note that wherf is algebraic, these three measures coincide. Whinvolume pre-

serving, the forwards and backwards SRB measures cointididae non-algebraic, non-
volume preserving setting, each of the three measures g@ameralizes certain properties
of volume: the measure of maximal entropy is the unique nreashose canonical disin-
tegrations are invariant under holonomies (see Remarke3dwv), and the forwards (resp.

backwards) SRB measure is the unigugresp.s-) measure forf.

3.3.1 Product structure of equilibrium states. We now investigate in more detail the
structure of equilibrium states for hyperbolic dynamicset A be a basic set for &'
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3.3. EQUILIBRIUM STATES

embeddingf on a manifold (see Section 2.1.4 for definitions). tetA — R be a Holder
continuous function and lgt be the associated equilibrium state. Recall that we may find

0 < § < e with the property that for alk, y € A with d(x, y) < 26 the intersection
W (x) N W, (y)
is contained iM\ and contains exactly one point. For sugly we write
[x, y]:= WX (x) n WS ().
Givenx® € Wi (x) andx" € W' (x) we define the local holonomies

3 s Wy'(x) — W' (x%) hy s 2= [x°, 2] (3.4)

R s Wi (x) — W7 (x") hY 2 [z, x"]. (3.5)

The following theorem describes a local product structareefjuilibrium states.

Theorem 3.4. Let u be the equilibrium state associated to a Holder continuomstion g

on A. Then for eacly € {s, u} there exists a family of measurgsg]} e such that

a) the family{uf}.enm is uniquely determined up to scalar multiplication, aufi= uj

for xe Wo(y);

b) ug is supported onW?(x) n A and pg(U) > 0 for any nonempty open subset of

W (x) N A,

c) f«ug and ,u?(x) are equivalent with

d(fepy) (F(y)) = e?W=P@ (3.6)
du?(x)
d(fep3) (F(y)) = e~ PTOI+P@) (3.7)
du}(x)

for y e W9 (x), whereP(-) denotes the pressure functional

P(¢) :sup{hv+f<p dv}

where the supremum is taken over Alinvariant measures;
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CHAPTER3. FACTS FROM MEASURE THEORY

d) for x®e Wj(x) andx" € Wy'(x) we have

#%(-) = 0 (3.8)
#}Lm(-) = ¢¥i0 (3.9)
where
wy(y):= 2¢(fi(y)) — (1 ([x, ¥D) (3.10)
w3 ()= fwf"'(y)) —p(f 7 (Ly, x1)); (3.11)

i=0
e) after suitable normalization, on local chart®/;(x) n A, Wg'(x) n A] we have the

product decomposition

du() = e’x0rex0=00 gyt 18y ((x, 1, [ x]); (3.12)

f) for any measurable partitiog subordinate ta ", up to a normalizing constant, the

family
{ewi_d)’uz}
provides a family of conditional probability measurﬂ‘f;

Remark 3.5. For u the measure of maximal entropy—the equilibrium statediar 0—
Theorem 3.4(d) guarantees that the families of meadguf8ge, and{us}ex are invariant
under their respective holonomy maps. This well known prigpeniquely characterizes

the measure of maximal entropy.

Complete proofs of Theorem 3.4 are missing from the liteeathut partial proofs and

sketches exist. We contribute another sketch here.

Proof sketch of Theorem 3.4.he existence of a family of measures satisfying (3.6) and
(3.8) is derived in [Lep00, Theorem 2.3] and [PWO01, PropmsiR.3]. We note however
that both references contain minor errors in the statermrsrdroofs of the results corre-
sponding to (3.6) and (3.8).

(3.7) and (3.9) then follow from (3.6) in (3.8) by replacirfgwith f~!. In particular,
we check
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dfous Ay dps
dff‘x FO) = () = —tx
Hee Afs B afe B

where the last equality follows from (3.6) appliedfo!.

(f_l (f(y))) = e_¢(f(y))+P((/))

Using (3.10) and the fact that, [x/, y1] = [x, y] we derive the identity
exp(w¥(y)) = exp(w¥([x', y])) exp(w¥ ().
By (3.8) we have
dp¥ ([x',-]) = exp(w¥ (X', D) dpi ([x,-])
and we verify that the expression on the right hand side aRj3s well defined; that is, the
measure is defined independently of the choice of base poiRurthermore, by (3.6) and

(3.7) we verify that the measure defined by the right hand aid8.12) is invariant under

f. Indeed we have

A(fet) (f () = e W+ =0 gl 1% ([x, y1, Ly, x])
= s W=OW) g (f, (u¥ x ) (F (), FOL LF W), FON
— XN+ (N=0) X, YD = (f ([x,y1) AW K UF @), FOILIF ), fOD
— O FON 0}, (FON=¢( () AW % Bp) (LF @), fFOIL L), D)

=du(fy).

To verify Theorem 3.4(f) it is enough to check that the cosido holds for a partition
¢ adaptedto some local chait’ = [W (x)n A, W' (x)n Al in the sense that for alle V, we

haves(x) NV =W (x)n AAForye W (x) n A andz € Wy (x) n A define functions

g(y,2) :=exp (w2, y]) + 0z, y]) — Pz, y])

c(z):= f g, 2) du¥(y).
Wi(x)

4Indeed, for any two measurabl&“-subordinate partitions, the families of conditional meas agree, up
to renormalization, on their common refinement.
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For A c V measurable we have

,U(A)=f flA([z,y])g(y,z) dul(y) du;.(z)
W (x) W (x)

= f c(2) e f 1a([z, yDg(y,2) dp¥(y) | dui(2)

W (x) Wy (x)

1
= f c(@)| — f g([x,],2) dui([x,"]) | duy(2)
c(z)

W3 (x) Wi(z)nA

u 1 u 5 s
—f fg(y,Z)dux(y) @ f glx,1,2) duy([x,"]) | duy(2)

W) W) Wi(z)nA

1 u u N
—f f @ f glx,1,2) dus(x," )| gy,2) dui(y) du;(2)

W (x) W (x) Wi (z)nA

1
=f f g(lx,-,2) dul(lx,-) | dullz, y).

