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Introduction  

The gut microbiota are comprised of approximately 1014 microorganisms divided into sev-

eral phyla, the chief of these being Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria 

(Sridharan, 2014). They colonize the gastrointestinal (GI) tract at birth, and develop a close rela-

tionship with the host immune system. Interactions between the microbiota and host immune sys-

tem, transmitted through a vast array of signaling pathways and molecules, shape the development 

of the host and the composition of the microbiota (Nicholson, 2012).  

Such chemical crosstalk has created a symbiotic relationship between the host and micro-

biota, and in some respects, has intertwined host cellular metabolic pathways with microbial ac-

tivity, exemplified by microbial production of various beneficial and detrimental compounds to 

the host, and the combinatorial metabolism of substrates by the host and microbiota (Nicholson, 

2012). For example, microbiota in the colon metabolize complex carbohydrates and ferment them 

into short-chain fatty acids, mainly acetate, propionate, and butyrate. Colonic epithelial cells in 

turn utilize butyrate for energy, and acetate and propionate serve as substrates for gluconeogenesis 

and lipogenesis in the liver and peripheral organs. These short chain fatty acids also modulate 

colonic gene expression and metabolism through enzymatic inhibition and through interaction with 

G-protein coupled receptors (Tremaroli & Backherd, 2012), and have been shown to induce dif-

ferentiation of naive T cells into anti-inflammatory regulatory T cells (Arpaia, 2013). Additionally, 

the gut microbiota are involved in the synthesis of bile acids, choline, indole, and various other 

metabolites that aid the health and fitness of the host (Nicholson & Wilson, 2003).  

Though an individual’s initial microbial seeding population is passed maternally at birth, 

the microbiota composition profile varies both spatially and temporally within the GI tract (Gordan, 
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2012), and can be influenced by changes in health and disease, diet, life-style, and antibiotic use 

(Nicholson J. , 2012). Disruptions to the microbiota profile (dysbiosis) are associated not only with 

gastric ulcers and inflammatory bowel diseases (Chassaing & Darfeuille-Michaud, 2011), but are 

also increasingly correlated with insulin resistance, type 2 diabetes, obesity, and cardiovascular 

disease (Wang, 2011). Despite the gut microbiota’s great implications on host physiology and 

health, knowledge of which bacterial genomes contribute to the production of which bioactive gut 

metabolites is currently limited, owing to the complexity of the GI tract’s metabolite spectrum, the 

difficulty of isolating and cultural intestinal bacteria, and the need to account for community level 

metabolic interactions (Sridharan, 2014).   

In this work, we present a computational method to investigate gut microbiota-host meta-

bolic interactions. Due to the diversity of species present in the gut that may contribute to the 

metabolism of certain substrates and the subsequent community level interactions between the 

different bacterial species and the host cells, an atomic level approach is taken. In particular, the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is used to assemble various metabolic mod-

els representing different proportions of murine host cells and various bacterial phyla (Kanehisa 

Laboratories, 2015). Pathways between common dietary nutrients that would be present in the GI 

tract to bioactive gut metabolites of interest are then investigated using a reachability analysis and 

a “random-walks” pathfinding algorithm. Finally, an atom tracing function is implored to deter-

mine the conservation of atoms along the pathway, and model results are compared against each 

other. It is the hope that such an analysis will lead to new insights to the atomic level contribution 

of various gut flora to the synthesis of bioactive gut metabolites.  
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Methods 

To investigate the atomic level contributions of the murine host cells and the various bac-

terial phyla to the metabolism of dietary nutrients, the KEGG database was used to construct var-

ious models representing different proportions of Mus musculus mouse (MMU) cells and gut mi-

crobiota (GM) cells. For this analysis, all host cells were considered to have equal metabolic ca-

pabilities. The microbiome was divided into five phyla: Actinobacteria, Bacteroidetes, Firmicutes, 

Proteobacteria, and Miscellaneous, labeled P1 to P5, respectively.  

A composite list of chemical reactions was compiled, and for a first analysis, each reac-

tion’s likelihood of occurring was weighted based on the fraction of total cells that could perform 

it. To determine the bacterial contribution to the reaction weights, a phyla score (Sridharan, 2014) 

was assigned to each reaction, which was simply the fraction of each phylum that could perform 

the reaction. Relative abundance of the bacterial phyla in lean mice, mice on a high fat diet, and 

genetically obese mice were obtained from (Murphy, 2010). The reaction weight for each reaction 

i in a system of j bacterial phyla was subsequently calculated as thus: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑖𝑖) = ��(𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝑗𝑗(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗
𝑗𝑗

� (1 −𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

Twelve distinct models were constructed representing different proportions of host cells and bac-

terial phyla. The twelve cases are detailed in Table 1.  
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Table 1. Fraction of each cell type in the 12 metabolic models representing different proportions 

of host cells to the various bacterial phyla assembled using the KEGG database. The Miscellaneous 

(Misc.) phylum is a conglomeration of all other known bacterial phyla and species.  

