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Abstract 
Near-infrared spectroscopy (NIRS), in combination with coherent hemodynamics 

spectroscopy (CHS), provides information about the cerebral microvasculature in 

terms of cerebral blood flow, cerebral blood volume, and the cerebral metabolic 

rate of oxygen. We characterize the frequency-dependent relationship between 

tissue concentrations of oxyhemoglobin and deoxyhemoglobin, measured with 

NIRS, as well as the relationship between total hemoglobin concentration and 

arterial blood pressure in healthy subjects. We use the hemodynamic model of 

CHS for the analysis of the results to yield physiologic parameters such as 

absolute cerebral blood flow and cerebral autoregulation. Further, we demonstrate 

the application of NIRS-CHS in the clinical setting of the neurocritical care unit.  
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Chapter 1: Introduction 

1.1  Motivation 
“Life is not possible without air and water not only because of their chemical ingredients 

but also, in fact more so, because of the fluidity of air and water [1].” 

The appropriate movement of blood within the body is critical to human health. This is 

especially true for the brain. According to the Centers for Disease Control and 

Prevention, cerebrovascular disease is the 5th leading cause of death in the United States 

[2]. There is a need for a tool that can perform non-invasive, portable, and real-time 

monitoring of cerebral blood  flow and blood volume at the hospital bedside to provide 

physicians with quantitative feedback on the cerebral health status of their patients. Near-

infrared spectroscopy (NIRS) in combination with coherent hemodynamics spectroscopy 

(CHS) has potential to meet these needs. Our goal has been to develop a robust approach 

for NIRS-CHS that has utility in a clinical setting. Continuous monitoring of cerebral 

tissue status may enable the study of the mechanisms of a disease or injury, the detection 

of a disease, recovery monitoring for prevention of secondary injury, or evaluation of the 

effects of different treatments.   

1.2  Dissertation overview 
The work in this dissertation aims to characterize the oscillatory hemodynamics in 

humans that can be measured locally with near-infrared spectroscopy (NIRS) and 

systemically with continuous arterial blood pressure monitoring.  The transfer functions 

between these measurements are in part dictated by cerebral blood flow (CBF) and 

cerebral autoregulation (CA). The key contributions of this work are: implementation of 
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coherence thresholding for selecting frequencies for analysis in CHS, development of a 

transfer function analysis approach for CHS in the time-frequency domain, and 

incorporation of arterial blood pressure information in a hemodynamic model. The 

introduction begins with a description of the relevant brain physiology followed by a 

description of the mechanics of CBF and CA and the techniques used to measure them. 

Next, we introduce the principles of NIRS. Then, the value of using oscillations of blood 

flow, blood volume, oxyhemoglobin and/or deoxyhemoglobin to characterize cerebral 

health is described. Following that, we show how oscillatory oxy- and deoxyhemoglobin, 

measured with NIRS, can be analyzed with an approach called coherent hemodynamics 

spectroscopy (CHS) to quantitatively assess CBF and CA. We also provide background 

information about the trade-off between time and frequency resolution which will be 

relevant to the data analysis approaches used in this work. In Chapter 2, we present the 

typical relationships we measure between oxy- and deoxyhemoglobin in brain tissue as 

well as in breast tissue. We describe how the hemodynamic model of CHS can be used to 

interpret the differences in the results. In Chapter 3, we characterize the relationship 

between local cerebral blood volume and systemic arterial blood pressure in a group of 

healthy subjects. We present a physiologic model to relate the oscillations between the 

two signals. In Chapter 4, we present initial results from applying our techniques to 

patients in a neurocritical care unit. The dissertation concludes with  a description of the 

potential future directions for this work. Refer to Table A.1 in the Appendix for a list of 

acronyms used in this work. 
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1.3  Cerebral hemodynamics 

1.3.1 Cerebrovascular physiology 
First, we describe the path of blood as it is transported throughout the brain. Blood flow 

to the brain is supplied by the right and left common carotid arteries and the right and left 

vertebral arteries. At the base of the brain, the supplying arteries join together in a ring 

called the Circle of Willis [3]. The common carotid arteries divide into external carotid 

arteries and internal carotid arteries. The largest branches of the internal carotid arteries 

are the left and right middle cerebral arteries which contribute  to the  blood supply of the 

frontal, parietal, and temporal lobes of the brain. The large arteries supplying blood to the 

brain, described up to now, are called the macrovasculature. The macrovasculature 

divides into progressively smaller branches: the pial arteries, the penetrating arteries, and 

then the penetrating arterioles [4].  The arterioles can regulate blood flow to the brain via 

changes in their diameter (see Sections 1.3.2  and 1.3.3 ). The arterioles connect to 

networks of capillaries, the sites at which oxygen and other nutrient exchange occur and 

cellular wastes are removed. After the capillaries, the vessels converge into small veins 

called venules. Veins are more compliant than arteries and may passively respond to 

changes in blood volume and blood flow induced by arteriole diameter alterations [5]. 

The arterioles, capillaries, and venules are called the microvasculature. To drain blood 

from the brain, the venules join together into larger veins which eventually connect to the 

dural venous sinuses. In addition to receiving blood, the dural venous sinuses reabsorb 

cerebral spinal fluid (CSF) [3]. The dural venous sinuses then connect to the internal 

jugular veins.  
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 The next key aspect of brain physiology is the Monroe- Kellie doctrine which 

states that within the rigid cranial vault (skull) the total volume of the contents (brain 

tissue, blood, and CSF) is fixed [6]. Therefore, an increase in volume for any of these 

intracranial components must be compensated with a decrease in volume of another 

component in the healthy human brain. An increase in volume beyond what the body can 

compensate for will result in a rise in intracranial pressure (ICP). The gradient between 

mean arterial pressure (MAP) and ICP determines the cerebral perfusion pressure (CPP): 

𝐶𝑃𝑃 = 𝑀𝐴𝑃 − 𝐼𝐶𝑃     (1.1) 

From  Equation 1.1, we can see that an increase in ICP will reduce CPP if there is not any 

alteration in MAP. Typical ICP values are around 10 mmHg. Invasive ICP monitoring in 

acute neurologic injuries such as traumatic brain injury (TBI) and subarachnoid 

hemorrhage (SAH) is often indicated so that counteractions to reduce ICP can be 

performed if it is found to increase over a threshold of 20 mmHg. Because ICP can be 

measured in real-time at the bedside, its measurement enables the computation of CPP as 

a surrogate for cerebral blood flow (CBF). In Section 1.3.2 , we provide the definition of 

CBF, which is often the cerebral signal that neurocritical care physicians are most 

interested in. 

1.3.2 Cerebral blood flow 
CBF is related to CPP with the following relationship: 

𝐶𝐵𝐹 =
𝐶𝑃𝑃

𝐶𝑉𝑅
     (1.2) 

where CVR is the cerebrovascular resistance. Blood flow describes the milliliters of blood 

delivered to 100 grams of tissue within 1 minute. Adequate blood flow to brain tissue is 
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critical for ensuring that the brain receives the oxygen and glucose it needs to meet its high 

energy demands. In human cerebral tissue, the healthy value for mean blood flow is around 

50 mlblood/100gtissue/min [7], with higher values in gray matter and lower values in white 

matter. Both hypoperfusion and hyperperfusion are dangerous to the brain. Hyperfusion 

could give rise to increased ICP. When CBF is less than 20 mlblood/100gtissue/min, 

hypoperfusion leads to ischemia. A CBF below 5 mlblood/100gtissue/min leads to cell death 

[6]. CBF can move outside of a safe range for chronic central nervous system diseases (e.g. 

Alzheimer’s disease, Parkinson’s disease, schizophrenia [8]) as well as acute central 

nervous system diseases. (e.g. TBI, SAH, acute ischemic stroke [8]).  

 There are several clinical and experimental technologies for measuring CBF which 

fall into the categories of intravascular measurements, nuclear medicine, x-ray imaging, 

magnetic resonance imaging (MRI), ultrasound, thermal diffusion, and biomedical optics 

[8]. Position emission tomography (PET)  is in the category of nuclear medicine, and it is 

the gold standard for in vivo measurement of CBF. It is minimally invasive in that it 

requires injection or inhalation of a radioactive diffusible contrast agent or tracer. It 

provides a snapshot of localized CBF with a resolution of 4-6 mm [9]. PET is one of the 

most expensive imaging modalities, so it initially was preferred as a research tool instead 

of a clinical tool. However, innovations in its technology, for example more affordable 

gamma cameras, have begun to make it a more appealing option for clinical use [10]. 

Methods based on x-ray imaging (Xenon-enhanced computed tomography and perfusion 

computed tomography) and MRI (dynamic susceptibility MRI and arterial spin labeling 

MRI) are also capable of providing in vivo localized measurement of CBF. Application of 

these imaging modalities can be logistically challenging, especially for patients in the 
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neurocritical care unit who would benefit from frequent blood flow measurements. The 

patients need to be physically transported to the imaging centers, need to be exposed to 

radiation in the case of x-ray imaging, or may incur large costs in the case of MRI. For 

these reasons, noninvasive and portable approaches are more viable for scenarios in which 

frequent CBF measurements are necessary.  

 Transcranial Doppler ultrasound (TCD) measures cerebral blood flow velocity 

(CBFV) in units of cm/s in the macrovasculature (middle cerebral arteries, primal anterior 

cerebral arteries, or posterior cerebral arteries) [11]. It is the current tool of choice when 

noninvasive bedside measurements of CBF are desired. The ultrasound transducer is placed 

in a subject-specific ultrasonic window in the temporal region above the zygomatic arch 

called the transtemporal window for access to the arteries. CBFV recordings are useful for 

diagnosing patients at risk or who already have cerebral vasospasm, a constriction of a 

blood vessel [12]. We will discuss some of the limitations of TCD in Section 3.1.  

 Non-invasive blood flow monitoring techniques in biomedical optics, such as 

diffuse correlation spectroscopy (DCS) and NIRS,  offer sensitivity to the microvasculature 

rather than the macrovasculature.  Both DCS and NIRS have a spatial resolution on the 

order of 1 cm, and the maximum tissue depth that can be probed is 2-3 cm. NIRS is 

described in more detail in Section 1.4. For a thorough review of DCS and NIRS techniques 

for measuring cerebral blood flow, we refer to Fantini et al [8]. 

1.3.3 Cerebral autoregulation 
Cerebral autoregulation (CA) is the mechanism in the brain that maintains constant CBF 

despite changes in CPP. Often MAP is used as a surrogate for CPP with the assumption 

that ICP remains constant and low (see Equation 1.1).  Brain injury can reduce the 
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effectiveness of CA, making the brain more sensitive to pressure dynamics. Specifically, 

the brain would be more at risk of hypoperfusion in the case of a decrease in MAP, and 

more at risk of hyperperfusion in the case of an increase in MAP.  

1.3.3.1 Static autoregulation 
Static autoregulation is the ability of the brain to maintain a constant absolute CBF despite 

changes in the absolute value of MAP. Figure 1.1 provides a depiction of the relationship 

between MAP and CBF during functional static autoregulation. CBF remains at a value of 

about 50 mlblood/100gtissue/min within a range of MAP between about 50 and 150 mmHg. 

Referring to  Equation 1.1 and Equation 1.2, we can see that this regulation must be due to 

changes in CVR, assuming ICP is constant and low. CVR is altered by the arterioles which 

have the ability to dilate, reducing resistance to flow, or constrict, increasing resistance to 

flow.  The controlling mechanisms for the constriction and dilation of arterioles is still an 

active area of research, with studies indicating contributions from neural, metabolic, and 

myogenic sources [3]. Outside the bounds of functional autoregulation, Figure 1.1 shows 

that CBF and MAP become proportional. In individuals with less effective autoregulation, 

the plateau region of the curve may become narrower or the curve itself may shift to the 

left or right such that autoregulation only functions at lower than usual or higher than usual 

MAP, respectively [3]. 
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Figure 1.1. Healthy static autoregulation curve.  

 

1.3.3.2 Dynamic autoregulation 
Dynamic cerebral autoregulation is the ability of CBF to respond to transient changes in 

MAP. Rather than absolute values, it requires relative measurements of MAP and CBF 

with a high sample rate (at least 1 Hz). One of the early studies to quantify dynamic CA 

was performed by Aaslid et al [13]. CBFV was measured in a middle cerebral artery of 

healthy humans and real time blood pressure was also synchronously measured. Cuffs were 

placed around both thighs and inflated above arterial pressure in order to occlude blood 

flow to the legs. Upon release of the cuffs after a few minutes, hyperemia was induced in 

which blood flow rushed to the legs and peripheral vascular resistance throughout the body 

was reduced. Correspondingly, MAP was rapidly reduced. This type of response is 

illustrated in Figure 1.2 in which MAP decreases by 20% at time= 0 s. This systemic 

reduction of arterial pressure causes a fast drop in CBF as well. In the case of functional 
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autoregulation, CBF will begin to recover from this drop before MAP, with both signals 

returning to baseline within 15-20 seconds. The plateau of MAP in Figure 1.2 indicates 

when CA is independently driving the recovery of CBF. When MAP begins to recover, 

there is contribution to CBF due to the baroreceptor reflex as well. In the case of absent 

CA, CBF and MAP would follow the same timing for recovery.  

 

Figure 1.2. Characteristic healthy response of CBF to drop in MAP. 

 

Another popular way to quantify CA is with transfer function analysis (TFA) [14]. 

When using TFA for the assessment of autoregulation, MAP or arterial blood pressure 

(ABP) is set as the input to the system and CBF is set as the output to the system.  The gain 

and phase of the transfer function between these two signals may then be related to the 

efficiency of autoregulation at different frequencies. A low gain indicates an efficient 

autoregulation, because it indicates attenuation of the effect MAP amplitude changes have 

on CBF. A positive phase shift of CBF relative to MAP, meaning that CBF oscillations 
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lead MAP oscillations, is also indicative of a functioning autoregulation, because CBF 

recovers before MAP displacement, while in-phase CBF and MAP indicates damaged 

autoregulation [15].  

1.4  Near-infrared spectroscopy 
Near-infrared spectroscopy (NIRS) is an optical method, using wavelengths in the range 

of 650-1000 nm, for local measurements of the absorption and scattering properties of 

biological tissue. NIRS is non-invasive, portable, and relatively inexpensive which makes 

it an appealing tool for clinical applications. Its high sample rate, within the range of 10 to 

50 Hz, is suitable for capturing the fast dynamics of heart rate pulsations in tissue. Its spatial 

resolution is on the order of 1 cm due to the diffuse nature of light in tissue within this 

range of wavelengths. One of the challenges in using NIRS noninvasively is that 

measurements are contaminated by contributions of absorption in the extracerebral layer 

[16]. Two-layer diffusion models, short and long source-detector separations, and other 

approaches for separating extracerebral contributions are an active area of research in the 

field.  

Figure 1.3 shows an example of a custom NIRS probe placed on the forehead in 

order to measure optical changes in the tissue of the prefrontal cortex. Light is transmitted 

through optical fibers and after propagating through tissue, is absorbed by chromophores 

in the tissue or collected by detectors placed centimeters away. 
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Figure 1.3. Example optical probe for assessing prefrontal cortex. 

 

The light used in NIRS can penetrate several centimeters deep within tissue due to 

its low probability of absorption. The reduced scattering coefficient, μs’, is the probability 

of scattering per unit path length (considering scattering anisotropy) and is often presented 

in units of cm-1. Typical values for the scattering coefficient in brain tissue are on the order 

of 5 cm-1 [17]. Differential absorption of light within the tissue at different wavelengths 

enables computation of concentrations of absorbers. The absorption coefficient, μa, is the 

probability of absorption per unit path length and is often presented in units of cm-1. Typical 

values for the absorption coefficient in brain tissue are on the order of 0.1 cm-1 [17]. The 

coefficient μa depends on the product of the molar concentration of the absorber, in units 

of M (moles/L), and its molar extinction coefficient, ε, in units of cm-1/M. The absorption 

coefficient, μa, of multiple absorbers, i,  is the weighted sum of their concentrations, Ci, and 

respective extinction coefficients, εi: 𝜇𝑎 = ∑ 𝜀𝑖𝐶𝑖𝑖  [18].  
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Two of the dominant absorbers within the near-infrared window are 

oxyhemoglobin (HbO) and deoxyhemoglobin (Hb). Hemoglobin is the protein in red blood 

cells that is responsible for oxygen transport. It is called oxyhemoglobin when oxygen is 

bound to it, and it is called deoxyhemoglobin upon its release of oxygen molecules.  

Specifically, the heme group is the component of hemoglobin in which oxygen is bound 

and released. Each hemoglobin molecule has four heme groups capable of binding one 

molecule of oxygen. Figure 1.4 shows the distinct wavelength dependent molar extinction 

coefficients, ε(λ), of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb). The 

measurements of concentrations of [HbO] and [Hb] in tissue have been used for a variety 

of applications such as functional brain imaging [19] and breast cancer imaging [20], [21]. 

 

Figure 1.4. Molar extinction spectra, ε, of oxyhemoglobin (HbO) and deoxyhemoglobin 

(Hb). Generated from [22]. 
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The concentrations of HbO, Hb and total hemoglobin (HbT) depend on the absorption at 

different wavelengths and the extinction coefficients in the following way: 

[HbO] =  
εHb(λ2)μa(λ1)−εHb(λ1)μa(λ2)

εHbO(λ1)εHb(λ2)−εHbO(λ2)εHb(λ1)
   (1.3) 

[Hb] =  
εHbO(λ1)μa(λ2)−εHbO(λ2)μa(λ1)

εHbO(λ1)εHb(λ2)−εHbO(λ2)εHb(λ1)
   (1.4) 

[HbT] =  [HbO] + [Hb].    (1.5) 

From the above equations we can see that, with knowledge of the extinction spectra of 

[HbO] and [Hb] (εHbO(λ)and εHb(λ),respectively) and with measurement of their 

absolute absorption coefficients (μa(λ)) for at least two wavelengths via NIRS, we may 

solve for the tissue concentrations,  [HbO] and [Hb]. Here we have shown how to 

estimate the concentrations of two chromophores. To estimate the concentrations of N 

chromophores, μa, must be determined at N or more wavelengths. 

1.4.1 Relative measurements 
Changes in measured light intensity can be used to compute relative changes in the 

concentrations of HbO and Hb with the modified Beer-Lambert Law [23]. We have used 

this approach throughout this work due to our interest in oscillations of [HbO] and [Hb]. 

To begin with, optical density of a material is related to the change in transmitted DC light 

intensity, Io, versus detected light intensity, I as follows: 

∆OD= log (
Io
I
)≈ - (

𝐼 − 𝐼𝑜
𝐼𝑜

) 

The modified Beer-Lambert Law for [HbO] and [Hb] is 
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∆OD(λ)= L(λ)DPF(λ)(εHb(λ)Δ[Hb]+εHbO(λ)Δ[HbO] ) 

where L(λ) is the geometrical distance between the light source and detector, DPF(λ) is 

the differential path length factor to account for the mean distance photons travel through 

the tissue, and Δ[HbO] and Δ[Hb] are the concentrations of oxyhemoglobin and 

deoxyhemoglobin relative to baseline (in units of μM), respectively. The equation is based 

on the first order Taylor series expansion of the optical density where the scattering term 

is neglected[24]. Typical values for length L are between 2 and 4 cm. The depth that light 

may penetrate through the tissue is equal to about half the distance between the source and 

detector pair. The change in absorption, Δμa, can be estimated by the measured changes in 

optical density, the known distance between the source and detectors, and by setting the 

DPF or computing it from absolute measurements of optical properties.  

Δμa(λ)= 
∆OD(λ)

L(λ)DPF(λ)
 

The relationship between changes in absorption may then be related to the changes in 

concentrations of [HbO] and [Hb] and extinction coefficients with a system of equations 

developed from the modified Beer-Lambert Law.  