c(z)
14 ¢z, yhnA

Hence the family of measureﬁg}qev defined by

1 (4) = —
Hat = g,

f g(lx,1,1q,x]) du¥(lx, D
&@nA

forms a family of conditional probability measures for theetgion ¢. We have

f-—— [ g .
a4 c((q,x)) g(x,-1,[g, x1) dpix ([x, 1)
E(@PnA
" el 2D f exp(y () + w3 () =) dpy ([x,")
E(@PnA
R f exp(wy () —p()) dpig()
E(@nA
" cllg, ) f exp(@} () + w3 (q) — ¢ () dujy()
E(@nA
B eWx(4@) . »
" cllg, x]) f exp(@y () = p() dpg()
E(@nA
and the result follows. _
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The uniform hyperbolicity off and the Hélder continuity ap ensure that the functions

w9 (y) are well defined. By Claim 3.3 and Theorem 3.4(f), for a.e.A we expect
fu (ewi—d’HZ) = Kew}(x)_d’u?(x)

for some constank. We check thatk = e P@+¢(f(x) works. Note that even fox’ €
WH(x) n A the measures”s~¢u¥ ande”»~ %Y differ by the constant factar®*). Hence

it is expected that the rescalirgwill depend on the point.
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CHAPTER4

STATEMENT AND PROOF OF RESULTS

The problem considered in this thesis is of the followingunat

Given a Borel probability measure on a manifoldM, classify—or find non-

trivial constraints on—the group @f-preserving diffeomorphisms of.

In two extreme cases the grouppreserving diffeomorphisms is in some sense too large
to admit interesting constraints. On one extremg,if a volume the group qi-preserving
diffeomorphisms is an infinite-dimensional manifold. O thther extreme, if: is a sup-
ported on a finite set, the group pfpreserving diffeomorphisms is a finite-codimensional
manifold in the space of all diffeomorphisms df. Thus a natural class of measures in
which to first consider the above problem is the class of $argueasures with full sup-
port. In this thesis, we study the above problem for famitiemeasures supported on the

2-torus.

4.1 STATEMENT OF RESULTS

Consider a compact smooth manifdifi and a collection of Borel probability measures
{u;} supported onM. For r € [1,00) U {oo} we write Diff" (M;{u;}) for the group ofC"
diffeomorphismsf: M — M such thatf. u; = y; for all i. For{%;} a family of foliations on
M, we write Diff" (M; {&;}) for the group ofC™ diffeomorphisms preserving each foliation

F; 1

Iwe recallthat a diffeomorphisgh: M — M is said to preserve a foliatio# if, for any x € M, the restriction
flzw is adiffeomorphisny | gy : F(x) — F(f(x)).



4.1. STATEMENT OF RESULTS

To state our results, fifl € (1,00) U {oco} and a (nonlinear? Anosov diffeomorphism

f:T?— T2 Foro e {s,u} andv € E? (x) ~ {0} define the functions
g . : 1 n
A% (x) = nlirgoo;log(llDfx vl). (4.1)

By Oseledec’s Theorem [Ose68], there is aset T2, with u(A) = 1 for any f-invariant
Borel probability measurg, such that for every € A the limits in (4.1) exist. Ifu is f-
ergodic the functionsl”(-) and A°(-) are constanf-a.e. whence we writd;; and A;, for

these constants.

Theorem 4.1. Let u be anf-ergodic measure ofi? with h,(f) > 0 and full support. Ifu
satisfies
Ay #=Ay

then forr > 1,

1. the set of zero-entropy diffeomorphisiis= {g € Diff" (T?; ) | h,(g) = 0} is a normal

subgroup oDiff" (T?; w);
2. if Diff" (T?; u) # N then there is an isomorphismiff’ (T?; u)/N = Z.

In particular, Theorem 4.1 says that, up to zero-entropfedalifiorphisms, the group
Diff" (T?; u) looks like the cyclic grougZ. Note in particular thabiff” (T?; u) # N whenever
r <6 as we havef € Diff" (T?; ).

For a large subclass of measures satisfying the conditibfibenrem 4.1, we are able

to give a more precise description of the granif” (T?; u).

Theorem 4.2. Letu be an equilibrium state for a Holder continuous potentiaitiwespect
to f) that is neither the measure of maximal entropy, nor the &ods or backwards SRB
measure. Assume in addition that

Ay +A, #0.
Then for anyr > 1 there is anm € N such that the cyclic subgroup generatedfy: T2 —
T2 has finite index imDiff" (T?;u). In particular, Diff" (T?; u) is either finite or virtually
infinite cyclic.
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Recall that a groug is calledvirtually infinite cyclicif there is a finite index subgroup
G' < G with G’ = Z. We note that forr < 0, we can takem =1 in the conclusion of
Theorem 4.2. Note however that we do not rule out the poggililat 72 = 0 in the case
that there are no infinite order elementiiff" (T?; u) whenr > 6.

Using similar arguments we obtain the following.

Theorem 4.2'. Let u,v be two f-ergodic Borel probability measures with full support.

Assumén,(f) >0, hy(f) >0, and
Ay +A, <0< A, + Ay

Then for anyr > 1 there is anm € N such that the cyclic subgroup generatedfy: T2 —
T2 has finite index iMDiff" (T?; {v, u}). In particular, Diff" (T?; {v, u}) is either finite or virtu-

ally infinite cyclic.

For instance, iff : T> — T2 is an Anosov diffeomorphism that is not volume-preserving,
then Theorem 4.2' applies the forwards and backwards SRBunes forf.

We emphasize that Theorem 4.2 holds fot 1, whereas Theorem 4.1 requires the
additional hypothesis that> 1. We note that the hypothesis in all our theorems #jp¥
—A,, forces the dynamicsg: T2 — T2 to be nonlinear and the measuréo be singular with

respect to the Riemannian volume.

4.2 FOLIATION RIGIDITY

Let f: T?> — T2 be as in Section 4.1 witl#* and.Z ¥ the stable and unstable foliations.
Before proving the main theorems we demonstrate mecharigmsich the preservation

of an f-invariant measure forces the preservation of the dyndrfotiations &% and.%*.