Model Host Actinobacteria Bacteroidetes Firmicutes Proteobacteria Misc. 

Host (MMU) 1 0 0 0 0 0 

Gut Microbiota (GM) 0 0.2450 0.1690 0.5660 0.0130 0.0070 

MMU/GM = 1/10 0.09 0.2227 0.1536 0.5145 0.0118 0.0064 

MMU/GM = 1/1 0.5 0.1225 0.0845 0.2830 0.0065 0.0035 

MMU/GM = 10/1 0.91 0.0223 0.0154 0.0515 0.0012 0.0006 

Host on High Fat Diet 0.5 0.3525 0.0760 0.0655 0.001 0.0050 

Genetically Obese Host 0.5 0.3175 0.0610 0.1145 0.0030 0.0015 

MMU + GM – P1 0.5 0 0.2238 0.7497 0.0172 0.0093 

MMU + GM – P2 0.5 0.2948 0 0.6811 0.0156 0.0084 

MMU + GM – P3 0.5 0.5645 0.3894 0 0.0300 0.0161 

MMU + GM – P4 0.5 0.2482 0.1712 0.5735 0 0.0071 

MMU + GM – P5 0.5 0.2467 0.1702 0.5700 0.0131 0 

 

For each model of m compounds and n reactions, an m x n stoichiometric matrix (S matrix) 

was constructed, where each row represented a metabolite and each column represented a reversi-

ble chemical reaction. Using these S matrices, m x m adjacency matrices (AM) were constructed 

to map the immediate connectivity of each metabolite, where each row and column represent a 

metabolite. All entries in the AM are zero unless there is a one-step reaction connecting two me-

tabolites, in which case the value of the AM entry is the sum of all the reaction weights of all the 
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one-step reactions that connect the given metabolites. Essentially the S matrices represent undi-

rected graphs whose nodes are metabolites and edges are reaction weights, and the AMs detail 

which nodes are connected by a single edge. Since the graphs are undirected, the AMs are sym-

metric.  

The AMs were in turn used to construct m x m reachability matrices (R matrices), whose 

(i,j) entry contains a value of one if a path exists between metabolites i and j, or a zero if no such 

path exists. The R matrices can thus be used to identify metabolites in the model whose reachability 

depends on the presence of certain cell types. An example S matrix, AM, and R matrix are shown 

for the simple system below.  

 

 

 

 

𝑆𝑆 =  

⎣
⎢
⎢
⎢
⎡ 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4
𝐴𝐴 −1 0 0 1
𝐵𝐵 1 −1 −1 0
𝐶𝐶 0 0 1 −1
𝐷𝐷 0 1 0 0 ⎦

⎥
⎥
⎥
⎤

          𝐴𝐴𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡ 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷
𝐴𝐴 0 1 1 0
𝐵𝐵 1 0 1 1
𝐶𝐶 1 1 0 0
𝐷𝐷 0 1 0 0⎦

⎥
⎥
⎥
⎤

          𝑅𝑅 =  

⎣
⎢
⎢
⎢
⎡ 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷
𝐴𝐴 1 1 1 1
𝐵𝐵 1 1 1 1
𝐶𝐶 1 1 1 1
𝐷𝐷 1 1 1 1⎦

⎥
⎥
⎥
⎤
 

Figure 1. Example reaction system to illustrate the construction of an S matrix, AM, and R matrix. 

Similar to the KEGG database, all reactions are assumed reversible. No reaction weights are as-

sumed for this system.  
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Subsequent pathway analysis was narrowed down to pathways from common dietary nu-

trients (Table S1) to a subset of metabolites (Table S2) suspected of requiring host-microbiota 

metabolic interactions  (Nicholson J. , 2012). Utilizing the constructed AMs, a “random walks” 

algorithm was implemented to find pathways from the starting nutrients to the target metabolites. 

Each random walk begins at a starting node on the metabolic graph and takes steps based on the 

weights of the connecting edges available. A walk is terminated if the target node is reached, if the 

only available paths to take lead to an already traversed node, if a biochemical cofactor (Table S3) 

is reached, or if the maximum number of steps is reached. Because cofactors are involved in a 

wide array of reactions, they were used as a walk-terminating factor to limit the number of unre-

alistic reaction pathways found by the random-walks function. Traversing only new nodes was 

also included as a condition to prevent walking through cycles.  

The resulting lists of reached walks were analyzed for path distances, path probability, and 

path connectivity. These properties were defined below: 

𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   (1) 

𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  ∏ 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (2) 

𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   (3) 

Once a list of reached walks from the starting to the target metabolites is obtained, an atom 

tracing function is used to trace the atoms of the starting metabolite by using KEGG RPair data. 

