

Atom Tracing: An Investigative Tool for the

Study of Host-Gut Microbiota Co-Metabolism

A Senior Honors Thesis for the

Tufts University Department of Chemical and Biological Engineering

By Bassel C. Ghaddar

May 2015

Co-Advised by Professor Kyongbum Lee1 and Professor Soha Hassoun2

1Department of Chemical and Biological Engineering

2Department of Computer Science

1

Introduction

The gut microbiota are comprised of approximately 1014 microorganisms divided into sev-

eral phyla, the chief of these being Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria

(Sridharan, 2014). They colonize the gastrointestinal (GI) tract at birth, and develop a close rela-

tionship with the host immune system. Interactions between the microbiota and host immune sys-

tem, transmitted through a vast array of signaling pathways and molecules, shape the development

of the host and the composition of the microbiota (Nicholson, 2012).

Such chemical crosstalk has created a symbiotic relationship between the host and micro-

biota, and in some respects, has intertwined host cellular metabolic pathways with microbial ac-

tivity, exemplified by microbial production of various beneficial and detrimental compounds to

the host, and the combinatorial metabolism of substrates by the host and microbiota (Nicholson,

2012). For example, microbiota in the colon metabolize complex carbohydrates and ferment them

into short-chain fatty acids, mainly acetate, propionate, and butyrate. Colonic epithelial cells in

turn utilize butyrate for energy, and acetate and propionate serve as substrates for gluconeogenesis

and lipogenesis in the liver and peripheral organs. These short chain fatty acids also modulate

colonic gene expression and metabolism through enzymatic inhibition and through interaction with

G-protein coupled receptors (Tremaroli & Backherd, 2012), and have been shown to induce dif-

ferentiation of naive T cells into anti-inflammatory regulatory T cells (Arpaia, 2013). Additionally,

the gut microbiota are involved in the synthesis of bile acids, choline, indole, and various other

metabolites that aid the health and fitness of the host (Nicholson & Wilson, 2003).

Though an individual’s initial microbial seeding population is passed maternally at birth,

the microbiota composition profile varies both spatially and temporally within the GI tract (Gordan,

2

2012), and can be influenced by changes in health and disease, diet, life-style, and antibiotic use

(Nicholson J. , 2012). Disruptions to the microbiota profile (dysbiosis) are associated not only with

gastric ulcers and inflammatory bowel diseases (Chassaing & Darfeuille-Michaud, 2011), but are

also increasingly correlated with insulin resistance, type 2 diabetes, obesity, and cardiovascular

disease (Wang, 2011). Despite the gut microbiota’s great implications on host physiology and

health, knowledge of which bacterial genomes contribute to the production of which bioactive gut

metabolites is currently limited, owing to the complexity of the GI tract’s metabolite spectrum, the

difficulty of isolating and cultural intestinal bacteria, and the need to account for community level

metabolic interactions (Sridharan, 2014).

In this work, we present a computational method to investigate gut microbiota-host meta-

bolic interactions. Due to the diversity of species present in the gut that may contribute to the

metabolism of certain substrates and the subsequent community level interactions between the

different bacterial species and the host cells, an atomic level approach is taken. In particular, the

Kyoto Encyclopedia of Genes and Genomes (KEGG) is used to assemble various metabolic mod-

els representing different proportions of murine host cells and various bacterial phyla (Kanehisa

Laboratories, 2015). Pathways between common dietary nutrients that would be present in the GI

tract to bioactive gut metabolites of interest are then investigated using a reachability analysis and

a “random-walks” pathfinding algorithm. Finally, an atom tracing function is implored to deter-

mine the conservation of atoms along the pathway, and model results are compared against each

other. It is the hope that such an analysis will lead to new insights to the atomic level contribution

of various gut flora to the synthesis of bioactive gut metabolites.

3

Methods

To investigate the atomic level contributions of the murine host cells and the various bac-

terial phyla to the metabolism of dietary nutrients, the KEGG database was used to construct var-

ious models representing different proportions of Mus musculus mouse (MMU) cells and gut mi-

crobiota (GM) cells. For this analysis, all host cells were considered to have equal metabolic ca-

pabilities. The microbiome was divided into five phyla: Actinobacteria, Bacteroidetes, Firmicutes,

Proteobacteria, and Miscellaneous, labeled P1 to P5, respectively.

A composite list of chemical reactions was compiled, and for a first analysis, each reac-

tion’s likelihood of occurring was weighted based on the fraction of total cells that could perform

it. To determine the bacterial contribution to the reaction weights, a phyla score (Sridharan, 2014)

was assigned to each reaction, which was simply the fraction of each phylum that could perform

the reaction. Relative abundance of the bacterial phyla in lean mice, mice on a high fat diet, and

genetically obese mice were obtained from (Murphy, 2010). The reaction weight for each reaction

i in a system of j bacterial phyla was subsequently calculated as thus:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑖𝑖) = ��(𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝑗𝑗(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗
𝑗𝑗

� (1 −𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

Twelve distinct models were constructed representing different proportions of host cells and bac-

terial phyla. The twelve cases are detailed in Table 1.

4

Table 1. Fraction of each cell type in the 12 metabolic models representing different proportions

of host cells to the various bacterial phyla assembled using the KEGG database. The Miscellaneous

(Misc.) phylum is a conglomeration of all other known bacterial phyla and species.

Model Host Actinobacteria Bacteroidetes Firmicutes Proteobacteria Misc.

Host (MMU) 1 0 0 0 0 0

Gut Microbiota (GM) 0 0.2450 0.1690 0.5660 0.0130 0.0070

MMU/GM = 1/10 0.09 0.2227 0.1536 0.5145 0.0118 0.0064

MMU/GM = 1/1 0.5 0.1225 0.0845 0.2830 0.0065 0.0035

MMU/GM = 10/1 0.91 0.0223 0.0154 0.0515 0.0012 0.0006

Host on High Fat Diet 0.5 0.3525 0.0760 0.0655 0.001 0.0050

Genetically Obese Host 0.5 0.3175 0.0610 0.1145 0.0030 0.0015

MMU + GM – P1 0.5 0 0.2238 0.7497 0.0172 0.0093

MMU + GM – P2 0.5 0.2948 0 0.6811 0.0156 0.0084

MMU + GM – P3 0.5 0.5645 0.3894 0 0.0300 0.0161

MMU + GM – P4 0.5 0.2482 0.1712 0.5735 0 0.0071

MMU + GM – P5 0.5 0.2467 0.1702 0.5700 0.0131 0

For each model of m compounds and n reactions, an m x n stoichiometric matrix (S matrix)

was constructed, where each row represented a metabolite and each column represented a reversi-

ble chemical reaction. Using these S matrices, m x m adjacency matrices (AM) were constructed

to map the immediate connectivity of each metabolite, where each row and column represent a

metabolite. All entries in the AM are zero unless there is a one-step reaction connecting two me-

tabolites, in which case the value of the AM entry is the sum of all the reaction weights of all the

5

one-step reactions that connect the given metabolites. Essentially the S matrices represent undi-

rected graphs whose nodes are metabolites and edges are reaction weights, and the AMs detail

which nodes are connected by a single edge. Since the graphs are undirected, the AMs are sym-

metric.

The AMs were in turn used to construct m x m reachability matrices (R matrices), whose

(i,j) entry contains a value of one if a path exists between metabolites i and j, or a zero if no such

path exists. The R matrices can thus be used to identify metabolites in the model whose reachability

depends on the presence of certain cell types. An example S matrix, AM, and R matrix are shown

for the simple system below.

𝑆𝑆 =

⎣
⎢
⎢
⎢
⎡ 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4
𝐴𝐴 −1 0 0 1
𝐵𝐵 1 −1 −1 0
𝐶𝐶 0 0 1 −1
𝐷𝐷 0 1 0 0 ⎦

⎥
⎥
⎥
⎤

 𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡ 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷
𝐴𝐴 0 1 1 0
𝐵𝐵 1 0 1 1
𝐶𝐶 1 1 0 0
𝐷𝐷 0 1 0 0⎦

⎥
⎥
⎥
⎤

 𝑅𝑅 =

⎣
⎢
⎢
⎢
⎡ 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷
𝐴𝐴 1 1 1 1
𝐵𝐵 1 1 1 1
𝐶𝐶 1 1 1 1
𝐷𝐷 1 1 1 1⎦

⎥
⎥
⎥
⎤

Figure 1. Example reaction system to illustrate the construction of an S matrix, AM, and R matrix.

Similar to the KEGG database, all reactions are assumed reversible. No reaction weights are as-

sumed for this system.

6

Subsequent pathway analysis was narrowed down to pathways from common dietary nu-

trients (Table S1) to a subset of metabolites (Table S2) suspected of requiring host-microbiota

metabolic interactions (Nicholson J. , 2012). Utilizing the constructed AMs, a “random walks”

algorithm was implemented to find pathways from the starting nutrients to the target metabolites.

Each random walk begins at a starting node on the metabolic graph and takes steps based on the

weights of the connecting edges available. A walk is terminated if the target node is reached, if the

only available paths to take lead to an already traversed node, if a biochemical cofactor (Table S3)

is reached, or if the maximum number of steps is reached. Because cofactors are involved in a

wide array of reactions, they were used as a walk-terminating factor to limit the number of unre-

alistic reaction pathways found by the random-walks function. Traversing only new nodes was

also included as a condition to prevent walking through cycles.

The resulting lists of reached walks were analyzed for path distances, path probability, and

path connectivity. These properties were defined below:

𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (1)

𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∏ 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2)

𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (3)

Once a list of reached walks from the starting to the target metabolites is obtained, an atom

tracing function is used to trace the atoms of the starting metabolite by using KEGG RPair data.