4.2.1 Rigidity of the slow foliation. Consider anf-ergodic measurg with h,(f) > 0
andA, # —A;,. By theslow foliationwe mean the foliation whose corresponding Lyapunov
exponent is smaller in absolute value. We show that, undeadiitional hypothesis that
has full support, ang e Diff" (T?; u) preserves the slow foliation. For simplicity we assume

|7Lz| < Mftl, and showg preservesz“.
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4.2. FOLIATION RIGIDITY

Proposition 4.3. Let u be an f-ergodic Borel probability measure with full support and
hu(f) > 0. Suppose

Ay +A, <0.
ThenDiff" (T%; u) < Diff" (T%.%) for all r = 1.

Proof. Let g € Diff" (T?; ). We write 9 = g(F%). If 4 # " then there is some open set

V < T2 such that
1. Vis a bifoliation chart forF* and & S;
2. Vis a foliation chart for;

3. for eachx, y € V the intersectioriy (x) n W7 (y) contains at most one point, and the

intersection is transver<e.

For y € V we identify W (y) with the quotient spac& /& . Define i, to be the

quotient measure oWy (y) given by
fiy(B) = p(Wy (B))

and define the corresponding pointwise dimension functions

A 1 0. (WS . | o (WS
0" =lim8upM 5~ () :liminfM'
r—0 logr py) logr

Since the unstable holonomies are bi-Lipschitz, by PrdjposB.26*(y) = 6*(z) for z €
W‘ﬁ‘(y).
By [LY85, Lemma 11.3.1] we have

57 (y) +6% <dim(y, y)
for u-a.e.y € V, whence, by (3.2) we conclude that
5 (y<6* (4.2)

for p-a.e.y.
Note that (3.3) and the hypothesi§ + 1}, < 0 implies thats” —6° > 0. Fix0 <n < 6" -

6%. We write {,aﬁ'y}yev for a family of conditional measures associated to the (onadxe)

25ee Section 2.1.2 for notation for local foliations.
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partition of V by the leaves of the local foliatio®;,,. Note that by Claim 3.3, the fact that

g is bi-Lipschitz, and Proposition 3.2, we haxlriin(,a“iy,y) =¢6" for a.e.y e V. Define
The={xe VI <y (Blx,r)=<1r® " forallo<r<R}
and fix/ andR such thau(T'}) > 0. On W (y) define a second quotient measuiteby
VL(B) 1= p(WE(B)NTh).

Clearly ¥}, < i thus, by Proposition 3.2, for evetye V andv4-a.e.y € W (x) we have
dim@¥k,y)=6"(p).
Fix such ay. Using the uniform transversality of the local foliatio#s and £; and

the fact that the unstable holonomies are bi-Lipschitz, vag find ac € (0,1) such that

wyws.me U Bglzr)
ZEWE ()

for all sufficiently smallr > 0. HereBy(z, r) denotes ball of radius at z in internal metric
of the submanifold4(z). (Note B4 (z,r) € B(z,r), whereB(z, r) denotes the ambient metric

ball of radiusr.) Hence

VW, = [ A (WEWE () 19y () ATh) duc
1%

Sfer‘su_” dp(x)
1%

= Kr®' 0,
for somek and all sufficiently small > 0. We thus conclude that
dim(v%, y) = 6% —n > &°

and hencé~(y) > 8° on a set of positive measure contradicting (4.2). O

4.2.2 Rigidity of the fast foliation for equilibrium states. In the case that is an equi-
librium state, we are able to utilize the local product dinee of u in Theorem 3.4 to obtain

a result stronger than Proposition 4.3.

Proposition 4.4. Let u be an equilibrium state for a Hélder continuous potential Bh
(with respect to the dynamics ¢j. Suppose that is neither the forwards nor backwards
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SRB measure and satisfies
)LZ # —)LZ.
Then
Diff" (T?; ) < Diff" (T% (S, F4))

forall r=1.

Proof. By passing tof~! if necessary we may assume thay| <[4, whence Proposi-
tion 4.3 implies that any e Diff" (T?; u) preserves#“. We use the local product structure
of u to show thafg preserves#* under the additional assumption thais not the forwards
SRB measure.

Fix anr = 1 andg € Diff" (T?; u). Writing ¢ = g(%*) assume for the purpose of contra-
diction that¥ # &°. Then there exists am, € T2 such that for all sufficiently smalf > 0
and for the local chart

V = [W5(xo), Wy' (x0)]

and ally,z € V, the intersectionsdy (y) n Wi (z) and %y (y) n W (z) are transverse and
contain at most one point. (See Figure 4.1.) Furthermoremag choosey > 0 small
enough such thagg~!(V) is contained in a local product chart.

We denote byiu¥} v the system of canonical measures along the unstable mamifol

described in Theorem 3.4. Let
Y :={xeV|dim(u% x)=56“cV.
Proposition 4.4 follows easily from the following claim, igh will be proved shortly.
Claim 4.5. We have the following
1. Y has full measure ifv, in particular Y is nonempty;
2. Y contains fullg‘s/-leaves;
3. Y contains full4y-leaves.

The assumptions that the intersectiofs(y) n Wy (z) are transverse and thitis both
F - and¥y-saturated imply that contains an open set. Indeed foz Y, we havelw (y)
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Y whence

w= U %
ZEWS(Y)

contains an open foliation chart fef. In particularY contains a curvd c W (y). By

Proposition 3.1 we obtain thdimg (1) < 6%, wheredim g (I) denotes the Hausdorff dimen-
sion of the sefl. However the Hausdorff dimension éis 1, whereas the assumption that
u is not the forwards SRB measure impli&é < 1. Hence we obtain a contradiction and

the proposition follows. O

We now establish the assertions in Claim 4.5. We note thaalfar,y € V or x,y €
g 1(V), we havex € W*([x,y]) andx € W([y,x]). Let ¢ be the Holder continuous po-
tential function foru. Then we may find constants> 0 and0 < a < 1 such that for any
x,y € T? we have|¢(x) — p(y)| < Cd(x,y)*. In particular, the Hélder continuity ap and

hyperbolicity of f ensures that for any, ye V or x, y € g~ (V) we have the uniform bound

Oz = C ey

wherews.(y) is as defined in (3.11) andis as in (2.2). Similarly for all, ye V and 1 as
in (2.1) we have

lw¥ ()| < Ce®

1-Ae
Set

a 1
N:=exp (C(:' m +max{|([>(x)| |x€e 1]—2} ) (4.3)

M:= Ce” .
exp( € 1_/1“)

We write {i¥ := exp(w$ — ¢p)u%} for the unnormalizedfamily of conditional measures ob-

tained in Theorem 3.4(f) for the partitidi# |} (x)}xev Of V.