[
 
 
 
 

∆OD(λ1)

L(λ1)DPF(λ1)
∆OD(λ2)

L(λ2)DPF(λ2)]
 
 
 
 

= [
εHbO(λ1) εHb(λ1)

εHbO(λ2) εHb(λ2)
] [

∆[HbO]
Δ[Hb]

] 

From here, Δ[HbO] and Δ[Hb] are computed. The form of the following system of 

equations is the same as the form of the equations for [HbO] and [Hb] in the previous 
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section (Equation 1.3 and Equation 1.4). The only change is that here we consider changes 

instead of absolute values. 

[
∆[HbO]
Δ[Hb]

]= [
εHbO(λ1) εHb(λ1)

εHbO(λ2) εHb(λ2)
]
-1

[
 
 
 
 

∆OD(λ1)

L(λ1)DPF(λ1)
∆OD(λ2)

L(λ2)DPF(λ2)]
 
 
 
 

 

Then, Δ[HbT] is computed as the sum of Δ[HbO] and Δ[Hb]. It is proportional to changes 

in blood volume.  

Δ[HbT] = Δ[HbO] + Δ[Hb] 

Its units are, of course, also μM, which specifically means micromoles of hemoglobin per 

liter of tissue. To convert Δ[HbT] to blood volume units of ml blood per 100 grams of 

tissue, we simply need to divide by the concentration of hemoglobin in blood as well as by 

the brain tissue density. The concentration changes of oxyhemoglobin, deoxyhemoglobin, 

and total hemoglobin are due to changes in blood volume, blood flow, and the metabolic 

rate of oxygen[25]. This point will be discussed more in Section 1.6 . 

1.4.2 Absolute measurements 
Frequency domain (FD) near-infrared spectroscopy can measure absolute tissue 

concentrations of [HbO], [Hb], and total hemoglobin ([HbT]) in units of micromolars [17], 

[26]. The benefit of absolute measurements is that the values can be compared across 

subjects or within subjects at different time points.  

 In FD NIRS, light is modulated at a frequency on the order of 110 MHz. After 

transmission through tissue, the NIRS system measures the DC amplitude (direct current, 

meaning average value), the AC (alternating current) amplitude, and the phase of light, Φ, 
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relative to the modulated input light. A diffusion-based, semi-infinite homogenous model 

can be used to compute absolute optical properties from either DC and phase data or AC 

and phase data for light collected from multiple source-detector distances, ρ [27], [28]. The 

slope of ln(ρ2AC) with respect to ρ is notated as SAC where AC stands for the AC amplitude.  

The slope of phase, Φ, with respect to ρ is notated as SΦ. 

𝜇𝑎(𝜆) =
𝜔

2𝑣
(
𝑆Φ(𝜆)

𝑆𝐴𝐶(𝜆)
−

𝑆𝐴𝐶(𝜆)

𝑆Φ(𝜆)
) 

𝜇𝑠
′(𝜆) =  

𝑆𝐴𝐶
2 (𝜆) − 𝑆Φ

2 (𝜆)

3𝜇𝑎(𝜆)
− 𝜇𝑎(𝜆) 

In the above equations, ω is the angular modulation frequency of the source intensity and 

v is the speed of light in tissue. We may then use Equation 1.3, Equation 1.4, and Equation 

1.5 to compute [HbO], [Hb], and [HbT]. 

1.5  Oscillatory hemodynamics 
Recently, there has been interest in spontaneous as well as induced oscillations of  [HbO] 

and [Hb], because their amplitudes and relative phases can be related to physiological 

quantities such as blood volume, blood flow, oxygen consumption, and cerebral 

autoregulation. Oscillations of [HbO] and [Hb] occur naturally within the human body at 

the heart rate (~1 Hz), the respiratory rate (~0.25 Hz), and at the frequency of 

spontaneous low frequency oscillations (~0.1 Hz). Oscillations can also be induced at 

specific frequencies with various protocols including paced breathing [29], thigh cuff 

occlusions [30], and squat-stand maneuvers [31].  
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The phase difference between [HbO] and [Hb] oscillations is relevant to the study 

of both the diseased and healthy human brain. For example, in a study of unilateral carotid 

obstruction, patients were instructed to breathe at 6 breathes per minute in order to induce 

blood pressure (BP) oscillations at a frequency of 0.1 Hz [32]. The systemic BP oscillations 

induced oscillations in cerebral [HbO] and [Hb] that were measured with NIRS in each 

hemisphere. It was found that the phase lag between [HbO] and [Hb] was significantly 

larger in the hemisphere effected by the carotid obstruction in comparison to the healthy 

hemisphere. The difference between the hemispheres was attributed to differences in 

autoregulation, with autoregulation being less efficient during obstruction. As another 

example, in a sleep study of healthy subjects, NIRS measurements from the brain revealed 

altered phase differences between [HbO] and [Hb] low-frequency (~0.1 Hz) spontaneous 

oscillations when comparing non-REM to REM sleep states [33], a finding that was 

interpreted in terms of oscillations in blood flow velocity and blood volume.  

1.6  Coherent hemodynamics spectroscopy 
In 2013, the technique called coherent hemodynamics spectroscopy (CHS) was introduced 

and leveraged the physiologic information contained in the relative phase and amplitude 

relationship between  oscillations of [HbO] and [Hb][34]. CHS has a frequency-domain 

approach and a time-domain approach. In both techniques, a blood pressure stimulus 

induces cerebral blood volume and blood flow changes whose effects we may observe by 

measuring [HbO] and [Hb]. The frequency-domain approach utilizes oscillations in arterial 

blood pressure (ABP) to induce coherent oscillations in [HbO] and [Hb]. The ABP 

oscillations may be induced with techniques such as paced breathing or cyclic thigh cuff 

occlusions or they may be spontaneously occurring. The coherent oscillations of [HbO] 
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and [Hb] may be written as phasors. We assume negligible contribution from changes in 

the metabolic rate of oxygen in the following forms of the equations.  We describe the 

meaning of each term in Table 1 and also list the parameters which are fit for in the 

equations. 

𝐎(ω) = ctHb[𝑆(𝑎)CBV0
(𝑎)

𝐜𝐛𝐯(𝑎)(ω) + 𝑆(𝑣)CBV0
(𝑣)

𝐜𝐛𝐯(𝑣)(ω)] + 

+ctHb [
〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))Ƒ(𝑐)CBV0

(𝑐)
ℋ𝑅𝐶−𝐿𝑃

(𝑐) (ω)

+ (𝑆(𝑎) − 𝑆(𝑣))CBV0
(𝑣)

ℋ𝐺−𝐿𝑃
(𝑣)

(ω)] 𝐜𝐛𝐟(ω) 

(1.6)  

 

𝐃(ω) = ctHb[(1 − 𝑆(𝑎))CBV0
(𝑎)

𝐜𝐛𝐯(𝑎)(ω) + (1 − 𝑆(𝑣))CBV0
(𝑣)

𝐜𝐛𝐯(𝑣)(ω)] + 

−ctHb [
〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))Ƒ(𝑐)CBV0

(𝑐)
ℋ𝑅𝐶−𝐿𝑃

(𝑐) (ω)

+ (𝑆(𝑎) − 𝑆(𝑣))CBV0
(𝑣)

ℋ𝐺−𝐿𝑃
(𝑣) (ω)] 𝐜𝐛𝐟(ω) 

(1.7) 

 

 

Table 1. Explanation of terms and parameters in hemodynamic model 

Variable Meaning Type 

𝐎(ω) phasor for oscillations of 

[HbO] 

expression 

𝐃(ω) phasor for oscillations of 

[Hb] 

expression 

ctHb concentration of hemoglobin 

in blood 

constant (set to 2300 

μM in healthy person) 

𝑆(𝑎) oxygen saturation of 

hemoglobin in the arterial 

compartment 

constant (set to 0.98 in 

healthy person) 

𝑆(𝑣) oxygen saturation of 

hemoglobin in the venous 

compartment 

constant computed 

from model parameters 
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〈𝑆(𝑐)〉 spatial average of oxygen 

saturation of hemoglobin in 

the capillary compartment 

constant computed 

from model parameters 

CBV0
(𝑎)

 cerebral blood volume in the 

arterial compartment 

constant (set to 0.35 in 

healthy person) 

CBV0
(𝑣)

 cerebral blood volume in the 

venous compartment 

constant computed 

from model parameters, 

baseline absolute 

[HbT], and ctHb 

CBV0
(𝑐)

 cerebral blood volume in the 

capillary compartment 

constant computed 

from model parameters, 

baseline absolute 

[HbT], and ctHb 

𝐜𝐛𝐯(𝑎)(ω) phasor for oscillations of 

blood volume in the arterial 

compartment 

expression 

𝐜𝐛𝐯(𝑣)(ω) phasor for oscillations of 

blood volume in the venous 

compartment 

expression 

Ƒ(𝑐) Fåhraeus factor which 

accounts for reduced 

hematocrit in the capillaries 

constant (set to 0.8) 

ℋ𝑅𝐶−𝐿𝑃
(𝑐) (ω) RC low pass filter in the 

capillary compartment 

computed from model 

parameters 

ℋ𝐺−𝐿𝑃
(𝑣) (ω) Gaussian low pass filter in 

the venous compartment 

computed from model 

parameters 

𝐜𝐛𝐟(ω) phasor for oscillations of 

blood flow 

expression 

𝑡(𝑐) transit time of blood in the 

capillaries 

parameter 

𝑡(𝑣) transit time of blood in the 

veins 

parameter 

𝑓𝑐 autoregulation efficiency parameter 

k inverse of the Grubb’s 

exponent 

parameter 

Ƒ(𝑐)CBV0
(𝑐)

CBV0

 
Contribution of capillaries to 

blood volume 

parameter 

 

The RC low pass filter ℋ𝑅𝐶−𝐿𝑃
(𝑐) (ω) contains the parameter 𝑡(𝑐)which describes the transit 

time of blood in the capillaries. The Gaussian low pass filter ℋ𝐺−𝐿𝑃
(𝑣) (ω) contains the 

parameter 𝑡(𝑐) in addition to the parameter 𝑡(𝑣) which describes the transit time of blood in 
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the veins. The phasor of cerebral blood flow can be modeled as cerebral blood volume 

passing through a high pass filter 𝐻𝐻𝑃
(𝐴𝑅)(ω) and scaled by a factor k to account for the 

relative amplitude of blood flow changes to blood volume changes: 

𝐜𝐛𝐟(ω) = 𝑘𝐻𝐻𝑃
(𝐴𝑅)(ω)𝐜𝐛𝐯(ω).   (1.8) 

𝐻𝐻𝑃
(𝐴𝑅)(ω) is an RC high pass filter that has a cut-off frequency of 𝑓𝑐 . This high pass filter 

is intended to model the effects of cerebral autoregulation. The parameter 𝑓𝑐 indicates the 

frequency at which autoregulation is no longer able to dampen blood flow changes induced 

by ABP. Therefore, a higher cut-off frequency indicates a more efficient autoregulation, 

because a wider range of frequencies can be attenuated with the autoregulation filter. We 

note that cerebral blood volume on the right hand side of  Equation 1.8 is a surrogate for 

changes in MAP. In Chapter 3 we characterize the actual relationship between cerebral 

blood volume and MAP. In Chapter 4 we apply the findings of Chapter 3 to modify this 

aspect of the hemodynamic model. 

The relationship between [HbO] and [Hb] are described by their relative phases and 

amplitude at each frequency of interest. Multiple frequencies of [HbO] and [Hb] form the 

CHS spectra that are fit to CHS equations in the frequency-domain. This frequency domain 

approach will be describes in more detail in Chapter 2. The time-domain approach utilizes 

a step-like change in ABP (such as described in Section 1.3.3.2 ) to induce a coherent 

change in [HbO] and [Hb]. To induce the ABP change, two thigh cuffs are inflated above 

arterial pressure for two minutes and then rapidly released. The release causes a sharp drop 

in mean arterial pressure (MAP) by about 20% which recovers within 15-20 seconds. The 

corresponding changes in [HbO] and [Hb] are fit to the CHS equations in the time-domain 
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[35]. In both the frequency-domain and time-domain techniques, the parameters resulting 

from the fit can be used to compute absolute cerebral blood flow, notated as CBF0 : 

CBF0 =
1

ρ

Ƒ(𝑐)CBV0
(𝑐)

 𝑡(𝑐)
=

1

ρ

𝑇0

ctHb

Ƒ(𝑐)CBV0
(𝑐)

CBV0

𝑡(𝑐)
   (1.9) 

where CBV0 is total blood volume, 𝑇0 is baseline [HbT], and ρ is the density of brain tissue. 

The first realization of the above equation is written in terms of the central volume principle 

where CBF is the ratio between blood volume to blood transit time. In the second 

realization of the equation, CBF is written in terms of two of the parameters that are fit for 

in the hemodynamic model: 
Ƒ(𝑐)CBV0

(𝑐)

CBV0
 and  𝑡(𝑐). The parameter 

Ƒ(𝑐)CBV0
(𝑐)

CBV0
 describes the blood 

volume contribution of the capillary compartment (as opposed to the arterial or venous 

compartments). The two ways of writing the equation for CBF are related with the equation 

𝑇0=ctHbCBV0.  

The first clinical application of CHS was in the hemodialysis unit where it was 

found that absolute CBF was lower in patients undergoing dialysis than in a healthy control 

group [36], [37]. The ability of CHS to measure autoregulation efficiency has been 

validated in an experiment with healthy subjects [35]. Autoregulation was measured during 

normal breathing and during hyperventilation. It is well established that hyperventilation 

induces hypocapnia and increases the efficiency of autoregulation in cerebral tissue. An 

increase in the autoregulation parameter, 𝑓𝑐 , was found in 10 out of 11 subjects, supporting 

that CHS is sensitive to changes in autoregulation efficiency. 
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1.7  Time-frequency resolution 
Coherent hemodynamics spectroscopy requires measures of concentrations of 

oxyhemoglobin, deoxyhemoglobin, and mean arterial pressure over several frequencies. 

It is critical to understand the trade-off between time resolution and frequency resolution 

when designing experiments and performing data analysis. If the sample rate is Fs and the 

number of samples in the observation time is n, the frequency resolution is: 

∆𝑓 =
𝐹𝑠

𝑛
.     (1.10) 

From Equation 1.10, we can see then, that there is an inverse relationship between 

frequency resolution and time resolution. Typically, segments of data in the time domain 

are multiplied with a window function, such as the Hamming window, to reduce spectral 

leakage. The use of a window function will make the frequency resolution larger than the 

resolution specified in Equation 1.10.  

 Three common non-parametric approaches for transfer function analysis are based 

on the Hilbert transform, wavelet transform, or short-time Fourier transform. It is 

important to note that while each of these approaches is implemented differently, they 

provide equivalent results as long as the parameters used are equivalent [38]. There is 

sometimes a misconception that Hilbert  or wavelet transforms provide continuous time 

resolution (equivalent to the data’s sample spacing 1/Fs) as well as improve frequency 

resolution compared to the short-time Fourier transform. This is not true. The time-

frequency resolution depends solely on the window size , n, and the window function.  
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Chapter 2: Characterization of hemodynamic 

oscillations in healthy tissue 

2.1  Introduction 
The amplitude and phase of deoxy-hemoglobin concentration ([Hb]), oxy-hemoglobin 

concentration ([HbO]), and total hemoglobin concentration ([HbT]) oscillations at 

angular frequency  can be described with phasor notation: [Hb](), [HbO](), and 

[HbT](). CHS spectra are given by the frequency dependence of the magnitude and 

phase of the phasor ratios [Hb] ()/[HbO] () and [HbO] ()/[HbT] (). In phasor 

algebra, this corresponds to the following amplitude ratios and phase differences as a 

function of frequency: |[Hb]|/|[HbO]|, |[HbO]|/|[HbT]|, Arg([Hb])-Arg([HbO]), and 

Arg([HbO])-Arg([HbT]), where “Arg” is the argument of the phasor, i.e. its phase angle 

with respect to the x axis.  By means of a hemodynamic model [34], the measured CHS 

spectra can be related to fundamental physiological parameters like the capillary and 

venous blood transit times and the cutoff frequency of the cerebral autoregulation 

process.  

 CHS can be applied to any tissue, not just the brain. In this study, we have chosen 

to also study breast tissue, because CHS may yield valuable information for cancer 

assessment, as a result of the hemodynamic and metabolic perturbations associated with 

breast cancer. The utility of assessing hemodynamic changes with NIRS in breast tissue 

has been investigated in the literature. In a study looking at breast hemodynamics, a dual-

breast near-infrared tomographic system measured different responses to a Valsalva 

maneuver in a comparison between the healthy and tumor-bearing breasts on the same 

subject [39]. The return to baseline of deoxyhemoglobin concentration in the tumor-
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bearing breast lagged behind the return to baseline in the healthy breast. Carp et al have 

studied the breast hemodynamic response to compression in order to investigate 

physiological differences of healthy and diseased tissue [40]. Breast hemodynamics 

during periodic oscillations have also been studied with a protocol in which subjects used 

a respiratory device to alternate between breathing oxygen and carbogen [41]. Total 

hemoglobin concentration response was measured with NIRS, and reported results 

support that the total hemoglobin responses of cancerous breasts were less correlated to 

the changes in inspired oxygen concentrations than the total hemoglobin responses of 

healthy breasts. Flexman et al have studied the response of breast tissue to a breath 

holding protocol and found differences between malignant and healthy tissue during 

breath holding and recovery [42]. The spatial and temporal study of breast 

hemodynamics may result in a powerful tool for the characterization and detection of 

abnormalities in the tissue vasculature and metabolism. CHS may therefore be a useful 

addition to this area of study. 

 Oscillations in blood volume and blood flow have individual effects on the 

oscillations of [Hb] and [HbO] that are measured with NIRS. Blood volume oscillations, 

by themselves, result in synchronous (or in phase) oscillations of [Hb] and [HbO]. Blood 

flow oscillations, by themselves, result in oscillations of [Hb] and [HbO] that are in 

opposition of phase ( phase difference). Such individual volume and flow effects are, in 

general, out of phase with each other even in the case in which the blood volume and 

blood flow oscillations are synchronous. This result follows from the delayed [Hb] and 

[HbO] responses to blood flow changes (this delay is caused by the finite blood transit 

time in the microvasculature), which we modeled by treating the microvasculature as a 
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low-pass filter for the driving blood flow dynamics (input) and the resulting [Hb] and 

[HbO] dynamics (output) [34]. According to this analysis, the phase difference between 

the overall, measured, [Hb] and [HbO] oscillations reflects the relative contributions on 

them from blood volume and blood flow changes. In-phase [Hb] and [HbO] oscillations 

suggest volume dominated effects, opposition-of-phase [Hb] and [HbO] oscillations 

suggest flow dominated effects. The relative contributions to [Hb] and [HbO] oscillations 

from oscillations in blood volume and blood flow (and, when applicable, oxygen 

consumption) may depend on the frequency of oscillations, and this fact is exploited by 

CHS for a quantitative study of tissue hemodynamics and oxidative metabolism [34].  

 Even though blood volume and blood flow changes may be interconnected (for 

example a change in blood volume in a compartment may reflect an imbalance between 

flow in and flow out of that compartment), we note that NIRS is not sensitive to blood 

flow dynamics occurring outside the capillary compartment. One of the assumptions of 

our model is that blood volume changes occur synchronously in the three compartments 

(arterial, capillary, venous), and for this reason we use the general term “blood volume 

change” without any further clarification. On the contrary, blood flow changes in the 

context of this work refer only to capillary flow changes.  