The atom tracing function determines which atoms of the starting metabolite are conserved

throughout the reaction path, as well as their location on the final metabolite.

7

The abovementioned analyses were performed in MATLAB; please see the Supplementary

Information section for details on the functions developed to perform these analyses.

Results and Discussion

Reachability Analysis

Metabolite level (Figure 2) and atomic level (Figure 3) R matrices were computed for the models

with unique groupings of cell types: MMU, GM, MMU+GM-P1, MMU+GM-P2, MMU+GM-P3,

MMU+GM-P4, and MMU+GM-P5.

Figure 2. Color-maps of metabolite level R matrices from the metabolites in Table S1 (vertical

axis) to the metabolites in Table S2 (horizontal axis) for the following models: MMU, GM,

8

MMU+GM-P1, MMU+GM-P2, MMU+GM-P3, MMU+GM-P4, and MMU+GM-P5. Values of

“1” indicate the existence of a path connecting a metabolite pair, while values of “0” indicates the

absence of such a path.

Figure 3. Color-maps of atomic level R matrices from the metabolites in Table S1 (vertical axis)

to the metabolites in Table S2 (horizontal axis) for the following models: MMU, GM, MMU+GM-

P1, MMU+GM-P2, MMU+GM-P3, MMU+GM-P4, and MMU+GM-P5. Values of “1” indicate

the existence of a path connecting a metabolite pair, while values of “0” indicates the absence of

such a path.

The R matrices indicate whether a path exists between any two nodes on the constructed

metabolic graphs. Figure 2 shows that there are some metabolite pairs that are not reachable from

each other without either host or bacterial metabolism. A closer look at the GM alone metabolite

9

level R matrix (Figure S1) reveals that trimethylamine, trimethylamine-N-oxide, dimethylglycine,

phenylacetylglycine, phenylacetate, melatonin, sphingomyelin, and cholesterol are not reachable

from the listed starting metabolites without a metabolic contribution from the host.

Inspection of the MMU R matrix (Figure 2 and Figure S2) and the MMU+GM minus a

bacterial phylum (Figure 2) suggests that there are reactions shared across the various microbiota

phyla that the host cannot perform. It was found that removal of one phyla at a time only changed

metabolite reachability when Proteobacteria were eliminated, and only for reachability to 3-hy-

droxycinnammate (Figure 2). However, the general MMU R matrix shows that reachability to

deoxycholate, glycodeoxycholate, taurodeoxycholate, hippuric acid, 3-hydroxybenzoic acid, and

general lipopolysaccharide, in addition to 3-hydroxycinnammate, depends on the presence of some

bacterial species.

A comparison of the metabolite level and atomic level reachability matrices (Figures 2 and

3, respectively) indicates a much smaller degree of connectivity at the atomic level, which is im-

mediately obvious by the significantly greater number of zero entries in the atomic level R matrices.

When the loss-of-phyla metabolic networks are analyzed at the metabolite level, it appears that

only removing Proteobacteria affects reachability, but the atomic level analysis indicates that all

phyla are essential for the reachability of some metabolites. Furthermore, the various atomic level

R matrices show that upon removing certain phyla, it is not only certain atoms of the target me-

tabolites that become unreachable, but some metabolites in their entirety. For example, removing

phylum 5 (Misc.), which in all the models accounted for at most 1.61% of all cell types, completely

erased reachability to dimethylamine, trimethylamine, trimethylamine-N-oxide, and 3-hy-

droxybenzoic acid; this result was not apparent from the metabolite level R matrices, which, due

to the simpler structures of the metabolite level AMs, find many unphysical paths. This highlights

10

the necessity of taking an atomic approach for the analysis of complex, combinatorial metabolic

networks.

Random Walks and Atom Tracing

The R matrices were used to identify metabolites whose reachability from the amino acids

did or did not depend on the presence of some bacterial phyla. Indolepyruvate, dopamine, indole-

acetate, and serotonin were identified as metabolites whose reachability on the metabolite graphs

from the amino acids was independent of bacterial presence, and 3-hydroxycinnamate was identi-

fied as requiring Proteobacteria. The random walk and atom tracing analysis was performed for

these two groups of metabolites.

Indolepyruvate and Dopamine GM Walks Analysis

Figure 4. Random walk results from the amino acids to indolepyruvate and dopamine on the GM

graph. Data shown is total number of reached walks and the reached walks with at least one con-

served atom. One hundred thousand walks were run from each amino acid to each target molecule.

Ala Arg Asn Asp Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
600

800

1000

1200

1400

1600

To
ta

l R
ea

ch
ed

 W
al

ks

Indolepyruvate
Dopamine

Ala Arg Asn Asp Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
0

50

100

150

200

R
ea

ch
ed

 W
al

ks
 w

ith
 C

on
se

rv
ed

 A
to

m
s

Indolepyruvate
Dopamine

11

The binary reachability matrices do not give an indication to the degree of reachability,

thus it is important to implore a pathfinding algorithm, such as the random walks method utilized

in this analysis, to compare synthesis routes to the target molecules from various starting points.

The random walks results to indolepyruvate and dopamine on the GM graph confirm the GM R

matrix result that these two metabolites are reachable from all the amino acids. Out of 100,000

random walks run to these two metabolites, glutamine and isoleucine had the most reached walks

to indolepyruvate (1415 and 1425 walks, respectively), while phenylalanine had the greatest num-

ber of reached walks to dopamine (1098 walks). This data did not correlate with the atom tracing

results, which indicated that phenylalanine atoms ended up in indolepyruvate most frequently (143

walks), and isoleucine atoms ended up in dopamine most frequently (166 walks). These results

also affirm the notion that metabolites are connected much less on the atomic level that it would

appear when simply analyzing reactions at the metabolite level.

To confirm that 100,000 walks was sufficient to reach the target metabolites at a consistent

frequency, the percent of walks reached was plotted against the number walks for both indolepy-

ruvate and dopamine (Figures S3 and S4). It was found that for both metabolites, about 30,000

walks were enough to reach a consistent fraction of reached walks. The reached walks were then

analyzed for path distance (Figure 5), path probability (Figure 6), and path connectivity (Figure 7).

12

Figure 5. Histograms of path distances as defined in eq. (1) for the reached walks from the amino

acids to indolepyruvate on the GM graph. One hundred thousand walks walks were run from each

amino acid.

Amino Acid Walks to Indolepyruvate

25 50 75 100
0

200

400

600

800
Val

Reached Distances
25 50 75 100

0

200

400

600

800
Tyr

Reached Distances
25 50 75 100

0

200

400

600

800
Trp

Reached Distances
25 50 75 100

0

200

400

600

800
Thr

Reached Distances
25 50 75 100

0

200

400

600

800
Ser

N
um

be
r o

f W
al

ks

Reached Distances

25 50 75 100
0

200

400

600

800
Pro

25 50 75 100
0

200

400

600

800
Phe

25 50 75 100
0

200

400

600

800
Met

25 50 75 100
0

200

400

600

800
Lys

25 50 75 100
0

200

400

600

800
Leu

N
um

be
r o

f W
al

ks

25 50 75 100
0

200

400

600

800
Ile

25 50 75 100
0

200

400

600

800
His

25 50 75 100
0

200

400

600

800
Gly

25 50 75 100
0

200

400

600

800
Gln

25 50 75 100
0

200

400

600

800
Glu

N
um

be
r o

f W
al

ks

25 50 75 100
0

200

400

600

800
Cys

25 50 75 100
0

200

400

600

800
Asp

25 50 75 100
0

200

400

600

800
Asn

25 50 75 100
0

200

400

600

800
Arg

25 50 75 100
0

200

400

600

800
Ala

N
um

be
r o

f W
al

ks

Amino Acid Walks to Indolepyruvate

-100 -80 -60 -40 -20
0

200

400

600

800
Val

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Tyr

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Trp

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Thr

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Ser

N
um

be
r o

f W
al

ks

log(Probability)

-100 -80 -60 -40 -20
0

200

400

600

800
Pro

-100 -80 -60 -40 -20
0

200

400

600

800
Phe

-100 -80 -60 -40 -20
0

200

400

600

800
Met

-100 -80 -60 -40 -20
0

200

400

600

800
Lys

-100 -80 -60 -40 -20
0

200

400

600

800
Leu

N
um

be
r o

f W
al

ks

-100 -80 -60 -40 -20
0

200

400

600

800
Ile

-100 -80 -60 -40 -20
0

200

400

600

800
His

-100 -80 -60 -40 -20
0

200

400

600

800
Gly

-100 -80 -60 -40 -20
0

200

400

600

800
Gln

-100 -80 -60 -40 -20
0

200

400

600

800
Glu

N
um

be
r o

f W
al

ks

-100 -80 -60 -40 -20
0

200

400

600

800
Cys

-100 -80 -60 -40 -20
0

200

400

600

800
Asp

-100 -80 -60 -40 -20
0

200

400

600

800
Asn

-100 -80 -60 -40 -20
0

200

400

600

800
Arg

-100 -80 -60 -40 -20
0

200

400

600

800
Ala

N
um

be
r o

f W
al

ks

13

Figure 6. Histograms of the logarithm of path probabilities (eq. (2)) for the reached walks from

the amino acids to indolepyruvate on the GM graph. One hundred thousand walks were run from

each amino acid.

Figure 7. Path connectivity (eq. (3)) histograms for the reached walks from the amino acids to

indolepyruvate on the GM graph. One hundred thousand walks were run from each amino acid.