Proof of Claim 4.5.1.For everyx e V andy € W{(x) we have

1 _dyf
— < <N. 4.4
e it = (4.4)

By Proposition 3.2 applied to the identity map we have that

Y ={xe V|dim(a¥ x) =6%
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and the result follows. O

Proof of Claim 4.5.2.Fix x € Y andx’ € W (x). Recall that the holonomy map

hs o WHx) — WX

x,x"*

defined by (3.4) is bi-Lipschitz. Furthermore, by Theored(@) we have

du®
i < # <M
M~ d((hS )epld)

thusx’ € Y by Proposition 3.2. O

Proof of Claim 4.5.3.Recall thatg preserves the foliatio#“. We consider the family of

measures, := g. (,u;j_l(x)) supported on unstable leavg; (x)} ey and the subset
Y':={xe V|dim(vy, x) =6%}.

Arguing as in the proof of Claim 4.5.2, we have tigat (Y') is gg,l(v)-saturated, and hence

Y’ is ¢4y -saturated. To establish the claim, we show Y'.

For anyw € V, consider a connected open set (i.e an intetat) W' (w). Let
T:=%y(U)

and fory e V write T, := TnW{(y). See Figure 4.1.

v

W,
L

Figure 4.1: The local chaft
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Consider the following real-valued functions &n

Juut y— py(Ty)
J2,ut Yy &« (Hg—l(y))(Ty)
1y — py, (Wi (y)
Ca: Y= 8xllgr(,)) Wy ()

¢y iy Wy (y) = f exp(wy, — ) dp,
Wi ()

Cot ¥ u gy Wy (1) = f exp(@y1(, 08 —hog ) dg. (g )-
Wy )

Note that

1, ~ .
N =y (1Y) s NjLu )

1. _ :
N 20 0) = 8 llig () )(Ty) < Njzu(y)

%Ci(J/) =G () =Nci(y)

Claim 4.6. The functionsj, y, j2,u, ¢1, andc, are continuous.

Proof. First note that each function is invariant aloW(y). Secondly, since the unstable
holonomies are bi-Lipschitz, there is a constant 0 such that fory’ e W (y) andz €
W (y") we have

d(z, 1y, zl) <Kd(y',y)

and hence

/
lwy ()l = CKd(y, y)* 5

Hence for any Borel set =« W/ (y) we have

exp|-CK*d(y, y"* py (A = py(hy ,(A) < exp | CKd(y, y)" y (A)

1-7¢@ 1-1%
and hence ag' — y we have,u;‘,(h; (A — uy(A). This establishes the continuity of.
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Let C; = max{ci(y) | y € V}. For anyy, y' € V and BorelA c W}(y) we have

|ty (A) = py (R, (A

IA

1
max { Uy (A) —exp (aCK“d(y,y’)“I_M)py(A)’}

oe{+1,~1}

max H(l —exp (UCK“d(y, yH® n _l/w))py(A)’}

oe{+1,-1}

=|[1-exp CK“d(y,y’)“l_/w )uy(A)'

IA

1-exp|CK%d(y, y)*

Y )01(y)’

l)c
1-2¢)) 1

In particular, for any > 0 we may findé > 0 such that for any, y’ € V with d(y,y") <6

<||1-exp|CK%d(y,y)*

and any Boreld c W (y) we have

|y (A) = iy (s, L, (A <e/2.

Now consider the endpointa, b} = T, ~ T,.. There is a continuous functiar(y’) with
r(y)) — 0 asy’ — y with the property that
TyAhy, (Ty) € Wi (@) U W, (D).
We have
|uy (hy, (Ty) =y (Ty)l < py (TyAhy, | (Ty)) < pry (Wi (@) U W, ().
Sinceuy, is non-atomic we have thaty (W” (@)U Wrbgy,)(b)) —0asy —y.

r(y")

Consequently, for ang> 0 we may finds > 0 such thatd(y, y') < 6 implies
|y (Ty) = py(hy, (Ty))| <€/2
and
Iy (hy, o (Ty) — py (Ty)| < e€/2.
This proves the continuity of; 7. Similar arguments with respect to the product structure

of the local product chart containing ! (V) show the continuity ot, and j, y. O
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Now, consider the inequalities

. . ~U T
Juuy) - JLu(y) <Nﬂy( y)

Nea(y) ™ ay ~  ay’
ig*(“gfl(y))(TJ’) _ v J2u)
N C2(y) C2(y) c2(y)

1
C2(y)
ditional probability measures for the partition bfby local unstable manifolds, and thus

. . 1 . -
whereN is as in (4.3). We have that—fi% and g. (%, ) define families of con-
am™? W

fiy(Ty) 8 (fgr)))(Ty)
&) &(y)

on a set of full measure. We then have that

ay) .
4.5
&) J2,u(y) (4.5)

JLu(y) = N*

for a.e.y € V. Since each side of (4.5) is continuous and the meashees full support, we

have that (4.5) holds fall y in V. Similarly, we have

. 1 a(y).
Z —_—
hu)=1g &0) Je,u(y)

for all y. In particular, sincé/ and w were arbitrary, for any € V we have

a@ _ Ay e

Ntep(y) = dgepig,y) ~ )
Hence for everyy € V- we have thatuj is equivalent tOg*,ug,l(y) with bounded Radon-
Nikodym derivative. It then follows from Proposition 3.2athy = Y. O

We finish this chapter with proofs of the main theorems.