 In this study, we have used NIRS to concurrently measure blood-pressure-induced 

hemoglobin oscillations in the breast and the brain (prefrontal cortex) of healthy 

volunteers. The measured CHS spectra in the breast and the brain show that [Hb] and 

[HbO] oscillations are in phase (i.e. synchronous) in the healthy breast and out of phase 

(i.e. asynchronous) in the healthy brain. We attribute these results to different relative 

contributions of blood volume and blood flow to the measured oscillations of [Hb] and 
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[HbO] in the two tissues examined. While we have focused on breast and brain tissue, a 

similar hemodynamic study in other tissues can yield similar information about the 

contribution of blood volume and blood flow to hemoglobin concentration oscillations 

measured with NIRS. 

2.2  Methods 

2.2.1 Human subjects and data acquisition 
Eleven healthy female subjects (age range: 24-32 years old) participated in the study. All 

subjects were premenopausal, had no history of vascular disorders, and no known risks 

for breast cancer. The Tufts University Institutional Review Board approved the 

experimental protocol, and the subjects provided written informed consent prior to the 

experiment. Figure 2.1 shows the experimental setup. The near-infrared spectroscopy 

(NIRS) measurements were performed with a frequency-domain commercial NIRS 

instrument (OxiplexTS, ISS Inc., Champaign, IL). Optical probes connected to the 

spectrometer delivered light at two wavelengths, 690 and 830 nm, at a source-detector 

distance of 35 mm. The brain probe was placed against the left side of the subject’s 

forehead, to access tissue in the prefrontal cortex, and secured with a flexible headband. 

The breast probe was placed ~20 mm above the areola of the left breast and secured with 

an adhesive medical tape. Continuous arterial blood pressure (ABP) was recorded with a 

beat-to-beat blood pressure monitoring system (NIBP100D, BIOPAC Systems, Inc., 

Goleta, CA). Pneumatic thigh cuffs were wrapped around both subject’s thighs and 

connected to an automated cuff inflation system (E-20 Rapid Cuff Inflation System, D.E. 

Hokanson, Inc., Bellevue, WA). The air pressure in the thigh cuffs was continuously 

monitored with a digital manometer (Series 626 Pressure Transmitter, Dwyer 
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Instruments, Inc., Michigan City, IN). Analog outputs of the arterial blood pressure 

monitor and the thigh cuff pressure monitor were fed to auxiliary inputs of the NIRS 

instrument for concurrent recordings with the NIRS data. 

 

 

Figure 2.1. Experimental setup. Signals from the near-infrared spectroscopy (NIRS) 

instrument, arterial blood pressure (ABP) monitor, and thigh cuff manometer were 

recorded synchronously. Optical data from the spectrometer were used to compute the 

changes in [HbO] and [Hb] (HbO] and Hb]) over time (t). 

 

Baseline measurements, during which the subjects were resting and the thigh 

cuffs were deflated, were recorded for two minutes for each participant. Then, the thigh 

cuffs were periodically inflated (to a pressure of ∼200 mmHg) and deflated for six 

periods at five different frequencies, fi (fi= i/2): 0.046, 0.056, 0.063, 0.071, and 

0.083 Hz.  The cyclic inflations of the thigh cuffs induced periodic changes in the arterial 

blood pressure [30]. The associated changes in [HbO] and [Hb] in the brain and breast 

were measured with NIRS.  Each set of cyclic cuff inflations was followed by 20 s of rest 
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during which baseline conditions were re-established. All signals were sampled 

synchronously at an acquisition rate of 12.5 Hz. 

 

2.2.2 Data analysis 
Data analysis and processing were performed with Matlab (Mathworks Inc., Natick, 

MA). Optical intensity changes from the brain and the breast were translated to changes 

in the concentrations of oxy-hemoglobin [HbO(t)], deoxy-hemoglobin [Hb(t)], and 

total hemoglobin [HbT] by using the modified Beer-Lambert law (defined in Section 

1.4.1). The signals were analyzed with the following process for each of the five 

frequencies of thigh cuff oscillations, fi (i=1,…,5). The time traces were filtered with a 

linear phase, finite impulse response (FIR), band pass filter based on the Parks-McClellan 

algorithm [43]. The filter had a width of 0.01 Hz that was centered at fi. The Hilbert 

transform was applied to the band pass filtered signals in order to obtain the 

instantaneous amplitude and phase at that frequency [44]. Experiments on tissue-like 

phantoms with static optical properties were used to determine the noise floor of the 

intensity measurements, which were translated into the detection threshold for 

oscillations in hemoglobin concentrations in tissue. From these phantom experiments, a 

threshold of 0.015 M was considered as the noise level for the amplitude of oscillations 

and applied to the instantaneous amplitudes of deoxy- and oxy-hemoglobin to remove 

data points with lower amplitudes [36]. The thigh cuff manometer signal was then used to 

determine the time ranges at which the six periods of induced oscillations of frequency fi 

occurred. The magnitudes and phases of [Hb](i)/ [HbO] (i) and [HbO] (i)/ [HbT] 

(i) were computed and averaged within the time ranges of the measurements at each fi to 
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obtain CHS spectra (namely, |[Hb]|/|[HbO]|, |[HbO]|/|[HbT]|, Arg([Hb])-Arg([HbO]), 

and Arg([HbO])-Arg([HbT])). 

 In the case of brain measurements, the CHS spectra showed typical features 

previously reported by our group[45] and allowed for the assessment of six hemodynamic 

parameters by fitting the CHS spectra with a hemodynamic model[34]. The model 

describes how [HbO], [Hb], and [HbT] are related to microcirculation blood volume, 

blood flow, and metabolic rate of oxygen. The spectra are described by the ratio of 

Equation 1.7 to Equation 1.6 We plug in Equation 1.8 to model the cerebral blood flow 

phasor.  

[𝐇𝐛](ω)

[𝐇𝐛𝐎](ω)

=

(1 − 𝑆(𝑎))
CBV0

(𝑎)
cbv(𝑎)(ω)

CBV0
(𝑣)

cbv(𝑣)(ω)
+ (1 − 𝑆(𝑣)) − [

〈𝑆(𝑐)〉

𝑆(𝑣) (〈𝑆(𝑐)〉 − 𝑆(𝑣))
Ƒ(𝑐)CBV0

(𝑐)

CBV0
(𝑣) ℋRC-LP

(𝑐) (ω) + (𝑆(𝑎) − 𝑆(𝑣))ℋG-LP
(𝑣) (ω)] 𝑘

CBV0
(𝑣)

CBV0
ℋ𝑅𝐶−𝐻𝑃

(AR) (ω) [
CBV0

(𝑎)
cbv(𝑎)(ω)

CBV0
(𝑣)

cbv(𝑣)(ω)
+ 1]

𝑆(𝑎)
CBV0

(𝑎)
cbv(𝑎)(ω)

CBV0
(𝑣)

cbv(𝑣)(ω)
+ 𝑆(𝑣) + [

〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))

Ƒ(𝑐)CBV0
(𝑐)

CBV0
(𝑣) ℋRC-LP

(𝑐) (ω) + (𝑆(𝑎) − 𝑆(𝑣))ℋG-LP
(𝑣) (ω)] 𝑘

CBV0
(𝑣)

CBV0
ℋ𝑅𝐶−𝐻𝑃

(AR) (ω) [
CBV0

(𝑎)
cbv(𝑎)(ω)

CBV0
(𝑣)

cbv(𝑣)(ω)
+ 1]

 

(2.1) 

[𝐇𝐛𝐎](𝜔)

[𝐇𝐛𝐓](𝜔)

=

𝑆(𝑎) CBV0
(𝑎)

cbv(𝑎)(𝜔)

CBV0
(𝑣)

cbv(𝑣)(𝜔)
+ 𝑆(𝑣) + [

〈𝑆(𝑐)〉

𝑆(𝑣) (〈𝑆(𝑐)〉 − 𝑆(𝑣))
Ƒ(𝑐)CBV0

(𝑐)

CBV0
(𝑣) ℋRC-LP

(𝑐) (𝜔) + (𝑆(𝑎) − 𝑆(𝑣))ℋG-LP
(𝑣) (𝜔)] 𝑘

CBV0
(𝑣)

CBV0
ℋ𝑅𝐶−𝐻𝑃

(AR) (𝜔) [
CBV0

(𝑎)
cbv(𝑎)(𝜔)

CBV0
(𝑣)

cbv(𝑣)(𝜔)
+ 1]

CBV0
(𝑎)

cbv(𝑎)(𝜔)

CBV0
(𝑣)

cbv(𝑣)(𝜔)
+ 1

 

(2.2) 

We used a nonlinear fitting procedure in Matlab (function “lsqcurvefit”) with a trust 

region reflective algorithm to fit our measurements with the model. The six 

hemodynamic parameters fitted for in our analysis are the capillary blood transit time 

(𝑡(𝑐)), the venous blood transit time (𝑡(𝑣)), the ratio of capillary-to-venous baseline 

blood volumes corrected for the small-to-large vessel hematocrit ratio  (
Ƒ(𝑐)CBV0

(𝑐)

CBV0
(𝑣) ), the 
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ratio of amplitudes of arterial-to-venous blood volume oscillations (
ΔCBV(𝑎)

ΔCBV(𝑣)), the 

autoregulation cutoff frequency (𝑓𝑐
(AR)

), and the product of the inverse of the Grubb’s 

exponent (𝑘) times the ratio of venous-to-total baseline blood volumes (
𝑘CBV0

(𝑣)

CBV0
). The 

search regions for the fitting parameters are defined by ranges found in the literature [46]. 

The analytical expressions, derived from the hemodynamic model, and the simplifying 

assumptions relating these six hemodynamic parameters and the CHS spectra are 

described in detail in Kainerstorfer et al [47].  

In the case of breast measurements, because the phasors [Hb] (i), [HbO] (i), 

and [HbT] (i) were found to be in phase with each other at all measured frequencies, the 

amplitude ratio |[HbO] (i)|/| [HbT] (i)| provides a measure of the oxygen saturation of 

hemoglobin in the volume-oscillating vascular compartments [34], which we indicate 

here with 𝑆V. This measure of hemoglobin saturation is a weighted average of the 

saturations of the volume oscillating compartments, where each vascular compartment is 

weighted according to its relative contributions to the overall blood volume oscillations:  

𝑆V =
CBV0

(𝑎)
|𝐜𝐛𝐯(𝑎)(ω)|𝑆(𝑎)+Ƒ(𝑐)CBV0

(𝑐)
|𝐜𝐛𝐯(𝑐)(ω)|〈𝑆(𝑐)〉+CBV0

(𝑣)
|𝐜𝐛𝐯(𝑣)(ω)|𝑆(𝑣)

CBV0|𝐜𝐛𝐯(ω)|
 (2.3) 

2.3  Results 
Figure 2.2 shows band-pass filtered time traces of changes in ABP, HbO, and Hb, in the 

brain and breast of Subject No. 8. By inspection of Figure 2.2, one can clearly see the 

oscillations in systemic arterial blood pressure and local concentrations of oxy- and 
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deoxy-hemoglobin that are elicited by the cyclic thigh cuff occlusions (identified by the 

vertical grey bars in Figure 2.2). 

 

Figure 2.2. Time traces for Subject No. 8. The shaded regions indicate the times at which 

the cuffs were inflated to a pressure of 200 mmHg. The cuffs were timed such that each 

frequency has 6 periods for analysis. The order of frequencies in the figure is: 0.063, 

0.083, 0.046, 0.071, 0.056 Hz. (a) Changes in mean arterial blood pressure; (b) Changes 

in oxy-hemoglobin concentration measured in brain tissue; (c) Changes in deoxy-

hemoglobin concentration measured in brain tissue; (d) Changes in oxy-hemoglobin 

concentration measured in breast tissue; (e) Changes in deoxy-hemoglobin concentration 

measured in breast tissue. All the temporal traces shown in this figure were band-pass 

filtered (0.01-0.11 Hz, width: 0.1 Hz), whereas data analysis at each frequency was 

performed by applying a narrower band-pass filter (width: 0.01 Hz) centered at the 

frequency of interest. 

 

The group averages of CHS spectra were computed for the eleven subjects. A variance 

threshold was used to select the induced frequencies in each subject that successfully 

maintained a consistent phase difference: The standard deviation of Arg([Hb])-

Arg([HbO])  and the standard deviation of Arg([HbO])-Arg([HbT]) both needed to be 
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less than  45 degrees. The number of subjects for whom the measured data passed the 

threshold was as follows for brain data at each frequency: 0.046 Hz, n=10; 0.056 Hz, 

n=11; 0.063 Hz, n=10; 0.071 Hz, n=10; 0.083 Hz, n=11. For breast data, the 

corresponding numbers of subjects were as follows: 0.046 Hz, n= 11; 0.056 Hz, n=11; 

0.063 Hz, n=11; 0.071 Hz, n=11; 0.083 Hz, n=10. On almost all of the subjects and all of 

the frequencies, we could measure reliable and coherent hemodynamics on both brain 

and breast tissue. For the cases that passed the threshold requirement, the mean phase 

differences and amplitudes ratios (representing the CHS spectra) were computed and are 

shown in Figure 2.3. To compute the mean values and standard deviations of Arg([Hb])-

Arg([HbO]) and Arg([HbO])-Arg([HbT]), we used standard methods in circular 

statistics [48].  For |[Hb]|/|[HbO]| and |[HbO]|/|[HbT]|, we computed the group means, 

and the errors bars in Figure 2.3 represent the standard error of the mean.  
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Figure 2.3. Group averaged CHS spectra. Measured on the brain (circles) and breast 

(triangles) of eleven human subjects at five frequencies of induced hemodynamic 

oscillations. The lines through the brain spectra (solid lines) are the best fits of the data 

with the hemodynamic model. The horizontal lines through the breast spectra (dashed 

lines) are at the average values over the five frequencies. (a) Phase difference Arg([Hb])-

Arg([HbO]); (b) Amplitude ratio |[Hb]|/|[HbO]|;  (c) Phase difference Arg([HbO])-

Arg([HbT]); (d) Amplitude ratio |[HbO]|/|[HbT]|. 

 

For the brain spectra, the best fits with the hemodynamic model are also plotted 

(solid lines in Figure 2.3). The brain CHS spectra show quantitative features similar to 

those found in previous measurements in healthy subjects [45] . Over the frequency range 

measured here (0.046-0.083 Hz), the phase spectrum for Arg([Hb])-Arg([HbO]) shows a 

negative slope of ~0.8°/mHz, whereas the amplitude spectra have values of ~0.25 for 

|[Hb]|/|[HbO]| and ~1.2 for |[HbO]|/|[HbT]| (we observe that |[HbO]|/|[HbT]| is a phasor 

amplitude ratio, so that its value greater than 1 is not incompatible with the phasor 

relationship [HbT] = [HbO] + [Hb]). The oscillations of [Hb] lag the oscillations of 

[HbO] by 210-235°, whereas the oscillations of [HbO] lag the oscillations of [HbT]  by 

5-10°. 

 The CHS spectra measured in the breast did not show a frequency dependence for 

any of the subjects, and a horizontal straight line at the value of the mean for each 

spectrum is shown in Figure 2.3 (dashed lines). The mean of Arg([Hb])-Arg([HbO]) is 

2o 14o and the mean of Arg([HbO])-Arg([HbT]) is 0 o 2 o, both of which indicate a 

non-significant difference from zero, so that the oscillations of [HbO], [Hb], and [HbT] in 

the breast can be described to be in phase.  The mean value of |[Hb]|/|[HbO]| is 0.21 

0.01, whereas the mean value of |[HbO]|/|[HbT]| is 0.83 0.01 (in this case of in-phase 

[Hb], [HbO], and [HbT] phasors, the ratio |[HbO]|/|[HbT]| must be ≤ 1). 
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The phase difference between the oscillations of deoxy-hemoglobin and oxy-

hemoglobin concentrations [Arg([Hb])-Arg([HbO])] was the feature of greatest interest 

for this study, because it provides dynamic information about the relative contributions of 

volume and flow changes in the probed tissue. As an illustrative example of the phase 

difference of [Hb] and [HbO] oscillations, Figure 2.4(a) shows the times traces of [Hb]  

and [HbO]  changes ([Hb]  and [HbO]), and Figure 2.4b) shows the corresponding 

phasor diagrams of [Hb] and [HbO]. Figure 2.4 refers to subject No. 1 and a frequency 

of cyclic cuff inflation of 0.056 Hz (the time periods of cuff inflation are shaded in Figure 

2.4(a)). The time traces in Figure 2.4(a) show the out-of-phase behavior of deoxy- and 

oxy- hemoglobin oscillations in brain tissue (top panels of Figure 2.4) and the in-phase 

behavior of the oscillations in breast tissue (bottom panels of Figure 2.4).  In this 

example, Arg([Hb])-Arg([HbO]) is -185°±2° in the brain and 4°±1° in the breast. In 

Figure 2.4b, [HbO] is the phase reference (set at 0°) and the phasor amplitudes are drawn 

to scale with respect to each other. 
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Figure 2.4. Time traces of changes in oxy- and deoxy-hemoglobin concentrations 

([HbO] and [Hb], respectively) measured during the cyclic cuff occlusion protocol at 0.056 Hz 

for subject No. 1. The periods of time when the thigh cuffs were inflated are shaded. The top 

panel illustrates the out-of-phase behavior of [HbO] and [Hb] oscillations in the healthy brain. 

The bottom panel reports breast data and illustrates the in-phase behavior of [HbO] and [Hb] 

oscillations in the healthy breast. (b) Phasor diagrams corresponding to the oscillations reported 

in panel (a). The phasor diagram in the top panel shows the out-of-phase [HbO] and [Hb] 

phasors in the healthy brain, whereas the one in the bottom panel shows the approximately in-

phase [HbO] and [Hb] phasors in the healthy breast 

 

The fits to the brain CHS spectra with the hemodynamic model (solid lines in 

Figure 2.3) yielded the set of six hemodynamic parameters defined in Section 2.2.2 . The 

mean values of these parameters (the standard error of the mean) over the eleven 

subjects were as follows:  𝑡(𝑐)= 0.9  0.2 s, 𝑡(𝑣) = 5.4  1.1 s, 
Ƒ(𝑐)CBV0

(𝑐)

CBV0
(𝑣)  = 1.3 0.3, 

ΔCBV(𝑎)

ΔCBV(𝑣) = 5.2  1.7, 𝑓𝑐
(AR)

 = 0.03  0.02 Hz, 
𝑘CBV0

(𝑣)

CBV0
 = 0.8  0.2.  Most parameters are in 

good agreement with values previously reported for the prefrontal cortex of eleven 

healthy human subjects during a paced breathing protocol [47]. Specifically, the 

previously reported values of the six parameters were 0.9  0.2 s, 1.3  0.3 s, 1.1  0.3, 

2.9  0.9, 0.035  0.002 Hz, and 0.6  0.1, respectively [47]. While some of the 

parameters deviate from our previous results, the reproducibility of 𝑡(𝑐) and 

𝑓𝑐
(AR)

confirms the robustness of quantitative CHS measurements of cerebral blood flow 

(which is inversely related to 𝑡(𝑐)) and cerebral autoregulation (whose effectiveness 

scales with 𝑓𝑐
(AR)

). 

 The case of breast CHS spectra is qualitatively different. Because Arg([HbO])-

Arg([HbT]) and Arg([Hb])-Arg([HbO]) are essentially zero, we can conclude that blood 

volume oscillations are the dominant source of hemoglobin concentration oscillations. 
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Therefore, oxy-, deoxy-, and total hemoglobin concentrations all oscillate in phase. 

Under these conditions, |[HbO]|/|[HbT]| specifies the average hemoglobin saturation of 

the volume oscillating vascular compartments, 𝑆V, for which we found a value of 

83%  1% (see Figure 2.3(d)). We hypothesize that the highly compliant venous 

compartment provides the greatest contributions to these volume oscillations driven by 

blood pressure perturbations. This is similar to the case of spiroximetry, which was 

proposed to measure venous saturation from the blood volume oscillations associated 

with respiration (which also modulates arterial blood pressure). In studies where 

spiroximetry was applied to skeletal muscles, the average venous saturation was found 

within the range 70-80% [45], [49]. In a NIRS study using venous occlusion to measure 

venous saturation in the human forearm, S(v) ranged from 50-80% [50]. The value found 

by us for 𝑆V in the breast is somewhat greater than reported values of venous saturation in 

skeletal muscle. This result may be due to a different balance of blood flow and oxygen 

consumption in breast tissue compared to skeletal muscle or to greater contributions from 

the arterial compartment to 𝑆V. 