The path distance histograms were all positively skewed, indicating that the shorter a

reached path, the more frequently this path was found, though the slopes of these histograms were

different for the various amino acids. The log (probability) histograms were all negatively skewed,

indicating that paths with higher reaction weights were reached more frequently, though at differ-

ent rates for the amino acids. The connectivity histograms were all positively skewed, indicating

that reached paths with a lesser number of branching nodes were reached more frequently. To-

gether, these histograms show that the likelihood of reaching a target metabolite from some starting

Amino Acid Walks to Indolepyruvate

0 900 1800 2700
0

200

400

600

Val

Path Connectivity
0 900 1800 2700

0

200

400

600

Tyr

Path Connectivity
0 900 1800 2700

0

200

400

600

Trp

Path Connectivity
0 900 1800 2700

0

200

400

600

Thr

Path Connectivity
0 900 1800 2700

0

200

400

600

Ser

N
um

be
r o

f W
al

ks

Path Connectivity

0 900 1800 2700
0

200

400

600

Pro

0 900 1800 2700
0

200

400

600

Phe

0 900 1800 2700
0

200

400

600

Met

0 900 1800 2700
0

200

400

600

Lys

0 900 1800 2700
0

200

400

600

Leu

N
um

be
r o

f W
al

ks

0 900 1800 2700
0

200

400

600

Ile

0 900 1800 2700
0

200

400

600

His

0 900 1800 2700
0

200

400

600

Gly

0 900 1800 2700
0

200

400

600

Gln

0 900 1800 2700
0

200

400

600

Glu

N
um

be
r o

f W
al

ks

0 900 1800 2700
0

200

400

600

Cys

0 900 1800 2700
0

200

400

600

Asp

0 900 1800 2700
0

200

400

600

Asn

0 900 1800 2700
0

200

400

600

Arg

0 900 1800 2700
0

200

400

600

Ala

N
um

be
r o

f W
al

ks

14

point on a metabolic graph is a function of the node distance, the edge weighting, and the degree

of path branching. Note that the same trends were observed for reached walks to dopamine (Fig-

ures S5, S6, and S7).

The atom tracing function was used to determine which atoms of the starting amino acids

were conserved throughout the reached walks. The results are shown in Figure 8.

Figure 8. Bar plot of the number of times an atom was conserved vs. the atom’s original location

on each amino acid for reached walks from the amino acids to indolepyruvate on the GM graph,

out of a total of 100,000 walks.

The atom tracing data identifies which atoms were conserved throughout a pathway. Figure

8 shows that often times, groups of atoms will be conserved together; for example, arginine, as-

partic acid, cysteine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, serine, and

15

valine all apparently underwent a decarboxylation reaction, and it was the CO2 that ended up in

indolepyruvate. This can be inferred because the carboxylic acid portion of these amino acids was

always conserved together in walks from these amino acids. The atom tracing data also reveals

that some amino acids had a greater number of atoms conserved per walk than others, and suggests

atoms to label for potential labeling experiments.

Indolepyruvate, Dopamine, Indoleacetate, and Serotonin Walks on All Models

 Random walks were next run from the amino acids to indolepyruvate, dopamine, indole-

acetate, and serotonin on all 12 models.

16

Figure 9. Heat-maps of the number of reached walks from the amino acids to indolepyruvate,

dopamine, indoleacetate, and serotonin on all 12 models. One hundred thousand random walks

were run from each amino acid to each target molecule. Note that the same data is shown graph-

ically for select amino acids in Figure S8.

 The results of these walks indicate a great degree of variation in the likelihood of reaching

the target molecule from different amino acids. For example, indoleacetate was significantly more

17

reachable from tryptophan than it was from any other amino acid, while dopamine was reachable

to a significant degree by tyrosine, phenylalanine, and asparagine. A comparison of results across

various models shows that the greatest factor in determining the degree of reachability from the

amino acids to these molecules was the ratio of host cells to microbiota (columns 1-5 in Figure 9).

All four target molecules were reached the most when there was a 10:1 MMU:GM ratio, and were

least reached on the GM alone graph. Altering the microbiota profile in the high fat diet model,

obese model, and loss of phylum models, did not significantly affect the frequency of reaching

these target molecules. An interesting result that was observed, however, is that sometimes re-

moving a phylum increased the number of walks reached. When phylum 3 (Firmicutes) was re-

moved, indoleacetate was reached much more from tryptophan than when this phylum was present.

Firmicutes accounts for a significant portion (56%) of the microbiota profile in lean mice (Murphy,

2010). Since the probability of traversing a node was simply proportional to the number of cells

and reactions that lead to it, removing a major portion of reactions that do not lead to the target

molecule would increase the probability of selecting reactions that do lead to the desired destina-

tion.

Random Walks to 3-Hydroxycinnamate

 3-Hydroxycinnamate synthesis from the amino acids was identified by the metabolite level

R matrices as requiring the Proteobacteria genome. Random walks to 3-Hydroxycinnamate were

run from the amino acids and select carbohydrates on all 12 models (Figure 10).

18

Figure 10. Heat-map of the number of reached walks from the amino acids and some carbohy-

drates to 3-Hydroxycinnamate on all 12 models. One hundred thousand random walks were run

from each starting molecule.

 As expected, the models that excluded Proteobacteria (MMU and MMU+GM-P4) did not

reach 3-hydroxycinnamate from any of the starting molecules. These results show in the number

of walks reached from the various starting points in a given model, as well as from the same start-

ing molecule across the various models, including the models with varying bacterial phyla propor-

tions. In this experiment, since reachability depended on the presence of Proteobacteria, models

with smaller MMU:GM ratios had more reached walks.

19

Though Figure 10 shows differences in the number of reached walks to 3-hy-

droxycinnamate, the differences across the models are not significant, as the most the target me-

tabolite was reached from any starting point was 12 times. Examination of the reaction pathways

to 3-hydroxycinnamate shows that the closer to the target metabolite, the more specific the path

becomes.

Figure 11. One hundred thousand random walks were run from each of the amino acids and glu-

cose, fructose, galactose, mannose, and ribose to 3-hydroxycinnamate. Of all these walks, 329

walks reached the target, and of these reached walks, there were 1603 unique metabolites traversed.

The plot above shows the number of unique metabolites in the paths versus the number of metab-

olites away from the target.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200
329 Reached Walks to 3 Hydroxycinnamate, 1603 Total Unique Metabolites

Metabolites Away from 3 Hydroxycinnamate

N
um

be
r o

f U
ni

qu
e

M
et

ab
ol

ite
s

20

The data in Figure 11 shows that there is a limited number of pathways that lead to 3-

hydroxycinnamate, for closer to the target metabolite there are less possible nodes that the walk

could be on. One potential way to increase the number of reached walks to 3-hydroxycinnmate is

to start the paths at a point closer to the target. The paths leading to 3-hydroxycinnamate were

searched for potential common dietary metabolites that may be used as good starting metabolites

to reach 3-hydroxycinnammate. Though no common nutrients other than the starting metabolites

originally tested were found, it was found that about 90% of the reached walks to 3-hy-

droxycinnamate went through 4-hydroxy-2-oxopentanoate. Synthesis of 4-hydroxy-2-oxopenta-

noate is regulated by the enzyme 4-hydroxy-2-oxovalerate aldolase, which catalyzes the reaction

between pyruvate and acetaldehyde to form 4-hydroxy-2-penatanoate. The enzyme is found pri-

marily in the bacterium Burkhodleria xenovorans, a member of the phylum Proteobacteria (Baker,

et al., 2009), which may explain why the presence of Proteobacteria is required for 3-hy-

droxycinnamate synthesis. It is conceivable that the introduction of more Burkhodleria xenovorans

to the gut, or the reverse engineering of existing cell to overexpress 4-hydroxy-2-oxovalerate al-

dolase would increase the synthesis of 4-hydroxy-2-oxopentaoate; random walks were thus run to

determine the degree of 3-hydroxycinnammate’s reachability from 4-hydroxy-2-oxopentanoate.

21

Figure 12. Reached walks with conserved atoms from 4-hydroxy-2-oxopentaoate to 3-hy-

droxycinnamate for all 12 models. Thirty thousand walks were conducted.

Random walks starting from 4-hydroxy-2-oxopentanoate reached 3-hydroxycinnamate signifi-

cantly more than did walks from the amino acids and select carbohydrates. There was large differ-

ence in the number of walk reached with conserved atoms from the MMU+GM-P2 compared to

the MMU+GM-P3 (a difference of 570 walks). Removing phylum 2 (Bacteroidetes) decreased the

number of walks reached, while removing phylum 3 (Firmicutes) increased the number of reached

walks. Bacteriodetes may be able to perform some unique reactions that aid in the synthesis of 3-

hydroxycinnamate, while Firmicutes may contain a large number of reactions nonspecific to 3-

hydroxycinnmamate synthesis, and thus removing increased the reaction weighting of the reac-

tions leading to the target molecule. Again, reachability to the 3-hydroxycinnamate depended on

0

200

400

600

800

1000

1200

1400 4-Hydroxy-2-oxopentanoate Walks to 3 Hydroxycinnamate With Conserved Atoms

N
um

be
r o

f W
al

ks

MMU GM

MMU+GM

MMU/G
M=1

0

MMU/G
M=0

.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

22

the presence of Proteobacteria, indicating that 4-hydroxy-2-oxovalerate aldolase was not the only

limiting enzyme. A closer look at the reached random walks reveals that they all followed the

series of chemical reactions shown in Figure 13.

Figure 13. Pathway from 4-hydroxy-2-oxopentanoate to 3-hydroxycinnamate. The metabolite

number refers to the KEGG compound ID number. The atoms numbered are the conserved atoms.

All of the reached walks starting from 4-hydroxy-2-oxopentanoate required the transfor-

mation of 4-hydroxy-2-oxopentanoate to 2-Hydroxy-2, 4-pentadienoate (Figure 13, R1), a reaction

regulated by the enzyme 2-hydroxy-6-oxo-6-phenylhex-2, 4-dienoate reductase, found in the bac-

terium Pseudomonas cruciviae of the Proteobacteria phylum (Omori, Ishigooka, & Minoda, 1986).