4.3 PROOF OFTHEOREMA4.1

We recall that we have fixefl: T> — T2 a C? Anosov diffeomorphism fof > 1. For

the remainder of this section, fix: T? — T2 bi-Hdlder, andA € GL(2, Z) such that
hofoh =1L, (4.6)

Fix p as in Theorem 4.1, and> 1 + a for somea > 0. By passing tof ~! if necessary, we
assume/lm < |A;|. We continue to write#* and.* for the foliations ofT? induced by
the dynamics off. For g € Diff’ (T?; ), Proposition 4.3 guarantegspreserves#“. The
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functionsr and A; will be as in Section 2.2 with respect to the dynamicgofWe write
Eé(x) ande" (x) for the Lyapunov subspaces and corresponding Pesin masdot under

the dynamics og.

For g € Diff’ (T?; 1) define the following data.

1. LetA(g) be the set of regular pointsfor g with r(x) =0 andA¢(x) =0, orr(x) =1
and 1p(x) - A1 (x) = 0. That is, A(g) is the set of regular points fqg such that the

Lyapunov exponents are not all positive or all negative.

2. LetQ(g) c A(g) denote the set of points with one positive and one negatperent;

that is, forx € Q(g) we haver(x) =1 andAy(x) - 11 (x) <O0.

3. Define the measurable functiopg andJj, on T2
. 1 n
Xg: x— limsup —log(IDg} 1,54 )
n—oo N

and

Jg: x— IDgx[ 1, 7ull.
4. Definey(g):= [ xg du.

We remark thafu(A(g)) = 1. Indeed writingY for the set of regular points fog with
all Lyapunov exponents strictly positive, we have thais g-invariant and measurable.
Supposeu(Y) > 0 and letv be the probability measure(A) = u(AnY)/u(Y). Applying
(3.3) tog~! we haveh, (g) = 0 (note thatg~! has no positive Lyapunov exponents .
On the other hand, for € Y, the unstable Pesin manifoltl “(x) contains a neighborhood of
xin T2. In particular, the unstable dimensionoft u-a.e. point ofY is equal tadim(u) > 0.
Applying (3.3) tog we must haveu(Y) = 0. Similarly the set of points with strictly negative
Lyapunov exponents is a null set.
We will see shortly that the entropy, (g) is effectively computed by the dynamics of

along the foliationF“. Furthermore, the entropy satisfies the following ‘signdditivity’

property onDiff" (T?; ).
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Proposition 4.7. For u as in Theorem 4.1 and= 1+ a, on Diff’ (T?; u) the metric entropy

satisfies

hy(g1) +hu(g2)  if x(g1)-x(g2) =0,
hﬂ(glogz) = (4.7)

|hu(g1) — hyu(g2)l  otherwise.

Proof. The proof follows in a number of claims. Fix are 1+ a and ag € Diff" (T?; ).

Step 1:x, is a Lyapunov exponent fgr. Indeed we have that the functiopg andJj, are

related via the formula

n—-1

1 .
Xg(x) =limsup m Y logUg(g' (x))).
n—oo T jzp

For g € Diff" (T?; ) let %, denote ther-algebra ofg-invariant sets. By the Birkhoff Ergodic

Theorend we have foru-a.e.x the equalitie$

Xg(x) =E(logJg | Fg)(x)

. 1 n
- nEgImZIOg(”Dgx vl) (4.8)

establishing thaf (g) is a Lyapunov exponenit.
Furthermore for almost evenye A(g) with two distinct Lyapunov exponents, (i.e. with
r(x) = 1), we have thall,.“(x) is the Lyapunov subspace associateg dolndeed ifx is

such a point an@ # v e T, & “(x) satisfies
V=Qoglp+ a1
wherev; € EC{,; (x) anda; # 0 then we have
Ao(x) = lim llo (IIDgZvll) # lim llo (IDgZvll) = A1 (x)
0 T nstoo n 8 8x n—oo n 8 8x -

which can only hold on a null set by (4.8).

Let i(x) be the a.e.-define@, 1}-valued function om (g) satisfyingy g (x) = A;(x) (x).

Step 2: Local Pesin manifolds associategyto We establish the following claim.

3See for example [KH95].
4Here, the right hand side of the first equality denotes a ¢immail expectation.
SMore preciselyy g is restriction of a Lyapunov exponent to the subburitig”.
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Claim 4.8. For a.e. regular pointx with y¢(x) # 0 we have than’m (x) NnF"(x) contains

a neighborhood of in &% (x).

Proof. Fix a Riemannian metric om? and let
Exp’y Ty F () — F ()

denote the exponential map for the restriction of the mewigz“(y). We haveExp), is
C'*¢ for somea > 0. We denote by, (0,r) < T,F“(y) the norm-ball of radius centered
at zero inTy&"(y). For a fixedr we then have that the magsp),: B, (0,r) — F"“(y) are
bi-Lipschitz and the Lipschitz constants are bounded umifpin the variabley.

For r sufficiently small, defing,: B, (0,r) — Tg(,)F“(g(y)) by
8y= (EXp'g(y))_l o gOEXpS,.

Let n: R — R be aC® function withn(x) =1 for x < 1/2 andn(x) =0 for x =1 and

0<n(x)<1for1/2<x<1. ThendefineG,: T,F"(y) — Tg;)F“ (&)
Gy(v):= Dgy(v) +n(r " v) (g, (v) — Dgy (V).

Then we have

gy) lvll=r/2,
Gy(V) =

Dgy(v) lv|=r.
We have that, is a Lipschitz perturbation abg,:

”(Dgy - Gy)(V) - (Dgy - Gy)(u) ” = ')/r” vV— u”»

and, by taking sufficiently small, we may makg, arbitrarily small® FurthermoreDg, (0) =

Gy(0) =0 by construction whence
I(Dgy =Gy <y,lvll.

We emphasize that the above bounds are uniform overeli>. We write G}, := Ggn-1;) 0
ng—Z(y) 0:--0 Gy

As noted earlier, we have that(A(g)) = 1. In particular, for almost every as in

6This is a standard construction and we omit the details wtaechbe found, for instance, in [Yoc95, Section
2.4].