2.4  Discussion 
The model described in [25], [34] indicates that a pure blood flow oscillation induces a 

phase shift of  between [Hb] and [HbO], whereas a pure blood volume oscillation 

induces synchronous oscillations of [Hb] and [HbO]. Equation 2.1 and Equation 2.2, 

introduced in Section 2.2.2 , are the analytical equations in the hemodynamic model that 

we used in order to solve for the six unknown parameters. By solving for [Hb] 

()/[HbO] () and [HbO]()/[HbT]() instead of solving separately for the phasors 

[Hb] (), [HbO] (), and [HbT](), we can cancel out unknown or frequency-
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dependent scaling factors for the amplitudes and phases of oscillations. However, to best 

explain the in-phase vs. out-of-phase contributions from blood volume and blood flow 

oscillations, the equations for [Hb]() and [HbO]() are shown here as a sum of 

contributions from blood volume (subscript V), blood flow (subscript F) and oxygen 

consumption (subscript O): 

[HbO](𝜔) =  [𝐇𝐛𝐎]V(𝜔) + [𝐇𝐛𝐎]F(𝜔) + [𝐇𝐛𝐎]O(𝜔)                          (2.4) 

 [Hb](𝜔) =  [𝐇𝐛]V(𝜔) + [𝐇𝐛]F(𝜔) + [Hb]O(𝜔)                               (2.5) 

Table 2 contains the terms and signs associated with each of the contributions [25], [34]. 

In the results reported here, we have assumed that there was no modulation of the 

cerebral metabolic rate (CMRO2) or tissue oxygen consumption during the experiments. 

Table 2 (first and second row) shows that an oscillation in any component (arterial, 

capillary, or venous) of the blood volume generates in-phase oscillations [HbO]V() and 

[Hb]V(). Table 2 also shows that a given blood flow phasor cbf( (i.e. blood flow 

oscillations) generates phase-lagged oscillations [HbO]F() (because of the negative 

phase of the complex factor in square brackets in the third row of Table 2 (for details, see 

[34]) and oscillations [Hb]F() that are in opposition of phase with [HbO]F() (because 

of the opposite sign of the terms in the third and fourth row of Table 2). More precisely, 

even if blood volume and blood flow oscillations are in phase, [HbO]F()  and [Hb]F() 

are lagging [HbO]V() and [Hb]V(). Note also that [HbO]F() and [Hb]F() are 

frequency dependent, reflecting the nature of the low pass filters associated with the 

capillary and venous compartments. A combination of both blood flow and blood volume 

oscillations induces frequency-dependent oscillations [HbO] () and [Hb] () which 

feature a relative phase that depends on the relative contributions of flow and volume 
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oscillations, the blood transit time in the microvasculature, and the presence of any 

phenomena (such as autoregulation mechanisms) that link flow and volume changes. 

 

Table 2. Contributions to [HbO] () and [Hb] () from oscillations in blood volume 

(subscript V) or blood flow (subscript F) at frequency The oscillations in blood 

volume and blood flow are represented by the phasors cbv() and cbf(), respectively. 

The table also shows the effect of oscillations in the metabolic rate of oxygen (phasor 

cmro2()) that are neglected in this work.ctHb is the concentration of hemoglobin in 

blood. Other symbols are defined in the text. 

Term Expression 

[HbO]V() +ctHb[𝑆(𝑎)CBV0
(𝑎)

𝐜𝐛𝐯(𝑎)(ω) + 〈𝑆(𝑐)〉Ƒ(𝑐)CBV0
(𝑐)

𝐜𝐛𝐯(𝑐)(ω) + 𝑆(𝑣)CBV0
(𝑣)

𝐜𝐛𝐯(𝑣)(ω)] 

[Hb]V() +ctHb[(1 − 𝑆(𝑎))CBV0
(𝑎)

𝐜𝐛𝐯(𝑎)(ω) + (1 − 〈𝑆(𝑐)〉)Ƒ(𝑐)CBV0
(𝑐)

𝐜𝐛𝐯(𝑐)(ω) + (1 − 𝑆(𝑣))CBV0
(𝑣)

𝐜𝐛𝐯(𝑣)(ω)] 

[HbO]F() 
+ctHb [

〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))Ƒ(𝑐)CBV0

(𝑐)
ℋRC-LP

(𝑐) (ω) + (𝑆(𝑎) − 𝑆(𝑣)CBV0
(𝑣)

ℋG-LP
(𝑣) (ω))] [𝐜𝐛𝐟(ω)

− cmro𝟐(ω)] 

[Hb]F() 
−ctHb [

〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))Ƒ(𝑐)CBV0

(𝑐)
ℋRC-LP

(𝑐) (ω) + (𝑆(𝑎) − 𝑆(𝑣)CBV0
(𝑣)

ℋG-LP
(𝑣) (ω))] [𝐜𝐛𝐟(ω)

− cmro𝟐(ω)] 

 

Figure 2.3(a) and Figure 2.4 show that deoxy- and oxy-hemoglobin oscillations 

are in phase in breast tissue and out of phase in the brain. This is an indication that the 

hemodynamics measured with NIRS are dominated by blood volume dynamics in healthy 

breast tissue, whereas they result from both blood volume and blood flow dynamics in 

brain tissue. We hypothesize that this contrasting behavior is due, at least in part, to a 

difference in the elastic properties of breast and brain tissue; in particular, the presence of 

the rigid skull limits the vascular expansion in brain tissue that, instead, is not constrained 
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in breast tissue. Therefore, one may expect that the contributions of blood volume and 

blood flow to [Hb] and [HbO]  are different in breast and brain tissue. 

We observe that while the relative phase of [Hb]  and [HbO]  oscillations is 

related to the level of flow autoregulation, one may not associate a lack of phase shift 

between [Hb]  and [HbO]  oscillations with a lack of autoregulation. In fact, even in the 

absence of autoregulation, when blood flow oscillations passively follow mean arterial 

pressure oscillations so that cerebral blood flow and MAP (and, to a first approximation, 

cerebral blood volume) are in phase with each other, [Hb]  and [HbO]  oscillations are 

still, in general, out of phase with each other. This is because, as described in Section 2.1  

and shown in Table 2, [HbO]V() is in phase with cbv() whereas [HbO]F() lags cbf 

() as a result of the finite blood transit time in the microvasculature. 

 The phase relationship between [Hb]  and [HbO] oscillations in breast tissue may 

be affected by the presence of breast cancer. Breast tumors have a larger elastic modulus 

than healthy breast tissue [51], and they are also known to have an abnormal vasculature 

[52]. For both of these reasons, [Hb]  and [HbO]  oscillations in breast tumors may no 

longer be dominated by blood volume effects, as in healthy breast tissue, since the stiffer 

tissue and abnormal blood vessels may result in a less compliant tumor vasculature. 

Based on the model and results described here, [Hb]  and [HbO]  oscillations would 

become increasingly out of phase with each other as the contribution of blood volume 

oscillations decreases. 

 The in-phase oscillations of deoxy- and oxy-hemoglobin in the healthy breast 

tissue permitted us to compute the oxygen saturation of hemoglobin in the volume-
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oscillating compartments, 𝑆V = |[𝐇𝐛𝐎]V|/|[𝐇𝐛𝐓]|, simply as the ratio |[𝐇𝐛𝐎]|/|[𝐇𝐛𝐓]|. 

To measure the saturation of the volume oscillating compartments in the brain, one must 

take into account the blood flow contributions to the measured hemoglobin concentration. 

Kainerstorfer et al. have described in detail how to account for contributions from blood 

flow in order to measure 𝑆V in a general case where deoxy- and oxy-hemoglobin 

oscillations are not in phase with each other [53].  

 This work underlines the value of quantitative measurements of hemodynamic 

oscillations, be they induced by controlled perturbations in the arterial blood pressure (as 

done here) or be they spontaneously occurring. However, in order to interpret such 

quantitative measurements of oscillatory hemodynamics, it is important to understand the 

dynamic relationship between the measured quantities (deoxy- and oxy-hemoglobin 

concentrations in the case of NIRS) and the underlying physiological processes. In 

particular, this work highlights the qualitatively distinct behavior of different tissues 

(brain and breast) in response to the same systemic perturbation in arterial blood pressure. 

 For non-invasive optical studies of the human brain, it is important to consider the 

fact that, in addition to brain tissue, extracerebral tissue (scalp, skull, etc.) also 

contributes to the measured optical signals. In relation to the study reported here, this 

means that extracerebral hemodynamics may act as a confounding factor for the cerebral 

hemodynamics that we intend to investigate and compare to breast tissue hemodynamics. 

However, while potentially confounding contributions from extracerebral hemodynamics 

may affect our measurements of the relative phase shift of [HbO] and [Hb]  oscillations, 

they would not affect the main finding of this work that cerebral [HbO]  and [Hb]  

oscillations are out of phase, whereas [HbO]  and [Hb]  oscillations in the healthy breast 
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are in phase. Nevertheless, in an effort to quantify the effect of extracerebral 

hemodynamics on our dynamic NIRS measurements, we are currently exploring the 

application of a two-layer diffusion model to discriminate superficial and deep-tissue 

hemodynamics [37].  

2.5  Conclusion 
This study has shown that blood-pressure-induced hemodynamic oscillations behave 

qualitatively differently in the healthy breast and in the healthy brain. Specifically, the 

different phase delays between [Hb]  and [HbO] oscillations observed in the breast (~0° 

in the range 0.04-0.08 Hz) and the brain (~-200° at 0.06 Hz) may be attributed to 

different relative contributions of blood flow and blood volume oscillations to the 

measured oxy- and deoxy-hemoglobin concentrations. The situation may be different in 

pathologic conditions, which may affect the vascular compliance, the microvascular 

architecture, normal physiological mechanisms, and the elastic properties of tissue. In this 

case, a quantitative assessment of hemodynamic oscillations, possibly as a function of 

frequency as done in CHS, may offer diagnostically relevant information for pathologic 

conditions. The broad implications of this work are that CHS may be sensitive to 

perturbations to the integrity of the vasculature and hemodynamics in the brain (i.e. 

subarachnoid hemorrhage, traumatic brain injury, stroke, etc.) and in the breast (i.e. 

breast cancer). A thorough characterization of hemodynamic oscillations in tissue and 

their accurate interpretation can have a significant impact in the study of microvascular 

circulation and the assessment of its integrity. 
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Chapter 3: Frequency-resolved analysis of coherent 

oscillations of local cerebral blood volume and systemic 

mean arterial pressure 

3.1  Introduction 
Oscillations of systemic mean arterial pressure (MAP) induce localized responses in the 

body’s microvasculature, including oscillations in the cerebral blood volume.  The 

dynamics between the two physiologic signals may reflect effects from cerebral blood 

flow (CBF) and transit time though the microvasculature as well as effects from the 

vessel mechanical properties. Cerebral autoregulation (CA), the mechanism that 

maintains stable CBF despite changes in cerebral perfusion pressure (CPP), plays a large 

role in how CBF responds to oscillations of MAP. There has been an increasing interest 

in using indices of CA to guide therapy at the hospital bedside [54]. A characterization of 

cerebral blood volume changes in relation to MAP changes may improve the 

understanding of how they manifest effects of CA.  The effects of CA [14]  and the 

transit time of blood [34] on the phase dynamics of oxyhemoglobin and 

deoxyhemoglobin are frequency dependent (i.e. they depend on the frequency of the 

pressure wave), so we have focused on a frequency-resolved characterization of cerebral 

blood volume (proportional to the sum of oxyhemoglobin and deoxyhemoglobin) vs 

systemic mean arterial pressure. 

Cerebrovascular pressure reactivity has been used as a metric to quantify the 

relationship between cerebral blood volume and arterial blood pressure. This metric 

describes the general efficiency of cerebral vessels in performing volume changes in 

response to MAP changes. The pressure reactivity index (PRx) quantifies the reactivity 
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by correlating slow-wave oscillations (<0.05 Hz) of intracranial pressure (ICP; measured 

invasively) and MAP over time with a moving window.  ICP is used as a surrogate for 

cerebral blood volume. A high positive correlation coefficient between the two signals 

indicates pressure passive vasculature while a negative correlation coefficient indicates 

vessel reactivity. Higher, or more positive, PRx has been associated with worse outcomes 

in head-injured patients [55]. A near-infrared spectroscopy (NIRS) based hemoglobin 

volume index (HVx) has been proposed as a non-invasive alternative to the PRx  [56]–

[58]. Rather than using ICP, this index correlates total cerebral hemoglobin concentration 

([HbT]) with MAP.  [HbT] is proportional to local blood volume. 

Cerebrovascular pressure reactivity is indicative of  the ability of vessels to 

appropriately alter diameter in response to MAP changes. Cerebral autoregulation (CA) is 

the underlying mechanism that controls CBF via changes in arteriole resistance – 

hyperperfusion is reduced with arteriole constriction while hypoperfusion is increased 

with arteriole dilation [59], [60]. Lee at al note that in most physiological instances, the 

limits of pressure reactivity are wider than the limits of autoregulation, meaning that the 

range of blood pressures over which blood volume is responsive to blood pressure 

changes is wider than the range of blood pressures over which blood flow is constant 

[56]. In patients with traumatic brain injury, the correlation between cerebral pressure 

reactivity and CA has been moderate but highly significant [61]. NIRS has been used in 

several studies to quantify static  [62] autoregulation or autoregulation at very low 

frequencies (between 0.003 to 0.05 Hz) by comparing ABP to a cerebral tissue 

oxygenation index with a similar approach as the one used to compute PRx or HVx [63]–

[67].  



44 

 

A different way to assess CA is to induce oscillations [32] or transient changes 

[13] in CPP via changes in systemic mean arterial pressure (MAP). CBF is continuously 

and synchronously recorded with MAP so that their dynamic relationship may be used as 

a metric of CA [8]. Out-of-phase CBF and MAP time traces indicates that CBF is 

successfully counteracting MAP changes, while in-phase CBF and MAP indicates that 

CBF is passively following MAP. A passive relationship between CBF and MAP puts the 

brain at risk for injury from both increases and decreases in MAP.  

 Currently, the most commonly used method for measuring CBF in the assessment 

of dynamic CA is transcranial Doppler ultrasound (TCD) which monitors CBFV in the 

macrovasculature [14]. Autoregulation assessment in the macrovasculature is valuable for 

cerebral health assessment. However, it is a regional measure that may not be sensitive to 

focal deficits of autoregulation. For this reason, there has been interest in the assessment 

of localized autoregulation in the cerebral microvasculature. In addition to being 

continuous, a blood flow measurement technique for the microvasculature should be 

quantitative, non-invasive, and portable to enable accurate assessment of the timing of 

hemodynamic changes at the hospital bedside.  Biomedical optics has two candidates that 

meet these requirements: coherent hemodynamics spectroscopy (CHS) and diffuse 

correlation spectroscopy (DCS) [8]. CHS employs NIRS for measurement of 

oxyhemoglobin and deoxyhemoglobin concentrations in cerebral tissue. A hemodynamic 

model relates coherent oscillations of the hemoglobins at different frequencies to 

compute physiologic parameters such as the transit time of blood in the capillaries and 

the transit time of blood in the venules [34]. With the computed parameters, the model 

may be used to compute relative blood flow changes, absolute CBF, and the efficiency of 
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autoregulation [47]. The ability of CHS to quantify changes in CA has been validated 

with a study in which subjects performed normal breathing followed by hyperventilation 

to induce hypocapnia [35]. Ten out of eleven subjects in the study were found to respond 

to hypocapnia with the expected enhancement of autoregulation. The other biomedical 

modality, DCS, transmits near-infrared light to the cerebral microvasculature and then a 

photodetector and autocorrelator track the decay of autocorrelation between photons that 

have been scattered by moving red blood cells. A model fits for the decay rates over time 

to produce a time trace of relative changes in cerebral blood flow. DCS has also been 

used to assess the CA in healthy adults and was validated against TCD [68].  

Compliance of the microvasculature is the key mechanical property contributing 

to the response of blood vessels to systemic MAP changes. Vessel compliance is the ratio 

between changes in blood volume, V, to changes in blood pressure, P, in a vessel 

segment: 
∆𝑉

∆𝑃
. The arterial and venous compartments have different compliances, and 

research efforts have mostly focused on characterizing arterial compliance. Carrera et al 

extracted cerebral arterial blood volume from cerebral blood flow velocity (CBFV)  

measurements by transcranial Doppler to find that arterial compliance significantly 

decreased during hypocapnia relative to during normocapnia in healthy subjects [69]. 

Arterial compliance has also been studied with NIRS. A high density configuration of 

NIRS sources and detectors has been used to measure arterial compliance over the whole 

head by analyzing features of the optical signals at the frequency of the heart pulsation 

[70], [71]. It was found that arterial compliance was associated with factors such as 

cardiorespiratory fitness and age.  
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 We see then that compliance as well as CBF may contribute to the dynamic 

relationship between cerebral blood volume and MAP. There has been a large focus on 

quantifying the frequency-dependent relationship between CBF and MAP. There has 

been less focus on the study of the frequency-dependent relationship between cerebral 

blood volume and MAP. Tzeng and Ainslie make a case that the relationship between 

arterial pressure with other physiologic signals at 0 Hz or close to 0 Hz does not indicate 

the interplay of these signals at higher frequencies [72]. In our present study, we have 

analyzed the relationship between local cerebral blood volume and systemic mean arterial 

pressure with a frequency-resolved approach. Transfer function analysis (TFA) is a 

popular approach for assessing the frequency dependence of autoregulation which is 

typically active below the frequency range of 0.3 Hz [14], [73].  In another group, it has 

also been applied to study cerebrovascular pressure reactivity in patients with acute 

traumatic brain injury. The phase shift between ABP and ICP was computed with the 

wavelet transform. It was found that ABP and ICP were in phase at higher frequencies 

(around 1 Hz), and at some point in the lower frequency range would become out of 

phase. A negative PRx indicates a pressure-active vascular bed in which ABP and 

intracranial pressure (ICP) change in opposite directions to maintain a stable CPP. For 

patients with a negative PRx (intact cerebrovascular reactivity), the phase shift occurred 

in the range of 0.07-0.14 Hz, while the signals were phase-shifted between 0.006-0.07 Hz 

in patients with a larger PRx [74]. In our study, we have applied the TFA approach to the 

study of cerebral blood volume vs MAP using total hemoglobin concentration, measured 

with NIRS, and continuous MAP. The frequency dependent relationship between cerebral 

hemoglobin concentrations and systemic MAP has previously been presented in one 
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study with 3 subjects [75]. They analyzed spontaneously occurring oscillations. It was 

found that oxyhemoglobin concentration and arterial blood pressure (ABP) were 

generally in phase at frequencies close to 0, followed by an increasing lag of 

oxyhemoglobin relative to ABP which plateaued between 30-60 degrees during 0.1 Hz 

spontaneous oscillations. In another study, focusing on 0.1 Hz oscillations induced by 

paced breathing, the phase between ABP and total hemoglobin was 22.6 degrees on 

average for 37 healthy subjects with ABP leading [32].  In our study, we have measured 

22 healthy subjects to characterize the relationship between MAP and total hemoglobin 

([HbT]) across multiple frequencies in the range of 0.04 to 0.2 Hz. We used pneumatic 

thigh cuffs to induce controlled MAP oscillations to drive cerebral blood volume 

oscillations. We also implemented a time-varying approach for coherence analysis with a 

sliding short time Fourier transform. This enabled us to detect not only coherence 

between signals during thigh cuff oscillations but also spontaneously coherent 

oscillations, thus creating transfer functions with several points for characterization. With 

coherent hemodynamics spectroscopy, we have a model to compute cerebral blood flow 

from changes in oxyhemoglobin and deoxyhemoglobin concentration changes measured 

with NIRS as well as the efficiency of autoregulation. Total hemoglobin, the sum of oxy- 

and deoxyhemoglobin, is also measured with NIRS and is proportional to cerebral blood 

volume, as mentioned earlier. We therefore have the opportunity to determine the 

interplay of blood flow and blood volume under the effects of autoregulation. 
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3.2  Methods 

3.2.1 Subjects 
Twenty two healthy subjects (15 females; 7 males; age range: 21-51 years old) 

participated in the study. The Tufts University Institutional Review Board approved the 

experimental protocol, and the subjects provided written informed consent prior to the 

experiment. The data for nine of the female subjects has been previously analyzed for a 

comparison of the phase and amplitude between oxyhemoglobin and deoxyhemoglobin 

concentration oscillations in brain tissue [76].  