Though 4-hydroxy-2-oxopentanoate is synthesized from pyruvate, random walks starting from

pyruvate to 3-hydroxycinnamate did not reach the target with any appreciable frequency, due to

the large number of reactions pyruvate can undergo.

Conclusions

23

This work presents an atomic level analysis of metabolic networks for the investigation of

host-gut microbiota metabolic interactions. Various metabolic models representing different pro-

portions of murine host cells and various bacterial phyla were assembled using the KEGG database.

Utilizing reachability matrices, it was found that connectivity at the atomic level was significantly

more limited than at the metabolite level. This was exemplified by the reachability matrices rep-

resenting a system consisting of murine host cells (Mus musculus), Actinobacteria, Bacteroidetes,

Firmicutes, and Proteobacteria, which was missing bacterial phylum 5, the Miscellaneous cate-

gory. The metabolite level R matrix indicated that all the metabolites in Table S2 were reachable

from the metabolites in Table S1. The atomic level R matrix, however, showed that several atoms

were in fact not reachable, and that dimethylamine, trimethylamine, trimethylamine-N-oxide, and

3-hydroxybenzoic acid were completely unreachable without the Miscellaneous category of gut

microbiota.

 The random walk and atom tracing analysis were used to investigate the pathways from

the amino acids to indolepyruvate, dopamine, indoleacetate, and serotonin, metabolites whose

reachability was not found to depend on the gut microbiota. It was found that the likelihood of

reaching a target metabolite from some starting point depended on the path distance, path connec-

tivity, and the path probability. Random walks were run on the metabolite level adjacency matrices,

so an atom tracing function was implored to find the number and location of conserved atoms

throughout the pathways. The number of walks that reached the target node with conserved atoms

was significantly less than the total number of walks reached simply at a metabolite level, and that

these two measures did not correlate with each other. For these target metabolites, the frequency

of being reached differed significantly amongst the amino acids, but for a given starting amino

24

acid, the likelihood of reaching the target metabolite did not vary significantly when the composi-

tion of the gut microbiota was altered. The biggest factor that affected reachability was the ratio

of host cells to gut microbiota; a ratio of MMU:GM = 10 was generally found to have greatest

number of reached walks.

 Synthesis of 3-hydroxycinnamate was identified using the metabolite level reachability

matrices as requiring Proteobacteria genomes. Random walks were run from the amino acids and

some select carbohydrates to this target for all the models, but only a negligible fraction of the

walk reached their target. Further analysis of the reached pathways revealed that 4-hydroxy-2-

oxopentanoate, a metabolite whose synthesis from pyruvate and acetaldehyde is catalyzed by 4-

hydroxy-2-oxovalerate aldolase, an enzyme found primarily in the bacterium Burkhodleria xeno-

vorans, a member of the Proteobacteria phylum, was a key step in the synthesis of 3-hy-

droxycinnamate. Random walks were run from 4-hydroxy-2-oxopentanoate to 3-hy-

droxycinnamate, and a significantly greater number of walks were reached. Furthermore, this lead

to the identification of another key enzyme belonging to Pseudomonas cruciviae of the Proteo-

bacteria phylum that regulated the synthesis of 3-hydroxycinnamate. For the 3-hydroxycinnamate

trials, the random walks and atom tracing analysis facilitated the identification of key enzymes and

reactions in the synthesis pathway, and determined the conservation of atoms along this pathway.

 Improvements to the reaction weighting scheme may significantly improve the accuracy

and predictive nature of this computational approach to investigating hot-gut microbiota interac-

tions. The current model weights reactions solely based on the number of cells that can perform

them; it assumes all metabolites are accessible to each other, and does not account for factors such

as transport limitations or enzyme expression. Practical improvements to the reaction weighting

scheme may include accounting for the various phyla’s locations along the digestive tract, favoring

25

reactions sequences that occur in the same cell type, appropriately regulating reactions that cross

membranes, and accounting for enzyme expression. Other future work should also focus on shift-

ing all the analyses to the atomic level. With continued model improvement, this atom tracing

analysis can become a very useful tool for the study of complex metabolic systems.

26

References

Arpaia, N. et al. (2013). Metabolites produced by commensal bacteria promote peripheral
regulatory T-cell generation. Nature, 451-455.

Baker, P., Pan, D., Carere, J., Rossi, A., Wang, W., & Seah, S. (2009). Characterization of an
Aldolase-Dehydrogenase Complex That Exhibits Substrate Channeling in the
Polycholorinated Biphenyls Degradation Pathway. Biochemistry, 6551-6558.

Chassaing, B., & Darfeuille-Michaud, A. (2011). The commensal microbiota and
enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology,
1720-1728.

Gordan, J. (2012). Honor thy gut symbionts redux. Science, 1251-1253.

Kanehisa Laboratories. (2015, April 30). Kegg: Kyoto Encyclopeida of Genes and Genomes.
Retrieved from KEGG: http://www.genome.jp/kegg/

Murphy, E. et al. (2010). Composition and energy harvesting capacity of the gut microbiota:
relationship to diet, obesity, and time in mouse models. Gut, 1635-1642.

Nicholson, J. et al. (2012). Host-Gut Microbiota Metabolic Interactions. Science, 1262-1267.

Nicholson, J., & Wilson, I. (2003). Opinion: understanding 'global' systems biology:
metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 668-676.

Omori, T., Ishigooka, H., & Minoda, Y. (1986). Purification and some properties of 2-hydroxy-
6-oxo-6-phenylexa-2,4-dienoic acid (HOPDA) reducing enzyme from Pseudomonas
cruciviae S93B1 involved in the degradation of biphenyl. Agir. Biol. Chem., 1513-1518.

Sridharan, G. V. et al. (2014). Prediction and quantification of bioactive microbiota metabolites
in the mouse gut. Nature Communications, 5492.

Tremaroli, V., & Backherd, F. (2012). Functional interactions between the gut microbiota and
host metabolism. Nature, 242-249.

Wang, Z. et al. (2011). Gut flora metabolism of phophatidylcholine promotes cardiovascular
disease. Nature, 57-63.

27

Supplementary Information

Table S1. Starting dietary nutrients

Compound Name KEGG ID
Alanine 41
Arginine 62
Asparagine 152
Aspartic Acid 49
Cysteine 97
Glutamic Acid 25
Glutamine 64
Glycine 37
Histidine 135
Isoleucine 407
Leucine 123
Lysine 47
Methionine 73
Phenylalanine 79
Proline 148
Serine 65
Threonine 188
Tryptophan 78
Tyrososine 82
Valine 183
Glucose 31
Starch 369
Cholesterol 187
Choline 114
Ecosapentanoic Acid 6428

Table S2. Target metabolites suspected of requiring host-gut metabolic interaction

Compound Name KEGG ID
Short Chain Fatty Acids
Acetate 33
Propionate 163
Butyrate 246

Bile Acids
Cholate 695

28

Deoxycholate 4483
Chendeoxycholate 2528
Taurocholate 5122
Glycocholate 5465
Taurochendeoxycholate 1921
Glycodeoxycholate 5464
Taurodeoxylcholate 5463

Choline Metabolites
Choline 114
Methylamine 218
Dimethylamine 543
Trimethylamine 565
Trimethylamine N oxide 1104
Dimethylglycine 1026
Betaine 719

Phenolic, Benzoyl, Phenyl Derivatives
Benzoic acid 180
Hippuric acid 1586
3 Hydroxybenzoic acid 587
4 Hydroxybenzoic acid 156
3 Hydroxycinnamate 12621
4 Hydroxyphenylacetate 642
3,4 Dihydroxyphenylacetate 1161
Phenylacetylglycine 5598
Phenylacetate 15583

Indole Derivatives
Indoleacetate 954
Melatonin 1598
Serotonin 780

Vitamins
Vitamin K 2059
Biotin 120
Folate 504
Thiamine 378
Riboflavin 255
Pyridoxine 314

Polyamines
Putrescine 134

29

Cadaverine 1672
Spermidine 315
Spermine 750

Lipids
LPS 338
Acylglycerol 1885
Sphingomeylin 550
Cholesterol 187
Phosphatidylcholine 157
Phosphoethanolamine 346
Triglyceride 422

Table S3. KEGG compound numbers of biochemical cofactors used to terminate random walks

1 10 53 104 239 458 1344 2355
2 15 54 105 286 459 1345 2739
3 16 55 112 360 460 1346 2741
4 20 63 130 361 575 1352 3246
5 24 68 131 362 655 1367 3794
6 35 75 144 363 700 1368 5822
7 44 81 167 364 705 2353
8 51 87 206 365 942 2354

30

Figure S1. Color-map of the metabolite level R matrix from the metabolites in Table S1 to the

metabolites in Table S2 for the GM model. Values of “1” indicate the existence of a path connect-

ing a metabolite pair, while values of “0” indicates the absence of such a path.

31

Figure S2. Color-map of the metabolite level R matrix from the metabolites in Table S1 to the

metabolites in Table S2 for the GM model. Values of “1” indicate the existence of a path connect-

ing a metabolite pair, while values of “0” indicates the absence of such a path.

Figure S3. Plots of fraction of walks reached to indolepyruvate vs. the number of walks for all the

amino acids.

Amino Acid Walks to Indolepyruvate

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Val

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Tyr

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Trp

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Thr

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Ser

P
er

ce
nt

ag
e

R
ea

ch
ed

Number of Walks

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Pro

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Phe

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Met

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Lys

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Leu

P
er

ce
nt

ag
e

R
ea

ch
ed

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Ile

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
His

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Gly

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Gln

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Glu

P
er

ce
nt

ag
e

R
ea

ch
ed

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Cys

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Asp

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Asn

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Arg

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Ala

P
er

ce
nt

ag
e

R
ea

ch
ed

32

Figure S4. Plots of fraction of walks reached to indolepyruvate vs. the number of walks for all the

amino acids.