43



CHAPTER4. STATEMENT AND PROOF OF RESULTS

the claim, the Lyapunov subspa&é™ (x) associated tq¢(x) is 1-dimensional and hence
equal toT,F*(x). Fix anyx with y,(x) # 0 and E™ (x) = T, “(x). By passing tg " if
necessary we may assurig) = 0, that is,A;(x) = 0 > A¢(x). Fix some0 < ¢ < i|7to(x)|.
The nonuniform hyperbolicity obg along the orbit ofc guarantees we may find a constant

C = C(x,€) (whereC(x,¢) depends measurably af such that forv € T, & %(x)

IDg"v| < Ce™ M@+ )y,

Write n = ¢ — 1 > 0. We may choose small enough such that
Yr<n-inf{Je(y) | ye T?}.
The bound ory, then guarantees that for akyandy € T? we have
Gy(By(0,R)) c Dgy (By(0,(1+mR)).
Indeed, for any € By, (0, R) we have

IG, )l < IDgy )l +y, IVl
< ]g(y)R +7vrR

< Ug() +nJg(R

S0Gy(v) € Dgy(By(0,(1+n)R) for all y. Consequently, we obtain the inclusion
Gy (By(0,R)) < Dgy (By(0,+m)"R)).

(We emphasize, however, that the above arguments worksigedan T, (y) = 1 and
thus the norm and co-norm dig, are equal, and all linear maps commute; any higher-

dimensional argument would require far more subtle comfthe geometry.)

Thus forv e T, Z4(x) we have
1G] < Ce" MDA v] = Ce"MW*2 |y,

In particular there is somg > 0 such thatG? (B,(0, 1)) € Bgn(y(0, 5) for all n > 0. Note
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then thatGy [, (0,r) = g1 © - © §g(x) © §x- Let
U = Exp/,(B,(0,1")).
We then have thal ¢ #%(x) and forye U
d(gn(x)’gn(y)) < C'e"(’l"(tzwd(x, J/)

for someC’. For small enought’, this characterizésU as contained in a local stable Pesin

manifold for A¢(x) at x and the claim follows. O

Step 3: Uniformity of the dynamics gfalong #4. We assert the following regarding the

dynamics ofg along the foliations .

Claim 4.9.

1. Fora.e.x¢Q(g), we haveyg(x) =0.

2. We have a dichotomy: either for everye A(g) with A¢(x) < 0 we haveW?®(x) c

FU(x) or for everyx € A(g) with A;(x) > 0 we haveW! (x) ¢ F¥(x).

3. There is a set of full measure on whigh restricts to either a nonpositive or a non-

negative function.

Proof. To see the first assertion, first note thatis clearly zero-valued on the set of points
in A(g) with only zero-Lyapunov exponents. Denote By A(g) -~ Q(g) the set of regular
points forg with one positive and one zero-Lyapunov exponent. NoteYhatg-invariant
and measurable. Suppog€Y) > 0 and letv be the probability measure(A) = u(An
Y)/u(Y). Then applying (3.3) tg~!' we haveh,(g) = 0 since onY, g~! has no positive
Lyapunov exponents. Let

Y :={xeY|yg(x)>0}

Then applying (3.3) and Claim 4.8 we have

hy(g) Zféuxg(x) dv(x) :f@”)(g(x) dv(x).
YI

"See for example the characterization of local stable mifsifion [Rue79, Theorem 6.1(a)].
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Thus we must have(Y’) = 0. Arguing similarly on the set of points with one negative and
one zero-Lyapunov exponent we obtain the first assertiompatticular, we have that the
entropy is entirely concentrated on the 84£g).

We write £“ for the unstable linear foliation df? induced by the dynamics df,. Let
&" denote the pulled-back foliation on the universal cd¥&rNote that the quotient space
R?/&* may naturally be identified with the-dimensional linear spade?/&%(0) = R. We

have that the homeomorphishv go h~! preserves the foliatiog*. Furthermore,

Claim 4.10. hogo h™! acts as an affine map transverse4t: any lift of hogoh~! to R?

induces an affine action on the quoti@it/&* = R.

Proof. Let [: R?> — R? be a lift of ho go h~!. Choose any € R? andy € R* ~ &% (x) and let
_ pL(EY (), [E ()

p(E1(x),E4(y))
linear and dense i? we deduce that

wherep denotes Euclidean distance. Since the leaves“cdre

pUE (), 1"y _
pEH(x), EM(y")
for any x', y' € R? with p(&%(x),6“(y)) = p(E*(x"),E%(y")). A standard argument shows

(4.9)

(4.9) holds for any’, y’ € R? and the claim follows. O

We now show Claim 4.9.2. Suppose there exjstin A(g) with Ay(x) <0, 1,(y) > 0,
W2 (x) ¢ F4(x) andWg (y) ¢ F"(y). Fix alift I: R* — R? of hogoh™" and lifts %, 7 of h(x)
andh(y), respectively. We may then fintl and 7' € R? in lifts of k(W (x)) andh(Wg (),
respectively, withG (%) £ &4 (), E“(F) # X)),

p(I"(E" (%), I"E"(X)) —0 asn— oo,
and
p"E" (), I"E (7)) —0 asn— —oo.
However, this contradicts Claim 4.10.
Finally if Claim 4.9.3 failed, we could fina, y € Q(g) with
)(g(x) >0> )(g(y).
But thenWé’ () ande1 (y) would be transverse t&“(x), contradicting the above. [
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Step 4: Entropy calculationsRecall that in the proof of Claim 4.9 we saw that entropy was

concentrated on the s@fg) in the sense that for; andv, defined by

ANQ A~Q
= BANDE) - pA-0)
HQ(g) (% ~Q(g))

we haveh,, (g) = 0. In particular
hu(g) = u(Q(g)hy, (g) + (T ~Q(g) hy, (g) = HQ() hy, (8).