3.2.2 Experimental protocol and data acquisition 
Figure 3.1 is a flow chart to illustrate the framework for data collection and analysis. 

Each of the blocks will be described in detail in the following subsections of Methods. 
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Figure 3.1. Flow chart of data collection and analysis. I690(t) and I830(t) are the light 

intensities detected at 690 nm and 830 nm, respectively. Δ[HbT](t)  is the relative change 

in total hemoglobin concentration. ΔMAP(t) is the change in mean arterial pressure 

relative to the baseline absolute value of mean arterial pressure.  

 

In each experiment, the subject sat in a chair with their feet on the floor or sat on a bed 

with their back at a ~30 degree angle and their legs parallel to the floor. A near-infrared 

spectroscopy probe was placed against the forehead (8 subjects: spatial mapping probe 

with eight source-detector channels; 14 subjects: single source-detector channel). For full 

details of the particular set up for each subject, see Appendix A2.  A diagram of the 

channel locations for the spatial mapping probe is shown in Figure 3.2. The probe was 

custom made from a 3D printed, flexible plastic frame with holes for source and detector 

optical fibers. The frame was surrounded with black silicone. The probe was connected to 

a frequency-domain commercial NIRS instrument (10 subjects: OxiplexTS, ISS Inc., 

Champaign, Illinois; 12 subjects: Imagent, ISS Inc. Champaign, Illinois). Light with 

wavelengths of 690 nm and 830 nm was transmitted to the prefrontal cortex. For each 

pair of sources, the light intensity (I690(t) and I830(t)) after exiting the tissue was recorded 

with a detector at a distance of 3.5 cm away. The Modified-Beer Lambert law was used 

to compute relative changes in oxyhemoglobin (Δ[HbO2]), deoxyhemoglobin (Δ[Hb]), 

and total hemoglobin (Δ[HbT]) in units of microMolar (μM). The relative differential 

path length and baseline optical properties for 690 nm light to 830 nm light were 

determined either by a multi-distance approach (for single probe) [27] or a self-

calibrating approach (for the spatial-mapping probe) [77]. Extinction coefficients for 

oxyhemoglobin and deoxyhemoglobin were selected from [22]. To induce MAP 

oscillations, pneumatic cuffs were placed around both thighs and were connected to a 
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cuff inflation system (E-20 Rapid Cuff Inflation System, D.E. Hokanson, Inc., Bellevue, 

Washington). A microcontroller was connected to the regulator of the inflation system 

via a ¼ inch stereo phone plug in order to set customized rates of inflation and deflation 

(Arduino Uno R3). Maximum inflation of the cuffs was at least 180 mmHg in order to 

induce arterial occlusion. The air pressure in the thigh cuffs was continuously monitored 

with a digital manometer (Series 626 Pressure Transmitter, Dwyer Instruments, Inc., 

Michigan City, Indiana). Continuous arterial blood pressure (ABP) was recorded with a 

beat-to-beat blood pressure monitoring system (NIBP100D, BIOPAC Systems, Inc., 

Goleta, California). A pulse oximeter measured heart rate (OXY100E, BIOPAC systems, 

Inc, Goleta, California or Nellcor PM-1000, Nellcor Inc., Hayward, CA). All signals 

were recorded synchronously with a sample rate of at least 6.25 Hz. 

 

Figure 3.2. Spatial mapping probe diagram. Detectors are indicated with the large gray 

circles. Pairs of co-localized 690 nm and 830 nm light sources are indicated with the red 

circles. The “R” and “L” indicate the parts of the probe that were against the right and left 

sides of the forehead, respectively. The dashed lines connect the source-detector pairs 

that were used in the analysis. The source-detector distance is 3.5 cm for each pair. The 

channels are labeled 1-8 next to the dashed lines. 

 

 Experiment duration was 20-60 minutes. In each experiment, the thigh cuffs 

inflated at frequencies ranging from 0.04 Hz to 0.20 Hz in order to induce MAP 

oscillations that would drive coherent changes in cerebral hemodynamics. The first 

protocol included separately induced oscillations with a baseline period in between each 
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epoch of oscillations. Figure 3.5 shows an example of this type of protocol for the second 

half of the experiment. The boxes represent a time duration of 90 seconds followed by 90 

second breaks. The second protocol was a “chirp” like protocol, meaning that the 

frequency of oscillations linearly increased over time without baseline periods in between 

each frequency. Each frequency lasted for a duration of 6 periods. An example of this 

type of protocol is shown in Figure 3.5 for the first half of the experiment. Each type of 

protocol consisted of the same frequencies-the difference was in the timing in duration of 

the frequencies. See Appendix A2 for induced frequencies for each subject. The variation 

in experimental protocols is acceptable for our study, because the requirements to apply 

our analysis methods are only time traces of ΔMAP  and Δ[HbT]. Coherence between 

ΔMAP and Δ[HbT] was computed across the frequency range of interest, as described in 

more detail in the next section. Coherence thresholding enabled us to select both induced 

and spontaneously coherent frequencies for use in the transfer function analysis.    

 Figure 3.3 shows an example of the time traces collected for each experiment in 

order to convey how cuff pressure changes induced both systemic changes in MAP as 

well as local Δ[HbT]. The traces in Figure 3.3 are from the data set of subject 5 (channel 

8) during the segment of the experiment where 0.09 Hz oscillations were induced. The 

top panel shows the thigh cuff signal measured with the manometer. Gray rectangles 

indicate the start of inflation and start of deflation for each pulse of the thigh cuffs. The 

middle panel shows heart rate in units of beats per minute (bpm). The bottom panel 

shows the time traces for MAP (black line) and Δ[HbT] (gray line). We also provide 

example time traces for the chirp-like portion of the protocol for Subject 5 in Figure 3.4. 
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Figure 3.3. Example time traces of induced oscillations from Subject 5. The frequency is 

0.09 Hz. Gray rectangles indicate the start of inflation to the start of deflation for each 

pulse of the thigh cuffs. Top panel: Thigh cuff pressure measured with the manometer. 

Thigh cuffs were inflated for 11 seconds and deflated for 11 seconds to induce 

oscillations around 0.09 Hz. Middle panel: Heart rate measured with the pulse oximeter 

in units of beats per minute (bpm). Bottom panel: MAP (black line) and total hemoglobin 

changes (Δ[HbT], gray line). Signals in the middle panel and bottom panel have been 

low-pass filtered with a cut-off frequency of 0.25 Hz to eliminate noise and heart rate 

pulsations for better visualization of oscillations in the low frequency range. 
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Figure 3.4. Time traces for chirp-like portion of protocol for subject 5. Top panel: Thigh 

cuff pressure signal. Middle panel: ΔMAP. Bottom panel: Δ[HbT].  Time-axis is shown 

relative to 0 seconds to assist with interpretation of cuff inflation and deflation times. 

Gray bars also indicate the inflation times of the cuffs throughout all three panels. 

3.2.3 Time-varying coherence and coherence 

threshold 
The mean of MAP during baseline was subtracted from the signal in order to obtain 

relative changes of MAP in units of mmHg, notated as ΔMAP. In order to perform 

transfer function analysis (TFA) between ΔMAP  and Δ[HbT] to characterize the 

relationship between the two signals, the coherence was computed to determine if the 

signals were sufficiently linearly coupled.  Signals are coherent at a particular frequency 

when their relative amplitudes and phases are stable at this frequency. Because each 

frequency was induced sequentially, the two signals were non-stationary- the signals may 

have been coherent at a frequency during segments of the experiment but not necessarily 

for the entire experiment. Standard spectral approaches may miss detection of a coherent 
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frequency if it is not present during the entire signal. Therefore, the coherence between 

ΔMAP and Δ[HbT] was computed with a time-varying approach based on the short time 

Fourier transform. The mean squared coherence as a function of frequency f and time t, 

𝑀𝑆𝐶∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡), is as follows: 

𝑀𝑆𝐶∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡) =  
|𝑃∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓,𝑡)|

2

𝑃∆𝑀𝐴𝑃,∆𝑀𝐴𝑃(𝑓,𝑡)𝑃∆[𝐻𝑏𝑇],∆[𝐻𝑏𝑇](𝑓,𝑡)
  (3.1) 

 

where  𝑃∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡) is the cross power spectral density between ΔMAP and 

Δ[HbT], 𝑃∆𝑀𝐴𝑃∆𝑀𝐴𝑃(𝑓, 𝑡) is the power spectral density of ΔMAP and  𝑃∆[𝐻𝑏𝑇]∆[𝐻𝑏𝑇](𝑓, 𝑡) 

is the power spectral density of Δ[HbT]. Perfect linear coupling has a coherence of 1 and 

absent linear coupling has a coherence of 0. We selected to perform the spectral analysis 

with the short time Fourier transform (STFT) based on Welch’s overlapped averaged 

periodogram method [78]. Our frequency range of interest was between 0 to 0.20 Hz. The 

performance of the STFT and wavelet approaches are similar, although the wavelet 

approach has a more straight forward implementation of a frequency-varying time 

resolution [38]. For our relatively narrow frequency range of interest, we decided to use 

the STFT approach because frequency-varying time resolution was not needed. The 

STFT was performed with a time resolution of 180 seconds and a frequency resolution of 

0.0133 Hz. Each 180 second segment of data was divided into two windows with 50% 

overlap which were each multiplied by a Hamming window to reduce spectral leakage. 

The Matlab function “mscohere” performed the coherence computation. The window for 

analysis was shifted by 4 seconds in order to create a pseudo-continuous time trace of 
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coherence for each frequency. The output of this procedure was an image of coherence, 

with time along the x-axis and frequency along the y-axis. 

 To compute a coherence threshold, we used the approach described by Sassaroli 

et al 2018 [79]. Two sequences of random numbers were generated to simulate time 

traces of  I690(t) and I830(t) with zero mean. The modified Beer Lambert law computed the 

concentration of Δ[HbT]. Another sequence of random numbers was generated to 

simulate ΔMAP. Our approach for coherence analysis was applied to these independent 

sets of random numbers 1000 times to generate the null statistics for coherence. We 

found that coherence between ΔMAP  and Δ[HbT] was significant at the 5% level if it 

was greater than 0.79, so we selected this value as our threshold. We applied this 

threshold to the image of coherence. 

 Following thresholding of the coherence image, we determined the connected 

components in the binary image (function “bwconncomp”) which considers adjacent 

pixels as part of the same group. We computed the area of each separate group of 

connected pixels which we call clusters. We expected coherence between the two signals 

to be maintained for at least several seconds, indicating that single pixels or small clusters 

of pixels passing the threshold were likely to be noise. A second set of data for generating 

the null statistics for coherent cluster size was created with another run of 1000 random 

independent time traces of ΔMAP  and Δ[HbT]. Upon thresholding with the selected 

value of 0.79, the size of each coherence region within the image was recorded. We 

computed that regions greater than 13 pixels had a 5% chance of being designated as 

coherent when they were not coherent. In the analysis of the experimental data, 

coherence was computed between ΔMAP  and Δ[HbT]. We created a binary image with 
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1’s indicating pixels that passed the coherence threshold. Then the size of coherent 

clusters was computed and pixels in clusters whose size was less than 25 pixels were set 

to 0 in the binary image. We heuristically found that the threshold of 25 pixels, with a 

significance level of 0.2%, provided estimates of transfer functions with less variability 

than a threshold of 13 pixels without eliminating too many clusters. After the size 

thresholding, some single pixels protruded at the edges of clusters that we also considered 

as noise. A morphological filter was applied to the binary coherence image to eliminate 

protruding pixels.  

 

3.2.4 Time-averaged transfer function analysis 
The transfer function between ΔMAP  and Δ[HbT] was computed with the same time 

resolution, frequency resolution, and windowing approach as the coherence computation. 

The Matlab function “tfestimate” was used for this portion of the analysis. The transfer 

function over frequency and time is written as follows: 

𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡) =  
𝑃∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓,𝑡)

𝑃∆𝑀𝐴𝑃∆𝑀𝐴𝑃(𝑓,𝑡)
    (3.2) 

where the magnitude of the transfer function is the relative change in micromolars of total 

hemoglobin to mmHg of mean arterial pressure. The phase of the transfer function is the 

phaseΔ[HbT]- ΔMAP. MAP oscillations lead [HbT] oscillations which means that the 

phaseΔ[HbT]- ΔMAP is mathematically negative. 

 The time-frequency transfer function, at pixels that passed the thresholding 

procedure, was averaged across time with the assumption that each coherent pixel in time 

is a sample of the same transfer function. The result describes the relationship between 
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ΔMAP  and Δ[HbT] as a function of frequency as shown in Equation 3.3 where 〈 〉 

indicates an average across time. 

𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓) =  
〈𝑃∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓,𝑡)〉

〈𝑃∆𝑀𝐴𝑃,∆𝑀𝐴𝑃(𝑓,𝑡)〉
    (3.3) 

3.2.5 Model fitting 
Following the computation of the transfer functions, we summarized their features by 

fitting to the low-pass filter model of  Equation 3.4 with two parameters: gain, K, and 

time constant, τ.  

∆[𝐻𝑏𝑇](𝑓) = 𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓)∆𝑀𝐴𝑃(𝑓) ≅
𝐾

1+𝑗2𝜋𝑓𝜏
∆𝑀𝐴𝑃(𝑓)  (3.4) 

The two parameter low-pass filter model was found by the Akaike information criterion 

[80] to be a suitable trade-off between model complexity and quality of fit to the data 

sets. We used a prediction error minimization algorithm in Matlab to determine the 

optimal parameters to describe the transfer function (function “pem”). The range for K 

was set between 0 and 2 µM/mmHg, and the range for τ was set between 0 and 6 

seconds. The fit to each data point in the spectra was weighted by its average coherence 

over time such that errors associated with points with higher coherence contributed more 

to the loss function being minimized. The quality of fit was quantified with the 

normalized root mean square error between the measured data and the data estimated 

from the fit of the model, ranging from  negative infinity for a bad fit to 100% for a 

perfect fit. 
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3.3  Results 

3.3.1 Single probe location 
For the analysis across all subjects, we selected the source-detector channel 

corresponding to the position on the left or right side of the forehead above the orbital 

rim. For all subjects who wore the spatial mapping probe, the left channel was arbitrarily 

selected for a consistent comparison across these subjects. Figure 3.5 shows the results of 

the time-frequency coherence computation for subject 5. The experiment duration was 40 

minutes and the timing and frequencies of the induced thigh cuff oscillations are marked 

with red boxes in Figure 3.5. The center of each box indicates the central frequency and 

time. The top and bottom edges of the box indicate the frequency resolution, and the left 

and right edges of the box indicates the time resolution. The first section of red boxes 

indicates the portion of the experiment where we induced chirp-like oscillations for 6 

pulses over 7 frequencies. The second section of red boxes shows where oscillations were 

performed with the thigh cuffs for 90 seconds each, followed by 90 second breaks, over 7 

frequencies.  Figure 3.5 shows the coherence values and indicates that the thigh cuffs 

successfully enhanced coherence between the two signals. It is also visible in the figure 

that the signals were spontaneously coherent with each other for portions of the 

experiment in which the thigh cuffs were not oscillating. Figure 3.5 was generated with a 

time window sliding by one sample at a time for visualization purposes. Figure 3.6 shows 

the times and frequencies at which the coherence between the two signals passed the 

coherence (left panel) and size (right panel) thresholds where yellow indicates the pixels 

that have passed the thresholds. In this case, the results are shown for the actual time 

window we used in the analysis which slid by 4 seconds at a time.  
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Figure 3.5. Coherence between ΔMAP  and Δ[HbT] for subject 5. Red boxes indicate 

timing and frequency of oscillations induced with the pneumatic thigh cuffs. The group 

of boxes on the left are associated with the chirp-like protocol and the group of boxes on 

the right are associated with oscillations of equal duration and spacing across time.  

 

 



60 

 

Figure 3.6. Binary coherence between ΔMAP  and Δ[HbT] over time and frequency 

where yellow is coherent and blue is not coherent for subject 5. Red boxes indicate 

timing and frequency of oscillations induced with the pneumatic thigh cuffs. Left panel: 

Binary image of pixels that passed the coherence threshold.  Right panel: Binary image of 

pixels that passed the coherence threshold and then the cluster size threshold followed by 

clean up of protuding pixels. 

 

Figure 3.7 shows the results of the transfer function analysis for the data of subject 5, 

channel 8. The left panel of Figure 3.7 shows the amplitude ratio between ΔMAP and 

Δ[HbT] at the coherent frequencies. The right panel shows the phase difference between 

ΔMAP  and Δ[HbT] at the coherent frequencies. In these figures, the blue color indicates 

frequencies that did not pass the coherence thresholding.  

 

Figure 3.7. Transfer function analysis results for subject 5. Left panel: Amplitude ratio, 

between ΔMAP and Δ[HbT], |𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡)|, at the coherent pixels indicated by the 

right panel of Figure 3.6. Right panel: Phase difference between ΔMAP and Δ[HbT]  at 

the coherent pixels, ∠𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡). Regions of the images which are dark blue did 

not pass the coherence thresholding.  

 

Following the computation of 𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓, 𝑡), the data was averaged across time, 

including both the chirp and oscillation protocols, to produce the spectra 

𝐻∆𝑀𝐴𝑃,∆[𝐻𝑏𝑇](𝑓). The average values and the standard error of the mean are shown as the 
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blue circles with error bars in Figure 3.8 for Subject 5. We also include results in Figure 

3.8 for four additional representative subjects. A summary of the average relative 

amplitude and phase between  ΔMAP and Δ[HbT] for all  twenty two subjects is shown 

in Table 3. 

Table 3. Frequencies, number of subjects n whose spectra included the frequency, group 

average  and standard error for amplitude ratio between Δ[HbT] and ΔMAP, group 

average and standard error for phase difference between ∠[HbT] and ∠MAP. 

Frequency (Hz) n ∆[HbT]

∆MAP
 μM/mmHg 

∠∆[HbT]-∠∆MAP (degrees) 

0.040 17 0.11 ± 0.01 -21 ± 4 

0.053 21 0.10 ± 0.01 -25 ± 3 

0.067 22 0.09 ± 0.01 -33 ± 3 

0.080 22 0.08 ± 0.01 -41 ± 3 

0.093 22 0.08 ± 0.01 -42 ± 3 

0.106 21 0.07 ± 0.01 -48 ± 4 

0.120 19 0.06 ± 0.01 -54 ± 4 

0.133 20 0.06 ± 0.01 -58 ± 5 

0.146 18 0.07 ± 0.01 -55 ± 5 

0.160 18 0.06 ± 0.01 -60 ± 5 

0.173 16 0.05 ± 0.01 -64 ± 6 

0.186 17 0.05 ± 0.01 -54 ± 6 
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Fitting to the low-pass filter model of  Equation 3.4 was performed to obtain 

parameter values of K= 0.22 ± 0.02 μM/mmHg and τ= 1.60 ± 0.17 seconds for Subject 5. 