Amino Acid Walks to Dopamine

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Val

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Tyr

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Trp

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Thr

Number of Walks
0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Ser

P
er

ce
nt

ag
e

R
ea

ch
ed

Number of Walks

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Pro

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Phe

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Met

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Lys

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Leu

P
er

ce
nt

ag
e

R
ea

ch
ed

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Ile

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
His

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Gly

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Gln

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Glu

P
er

ce
nt

ag
e

R
ea

ch
ed

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Cys

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Asp

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Asn

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Arg

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02
Ala

P
er

ce
nt

ag
e

R
ea

ch
ed

Amino Acid Walks to Dopamine

25 50 75 100
0

200

400

600

800
Val

Reached Distances
25 50 75 100

0

200

400

600

800
Tyr

Reached Distances
25 50 75 100

0

200

400

600

800
Trp

Reached Distances
25 50 75 100

0

200

400

600

800
Thr

Reached Distances
25 50 75 100

0

200

400

600

800
Ser

N
um

be
r o

f W
al

ks

Reached Distances

25 50 75 100
0

200

400

600

800
Pro

25 50 75 100
0

200

400

600

800
Phe

25 50 75 100
0

200

400

600

800
Met

25 50 75 100
0

200

400

600

800
Lys

25 50 75 100
0

200

400

600

800
Leu

N
um

be
r o

f W
al

ks

25 50 75 100
0

200

400

600

800
Ile

25 50 75 100
0

200

400

600

800
His

25 50 75 100
0

200

400

600

800
Gly

25 50 75 100
0

200

400

600

800
Gln

25 50 75 100
0

200

400

600

800
Glu

N
um

be
r o

f W
al

ks

25 50 75 100
0

200

400

600

800
Cys

25 50 75 100
0

200

400

600

800
Asp

25 50 75 100
0

200

400

600

800
Asn

25 50 75 100
0

200

400

600

800
Arg

25 50 75 100
0

200

400

600

800
Ala

N
um

be
r o

f W
al

ks

33

Figure S5. Histograms of path distances as defined in eq. (1) for the reached walks from the amino

acids to dopamine on the GM graph. One hundred thousand walks walks were run from each amino

acid.

Figure S6. Histograms of the logarithm of path probabilities (eq. (2)) for the reached walks from

the amino acids to dopamine on the GM graph. One hundred thousand walks were run from each

amino acid.

Amino Acid Walks to Dopamine

-100 -80 -60 -40 -20
0

200

400

600

800
Val

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Tyr

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Trp

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Thr

log(Probability)
-100 -80 -60 -40 -20
0

200

400

600

800
Ser

N
um

be
r o

f W
al

ks

log(Probability)

-100 -80 -60 -40 -20
0

200

400

600

800
Pro

-100 -80 -60 -40 -20
0

200

400

600

800
Phe

-100 -80 -60 -40 -20
0

200

400

600

800
Met

-100 -80 -60 -40 -20
0

200

400

600

800
Lys

-100 -80 -60 -40 -20
0

200

400

600

800
Leu

N
um

be
r o

f W
al

ks

-100 -80 -60 -40 -20
0

200

400

600

800
Ile

-100 -80 -60 -40 -20
0

200

400

600

800
His

-100 -80 -60 -40 -20
0

200

400

600

800
Gly

-100 -80 -60 -40 -20
0

200

400

600

800
Gln

-100 -80 -60 -40 -20
0

200

400

600

800
Glu

N
um

be
r o

f W
al

ks

-100 -80 -60 -40 -20
0

200

400

600

800
Cys

-100 -80 -60 -40 -20
0

200

400

600

800
Asp

-100 -80 -60 -40 -20
0

200

400

600

800
Asn

-100 -80 -60 -40 -20
0

200

400

600

800
Arg

-100 -80 -60 -40 -20
0

200

400

600

800
Ala

N
um

be
r o

f W
al

ks

34

Figure S7. Path connectivity (eq. (3)) histograms for the reached walks from the amino acids to

indolepyruvate on the GM graph. One hundred thousand walks were run from each amino acid.

Amino Acid Walks to Dopamine

0 900 1800 2700
0

200

400

600

Val

Path Connectivity
0 900 1800 2700

0

200

400

600

Tyr

Path Connectivity
0 900 1800 2700

0

200

400

600

Trp

Path Connectivity
0 900 1800 2700

0

200

400

600

Thr

Path Connectivity
0 900 1800 2700

0

200

400

600

Ser

N
um

be
r o

f W
al

ks

Path Connectivity

0 900 1800 2700
0

200

400

600

Pro

0 900 1800 2700
0

200

400

600

Phe

0 900 1800 2700
0

200

400

600

Met

0 900 1800 2700
0

200

400

600

Lys

0 900 1800 2700
0

200

400

600

Leu

N
um

be
r o

f W
al

ks

0 900 1800 2700
0

200

400

600

Ile

0 900 1800 2700
0

200

400

600

His

0 900 1800 2700
0

200

400

600

Gly

0 900 1800 2700
0

200

400

600

Gln

0 900 1800 2700
0

200

400

600

Glu

N
um

be
r o

f W
al

ks

0 900 1800 2700
0

200

400

600

Cys

0 900 1800 2700
0

200

400

600

Asp

0 900 1800 2700
0

200

400

600

Asn

0 900 1800 2700
0

200

400

600

Arg

0 900 1800 2700
0

200

400

600

Ala

N
um

be
r o

f W
al

ks

35

Figure S8. Plots of number of reached paths with conserved atoms for the amino acids with the

most reached paths to indolepyruvate, dopamine, indoleacetate, and serotonin on all 12 models,

out of 100,000 total random walks.

Reactions with One or More Conserved Atoms

0

50

100

150

200

250

300 Ile

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

0

20

40

60

80

100

120

140

160

180 His

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

0

20

40

60

80

100

120 Gly

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

N
um

be
r o

f R
ea

ct
io

ns

0

50

100

150

200

250 Gln

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

0

100

200

300

400

500

600 Asn

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

0

50

100

150

200

250 Ala

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

N
um

be
r o

f R
ea

ct
io

ns

Reactions with One or More Conserved Atoms

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 Tyr

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
50

1000

2000

3000

4000

5000

6000

7000

8000

9000 Trp

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

0

20

40

60

80

100

120 Thr

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

N
um

be
r o

f R
ea

ct
io

ns

0

50

100

150

200

250

300

350

400

450 Ser

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
50

100

200

300

400

500

600

700

800

900 Phe

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

0

100

200

300

400

500

600

700

800

900 Met

MMU
GM

MMU+GM

MMU/G
M=10

MMU/G
M=0.1 HF OB

MMU-P
1

MMU-P
2

MMU-P
3

MMU-P
4

MMU-P
5

N
um

be
r o

f R
ea

ct
io

ns

36

MATLAB Functions

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function AM = adjacency_matrix(S,reaction_weight)
% Input is a directed or undirected stoichiometrix matrix
% Creates adjacency matrix AM which contains the probability of going from
% from node i --> j
% AM is built assuming graph is undirected, i.e. AM(i,j) = AM(j,i)

AM = zeros(size(S,1));

for i = 1:size(S,2)
 for j = 1:size(S,1)
 if S(j,i) < 0
 [r,~] = find(S(:,i) > 0);
 if exist('reaction_weight','var')
 AM(j,r) = AM(j,r) + reaction_weight(i);
 AM(r,j) = AM(r,j) + reaction_weight(i);
 else
 AM(j,r) = AM(j,r) + 1;
 AM(r,j) = AM(r,j) + 1;
 end
 end
 end
end

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function [atom_tracing,reaction_path] =
atom_tracer(Reached_Walk,S,cmpds,rxns,num_atoms,Kegg_Reactions_Data-
base,Kegg_RPairs_Database,rxn_weights)
% atom_tracing = a row vector the length of the starting metabolite.
% Conserved atoms will have a nonzero entry corresponding to the final atom
% position at the end of the walk. Nonconserved atoms will have a zero
% entry.
% reaction_path = kegg reaction IDs of the reactions in the pathway
% Reached_Walk = a vector containing the metabolites in the path
% S = stoichiometric matrix
% rxns = vector or kegg reaction IDs corresponding to the stoichiometric
% matrix columns
% cmpds = vector of kegg compound IDs corresponding to the stoichiometrix
% matrix rows
% num_atoms = (optional)number of atoms in the beginning compound (optional
% argument)
% Kegg_Reactions_Database = (optional) Database of kegg reactions, atom
% tracer checks Kegg online if this argument is not present
% Kegg_RPairs_Database = (optional) Database of kegg rpairs, atom tracer
% checks Kegg online if this argument is not present

37

reaction_url = 'http://www.genome.jp/dbget-bin/www_bget?rn:R';
rpair_url = 'http://www.genome.jp/dbget-bin/www_bget?rp:';
starting_atom_url = 'http://www.genome.jp/dbget-bin/www_bget?cpd:';

% determine the number of atoms in the starting metabolite if its not
% specified as an argument
if exist('num_atoms','var') == 0
 Starting_Point = cmpds(Reached_Walk(1,1),1);
 first_metabolite = sprintf('C%05d',Starting_Point);
 first_metabolite_page = urlread(strcat(starting_atom_url,first_metabo-
lite));
 ATOM_index = strfind(first_metabolite_page,'ATOM');
 BOND_index = strfind(first_metabolite_page,'BOND');
 num_atoms = regexp(first_metabolite_page(ATOM_index:BOND_index),
'\d+','match');
 atom_tracing = 1:str2double(num_atoms{1});
else
 atom_tracing = 1:num_atoms;
end
Reached_Walk(Reached_Walk == 0) = [];
reaction_path = zeros(1,size(Reached_Walk,2)-1);

for m = 2:size(Reached_Walk,2)

 % The walk data contains the nodes of the walk; the reactin between the
 % nodes must be determined. If more than one possibility exists, a
 % reaction is chosen at random.