From Claim 4.9 and (3.3) it follows that

= [7(g)16". (4.10)

hu(g) = U}(g(x)éu du(x)

Proposition 4.7 follows by showing that is a homomorphism fronfDiff" (T2; u),0) to
R, +):

X(g1082) =x(81) +x(82). (4.11)

Indeed, foru-a.e.x we have

n-1

Xg(x) = lim — Z logUg(g" (X))

and
18 :=fxg=f[E(log(]g) Ifg)=flog(]g)

whence forgy, g, € Diff" (T?; )

x(8108) = f Xgiog

n—-1

lim — Zlog(]glogz((glogz) (x)))

n—oo n

lim Z (1og (g, 0 g2((81 0 ) ())) +log I, (1 0 82" ()
= f E(logUg, © 82) | Fg0g,) + E108Ug,) | Fg10g,)
=flog(]g1°gz)+flog(]g2)

=7(81) +x(82).

Thus the proposition follows. O

We note that Proposition 4.7 establishes the first assarnidbheorem 4.1. Furthermore,
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if Diff" (T?; u) contains no positive entropy diffeomorphism, then Theodeirfollows. We
now prove the theorem under the assumption that there existsementg € Diff" (T?; )

with h,(g) > 0.

Proof of Theorem 4.1Note that for any two lifts ofho go h~! to R? the induced affine
maps oriR?/&% established in Claim 4.10 differ only by a translation. Ear Diff" (T?; )
we write ¥ (g) for the linear component of the affine map Bfv&* induced by a lift of
hogoh L.

Note that forg;, g, € Diff" (T?; ), if the associated linear mapis(g;) and ¥ (g,) are
equal then the linear map(g, o g; 1) associated to the compositigao g; ! is the identity.
Thus, all Lyapunov exponents for the compositggr g;' whose associated subspaces are
transverse taZ“(x) are zero. In particulap(Q(gzog;")) =0 and hu(g20 gy = 0. By
Proposition 4.7 we have,(g1) = hu(g2). Thus Theorem 4.1 reduces to studying the linear
maps¥ (g) for g € Diff" (T?; ).

For g € Diff" (T?; ), fix a lift I: R?> — R? of the homeomorphismogoh™!: T2 — T2,

Let v = [(0). Then the map — I(x) — v preserves the latticg* and the linear foliatior&".
Furthermore the linear map induced by~ I(x) — v onR?/&" is equal to¥(g). Note that
the restriction ofc — I(x) — v to Z? is a homomorphism. We ldt: R?> — R? be the unique
linear map whose restrictioh| - is equal to(x — I(x) — v) [z2. By the density of leaves of
&" on T2 the linear action induced by onR?/&% is also equal toP (g).

Recall the definition ofd in (4.6). We show thaL and A commute. Indeedl. and A
commute on the 1-dimensional linear sp&6). Furthermore, since the one-dimensional
subgroupg ([0]) is dense irT?, the actions induced bl and A on T? commute. Sincé A
and AL lift the same map of’?, and since they agree @&twe havelL A = AL.

It is well knowrP that the centralizer ol in GL(2, Z) is of the form
CA={tM"|nez}

for some hyperbolic matrif. HenceL = +M" for somen; in particular, for anyg €
Diff" (T?; u) the linear map¥ (g) is equal to the map induced @/& by the matrix+M"

for somen € Z.

8See, for example, [BRI7]).
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As a consequence, we obtain that there is a smallest postitrepy for all diffeo-
morphism inDiff" (T?; ). Indeed for anyg € Diff" (T?; ) with h,,(g) > 0 we have that¥(g)
is equivalent to the map induced ByM" for somen, thus a (non-strict) lower bound on
the entropy of any positive entropy mapIff” (T?; u) is

I_izlh”(g)'
We check the above lower bound is in fact independent of teelofg. Let g’ be such
thath,(g") >0 and¥(g’) is equivalent to the map induced ™ for somen’. Then we
haveh,((g")?") = h,(g?") and hence

1
|n|

1

hu(g) = ]

hu(g).

It then follows that the set
{hy,(g) | g € Diff" (T%; w}

is discrete. Indeed if there were an accumulation pointp&sition 4.7 would provide
arbitrarily small positive entropies.

Let A denote the smallest positive entropy attained by any mapififi(T?%; ) and let
g € Diff" (T% u) be such thati,(g) = A. To complete the proof we show that the image
of g generates the groupiff’ (T?;u)/N. Indeed, suppose there isghe Diff" (T?; u) with
g #g"olforanyne Zandl € N. By (4.7) we havé,(g') # kA foranyk € N. In particular,

there is ak € N such thatr,(g¥) < hu(g") < hu(g**!) whence we obtain either
0<hu(g¥og) <hulg
or
0< hu(g_k o(gh™hH< hu(g)

from (4.7). This contradiction establishes the secone@stant in Theorem 4.1. O

4.4 PROOF OFTHEOREMS4.2AND 4.2’

We begin with a claim that reduces Theorems 4.2 and 4.2’ todke of affine transfor-
mations. Recall that we identify the tor@i$ with the quotient grouf®”/Z". We write [x]
for the equivalence class afin T”. For B € GL(n,Z) we write Lg for the induced map on
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T™ and forv e R"” we write T'(v) for the toral translatiorix] — [x + v].
By ak-dimensional linear foliatior of the torus, we mean the partition df by cosets
of H, whereH is a connected-dimensional subgroup af”. We say a linear foliation is

irrational if each leafé& ([x]) is dense inl” and is the injective image 6~

Claim 4.11. Let&; and&, bek;- and k.-dimensional, irrational linear foliations of " with
1 < k;, k1 + ko, = n and such thag&; ([0]) n&»([0]) contains no 1-dimensional subgroups. Let
g: T" — T" be a homeomorphism preserving the foliatighys Theng is affine; that is,

there areB € GL(n,Z) and v € R” such that
g=T(W)oLp.

Proof. Let g be any lift of g to R”, let v = g(0) and setg: x— g(x) —v. Thenglz is a
homomorphism. Write§; for the lifts of the foliations tdR”. We note that; (x) N &,(y)

contains exactly one point for eaghy € R” and the set
Z:={61(n)né&(m) eR™ | n,me 2™}
is dense iR". We check the following:

1. Z is closed under addition iR". Indeed ifx=n+v,=m+v, andy =n'+v| =

m' + v, for v;, v} € &; then
x+y=m+n)+ @ +v) =m+m)+w+vh) eé(n+n)né(m+m).