The quality of the fit was 67%. The lines determined by the fitted parameters for the 

subjects in Figure 3.8 are also shown in that figure.  

 

Figure 3.8. The fitted transfer functions between Δ[HbT] and ΔMAP and points for 5 

representative subjects. Symbols are the average values and error bars are the standard 

error of the mean. The line is the best fit computed for the low-pass filter model.  

 

Figure 3.9 provides a summary of the parameters and quality of fits for the 22 subjects. 

The top panel shows that the gain of the transfer function ranged from 0.03 to 0.24 

μM/mmHg. The average is 0.12 ± 0.05 μM/mmHg.  The middle panel shows that the 
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time constant of the transfer function ranged from 0.47 to 4.15 seconds. The average is 

1.7± 0.96 seconds.   The bottom panel shows that the quality of fit ranged from 39% to 

87%. The average is 61± 13%. 

 

 

Figure 3.9. Parameters for 22 subjects. Top panel: Gain, K. Middle panel: Time constant, 

τ. Bottom panel: Fit percent. 

 

3.3.2 Spatial Mapping 
Eight of the subjects wore a spatial mapping probe that covered eight locations across the 

prefrontal cortex. The transfer function between ΔMAP  and Δ[HbT] was calculated for 

each of the channels and a fit to the low-pass model was performed. Figure 3.10 shows 

the averages and errors for the spectra of all 8 channels computed from the data of subject 

5, and the lines are defined by the best fit parameters.  

 

 



64 

 

 

 

 

Figure 3.10. The spectra and best fit lines computed for all channels measured with 

subject 5. We overlay two spectra in each panel for easier visualization. 

 

Figure 3.11 summarizes the parameter values with box plots for the 8 channels in all 8 

subjects. The central line in each rectangle is the median parameter value across the 8 

channels. The bottom edge is the 25th percentile and the top edge is the 75th percentile. 

The whiskers extend to the most extreme data points that are within ±2.7 standard 



65 

 

deviations of the mean value. Points beyond the whiskers are considered outliers and are 

marked with an “x”. 

 

Figure 3.11. Box plots for the 8 subjects with the spatial mapping probe where each box 

represents the spread of parameters across the 8 channels in the probe. Top panel: Gain, 

K. Middle panel: Time constant, τ. Bottom panel: Fit quality.  

 

3.3.3 Comparison of thigh cuff oscillation 

protocols 
As shown in Appendix A2, for 10 subjects, the experiment consisted of two kinds of 

protocols. In Figure 3.12, we show the parameters if we use our frequency domain (FD) 

data analysis approach for the full experimental data set, only the segment of spaced 

oscillations, or only the segment of the chirp. The bottom panel shows the time length of 

data used for computing each set of parameters. 

We also performed fitting between ΔMAP  and Δ[HbT] in the time domain (TD). 

Each signal was segmented to the chirp portion of the experiment. For example, the 
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signal in the middle panel of Figure 3.4 (ΔMAP) was the input and the signal in the 

bottom panel of Figure 3.4 (Δ[HbT]) was the output for the model. The time domain 

traces were  fit with the same low-pass model structure, using again the predication error 

minimization algorithm which sought to minimize the difference between the measured 

output and the predicted output of the model. The benefit of this approach is that the 

amplitude and phase of the transfer function do not have to be estimated prior to fitting 

with the model, because the time traces are fit directly. The assumption with this 

approach is that the segments of Δ[HbT] and ΔMAP  are coherent with each other across 

the entire time window of several minutes. An example of the resulting agreement 

between the measured Δ[HbT]  and computed Δ[HbT] time traces, based on applying the 

estimated model to ΔMAP is shown in Figure 3.13.   

 

Figure 3.12. Parameters and duration of four protocols/fitting approaches for 10 subjects 

that had both sets of data. Points have been excluded for which the quality of the model 

fit was less than 10%. 
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Figure 3.13. Measured Δ[HbT] (black line)  and computed Δ[HbT] (light blue line). 

Computed Δ[HbT] was determined by applying the estimated model for the relationship 

between Δ[MAP]  and Δ[HbT]. These results are for subject 5. 

 

We created correlation plots and Bland-Altman plots [81] to assess the correlation 

and agreement between the parameters computed from each protocol, respectively. The 

results for a comparison between the oscillation approach (red asterisks in Figure 3.12) 

and chirp frequency domain approach (yellow squares in Figure 3.12) are shown in  

Figure 3.14. For the gain parameter, K, the correlation coefficient is 0.82. The coefficient 

of variation (standard deviation of differences divided by mean) was 20%. The average 

difference is 0.01 µM/mmHg and it is not statistically different from 0. For the time 

constant parameter, τ, the correlation coefficient is 0.97. The average different is -0.21 s 

and it is not statistically different from 0. The coefficient of variation is 27%. 
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Figure 3.14. Linear plots (left) and Bland-Altman plots (right) to visualize the correlation 

and agreement between the oscillation protocol and chirp protocol, both analyzed with 

the frequency domain approach. Dashed lines on the left indicate a slope 1 and solid lines 

indicate the actual linear fit to the data points (black circles). Dashed lines on the right 

indicate the 95% confidence interval for agreement. The solid lines indicate the average 

difference between the parameters while the points indicate the difference between each 

pair of parameters.  

 A comparison of the estimated transfer functions from the FD approach of 

analyzing the full time traces and the TD approach for analyzing the segmented chirp-like 

time traces is shown in Figure 3.15. The shaded regions indicate the confidence bounds 
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for three standard deviations. Amplitude estimated from the FD analysis is slightly larger 

than from the TD analysis. The phase difference estimated from each approach are close 

to overlapping. We refer to the blue circles and green diamonds of Figure 3.12 for the 

quantitative comparison of the parameters obtained from each of these approaches.  

 

Figure 3.15. Transfer function (black line) estimated from the frequency domain (FD) 

approach of analyzing the full length of the data and the points that were estimated from 

the short time Fourier transform (STFT) approach for subject 5. Also, transfer function 

(light blue line) estimated from the time domain (TD) approach applied only to the 

segmented chirp-like section of the experiment protocol.  

3.4  Discussion 
We have applied an STFT approach for coherence, amplitude, and phase analysis 

between non-stationary MAP and cerebral total hemoglobin concentration. Previously, 

we have used the Hilbert transform approach for a similar analysis [33], [36]. The benefit 
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of the STFT approach is that we do not need to perform band pass filtering at specific 

frequencies, which is a time consuming process. Instead, we may consider the entire 

duration of the experiment and use coherence thresholding to detect not only induced 

cerebral oscillations but also oscillations that are spontaneous. Analysis of coherence and 

phase in the time-frequency domain has been used in several studies for analyzing 

systemic and localized signals of the vasculature [82]–[86]. A review by Addison focuses 

on NIRS based studies of autoregulation that have used the wavelet approach for time-

frequency analysis [87].   

 Often, a coherence threshold is arbitrarily selected as 0.5. Sassaroli et al has 

discussed more robust methods for selecting a coherence threshold for CHS studies 

which  are based on surrogate data [79]. Furthermore, incorporating additional 

information about the expected structure of the measured signals in the time-frequency 

domain enables opportunities for noise removal [88], [89]. For example, the sliding 

window and cluster size threshold further reduced noise from the coherence images.  

Our results indicate that total hemoglobin concentration in the cerebral 

microvasculature lags changes in systemic arterial blood pressure at frequencies between 

0.04 Hz and 0.20 Hz. The time constant of the fitted low pass transfer function, 

considering the entire experiment duration,  across all 22 subjects was 1.75 ± 0.9 s. We 

may translate the computed phase delays to time delays. For example, at the frequency 

0.106 Hz, the phase difference between ∠[HbT] and ∠MAP is -48o. This is translated to a 

time delay of -1.26 s (
-48

o

360
o
×0.106 Hz

). The propagation time of arterial pressure waves from 

the macrovasculature to the microvasculature is on the order of tens to hundreds of 

microseconds [90], [91], indicating that its contribution to our computed time delay is 
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negligible. The time constant we observe may instead be due to the transit time of blood 

through the microvasculature. The arteriovenous transit time (AVTT) from a branch of 

the MCA to a draining vein in the cortical region has been computed in mice using 

videomicroscopy and different tracers [92]. AVTT values ranges from 0.35 to 1.18 

seconds which is within the same order of magnitude as the time delay we observed. In 

the model of coherent hemodynamics spectroscopy (CHS), we set a range of capillary 

transit times between 0.4 to 1.4 seconds based on the expected saturation of blood when 

it reaches the venous compartment [47]. The venous transit time may be on the order of 8 

seconds depending on the tissue volume that NIRS probes. In a study of healthy humans, 

CBFV changes in the straight sinus vein and middle cerebral artery were concurrently 

recorded in response to a large and rapid decrease in systemic arterial blood pressure 

[93]. The interval of time before autoregulatory action of the artery was 0.95 seconds and 

the time was 2.6 for the vein. The difference between these timings is 1.65 seconds 

possibly indicating the delay for effects of autoregulation to travel to the venous 

compartment. Our results, showing a time delay between volume and MAP on the order 

of seconds,  give us reason to believe that the oscillations of [HbT] we observe in the low 

frequency range are due to delayed effects of CBF flow oscillations after they have 

propagated to the venous compartment.  

The estimated gain parameter (0.12 ± 0.05 μM/mmHg ) is dependent on the 

relative contributions of the arterial and venous compartments to our blood volume 

measurements. The contribution of each compartment during hemodynamic changes is an 

area of active research [94]–[96]. The arterioles modulate their diameter to regulate blood 

flow while venules are thought to passively change in volume. However, the arterial 
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compartment contributes less to overall blood volume (~30 % [97]) and venules are much 

more compliant [98] which means their contributions to overall volume changes may still 

be significant as they dilate in response to autoregulation controlled changes.  In fact, the 

gain parameter may be a combination of the response of CBF amplitude changes to MAP 

amplitude changes as well as the response of [HbT] changes in the venous compartment 

to CBF changes. A dominant contribution of the venous compartment due to its high 

compliance would be consistent with our hypothesis that the time delay we have 

observed is due to the venous compartment which, relative to the arterial compartment, is 

delayed in its response to hemodynamic changes. 

Another parameter that may affect the phase delay is the time constant for CA. 

CA can be modeled as a high pass filter, because it attenuates slow changes in CBF but 

passes through fast changes in CBF such as those at the frequency of the heart rate. A 

higher cutoff frequency for the filter indicates a more efficient autoregulation, because it 

can attenuate CBF over a wider range of frequencies. Kainerstorfer et al [35] translated 

the results of Aaslid et al [13] to compute an RC high-pass cutoff frequency for CA 

between 0.03 to 0.06 Hz, dependent upon arterial CO2 concentration. Fraser et al found 

similar values for the cutoff frequency of autoregulation with a range between 0.025 to 

0.036 Hz [99]. By translating the cutoff frequency with the equation 𝑓𝑐 =
1

2𝜋𝜏
 and 

selecting a typical value for 𝑓𝑐 of 0.03 Hz, we find that the time constant is ~5 seconds. 

This time constant would directly affect the phase delay between CBF and MAP. The 

contribution of the time constant to the phase delay between CBV and MAP would 

depend on the interplay between CBF and CBV.  
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 We compare the relative phase difference we found to results from other studies. 

Our results agree with those of [32], [75] described in the introduction in which MAP 

was found to lead [HbO].  In a different study, it was found that oscillations in [HbO] 

occurred before those in MAP at  the frequencies with highest wavelet coherence [100]. 

These results are in opposition to ours, and we note the large variability of the estimated 

phase in [100] as a possible reason for the discrepancy. Payne et al presented model 

simulations of the transfer functions between [HbO] vs ABP and [Hb] vs ABP [101]. The 

model consisted of the arterial, capillary, and venous compartments, in which the arterial 

and venous comparts behaved like balloon models, and it also incorporated equations for 

oxygen transport based on the concentrations of oxyhemoglobin and deoxyhemoglobin. 

Their model indicated that the ratio of arterial to venous blood volume has a strong 

influence on phase dynamics. The frequency domain transfer function of [HbO] and 

ABP, which  they simulated with nominal parameters, exhibits the low pass filter 

relationship that we have found with our experimental data. Payne et al compared their 

results to those of Reinhard et al [32] , who presented the phase delays at 0.1 Hz, because 

experimental data for phase delays at multiple frequencies was not available at that time. 

Payne found an agreement with Reinhard’s results. Quick et al has also studied the 

frequency-dependent relationship between volume, derived from CBF, and pressure, and 

similarly found a low-pass relationship [102], [103].  

 While we have focused on a low frequency range, our results have interesting 

implications for oscillations at the frequency  of the heart rate. If we consider that the 

relative amplitude and phase between cerebral blood volume and MAP are mostly 

unaffected by effects of CA and blood transit time, their relative amplitude is indicative 
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of arterial vessel compliance, because this is the compartment where arterial blood 

pressure strongly oscillates. Baker et al studied arterial vessel compliance in the 

microvasculature with DCS [104]. We translate the compliance values they found to the 

units we are interested in and found that arterial compliance ranges between 0.0048 to 

0.0182  µM/mmHg considering one standard deviation. We computed the amplitude ratio 

of cerebral blood volume to MAP at the heart rate (data not shown) and found a value of 

0.01 ± 0.02 µM/mmHg. The results we found not only depend on the compliance of the 

vessels but also on the blood vessel density, the local tissue stiffness, relative 

contributions of large and small vessels as well as anatomical features. We found a range 

for the phase between [HbT] and ABP at the heart rate between -30 to 30o (data not 

shown). Deviations from the expected 0 o phase difference could be explained by small 

time-delayed contributions of blood flow oscillations in the venous compartment.  

We have offered explanations for the relationship we found for ΔMAP and 

Δ[HbT] in terms of transit time in the microvasculature, cerebral autoregulation, and 

compartmental compliances.  The frequency range under analysis may have an impact on 

the relative importance of each of these factors. For example, in a study by Zhang et al, 

the contribution of steady-state resistance and vascular compliance vs active dynamic 

autoregulation were found to depend on the frequency range of interest [105]. Several 

other factors may also contribute to transfer functions between these two signals: the 

concentration of arterial blood gases such as carbon dioxide [106]–[108]; cerebral spinal 

fluid and global compartment compliance [5], [109]; the effects of the arterial 

compartment on the venous compartment [98]; properties of absolute arterial pressure 

(baseline value, direction of change, rate of change) [110]; baroreceptor sensitivity [5]. In 
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addition, factors such as  disorders of the carotids or other large arteries [111], [112], low 

global cerebral oxygen metabolism [113], and altered arterial compliance [114] may 

affect the transfer functions between ΔMAP and Δ[HbT]. 

The spatial variability characterized in the 8 subjects in this study can serve as a 

control for future studies analyzing the spatial volume and pressure relationship in brain 

injured patients. A NIRS spatial mapping approach has already shown utility in observing 

hemispheric difference in patients with unilateral carotid disease [115]. In that study, the 

phase between oxyhemoglobin and ABP was computed for oscillations at 0.1 Hz. They 

used a cutoff phase of -50o, where a phase less than -50 o  between oxyhemoglobin and 

ABP was considered unhealthy while a phase greater than this cutoff was considered 

healthy. The phase differences they found between oxyhemoglobin and ABP should be 

similar to what we found between total hemoglobin and MAP because oxyhemoglobin is 

the dominant contributor to total hemoglobin. The group average phase difference 

between Δ[HbT] and ΔMAP  in our study was -48 o ±4o. This average phase difference is 

within the healthy range considered by [115] although close to the cutoff. We note that 

our study considered oscillations induced by thigh cuffs as well as spontaneous 

oscillations while [115] used paced breathing oscillations. 

We used a source-detector distance of 3.5 cm for our measurements, because it is 

well-established that this distance has sensitivity to the top of the cerebral cortex. 

However, the nature of NIRS means that these measurements were also sensitive to the 

extracerebral layer. A two layer model that separates oscillatory contributions to optical 

signals from the cerebral and extracerebral layer has potential for us to improve our 

sensitivity to only the cerebral layer [116]. 
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The addition of the microcontroller to the air regulator has created opportunities 

for unique pneumatic cuff protocols. Figure 3.12, bottom panel, shows that the chirp-like 

protocol for the thigh cuffs can cover the same number of frequencies in less time than 

the spaced oscillation approach we have used in the past.  Of particular interest was a 

comparison between the spaced oscillations and the chirp-like signals shown in Figure 

3.14. Both parameters have a high correlation coefficient and do not have a difference 

statistically different from 0. However, the comparison contains a small number of 

points. Differences may arise between the standard oscillatory protocol and the chirp, 

because less oscillations were in each frequency for the chirp, meaning less time for the 

body to reach a steady state. Our initial results indicate a strong potential for faster 

experimental protocols. 

3.5  Conclusion 
We have characterized the frequency-dependent relationship between the cerebral 

concentration of total hemoglobin and MAP. The relationship can be modeled as a low-

pass filter whose shape is possibly dictated by contributions from the effects of 

microvascular transit time, cerebral autoregulation dynamics, and compliances of the 

arterial and venous compartments. NIRS-CHS offers potential monitoring applications 

with its capability to measure both localized cerebral blood volume and blood flow. The 

interaction of volume and flow may be used as a localized characterization of cerebral 

vascular health. 
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Chapter 4: Coherent hemodynamics spectroscopy in the 

neurocritical care unit 

4.1  Introduction 
In this chapter, we illustrate the full pipeline of NIRS-CHS- from creating spectra of 

[HbO] vs [Hb] and [HbT] vs MAP to computing absolute cerebral blood flow. We use 

data from a feasibility study in a neurocritical care unit (NCCU) . As described in 

Chapter 1, both autoregulation and cerebral blood flow can be affected by cerebral injury 

and by a number of brain pathologies.  

 The underlying principle of coherent hemodynamics spectroscopy (CHS) is that 

[HbO] and [Hb] are coherent with a physiologic driving force such as MAP.  MAP can 

induce oscillations of cerebral blood volume and cerebral blood flow and is used for 

characterizing cerebral autoregulation. Previously cerebral blood volume has been used 

as a surrogate for MAP in the hemodynamic model. The model equations are modified in 

this chapter to include MAP directly.  

4.2  Methods 

4.2.1 Data collection 
 

For a summary of all subjects in the study, see Table A3 in the Appendix. We describe 

our methods and results for a 67 year old male patient with intraventricular hemorrhage. 

During measurement, he was not under sedation. His heart rate was 1.34±0.10 Hz and his 

average mean arterial pressure (MAP) was 100 mmHg . His spontaneous respiratory rate 

was 0.41±0.05 Hz.  His score on the Glasgow coma scale (GCS) was 13 during 

measurements and was 15 upon release from the NCCU. A diagram of the experimental 
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setup is shown in Figure 4.1. A frequency-domain NIRS system (OxiplexTS, ISS Inc., 

Champaign, IL) was connected to an optical probe with source-detector distances of 2.0, 

2.5, 3.0, and 3.5 cm. The optical probe was placed on the right side of the forehead and 

held in place with a black athletic headband. A beat-to-beat finger plethysmography 

system (NIBP100D, BIOPAC Systems, Inc., Goleta, CA) was used to continuously and 

noninvasively measure the arterial blood pressure. Two pneumatic cuffs were wrapped 

around the patient’s thighs and periodically inflated to a super-systolic pressure of 150 

mmHg to induce controlled changes to the patient’s arterial blood pressure (E-20 Rapid 

Cuff Inflation System, D.E. Hokanson, Inc., Bellevue, WA). The patient’s systolic blood 

pressure at the time of measurement was about 100 mmHg, so that a maximum thigh cuff 

pressure of 150 mmHg was effective for inducing arterial occlusions in the lower limbs.  