 [~,c1] = find(S(Reached_Walk(m-1),:) ~= 0);
 [~,c2] = find(S(Reached_Walk(m),:) ~= 0);
 [~,c3] = find(ismember(c1,c2) == 1);

 if exist('rxn_weights','var') && length(c3) > 1
 c3_order = datasample(c3,nnz(rxn_weights(c1(c3))),'re-
place',false,'weights',rxn_weights(c1(c3)));
 possible_reactions_order = zeros(length(c3),1);
 for i = 1:length(c3_order)
 ind = find(c3 == c3_order(i));
 possible_reactions_order = ind;
 end
 else
 possible_reactions_order = randperm(length(c3));
 end

 % This step ensures that in the reaction chosen one node is a reactant
 % and the other a product. This must be done because we assumed all
 % reactions in the S matrix to be reversible, thus when the adjacency
 % matrix was created it could not differentiate between reactants and
 % products.

 if exist('Kegg_Reactions_Database','var')
 for n = 1:length(possible_reactions_order)
 if S(Reached_Walk(m-1),c1(c3(possible_reactions_or-
der(n))))*S(Reached_Walk(m),c1(c3(possible_reactions_order(n)))) < 0

38

 kegg_rxn_id = rxns(c1(c3(possible_reactions_order(n))));
 reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_or-
der(n))));
 break
 end
 end
 if n == length(possible_reactions_order) && S(Reached_Walk(m-
1),c1(c3(possible_reactions_order(n))))*S(Reached_Walk(m),c1(c3(possible_re-
actions_order(n)))) > 0
 reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_order(n))));
 atom_tracing = atom_tracing*0;
 break
 end

 % Once the reaction is known, find the relevant RPair
 current_metabolite = cmpds(Reached_Walk(m-1),1);
 next_metabolite = cmpds(Reached_Walk(m),1);
 reaction_rpair_data = Kegg_Reactions_Database{kegg_rxn_id,4};
 row = and(any(reaction_rpair_data == current_metabolite,2),any(reac-
tion_rpair_data == next_metabolite,2));
 rpair_id = reaction_rpair_data(row == 1);
 if isempty(rpair_id)
 atom_tracing = atom_tracing*0;
 break;
 end

 else

 % Go online

 for n = 1:length(possible_reactions_order)
 if S(Reached_Walk(m-1),c1(c3(possible_reactions_or-
der(n))))*S(Reached_Walk(m),c1(c3(possible_reactions_order(n)))) < 0
 kegg_rxn_id = sprintf('%05d',rxns(c1(c3(possible_reac-
tions_order(n)))));
 reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_or-
der(n))));
 break
 end
 end
 if n == length(possible_reactions_order) && S(Reached_Walk(m-
1),c1(c3(possible_reactions_order(n))))*S(Reached_Walk(m),c1(c3(possible_re-
actions_order(n)))) > 0
 reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_order(n))));
 atom_tracing = atom_tracing*0;
 break
 end

 % Once the reaction is known, find the relevant RPair

 kegg_reaction_url = strcat(reaction_url,kegg_rxn_id);
 rxn_page = urlread(kegg_reaction_url);
 current_metabolite = cmpds(Reached_Walk(m-1),1);
 current_metabolite = sprintf('C%05d',current_metabolite);
 next_metabolite = cmpds(Reached_Walk(m),1);
 next_metabolite = sprintf('C%05d',next_metabolite);

39

 rpair_string = strcat(current_metabolite,'_',next_metabolite);
 rpair_string = strcat('RP\d{5}.+',rpair_string); % makes the string
RP\d{5}.+Cxxxxx_Cxxxxx where "x"s are numbers
 rpair_find = cell2mat(regexp(rxn_page,rpair_string,'match')); % Looks
for the RPair. finds strings of the form RPxxxxx Cxxxxx_Cxxxxx, ex: RP01885
C00331_C00637
 if isempty(rpair_find) % The case that the relevant reaction is the
reverse of the reaction in the page
 rpair_string = strcat(next_metabolite,'_',current_metabo-
lite); %switch the current and next metabolite order, search again
 rpair_string = strcat('RP\d{5}.+',rpair_string);
 rpair_find = cell2mat(regexp(rxn_page,rpair_string,'match'));
 rpair_index = strfind(rpair_find,'RP');
 if isempty(rpair_index) % the case that the two nodes are not di-
rectly involved in the reaction
 atom_tracing = atom_tracing*0;
 break;
 end
 rpair_index = rpair_index(end); %The case that the desired RPair
is not the first RPair listed on the reaction page
 else
 rpair_index = strfind(rpair_find,'RP');
 if isempty(rpair_index)
 atom_tracing = atom_tracing*0;
 break;
 end
 rpair_index = rpair_index(end); % The case desired RPair is not
the first RPair listed on the reaction page
 end
 if isempty(rpair_index)
 atom_tracing = atom_tracing*0;
 break;
 end
 rpair_id = rpair_find(rpair_index:rpair_index+6);
 end

 %RPair ID has been found, get RPair data

 if exist('Kegg_RPairs_Database','var')
 rpair_data = Kegg_RPairs_Database{rpair_id,1};
 [~,c] = find(rpair_data(1,:) == current_metabolite);
 current_atom_position = zeros(size(rpair_data,1)-1,1);
 next_atom_position = zeros(size(rpair_data,1)-1,1);
 if c == 1
 for p = 2:size(rpair_data,1)
 % create two vectors, one containing the current atom posi-
tion
 % of the aligned atoms, the other containing the new atom
 % positions of those atoms in the next metabolite
 current_atom_position(p-1,1) = rpair_data(p,1);
 next_atom_position(p-1,1) = rpair_data(p,2);
 end
 else
 for p = 2:size(rpair_data,1)
 current_atom_position(p-1,1) = rpair_data(p,2);

40

 next_atom_position(p-1,1) = rpair_data(p,1);
 end
 end
 conserved_atoms = zeros(1,length(atom_tracing));
 for q = 1:length(current_atom_position)
 [~,column]=find(atom_tracing == current_atom_position(q));
 conserved_atoms(1,column) = next_atom_position(q);
 end
 atom_tracing = conserved_atoms;
 else
 kegg_rpair_url = strcat(rpair_url,rpair_id);
 rpair_page = urlread(kegg_rpair_url);
 ALIGN_index = strfind(rpair_page,'ALIGN');
 ENTRY1_index = strfind(rpair_page,'ENTRY1');
 align_info = regexp(rpair_page(ALIGN_index:ENTRY1_in-
dex),'\r\n|\n|\r','split');
 Compound_index = strfind(rpair_page,'Compound');
 Type_index = strfind(rpair_page,'Type');
 align_metabolite_find = rpair_page(Compound_index:Type_index);
 align_metabolite_index = regexp(align_metabolite_find,'C\d{5}');
 align_metabolite = align_metabolite_find(align_metabolite_in-
dex(1):align_metabolite_index(1)+5); % Determine which compound is being
aligned to the other
 current_atom_position = zeros(length(align_info)-3,1);
 next_atom_position = zeros(length(align_info)-3,1);
 num_aligned_atoms = regexp(char(align_info{1}),'\d+','match');
 num_aligned_atoms = str2double(cell2mat(num_aligned_atoms(1))); %
Determine the number of aligned atoms
 if strcmp(align_metabolite,current_metabolite) % The case that the
current metabolite in the walk is being aligned onto the next metabolite in
the walk
 for p = 1:num_aligned_atoms
 % create two vectors, one containing the current atom posi-
tion
 % of the aligned atoms, the other containing the new atom
 % positions of those atoms in the next metabolite
 align_info_p = regexp(align_info{p+1},'\d+:\w+','match');
 current_atom_position_cell = re-
gexp(align_info_p{1},'^\d+','match');
 current_atom_position(p,1) = str2double(cell2mat(cur-
rent_atom_position_cell));
 next_atom_position_cell = re-
gexp(align_info_p{2},'^\d+','match');
 next_atom_position(p,1) = str2double(cell2mat(next_atom_posi-
tion_cell));
 end
 conserved_atoms = zeros(1,length(atom_tracing));
 for q = 1:length(current_atom_position)
 [~,column]=find(atom_tracing == current_atom_position(q));
 conserved_atoms(1,column) = next_atom_position(q);
 end
 atom_tracing = conserved_atoms;
 else
 for p = 1:num_aligned_atoms % the case that the next metabolite
in the walk is being aligned onto the current metabolite
 align_info_p = regexp(align_info{p+1},'\d+:\w+','match');

41

 current_atom_position_cell = re-
gexp(align_info_p{2},'^\d+','match');
 current_atom_position(p,1) = str2double(cell2mat(cur-
rent_atom_position_cell));
 next_atom_position_cell = re-
gexp(align_info_p{1},'^\d+','match');
 next_atom_position(p,1) = str2double(cell2mat(next_atom_posi-
tion_cell));
 end
 conserved_atoms = zeros(1,length(atom_tracing));
 for q = 1:length(current_atom_position)
 [~,column]=find(atom_tracing == current_atom_position(q));
 conserved_atoms(1,column) = next_atom_position(q);
 end
 atom_tracing = conserved_atoms;
 end
 end
end

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function [rxns_MMU_GM, GM_reaction_weight,MMU_GM_reaction_weight] =
calc_rxn_weight(GM_composition,phyla_score,MMU_GM_ratio,rxns,rxns_MMU)