2. Zis g-invariant. Indeed, note thag preserves leaves of the foliatio&:;. thus with

the above notation
gx) € &1(g(n) N2 (g(m)).
3. For x,y e Z we haveg(x+ y) = g(x) + g(»). Indeed
gx+y eé(gn+n))né(gm+m')
=& @mn)+gmnHn &> (&(m)+g(m'))

=81(g(n)N&(g(m) +E1(8(n) n&x(g(m)).

By the continuity ofg and density oE it follows that g is linear and the claim holds. [
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Proof of Theorems 4.2 and 4.2%e prove both theorems simultaneously. By Proposition
4.4 and Proposition 4.3, respectively, for any 1, any g € Diff" (T?; u) satisfying the hy-
potheses of Theorem 4.2 and any Diff" (T?; {u, v}) satisfying the hypotheses of Theorem
4.2’ preserve both foliationg* and. % “. Write

Diff" (T?; ) in Theorem 4.2
r=

Diff" (T?;{u,v}) in Theorem 4.2’

Recall that we havel € GL(2,Z) andh: T? — T2 such thatL.yoh = ho f. Foranyge T
we have thatio go h~! preserves the linear stable and unstable foliations irdibgethe
dynamics ofL 4. These foliations satisfy the hypothesis of Claim 4.11, ndsewe conclude
thathogoh™! = T(v)o Ly for someB € GL(2,Z) and v € R?. We note thatLy preserves
the unstable foliation ofr? induced by the dynamics df,. Arguing as in the proof of
Theorem 4.1, the density of leaves of the (1-dimensionadjaiote foliation forL 4, implies
thatL, andLg, and henced and B, commute.

Note that in the case of Theorem 4.2, oneobr v is not the measure of maximal

entropy; we assume thatis this measure. In the case of either theorem write
H:={[v] € T?| T(0)+ (hs () = hs (W}

Claim 4.12. H is finite.

Proof. Recall thatB € GL(n, Z) is said to barreducible if all Lg-invariant, closed proper
subgroups off * are finite. We verify thatd T2 is a closedL s-invariant subgroup. That
H c T2 is a subgroup follows by definition. We claim thétis a closed. Indeed ifv;l e H

with v; — w, then for any continuoug: T> — R we have

j—oo

f(/)(x) d(T(vj)«h« (W) (x) =f¢>(x+ v;j) d(h. () (x) f¢(x+ w) d(h, (W) (x)

where the last equality follows from dominated convergesme thatp(x + v;) — p(x + w)
pointwise. Thusf ¢(x) d(T (w) . h.(w)(x) = [ $(x) d(h.(w)(x) for any continuougp. This
shows i, (u) is T(w)-invariant. Finally, we note thati is L-invariant sinceT (Av) =
LpoT()oLy

Since the matriX is irreducible, ifH were infinite we would havéf = T2 which would
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imply k. (u) is the Haar measure daif. However, it is well known that the onlg-invariant
measureu for which h.(u) is the Haar measure is the measure of maximal entropy. We

thus conclude thak is finite. O

Write C(A) for the centralizer ofA in GL(2,7). Again we have that(A) is of the form
{xM" |ne z}
for some hyperbolic matrigZ. ReplacingM with — M if needed we may find & such that
hofoh™ ' =Ls=Lyx.
Then for anyg € ' we may findv € R?, [ € Z, ando € {-1,1} such that
hogoh™ =T(v)oLg=T(v)o Ly (4.12)
We calculate that fog as above
hogofogtofoh™ (x]) = [oM M* oM M0 - v) +v] = [x - MFv+ v

thus

gofoglofl=htoT(w-Mrv)oh
andv e (L;_,;)~' HwhereL,_,,;« denotes the toral endomorphism induced by*: R? —
R?. In particular,v has rational coordinates.

Now, if for every g € T, the corresponding in (4.12) is zero, it follows that the group
T is finite and the conclusion of each theorem follows with= 0. Indeed in this case we
have thatho goh™! € H for everyg eT.

We thus assume the existence gf al” with infinite order and derive the remainder of
the result. Fix an infinite ordeg € T and correspondin®, v,o andl #0 as in (4.12). We
claim that the orbit ofo] under the mag¥'(v) o Lp is finite. Indeed, lev = (v;, v») € Q? and
let D denote the least common denominatovpfindv,, when written in lowest terms. Let
> denote the set of rational pointg, ) € Q2 such that the least common denominatopof
andg, when written in lowest terms, is at mdst SinceB has integer entries, we have that
> c R”" is invariant under the linear transformati®, furthermoreX is invariant under the
the translationt — x + v. Furthermorey is Z2-periodic and discrete and thus descends to
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afinite sett c T2. Hence the mafx] — [Bx + v] is a permutation of a finite s&t

Thus we may find g such that T (v) o Lg)/ ([0]) = [0]. We check from (4.12) that
hog™oh ' (x) = Liggym(x)+ (T(v) o Lyp) ™ (0])
for x € T?, whence
hog? ¥ o ™! (x) = Lypie () + (T(v) o Lp)*(10]) = ho f27 o k™! (x).

In particular, settingn =2j1 we havef™ e I'. Note this follows even in the case> 6.

Write

I":={hoyoh !|yeT}

andx c T2 for the smallest, invariant subgroup containing.,_,,«) "' H. Note that since
det(I- M¥) # 0 and H is finite, we have thatL,;_,,)~! H is finite. We note that for a matrix
M with integer entries, the orbit undé&i, of a point with rational coordinates is finite; thus
> is finite.

Write

G=CAXZ

with multiplication

(B,[v])- (B, [v']) = (BB, [BV' + v]).

We abuse notation and identifff(v) o Lg € T’ with (B, [v]) € G whence we obtain a
natural inclusion of subgroups

(M™ky T c G.

SinceX is finite, G contains(M™)y as a finite index subgroup. Consequenilycontains

(M) as a finite index subgroup and the conclusion follows. O
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