A manometer (Series 626 Pressure Transmitter, Dwyer Instruments, Inc., Michigan City, 

IN) was connected to one of the thigh cuff chambers in order to record the timing of 

inflation and deflation of the thigh cuffs. The experimental protocol was as follows: 5 

minutes of baseline measurement, 5 cyclic inflation/deflation of the thigh cuffs at 5 

different frequencies (0.046, 0.056, 0.063, 0.071, 0.083 Hz) for 2 minutes each, 3 

repetitions of 2 minutes of sustained thigh cuff inflations followed by rapid releases, and 

5 minutes of recovery measurement. Changes in [HbO], [Hb], and [HbT] were measured 

in response to the arterial blood pressure perturbations induced by the thigh cuffs using 

the modified Beer-Lambert law for the 3.5 cm source-detector channel. Time traces of 

the data for the experiment are shown in Figure 4.2. The baseline (average values during 

the first minute of experiment)  absolute values of oxyhemoglobin, deoxyhemoglobin, 



79 

 

and total hemoglobin (determined with the multi-distance approach [27]) were 21 μM, 11 

μM, and 32 μM, respectively.  

 

Figure 4.1. Experimental set up in the neurocritical care unit. 

Figure 4.2.Time traces of data collected during experiment. Panel 1: cuff signal from 

manometer. Panel 2: Heart rate (with some motion artifacts). Panel 3: MAP (black line) 

and Δ[HbT] (gray line). Panel 4: Δ[HbO] (red line) and Δ[Hb] (blue line). 
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4.2.2 Data analysis 
Following data collection, transfer function analysis was performed between Δ[HbT] and 

MAP with the techniques described in Sections 3.2.3 and 3.2.4 . The flow chart for this 

approach is shown on the right branch  of Figure 4.3 which indicates how this portion of 

the analysis (first shown in Figure 3.1) interfaces with our analysis of Δ[HbO] and Δ 

[Hb]. Time-frequency transfer function analysis was then performed between Δ[HbO] 

and Δ [Hb] (left branch of Figure 4.3 ). The time averaged transfer function analysis of 

Equation 3.3 was applied to the transfer function between  Δ[HbO] and Δ[Hb] for the 

times and frequencies that passed the coherence threshold for Δ[HbT] and MAP. An 

alternative way to do this would be to separately perform coherence thresholding between 

Δ[HbO] and MAP and between Δ[Hb] and MAP. Following this, the union between these 

two groups would designate the pixels to use for the time-averaged transfer function 

computation. The effects of not using this approach are that the error bars for the transfer 

function between Δ[HbO] and Δ [Hb] may be larger. However, the fitting procedure is 

weighted according to the inverse of the error on each point.  Therefore, points with 

relatively large error will have less of an effect on the results of the fit.  
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Figure 4.3 Flow chart of data collection and analysis for computing cerebral blood flow 

and autoregulation.   

 

Following the estimation of the transfer function between Δ[HbO] and Δ [Hb], we 

fit the transfer function to the hemodynamic model. The equations for the hemodynamic 

model are modified to include the contribution of MAP to the dynamics of Δ[HbO] and Δ 

[Hb]. Before showing the model equations, we define the percent changes of cerebral 

blood volume as 

cbv = Δ[HbT]/T0    (4.1) 

and the percent changes of MAP as 

map = (MAP –MAP0)/MAP0    (4.2) 
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where T0 is baseline [HbT] and is MAP0 is baseline MAP. 

The frequency domain description of Δ[HbO] and Δ [Hb], now including mean 

arterial pressure, are as follows: 

𝐎(ω) = ctHb[𝑆(𝑎)CBV0
(𝑎)

𝑎 + 𝑆(𝑣)CBV0
(𝑣)

𝑣]𝐶𝑉/𝑃(ω)𝐦𝐚𝐩(ω) + 

+ctHb [
〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))Ƒ(𝑐)CBV0

(𝑐)
ℋ𝑅𝐶−𝐿𝑃

(𝑐) (ω)

+ (𝑆(𝑎) − 𝑆(𝑣))CBV0
(𝑣)

ℋ𝐺−𝐿𝑃
(𝑣) (ω)] 𝑘𝐹/𝑃𝐻𝐻𝑃

(𝐴𝑅)(ω)𝐦𝐚𝐩(ω) 

(4.3) 

and 

 

𝐃(ω) = ctHb[(1 − 𝑆(𝑎))CBV0
(𝑎)

𝑎 + (1 − 𝑆(𝑣))CBV0
(𝑣)

𝑣]𝐶𝑉/𝑃(ω)𝐦𝐚𝐩(ω) + 

−ctHb [
〈𝑆(𝑐)〉

𝑆(𝑣)
(〈𝑆(𝑐)〉 − 𝑆(𝑣))Ƒ(𝑐)CBV0

(𝑐)
ℋ𝑅𝐶−𝐿𝑃

(𝑐) (ω)

+ (𝑆(𝑎) − 𝑆(𝑣))CBV0
(𝑣)

ℋ𝐺−𝐿𝑃
(𝑣) (ω)] 𝑘𝐹/𝑃𝐻𝐻𝑃

(𝐴𝑅)(ω)𝐦𝐚𝐩(ω) 

(4.4) 

where 𝐦𝐚𝐩(ω) is the phasor for percent changes in MAP and 𝐶𝑉/𝑃 is the transfer 

function between the cerebral blood volume phasor, 𝐜𝐛𝐯(ω), and 𝐦𝐚𝐩(ω). Specifically, 

𝐶𝑉/𝑃(ω) =
𝐜𝐛𝐯(ω)

𝐦𝐚𝐩(ω)
     (4.5) 

where 𝐜𝐛𝐯(ω) is the phasor for percent changes in cerebral blood volume. We may 

model this with the approach of Equation 3.4 by using percent changes of cerebral blood 

volume and MAP rather than absolute changes of Δ [HbT] and Δ MAP. The term a 

accounts for differences in the amplitudes of volume oscillations in the arterial and 

venous compartments, respectively. In this work, we assume the amplitudes are 

equivalent to each other. Percent changes in cerebral blood flow (cbf) are modeled with 
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the RC high-pass filter applied to map, 𝐻𝐻𝑃
(𝐴𝑅)

 , and the factor 𝑘𝐹/𝑃 which describes the 

amplitude changes of flow relative to the amplitude changes of map. 

𝐜𝐛𝐟(ω) = 𝑘𝐹/𝑃𝐻𝐻𝑃
(𝐴𝑅)(ω)𝐦𝐚𝐩(ω)   (4.6) 

Then, dividing Equation 4.4 by Equation 4.3 we obtain: 

𝐃(ω)

𝐎(ω)

=
[
 
 
 
 (1 − 𝑆(𝑎))

CBV0
(𝑎)

CBV0
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CBV0
+

CBV0
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(𝑣) (ω)] 𝑘𝐹
𝑃
𝐻𝐻𝑃

(𝐴𝑅)(ω)

[
 
 
 
 𝑆(𝑎)

CBV0
(𝑎)

CBV0
+ 𝑆(𝑣)

CBV0
(𝑣)

CBV0

CBV0
(𝑎)

CBV0
+

CBV0
(𝑣)

CBV0 ]
 
 
 
 

𝐶𝑉
𝑃
(ω) + [

〈𝑆(𝑐)〉
𝑆(𝑣) (〈𝑆(𝑐)〉 − 𝑆(𝑣))

Ƒ(𝑐)CBV0
(𝑐)

CBV0
ℋ𝑅𝐶−𝐿𝑃

(𝑐) (ω) + (𝑆(𝑎) − 𝑆(𝑣))
CBV0

(𝑣)

CBV0
ℋ𝐺−𝐿𝑃

(𝑣) (ω)] 𝑘𝐹
𝑃
𝐻𝐻𝑃

(𝐴𝑅)(ω)

 

(4.7) 

The fitting parameters are 𝑡(𝑐), 𝑡(𝑣), 
CBV0

(𝑐)

CBV0
, 𝑓𝑐

(AR)
, and 𝑘𝐹/𝑃. The lower and upper bounds 

for the fitting procedure were: 0.3 and 2 s for 𝑡(𝑐), 0.3 and 10 s for 𝑡(𝑣), 0.1 and 0.9 for  

CBV0
(𝑐)

CBV0
, 0.001 and 1 Hz for 𝑓𝑐

(AR)
, and 0 and 1 for 𝑘𝐹/𝑃. 𝐶𝑉/𝑃(ω) was set as a low pass 

filter with gain K and time constant τ computed from the fit to the transfer function 

between cbv and map. The computed amplitude ratio and phase of 𝐎(ω) and 𝐃(ω) were 

fit to the model using the “fmincon” function in Matlab  by using a local solver from 

multiple start points over the range of parameter values. The minimization algorithm was 

the sum of squared differences between the model and the measurements normalized by 

the error on each of the measurements. To compute the error on each parameter, we 

performed bootstrapping [117]. First, the residuals were computed as the difference 

between the spectra computed with the model (by the fitted parameters) and the spectra 

we had computed with the measured data. The spectrum obtained by the model fitting 

procedure was assumed to be a good representation of the data. The residuals were 
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randomly sampled with replacement and added to the spectra. Fitting was repeated to 

obtain a new set of parameters. This process was repeated 50 times to obtain a 

distribution of parameter values. 

Once the parameters were computed, they were used to compute relative changes 

in cerebral blood flow: 

 

𝐜𝐛𝐟(𝜔)

=

𝐎(ω) −  𝐃(ω)
𝑇0

− (2𝑆(𝑎) − 1)
CBV0

(𝑎)

CBV0
𝐜𝐛𝐯(𝑎)(ω) − (2𝑆(𝑣) − 1)

CBV0
(𝑣)

CBV0
𝐜𝐛𝐯(𝑣)(ω)

2 [
〈𝑆(𝑐)〉
𝑆(𝑣) (〈𝑆(𝑐)〉 − 𝑆(𝑣))F(𝑐)

CBV0
(𝑐)

CBV0
ℋRC-LP

(𝑐) (ω) + (𝑆(𝑎) − 𝑆(𝑣))
𝐶𝐵𝑉0

(𝑣)

𝐶𝐵𝑉0
ℋG-LP

(𝑣) (ω)]

 

(4.8) 

Equation 4.8 is derived by rearranging Equation 1.6 and Equation 1.7 [47]. The division 

of these two terms in the frequency domain is equivalent to performing a deconvolution 

in the time domain. A challenge with the implementation of this approach is that if the 

denominator is very small for any frequencies, noise in the numerator with be amplified 

at those frequencies. We have applied Tikhonov regularization to the equation which 

works as follows. For the frequency domain equation, 

𝑋(𝑓) =  
𝑁(𝑓)

𝐷(𝑓)
 

division by a very small number can be avoided by modifying the denominator. The 

constant value λ is added to D(f) so that at frequencies where D(f) is small, it is not close 

enough to zero to greatly amplify noise in N(f). The N(f) and D(f) are also each multiplied 

by the complex conjugate of D(f) so that we work with the absolute values of D(f).  
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𝑋(𝑓) =  
𝐷∗(𝑓)𝑁(𝑓)′

𝐷∗(𝑓)𝐷(𝑓) +  𝜆
 

We selected to add  𝜆 = 0.05 to the denominator of Equation 4.8 which was heuristically 

selected, because it reduced noise in  𝐜𝐛𝐟(𝜔) without significantly modifying its shape. 

Following this, the time trace cbf(t) is obtained by applying the inverse Fourier transform 

to 𝐜𝐛𝐟(𝜔). Absolute CBF is obtained by scaling these resulting by absolute CBF0, which 

was computed via Equation 1.9.  

CBF(𝑡) = CBF0(1 + cbf(𝑡))    (4.9) 

4.3  Results 
The time-frequency coherence maps, computed with a sliding short time Fourier 

transform are shown in Figure 4.4. The timing of each induced frequency is indicated 

with the left and right edges of the red boxes. The center of each red box indicates the 

induced frequency while the upper and lower edges mark the frequency resolution. We 

observe an enhanced coherence in all four panels of Figure 4.4. Figure 4.4d contains the 

coherence map that was used for coherence thresholding. The results of the coherence 

thresholding are shown in Figure 4.5(a). After applying size thresholding for groups of 

pixels, the binary coherence map is Figure 4.5(b). 
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Figure 4.4. Coherence maps. (a) ΔMAP and Δ[HbO] coherence. (b) ΔMAP and Δ[Hb] 

coherence. (c) Δ[HbO]  and Δ[Hb] coherence. (d) ΔMAP and Δ[HbT] coherence. 

 

Figure 4.5. Binary coherence between ΔMAP  and Δ[HbT] over time and frequency 

where yellow is coherent and blue is not coherent. Red boxes indicate timing and 

frequency of oscillations induced with the pneumatic thigh cuffs. Left panel: Binary 

image of pixels that passed the coherence threshold.  Right panel: Binary image of pixels 
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that passed the coherence threshold and then the cluster size threshold followed by clean 

up of protuding pixels. 

 

The time-frequency transfer function between Δ[HbO] and Δ[Hb] is shown in 

Figure 4.6. The pixels that did not pass the coherence threshold are colored dark blue for 

both panels.  

 

Figure 4.6. Transfer function analysis between Δ[HbO] and Δ[Hb].(a) Amplitude ratio, 

between Δ[HbO] and Δ[Hb], at the coherent pixels indicated by Figure 4.5b. (b) Phase 

difference between Δ[HbO], and Δ[Hb] at the coherent pixels. Regions of the images 

which are dark blue did not pass the coherence thresholding.  

 

The time-frequency transfer function between Δ[HbT] and ΔMAP is shown in 

Figure 4.7. The pixels that did not pass the coherence threshold are colored dark blue for 

both panels.  
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Figure 4.7. Transfer function analysis between Δ[HbT] and ΔMAP. (a) Amplitude ratio, 

between Δ[HbT] and ΔMAP, at the coherent pixels indicated by Figure 4.5b. (b) Phase 

difference between Δ[HbT] and ΔMAP  at the coherent pixels. Regions of the images 

which are dark blue did not pass the coherence thresholding.  

 

Figure 4.8 shows the estimated amplitude and phase for the transfer function 

between Δ[HbT] and ΔMAP with the black circles and error bars. The parameters found 

from fitting to the spectra with the low pass filter of  Equation 3.4 were K = 0.11 ± 0.02 

μM/mmHg and τ = 1.34 ± 0.22 s. These results are within the range of values we found 

for the healthy subjects in Chapter 3. The low-pass filter defined by these parameters if 

plotted in  Figure 4.8 as a solid black line. 
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Figure 4.8 The fitted transfer function and points for ΔMAP and Δ[HbT]. Symbols are 

the average values and error bars are the standard error of the mean. The line is the best 

fit computed for the low-pass filter model. The gray shaded region indicates the 

confidence bounds for 3 standard deviations. 

The spectra for cbv and map are shown in Figure 4.9. The spectra, of course, have 

the same shape as the spectra in Figure 4.8, however the amplitudes of MAP and [HbT] 

have been shifted and scaled by their respective baseline values. The fit of Equation 3.4 

to these spectra resulted in the parameters K = 0.34 ± 0.02 and  τ = 1.34 ± 0.22 s. The 

low-pass filter defined by these parameters if plotted in  Figure 4.9 as a solid black line.  
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Figure 4.9 The fitted transfer function and points for map and cbv. Symbols are the 

average values and error bars are the standard error of the mean. The line is the best fit 

computed for the low-pass filter model. The gray shaded region indicates the confidence 

bounds for 3 standard deviations. 

 

The points computed from the transfer function estimation for Δ[HbO] and Δ[Hb] 

are shown as black circles in Figure 4.10.The fitting to the hemodynamic model produced 

the following parameters: 𝑡(𝑐)=0.30 ± 0.67 s, 𝑡(𝑣)= 5.21 ± 0.75 s, 
CBV0

(𝑐)

CBV0
= 0.26 ± 

0.07, 𝑓𝑐
(AR)

= 0.0014 ± 0.0008 Hz, 𝑘𝐹/𝑃= 0.19  ± 0.05. The parameters were used to 

compute an absolute baseline CBF of 56 ml/100g/min. The spectra corresponding to the 

computed parameters are plotted as black lines in Figure 4.10. The gray lines in Figure 
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4.10 are the fits obtained from bootstrapping the residuals and provide an indicate for the 

variability of lines that could describe the points given the size of their errors.  

 

Figure 4.10. The fitted transfer function and points for Δ[HbO] and Δ[Hb]. Symbols are 

the average values and error bars are the standard error of the mean. The black line is the 

best fit computed for hemodynamic model. The gray lines indicate all the possible fits 

obtained from the bootstrapping procedure. 

 

In Figure 4.11, absolute CBF, computed with Equation 4.8 and Equation 4.9, is 

plotted in the top panel. The bottom panel of Figure 4.11 shows the cerebral perfusion 

pressure (CPP) which was calculated as the difference between the MAP measured by us 

and intracranial pressure (ICP) measured invasively with the hospital instrumentation. 

ICP was close to 0 such that MAP and CPP are similar to each other.  
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Figure 4.11. Top panel: Time trace of cerebral blood flow (CBF). Bottom panel: Time 

trace of cerebral perfusion pressure (CPP). 

 

Given CBF and MAP, we compared them in a scatter plot and imposed them on a 

static autoregulation curve. The scatter plot does not cover a wide enough range of mean 

arterial pressures to comment on the limits of static autoregulation for this patient. We 

present Figure 4.12 only to visualize how our computation of CBF could be compared 

with MAP to analyze static autoregulation in the case that there is a larger range of MAP.  
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Figure 4.12. A classic static autoregulation curve with points from Figure 4.11 imposed. 

4.4  Discussion  
The value of 0.0014 Hz for 𝑓𝑐

(AR)
 indicates a low efficiency of autoregulation in the 

NCCU patient within the cerebral region measured. In healthy subjects, we have found 

𝑓𝑐
(AR)

 to be between 0.01 to 0.03 Hz. The absolute CBF of 56 ml/100g/min well within 

the normal range for CBF. As described earlier, the patient was discharged from the 

hospital with a Glasgow coma scale value of 15 which is the best possible response.  

The value of transit time of the blood in the capillaries determined by the model 

fit , 𝑡(𝑐)=0.30 ± 0.67 s, has a very large standard deviation. In future work, we aim to 

parametrize the low-pass filter relation between Δ[HbT] and Δ[MAP] with parameters 

from the hemodynamic model rather than the general gain factor, K, and time constant τ 

we have used up to now. In this way, the variability of the model parameters may be 

reduced.  
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 An additional challenge with the study was in the low success rate of inducing 

oscillations in MAP whose effects could be measured by NIRS. The challenge with 

inducing coherent oscillations in all patients is what drove the transition from the Hilbert 

transform approach of analyzing the data to the STFT approach with coherence 

thresholding. This has enabled us to move from fitting to the hemodynamic model with a 

few points (5 or less) to several points [118]. Also, since the study, we have applied the 

cuff inflation protocols over a wider range of frequencies and have tested alternative 

approaches to the protocol such as the chirp-like oscillations in healthy subjects (Chapter 

3). The improvement of our techniques for inducing and measuring reliable coherent 

oscillations is an active area of research.  

4.5  Conclusion 
In the beginning applications of coherent hemodynamics spectroscopy (CHS), we used a 

Hilbert transform approach for computing the spectra of oxyhemoglobin and 

deoxyhemoglobin. We removed noise from the spectra with thresholding based on 

standard deviations of the computed amplitude ratios and phase differences (as described 

in Chapter 2). In the work presented here, we have made improvements to the data 

analysis framework. First, we used a sliding short time Fourier transform (STFT) to 

efficiently perform transfer function analysis within a frequency range of interest, rather 

than segmenting the sections of the experiment where cuff oscillations were performed. 

This has enabled us to detect induced as well as spontaneous oscillations of hemoglobin 

that are coherent with MAP. Second, the coherence thresholding we have performed, 

introduced in Chapter 3, is a more robust approach for eliminating noise from the spectra. 