GM_composition = GM_composition./sum(GM_composition);
GM_reaction_weight = zeros(size(phyla_score,1),1);
for i = 1:size(phyla_score,1)
 for j = 1:size(phyla_score,2)
 GM_reaction_weight(i) = GM_reaction_weight(i) + GM_composi-
tion(j).*phyla_score(i,j);
 end
end

% Make combined MMU and GM matrix and combined MMU/GM reaction weights
common_reactions = ismember(rxns,rxns_MMU); %same size as rxns, has a 1 for
common reactions
rxns_MMU_GM = cat(1,rxns_MMU,rxns(common_reactions == 0)); %all MMU rxns fol-
lowed by unique GM rxns
GM_common_rxn_index = find(common_reactions == 1);
common_reaction_ids = rxns(common_reactions == 1);
MMU_reaction_weight = ones(size(rxns_MMU,1),1)*MMU_GM_ratio;
reaction_weight = cat(1,MMU_reaction_weight,GM_reaction_weight(common_reac-
tions == 0));

for i = 1:length(common_reaction_ids)
 MMU_common_rxn_index = find(rxns_MMU == common_reaction_ids(i));
 reaction_weight(MMU_common_rxn_index) = reaction_weight(MMU_com-
mon_rxn_index) + GM_reaction_weight(GM_common_rxn_index(i));
end
reaction_weight = reaction_weight./(1 + MMU_GM_ratio);

[rxns_MMU_GM,ind] = sort(rxns_MMU_GM);

42

MMU_GM_reaction_weight = zeros(length(ind),1);
for i = 1:length(ind)
 MMU_GM_reaction_weight(i) = reaction_weight(ind(i));
end
end

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function [SM,U,R] = comm_class(AM,S,cmpds,rxns,rxn_weights)
% Find the communication classes that make up the S matrix
% Create new S matrices with compounds and reaction lists for each
% communication classes
% The SM cell array contains the following information for each sub S
% matrix created
% SM{:,1} = S matrix
% SM{:,2} = cmpds
% SM{:,3} = rxns
% SM{:,4} = rxn_weight_adjusted
% U = communication classes
% R = reachability matrix

if issparse(AM) == 0
 AM = sparse(AM);
end

[nc,C] = graphconncomp(AM);

R = zeros(length(C));
for i =1:nc
 ind = find(C == i);
 R(ind,ind) = 1;
end

C = R & R';
U = unique(C,'rows');

SM = cell(size(U,1),4);
for i = 1:size(U,1)
 met_ind = find(U(i,:) == 1);
 [~,rxn_ind] = find(S(met_ind,:) ~= 0);
 SM{i,1} = S(met_ind,unique(rxn_ind));
 SM{i,2} = cmpds(met_ind);
 SM{i,3} = rxns(unique(rxn_ind));
 if exist('rxn_weights','var')
 rxn_weight_adjusted = zeros(size(SM{i,3},1),1);
 for j = 1:size(rxn_weight_adjusted,1)
 rxn_weight_adjusted(j) = rxn_weights(SM{i,3}(j) == rxns);
 end
 SM{i,4} = rxn_weight_adjusted;
 end
end

43

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function Kegg_Compounds_Database = kegg_cmpds_txt2cell(com-
pounds_txt_file,tot_num_cmpds)
% Creates an array whose indices are the Kegg compound ID numbers and the
% value of each entry corresponds to the number of atoms in that molecule.

clear fid
fid = fopen(compounds_txt_file);
line = fgetl(fid);
Kegg_Compounds_Database = zeros(tot_num_cmpds,1);
counter = 0;
while ischar(line)
 if length(line) < 4
 line = fgetl(fid);
 continue
 end
 counter = counter + 1;
 if isempty(regexp(line,'ENTRY.+C\d{5}','ONCE')) == 0;
 cmpd_id_index = regexp(line,'C\d{5}');
 cmpd_id = str2double(line(cmpd_id_index+1:cmpd_id_index+6));
 line = fgetl(fid);
 continue
 end
 if strcmp(line(1:4),'ATOM')
 num_atoms = regexp(line,'\d+','match');
 num_atoms = str2double(cell2mat(num_atoms(1)));
 Kegg_Compounds_Database(cmpd_id) = num_atoms;
 line = fgetl(fid);
 continue
 end
 line = fgetl(fid);
end

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function Kegg_RPairs_Database =
kegg_rpairs_txt2cell(rpairs_txt_file,tot_num_rpairs)
% Creates a cell array that contains the Kegg RPair alignment data
% Format of cell array:
% - row number corresponds to RPAIR ID number
% - each enter is a matrix; the first row contains the metabolites
% involved in the RPAIR. The remaining rows contain the atom alignment
% data
% rpairs_txt_file is the string name of the text file containing the rpair
% database

clear fid
fid = fopen(rpairs_txt_file);
line = fgetl(fid);
Kegg_RPairs_Database = cell(tot_num_rpairs,1);

44

while ischar(line)
 if length(line) < 5
 line = fgetl(fid);
 continue
 end
 if isempty(regexp(line,'ENTRY.+RP\d{5}','ONCE')) == 0;
 rpair_id_index = regexp(line,'RP\d{5}');
 rpair_id = str2double(line(rpair_id_index+2:rpair_id_index+6));
 line = fgetl(fid);
 metabolites = strsplit(char(re-
gexp(line,'C\d{5}_C\d{5}','match')),'_');
 x = metabolites{1};
 y = metabolites{2};
 x(1) = [];
 y(1) = [];
 metabolite1 = str2double(x);
 metabolite2 = str2double(y);
 end
 if strcmp(line(1:5),'ALIGN')
 num_aligned_atoms = regexp(line,'\d+','match');
 num_aligned_atoms = str2double(cell2mat(num_aligned_atoms(1)));
 RPair = zeros(num_aligned_atoms+1,2);
 RPair(1,1) = metabolite1;
 RPair(1,2) = metabolite2;
 for i = 1:num_aligned_atoms
 line = fgetl(fid);
 align_info = regexp(line,'\d+:\w+','match');
 RPair(i+1,1) = str2double(cell2mat(re-
gexp(align_info{1},'^\d+','match')));
 RPair(i+1,2) = str2double(cell2mat(re-
gexp(align_info{2},'^\d+','match')));
 end
 Kegg_RPairs_Database{rpair_id,1} = RPair;
 end
 line = fgetl(fid);
end

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function Kegg_Reactions_Database = kegg_rxns_txt2cell(rxns_txt_file)
% Creates Cell Array of Kegg Reactions Database.
% Columns Descriptions:
% 1 - Kegg reaction number
% 2 - Reactants
% Column 1 - reactant stoichiometry
% Column 2 - reactant number
% 3 - Products
% Column 1 - reactant stoichiometry
% Column 2 - reactant number
% 4 - RPairs
% Column 1 - RPair number
% Column 2 - RPair reactant
% Column 3 - RPair product
%

45

% rxns_txt_file is the string name

kegg_reactions = importdata(rxns_txt_file);

ENTRY = strfind(kegg_reactions,'ENTRY');
EQUATION = strfind(kegg_reactions,'EQUATION');
ENTRY_indices = find(~cellfun('isempty',ENTRY));
EQUATION_indices = find(~cellfun('isempty',EQUATION));
SLASH = strfind(kegg_reactions,'///');
SLASH_indices = find(~cellfun('isempty',SLASH));

line = cell2mat(kegg_reactions(ENTRY_indices(end)));
max_rxn_num_index = regexp(line,'R\d{5}');
max_rxn_num = str2double(line(max_rxn_num_index+1:max_rxn_num_index+5));

Kegg_Reactions_Database = cell(max_rxn_num,4);

for i = 1:length(ENTRY_indices)
 % find reaction number
 line = cell2mat(kegg_reactions(ENTRY_indices(i)));
 rxn_num_index = regexp(line,'R\d{5}');
 rxn_num = str2double(line(rxn_num_index+1:rxn_num_index+5));
 Kegg_Reactions_Database{rxn_num,1} = rxn_num;
 rxn_line = cell2mat(kegg_reactions(EQUATION_indices(i)));

 % find reactants
 reactants_match = strtrim(strsplit(char(re-
gexp(rxn_line,'N.+<','match')),'+'));
 for j = 1:length(reactants_match)
 reactant_info = regexp(reactants_match{j},'\d+','match');
 if isempty(reactant_info)
 reactants_match{j} = [];
 end
 end
 reactants_match = reactants_match(~cellfun('isempty',reactants_match));
 reactants = zeros(length(reactants_match),2);
 for j = 1:length(reactants_match)
 reactant_info = regexp(reactants_match{j},'\d+','match');
 if length(reactant_info) == 1
 reactants(j,1) = 1;
 reactants(j,2) = str2double(reactant_info(1));
 else
 reactants(j,1) = str2double(reactant_info(1));
 reactants(j,2) = str2double(reactant_info(2));
 end
 end
 Kegg_Reactions_Database{rxn_num,2} = reactants;

 % find products
 products_match = strtrim(strsplit(char(re-
gexp(rxn_line,'>.+','match')),'+'));
 for j = 1:length(products_match)
 product_info = regexp(products_match{j},'\d+','match');
 if isempty(product_info)

46

 products_match{j} = [];
 end
 end
 products_match = products_match(~cellfun('isempty',products_match));
 products = zeros(length(products_match),2);
 for j = 1:length(products_match)
 product_info = regexp(products_match{j},'\d+','match');
 if length(product_info) == 1
 products(j,1) = 1;
 products(j,2) = str2double(product_info(1));
 else
 products(j,1) = str2double(product_info(1));
 products(j,2) = str2double(product_info(2));
 end
 end
 Kegg_Reactions_Database{rxn_num,3} = products;

 % find RPairs
 RPAIR = strfind(kegg_reactions(EQUATION_indices(i):SLASH_indi-
ces(i)),'RPAIR');
 if isempty(cell2mat(RPAIR))
 continue
 else
 RPAIR_index = find(~cellfun('isempty',RPAIR));
 ENZYME = strfind(kegg_reactions(EQUATION_indices(i):SLASH_indi-
ces(i)),'ENZYME');
 ENZYME_index = find(~cellfun('isempty',ENZYME));
 RPairs = zeros(ENZYME_index - RPAIR_index,3);
 for j = 1:size(RPairs,1)
 % find RPair number
 RPair_line = cell2mat(kegg_reactions(EQUATION_indices(i) +
RPAIR_index + j-2));
 rpair_id_index = regexp(RPair_line,'RP\d{5}');
 rpair_id = str2double(RPair_line(rpair_id_index+2:rpair_id_in-
dex+7));
 RPairs(j,1) = rpair_id;

 % find RPair metabolites
 rpair_metabolite_index = regexp(RPair_line,'C\d{5}');
 RPairs(j,2) = str2double(RPair_line(rpair_metabolite_in-
dex(1)+1:rpair_metabolite_index(1) + 5));
 RPairs(j,3) = str2double(RPair_line(rpair_metabolite_in-
dex(2)+1:rpair_metabolite_index(2) + 5));
 end
 Kegg_Reactions_Database{rxn_num,4} = RPairs;
 end
end

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function [T,cmpds_T] = Make_Atom_TM(cmpds,rxns,Kegg_Compounds_Data-
base,Kegg_Reactions_Database,Kegg_RPairs_Database,rxn_weights)
% Creates atomic level transition matrix
% T = transition matrix

47

% cmpds_T = compounds corresponding to the rows of T

tot_num_atoms = 0;
for i = 1:size(cmpds,1)
 num_atoms = Kegg_Compounds_Database(cmpds(i));
 if num_atoms == 0;
 num_atoms = 1;
 end
 tot_num_atoms = tot_num_atoms + num_atoms;
end

cmpds_T = zeros(tot_num_atoms,2);

for i = 1:size(cmpds,1)
 num_atoms = Kegg_Compounds_Database(cmpds(i));
 if num_atoms == 0
 num_atoms = 1;
 end
 [r,~] = find(cmpds_T(:,1) == 0);
 cmpds_T(r(1):r(1) + num_atoms - 1,1) = cmpds(i);
 cmpds_T(r(1):r(1) + num_atoms - 1,2) = (1:num_atoms)';
end

Row = zeros(30*tot_num_atoms,1);
Column = zeros(30*tot_num_atoms,1);
Value = zeros(30*tot_num_atoms,1);

for i = 1:size(rxns,1)
 rpair_info = Kegg_Reactions_Database{rxns(i),4};
 reactants = Kegg_Reactions_Database{rxns(i),2}(:,2);
 products = Kegg_Reactions_Database{rxns(i),3}(:,2);
 % reactions that do not have rpair data
 if isempty(rpair_info)
 for j = 1:length(reactants)
 [r,~] = find(cmpds_T(:,1) == reactants(j));
 next_spot = find(Row == 0);
 Row(next_spot(1):next_spot(1)+length(products)-1) = r(1);
 Column(next_spot(1):next_spot(1)+ length(products)-1) = products;
 if exist('rxn_weights','var')
 Value(next_spot(1):next_spot(1) + length(products)-1) =
rxn_weights(i);
 else
 Value(next_spot(1):next_spot(1) + length(products)-1) = 1;
 end
 end
 else
 % reactions that have rpair data
 % metabolites in the reaction that do not have rpair data
 no_rpair_reactants = reactants(ismember(reactants,rpair_info(:,2:3))
== 0);
 no_rpair_products = products(ismember(products,rpair_info(:,2:3)) ==
0);
 r_products = zeros(length(no_rpair_products),1);
 for j = 1:length(no_rpair_products)
 [r,~] = find(cmpds_T == no_rpair_products(j));

48

 r_products(j) = r(1);
 end
 for j = 1:length(no_rpair_reactants)
 [r_reactant,~] = find(cmpds_T(:,1) == no_rpair_reactants(j));
 next_spot = find(Row == 0);
 Row(next_spot(1):next_spot(1)+length(no_rpair_products)-1) =
r_reactant(1);
 Column(next_spot(1):next_spot(1)+length(no_rpair_products)-1) =
r_products;
 if exist('rxn_weights','var')
 Value(next_spot(1):next_spot(1) + length(no_rpair_products)-
1) = rxn_weights(i);
 else
 Value(next_spot(1):next_spot(1) + length(no_rpair_products)-
1) = 1;
 end
 end
 % metabolites in the reaction that do have rpair data
 for j = 1:size(rpair_info,1)
 rp = Kegg_RPairs_Database{rpair_info(j,1)};
 next_spot = find(Row == 0);
 counter = next_spot(1);
 [r_reactant,~] = find(cmpds_T(:,1) == rp(1,1));
 [r_product,~] = find(cmpds_T(:,1) == rp(1,2));
 for k = 2:size(rp,1)
 [r,~] = find(cmpds_T(r_reactant(1):r_reactant(end),2) ==
rp(k,1));
 % this if statement is included because some compounds in
 % the model are generic compounds (e.g. generic amine)
 % which don't have an atom number listed, but they still
 % have RPairs in reactions
 if isempty(r) && cmpds_T(r_reactant,2) == 1
 num_atoms = max(rp(2:end,1));
 cmpds_T = [cmpds_T(1:r_reactant,1) cmpds_T(1:r_react-
nat,2); ones(num_atoms-1,1)*rp(1,1) (2:num_atoms)'; cmpds_T(r_reac-
tant+1:end,1) cmpds_T(r_reactant+1:end,2)];
 [r_reactant,~] = find(cmpds_T(:,1) == rp(1,1));
 [r,~] = find(cmpds_T(r_reactant(1):r_reactant(end),2) ==
rp(k,1));
 end
 Row(counter) = r_reactant(r);
 [r,~] = find(cmpds_T(r_product(1):r_product(end),2) ==
rp(k,2));
 if isempty(r) && cmpds_T(r_product,2) == 1
 num_atoms = max(rp(2:end,2));
 cmpds_T = [cmpds_T(1:r_product,1) cmpds_T(1:r_product,2);
ones(num_atoms-1,1)*rp(1,2) (2:num_atoms)'; cmpds_T(r_product+1:end,1)
cmpds_T(r_product+1:end,2)];
 [r_product,~] = find(cmpds_T(:,1) == rp(1,2));
 [r,~] = find(cmpds_T(r_product(1):r_product(end),2) ==
rp(k,2));
 end
 Column(counter) = r_product(r);
 if exist('rxn_weights','var')
 Value(counter) = rxn_weights(i);
 else
 Value(counter) = 1;

49

 end
 counter = counter + 1;
 end
 end
 end
end

ind = find(Value == 0);
Row(ind) = [];
Column(ind) = [];
Value(ind) = [];

T = sparse(Row,Column,Value,length(cmpds_T),length(cmpds_T));

T = T + T';

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function [S,cmpds] = Make_S_Matrix(reaction_data,tot_num_kegg_cmpds,Kegg_Re-
actions_Database)
% Make stoichiometric matrix - each row is a metabolite, each column is a
% reaction
% S = stoichiometrix matrix
% cmpds = list of metabolite IDs in the S matrix
% reaction_data = a list of reaction IDs to be included in this S matrix
% tot_num_kegg_rxns = the total number of reactions in the Kegg database
% Kegg_Reactions_Database = database of Kegg reactions

S = zeros(tot_num_kegg_cmpds,length(reaction_data));

for i = 1:size(reaction_data,1)
 reactants = Kegg_Reactions_Database{reaction_data(i,1),2};
 products = Kegg_Reactions_Database{reaction_data(i,1),3};
 for j = 1:size(reactants,1)
 S(reactants(j,2),i) = -reactants(j,1);
 end
 for j = 1:size(products,1)
 S(products(j,2),i) = products(j,1);
 end
end

r = any(S,2);
[cmpds,~] = find(r == 1);
[empty_rows,~] = find(r == 0);
S(empty_rows,:) = [];

% CREATED BY BASSEL GHADDAR
% LAST EDITED 5/6/15

function [paths,steps] = random_walks(IM,CL,A,B,num_walks,maxSteps)
% S = stoichiometric matrix

50

% IM = incidence matrix
% CL = cofactors list, or list of nodes at which to terminate walks
% A = beginning node
% B = end node
% maxSteps: maximum # of steps to take on the walk.
% iterate the walk until a deadend is reached, or maxSteps exceeded, or B
% is reached.
% terminate a walk if a cofactor is reached

paths = zeros(num_walks,maxSteps+1);
paths(:,1) = A;
steps = zeros(num_walks,1);

for i = 1:num_walks
 BNotReached = 0;
 currentNode = A;
 while (steps(i) < maxSteps && ~BNotReached)
 % decide where to go:
 possibleDestinations = find(IM(currentNode,:)> 0);
 if (possibleDestinations <=0)
 % reached an external metaoblite;
 break;
 end
 next_dest = datasample(possibleDestinations,length(possibleDestina-
tions),'replace',false,'weights',IM(currentNode,possibleDestinations));
 for j = 1:length(possibleDestinations)
 currentNode = next_dest(j);
 if any(paths(i,:) == currentNode) || any(CL == currentNode)
 continue
 else
 break
 end
 end
 if any(paths(i,:) == currentNode)
 break
 else
 BNotReached = B == currentNode;
 steps(i) = steps(i)+1;
 paths(i,steps(i)+1) = currentNode;
 end
 end
end
end

51

	References