Third, we have performed a characterization of the relationship between cerebral blood 
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volume and MAP which can be used to inform the updated hemodynamic model. By 

fitting all these pieces together for NIRS-CHS, we move closer to the goal of a bedside 

tool for monitoring microvascular cerebral health. 
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Chapter 5: Future directions 

5.1  Responses to carbon dioxide 
Carbon dioxide inhalation, mixed with room air or oxygen, is a useful approach for 

studying the sensitivity of cerebral blood flow measurement techniques. Carbon dioxide 

(CO2) is a regulator of vascular tone. Changes in the partial pressure of CO2 in arterial 

blood (PaCO2) can induce an increase of CBF during hypercapnia, due to vessel dilation 

[119], or a decrease of CBF during hypocapnia, due to vasoconstriction [120]. In normal 

subjects, CBF increases linearly by 2% to 4% /mmHg of PaCO2 within the range of 25 to 

75 mmHg [3]. This translates to a change in CBF of  about 1-2 ml/100 g/min per 1 mm 

Hg of PaCO2. CO2 also has an effect on the efficiency of autoregulation. Aaslid et al 

showed that, in the case of hypocapnia (~22 mmHg PaCO2), CBFV is faster to recover 

from a rapid drop in ABP relative to during normocapnia (~37 mmHg PaCO2) . In the 

case of hypercapnia (~47 mmHg PaCO2) , CBFV is slower to recover from a rapid drop 

in ABP [13]. Therefore, future work for analysis of the relationship between Δ[HbT] and 

ΔMAP and for analysis of the hemodynamic model of CHS will include a study in which 

we characterize the changes we measure in cerebral blood volume, blood flow, and 

autoregulation efficiency due to changes in end tidal CO2 in healthy subjects.  

In addition to CBF and autoregulation, CO2 also affects cerebral blood volume 

and vessel compliance. Grubb et al found that cerebral blood volume increased by 0.041 

ml/100g  per 1 mmHg of PaCO2 [121]. If we assume a hemoglobin concentration in 

blood of 2300 micromoles HbT/L blood, we can translate these results to say that total 

hemoglobin concentration in tissue increases by about 1 μM per 1 mmHg PaCO2.  Grub 

et al also found the following relationship between changes in blood volume and changes 
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in PaCO2, depends on the absolute value of MAP (for MAP between 100 and 170 

mmHg): 

∆CBV

∆PaCO2
≅0.006MAP-0.04 

Carrera et al studied the effects of hypo- and hypercapnia in healthy subjects by 

measuring arterial compliance with the use of transcranial Doppler and CBFV 

measurements [69]. They found a decrease of arterial compliance during hypocapnia and 

no change to arterial compliance during hypercapnia (relative to normocapnia). These 

results make sense when we consider the vasoconstriction that occurs during hypocapnia. 

These relationships have been summarized in Table 4. 

Table 4. Expected responses to hypo- and hypercapnia. Up arrow: increase, down arrow: 

decrease, horizontal line: stay the same. EtCO2 stands for end tidal carbon dioxide.  

Condition cerebral 

blood flow 

capillary 

transit time 

autoregulation  

efficiency 

cerebral blood 

volume 

arterial  

compliance 

Hypocapnia 

EtCO2: 25-35 mmHg 

     

Hypercapnia 

EtCO2: 45-60 mmHg 

     

 

To test the sensitivity of the hemodynamic model, we intend to perform a study as 

follows. Subjects will wear the typical monitoring equipment of our studies (NIRS 

probes, respiration belt, arterial blood pressure cuffs) while also wearing a capnography 

system that can measure end tidal CO2. A hypocapnia portion of the experiment will 

consist of 2-3 minutes of controlled hyperventilation. A hypercapnia portion of the 

experiment will consist of breathing 5% CO2 mixed with room air for 2-3 minutes. 

During each portion of the experiment, an abbreviated version of the cuff inflation 
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protocol will be performed. We may fit the data of the experiment and relate the end tidal 

CO2  to the computed absolute CBF, capillary transit time,  and autoregulation efficiency. 

This will allow us to determine how our measurements, in absolute units, scale with CO2 

changes in comparison to the expected changes that have been well established in the 

medical literature. Deviations from expected trends will inform improvements to the 

model going forward. An important assumption for measuring CBF changes with this 

protocol is that there are no concurrent changes in the cerebral metabolic rate of oxygen 

(CMRO2), because we would not be able to separate their independent contributions to 

changes in [HbO] and [Hb]. Chen and Pike determined that there is no significant change 

in global CMRO2 with hypercapnic and hypocapnic challenges[122]. 

As described in Chapter 3, we hypothesize that the relationship between  Δ[HbT] 

and  ΔMAP are determined by contributions from cerebral autoregulation, microvascular 

transit time, and vessel compliance. All of these factors are affected during hypercapnia 

and hypocapnia. We intend to further develop the RC low-pass filter model of Chapter 3 

to consider these contributing factors as separate parameters rather than as their lumped 

effects as they contribute to the gain and single time constant. The experiment described 

in this section will also enable us to test a more detailed model for Δ[HbT] and  ΔMAP. 

We may then determine if the parameters change in the expected directions as described 

in Table 4.  

5.2  New protocols and spontaneous oscillations 
As introduced in Chapter 1, the human body has many naturally occurring hemodynamic 

oscillations and there are also a variety of protocols for inducing oscillations. Among the 

protocols are paced breathing [32], thigh cuff inflation and deflation [45], squat-stand 
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maneuvers [31], leg lifts [123], and oscillatory lower body negative pressure [124]. In 

terms of simplicity of implementation, minimization of motion artifacts, and 

minimization of active participation by the subject, we have found that the thigh cuff 

inflation procedure is the most favorable. We found that the protocol involving thigh cuff 

inflation to a pressure above systolic pressure was well tolerated by all but one of the 

patients in the neurocritical care unit study. As indicated in Table A3, inducing MAP 

oscillations and transient changes with thigh cuffs inflation/deflation did not work for all 

patients.  One challenge is the time it takes to collect data at multiple oscillations which is 

not practical for bedside use in a busy clinical setting. It was challenging for some 

patients to remain still for a full 30 minutes and shorter measurement times are 

preferable. We have begun to explore alternative approaches such as the chirp-like 

protocol described in Chapter 3. Future work may include applying this protocol to more 

subjects and for multiple times within a day as well as across multiple days in order to 

test the repeatability of the protocol. It may also be considered as an option for the 

protocol to use during the CO2 experiments previously suggested. Another interesting 

protocol to try is a pseudo-random binary sequence which has been implemented by 

Katsogridakis et al[125]. In their work, the on and off times of cuff inflation were 

selected randomly to enhance blood pressure variability. We may explore this approach 

or randomized approaches similar to it which do not require separately induced 

oscillations but rather introduce multiple frequencies within a short time span. 

 While the thigh cuff inflation protocols are relatively simple to implement and 

typically do not result in subject discomfort, the ideal CHS experiment would rely on 

spontaneous oscillations of the body for generating spectra. Several groups have studied 
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spontaneously occurring oscillations with NIRS [65]–[67], [75], [84], [85], [126]. Future 

studies for NIRS-CHS may include comparison of long baseline measurements while the 

subject lays in a bed or recliner followed by a typical thigh cuff inflation protocol. We 

may then apply our data analysis techniques to both portions of the experiment and 

compare them. Our continued study of thresholding techniques for detecting oscillations 

that are suitable for analysis with the hemodynamic model ([79]) will assist us in 

investigating the potential of spontaneous oscillations measured during baseline for CHS. 

5.3  Association of cerebral blood flow and 

autoregulation with outcomes in the neurocritical 

care unit 
Cerebral blood flow and autoregulation are often affected in patients in the neurocritical 

care unit (NCCU)[8]. We intend to apply NIRS-CHS to NCCU patients throughout their 

hospital stay and correlate the findings for cerebral blood flow and autoregulation to 

patient recovery and final outcome. Throughout a patient’s stay in the NCCU, multiple 

NIRS-CHS measurements may be performed to characterize repeatability within one day 

and changes across time. Patient status in outcome will be quantified with the relevant 

clinical scale based on their injury. This may include the Glasgow Coma Scale, the Hunt 

and Hess Scale, and/or the FOUR (Full Outline of Unresponsiveness) score. Intracranial 

pressure monitoring, cerebral perfusion pressure monitoring, and transcranial Doppler 

recordings can also be recorded and provide an indication on if NIRS-CHS is providing 

additional information due to its localized sensitivity to the microvasculature. 
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5.4  Future outlook 
Near-infrared spectroscopy is a promising tool for use in monitoring cerebrovascular 

diseases and brain injuries. It performs real time monitoring safely and noninvasively. By 

combining it with coherent hemodynamics spectroscopy, the measurements of 

oxyhemoglobin and deoxyhemoglobin may be quantitatively related to the underlying 

changes in cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of 

oxygen. The pathophysiology of both acute and chronic cerebral diseases is complex, 

with many factors contributing to cerebral recovery, and is also diverse. Personalized 

thresholds and treatment regimens are an active area of interest to physicians. NIRS-CHS 

stands in a good position to assist with development of personalized treatment, because it 

can safely perform multiple measurements at the hospital bedside. For example, the 

optimal value of cerebral perfusion pressure (CPP) for hospital patients may vary 

depending on their level of cerebral autoregulation, with a particular CPP being optimal 

for enabling cerebral recovery.  

Presently, there is not a gold standard for the computation of cerebral 

autoregulation efficiency, and it is still a growing area of research in the fields of both 

transcranial Doppler ultrasound and diffuse biomedical optics. NIRS-CHS stands to 

contribute to the growing body of knowledge about autoregulation due to its sensitivity to 

the microvasculature and its ability to describe the interplay between flow changes, 

volume changes, and the efficiency of cerebral autoregulation.  

Validation of the parameters NIRS-CHS measures, via CO2 studies as well as 

comparisons to other modalities, is critical for the acceptance of the technique.  One 

approach for comparison to other modalities is to compare relative blood flow changes 
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computed with CHS to relative blood flow changes computed with DCS. DCS has been 

compared to multiple gold standard CBF measurement modalities. The sensitivity of both 

DCS and NIRS to the arterial, capillary, and venous compartments of the 

microvasculature would make this a reasonable comparison. Validation of NIRS-CHS for 

absolute CBF measurements could potentially be done with imaging modalities like 

positron emission tomography or arterial spin labeling magnetic resonance imaging. With 

this approach, selecting appropriate tissue volumes for comparison would be a challenge 

to consider. 

Measurements of oscillations in hemoglobin concentrations have been performed 

for several years in NIRS research. NIRS-CHS makes use of measurements at multiple 

frequencies of oscillations by relating the phases and amplitudes of oxyhemoglobin and 

deoxyhemoglobin at these frequencies to the underlying physiologic changes.  With our 

recent work in coherence thresholding and transfer function analysis, we have been able 

to expand our analysis to not only known frequencies of induced oscillations but also to 

those that are spontaneously occurring. There are additional new directions that our 

approach has enabled. For example, in Figure 5.1, we present the coherence between 

arterial blood pressure and total hemoglobin concentration up to 1.7 Hz for Subject 5 

from the study in Chapter 3. In Figure 3.5, we considered only the low frequencies of 

oscillations. In Figure 5.1, we can see a high level of coherence at frequencies around the 

heart rate. The oscillations within this frequency range may provide additional 

information for fitting to the hemodynamic model.  
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Figure 5.1. Coherence between arterial blood pressure and total hemoglobin 

concentration for Subject 5 from Chapter 3.  The range of the y-axis has been expanded 

to show up to 1.7 Hz. 

 

Figure 5.2 shows the times and frequencies at which arterial blood pressure and 

total hemoglobin concentration were coherent with each other, where yellow pixels 

passed the coherence threshold. From this figure, we observe the pixels outlined by the 

red boxes which indicate the times and frequencies of the induced thigh cuff oscillations. 

We also see a broad range of frequencies around the heart rate which passed the 

coherence threshold. 
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Figure 5.2. Binary coherence between arterial blood pressure and total hemoglobin 

concentration for Subject 5 of Chapter 3. Yellow pixels passed the coherence threshold 

and blue pixels did not. Red boxes indicate the time and bandwidth of induced 

oscillations from thigh cuffs.  

 

Figure 5.3 shows a zoomed in version of Figure 5.2 during the second half of the 

experiment. From this figure, we see that the thigh cuffs have not only induced coherent 

oscillations at the intended frequencies (indicated by the red boxes) but also at harmonics 

of those frequencies. These exciting results indicate the potential of using harmonics in 

CHS to obtain frequencies for model fitting within the frequency range between the 

respiratory rate and the heart rate.  
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Figure 5.3. Binary coherence between arterial blood pressure and total hemoglobin for 

Subject 5 of Chapter 3. Induced oscillations are marked with red boxes. Markers in the 

figure indicate harmonics of the induced oscillations.  

 

 The future directions of NIRS-CHS present opportunities for improving 

fundamental understanding of cerebral health in relation to autoregulation and the 

interplay between blood pressure, blood volume, and blood flow. Further, NIRS-CHS has 

potential as a clinical tool for patient cerebral monitoring.  

Funding acknowledgements 
This research was supported by the National Institutes of Health Grants No. R01-

NS095334, R21-EB020347, and R01-CA154774. The neurocritical care unit study was 

supported by the Neuroscience and Pain Research Unit at Pfizer Inc.   



106 

 

Appendix 
A1 

Table A.1. Acronyms reported in this work with associated definitions. 

Acronym/Symbol Definition 

ABP arterial blood pressure 

BP blood pressure 

CA cerebral autoregulation 

cbf cerebral blood flow (relative 

changes) 

CBF cerebral blood flow 

CBFv cerebral blood flow velocity 

CHS coherent hemodynamics 

spectroscopy 

CMRO2 cerebral metabolic rate of oxygen 

CPP cerebral perfusion pressure 

CSF cerebral spinal fluid 

CVR cerebrovascular resistance 

DCS diffuse correlation spectroscopy 

FD frequency domain 

GCS Glasgow coma scale 

[Hb]  tissue concentration of 

deoxyhemoglobin 

[HbO]  tissue concentration of 

oxyhemoglobin 

[HbT]  tissue concentration of total 

hemoglobin 

HVx hemoglobin volume index 

ICP intracranial pressure 

MAP mean arterial pressure 

MRI magnetic resonance imaging 

MSC mean squared coherence 

NCCU neurocritical care unit 

NIRS near-infrared spectroscopy 

PET positron emission tomography 

PRx pressure reactivity index 

SAH subarachnoid hemorrhage 

STFT short time Fourier transform 

TBI traumatic brain injury 

TCD transcranial Doppler 

TD time domain 

TFA transfer function analysis 
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A2 

Table A.2 Summary of subjects. Column 1: subject number, column 2: female or male (F 

or M), column 3: age, column 4: number of channels/side (right, R or left L), column 5: 

position (chair with feet on floor or bed with feet parallel to floor), column 6: frequencies 

of oscillations that had spacing in between, column 7: frequencies of oscillations that had 

no spacing in between such that they were chirp-like. Data for subjects 13 -21 was taken 

from the study described in [76]. 

Subject 

# 

F/M Age Num.  

of chan. 

Position Frequencies 

spaced with 

baseline periods 

(Hz) 

Frequencies 

with no spacing 

(chirp-like) (Hz) 

1 F 27 8 Chair n/a 0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

2 M 27 8 Chair 0.040,    0.067,    

0.093,   0.120,    

0.146 

0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

3 M 27 8 Chair 0.040,    0.067,    

0.093,   0.120,    

0.146 

0.040,    0.067,    

0.093,    0.20,    

0.146,    0.173,    

0.200 
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4 F 28 8 Bed 0.040,    0.067,    

0.093,   0.120,    

0.146 

0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

5 M 31 8 Bed 0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

6 M 32 8 Bed 0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

7 F 26 8 Bed 0.040,    0.067,    

0.0932,    0.120,    

0.146,    0.173,    

0.200 

0.040,    0.067,    

0.0932,    0.120,    

0.146,    0.173,    

0.200 

8 F 27 8 Chair 0.042,    0.056,    

0.069,    0.083,    

0.097,    0.111,    

0.125 

n/a 

9 F 33 1 (R) Chair 0.050,0.063,0.076,

0.090 

0.050,0.063,0.07

6,0.090 
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10 M 28 1 (R) Chair 0.040,    0.067,   

0.093,    0.120,    

0.146,    0.173,    

0.200 

0.040,    0.067,   

0.093,    0.120,    

0.146,    0.173,    

0.200 

11 M 21 1 (R) Chair 0.040,    0.067,   

0.093,    0.120,    

0.146,    0.173,    

0.200 

0.040,    0.067,   

0.093,    0.120,    

0.146,    0.173,    

0.200 

12 F 24 1 (R) Chair 0.040,    0.093,    

0.146,    0.200 

 

0.040,    0.067,    

0.093,    0.120,    

0.146,    0.173,    

0.200 

13 F 30 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

14 F 25 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

15 F 32 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 
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16 F 24 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

17 F 25 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

18 F 25 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

19 F 27 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

20 F 24 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

21 F 27 1 (L) Chair 0.063,    0.083,    

0.056,    0.071,    

0.046 

n/a 

22 M 51 1 (L) Chair 0.036,    0.058,    

0.080,    0.102,    

0.124,    0.146,    

0.168,    0.190 

n/a 
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A3 

Table A3 contains a summary of the patients that were enrolled in the study in the 

neurocritical care unit described in Chapter 4. Column 1 is the patient number. Column 2 

indicates the patient’s sex. Column 3 is the primary illness of the patient. Column 4 is the 

number of optical measurement sessions performed. Column 5 is the optical data quality 

rating with scores of 0-4 where 0 is the worst and 4 is the best. A score of 0 is for data 

that is not usable. A score of 1 is for data that is only usable in 30-60 second segments 

due to motion artifacts that occurred often. Scores of 2-4 indicate increasing quality of 

optical data and decreasing number of motion artifacts or issues with arterial blood 

pressure (BP) recordings. Column 6 contains notes with a further description of the 

reason for the particular rating of the data quality. In total, 67 measurements sessions 

were performed for this study. The results we present in Chapter 4 are for Patient 5. 

Patient 5 had the most coherent oscillations induced and therefore provided the best data 

for presenting our data analysis approach.  

Table A.3. Summary of patients and experiments. ICP stands for intracranial pressure 

and BP stands for blood pressure. 

Patient 

# 

Female 

(F) or 

Male 

(M) 

Primary Illness # of  

measurements 

Data 

quality 

Notes 

1 F Chronic hydrocephalus 2 0 No ICP data, poor 

contact with optical 

probes 

2 M Traumatic brain injury, 

stroke in right 

hemisphere 

9 2 No continuous BP, 

only spontaneous 

oscillations 
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3 M Craniotomy for 

evacuation of 

hematoma 

9 3 Issues with 

continuous BP, some 

induced oscillations 

4 F Infected shunt 

(hydrocephalus) 

6 3 Issues with 

continuous BP, some 

induced oscillations 

5 M Intraventricular 

hemorrhage 

9 4 Best measurements – 

especially for day 2 

6 M Shunt failure with post-

op hemorrhage 

6 2 Motion artifacts 

7 F Aneurysm in frontal 

lobe 

2 2 Motion artifacts 

8 F Subarachnoid 

hemorrhage, 

vasospasm in the left 

hemisphere 

8 1 Many motion 

artifacts 

9 F Subarachnoid 

hemorrhage from 

aneurysm 

5 3 Good data quality 

but only spontaneous 

oscillations 

10 F Ruptured arteriovenous 

malformation (AVM) 

3 2 Good data quality 

but not clear if 

oscillations were 

induced 

11 F Subarachnoid 

hemorrhage 

1 1 Many motion 

artifacts, did not use 

cuffs due to patient 

discomfort 

12 M Brainstem stroke 7 4 Good data, did not 

induce many 

oscillations 
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