The atom tracing function determines which atoms of the starting metabolite are conserved 

throughout the reaction path, as well as their location on the final metabolite.  
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The abovementioned analyses were performed in MATLAB; please see the Supplementary 

Information section for details on the functions developed to perform these analyses.  

 

Results and Discussion 

Reachability Analysis  

Metabolite level (Figure 2) and atomic level (Figure 3) R matrices were computed for the models 

with unique groupings of cell types: MMU, GM, MMU+GM-P1, MMU+GM-P2, MMU+GM-P3, 

MMU+GM-P4, and MMU+GM-P5. 

 

Figure 2.  Color-maps of metabolite level R matrices from the metabolites in Table S1 (vertical 

axis) to the metabolites in Table S2 (horizontal axis) for the following models: MMU, GM, 
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MMU+GM-P1, MMU+GM-P2, MMU+GM-P3, MMU+GM-P4, and MMU+GM-P5. Values of 

“1” indicate the existence of a path connecting a metabolite pair, while values of “0” indicates the 

absence of such a path.  

Figure 3.  Color-maps of atomic level R matrices from the metabolites in Table S1 (vertical axis) 

to the metabolites in Table S2 (horizontal axis) for the following models: MMU, GM, MMU+GM-

P1, MMU+GM-P2, MMU+GM-P3, MMU+GM-P4, and MMU+GM-P5. Values of “1” indicate 

the existence of a path connecting a metabolite pair, while values of “0” indicates the absence of 

such a path. 

 

The R matrices indicate whether a path exists between any two nodes on the constructed 

metabolic graphs. Figure 2 shows that there are some metabolite pairs that are not reachable from 

each other without either host or bacterial metabolism. A closer look at the GM alone metabolite 
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level R matrix (Figure S1) reveals that trimethylamine, trimethylamine-N-oxide, dimethylglycine, 

phenylacetylglycine, phenylacetate, melatonin, sphingomyelin, and cholesterol are not reachable 

from the listed starting metabolites without a metabolic contribution from the host.  

Inspection of the MMU R matrix (Figure 2 and Figure S2) and the MMU+GM minus a 

bacterial phylum (Figure 2) suggests that there are reactions shared across the various microbiota 

phyla that the host cannot perform. It was found that removal of one phyla at a time only changed 

metabolite reachability when Proteobacteria were eliminated, and only for reachability to 3-hy-

droxycinnammate (Figure 2). However, the general MMU R matrix shows that reachability to 

deoxycholate, glycodeoxycholate, taurodeoxycholate, hippuric acid, 3-hydroxybenzoic acid, and 

general lipopolysaccharide, in addition to 3-hydroxycinnammate, depends on the presence of some 

bacterial species.  

A comparison of the metabolite level and atomic level reachability matrices (Figures 2 and 

3, respectively) indicates a much smaller degree of connectivity at the atomic level, which is im-

mediately obvious by the significantly greater number of zero entries in the atomic level R matrices. 

When the loss-of-phyla metabolic networks are analyzed at the metabolite level, it appears that 

only removing Proteobacteria affects reachability, but the atomic level analysis indicates that all 

phyla are essential for the reachability of some metabolites. Furthermore, the various atomic level 

R matrices show that upon removing certain phyla, it is not only certain atoms of the target me-

tabolites that become unreachable, but some metabolites in their entirety. For example, removing 

phylum 5 (Misc.), which in all the models accounted for at most 1.61% of all cell types, completely 

erased reachability to dimethylamine, trimethylamine, trimethylamine-N-oxide, and 3-hy-

droxybenzoic acid; this result was not apparent from the metabolite level R matrices, which, due 

to the simpler structures of the metabolite level AMs, find many unphysical paths. This highlights 
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the necessity of taking an atomic approach for the analysis of complex, combinatorial metabolic 

networks.  

Random Walks and Atom Tracing 

The R matrices were used to identify metabolites whose reachability from the amino acids 

did or did not depend on the presence of some bacterial phyla. Indolepyruvate, dopamine, indole-

acetate, and serotonin were identified as metabolites whose reachability on the metabolite graphs 

from the amino acids was independent of bacterial presence, and 3-hydroxycinnamate was identi-

fied as requiring Proteobacteria. The random walk and atom tracing analysis was performed for 

these two groups of metabolites.  

Indolepyruvate and Dopamine GM Walks Analysis  

Figure 4. Random walk results from the amino acids to indolepyruvate and dopamine on the GM 

graph. Data shown is total number of reached walks and the reached walks with at least one con-

served atom. One hundred thousand walks were run from each amino acid to each target molecule.  
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The binary reachability matrices do not give an indication to the degree of reachability, 

thus it is important to implore a pathfinding algorithm, such as the random walks method utilized 

in this analysis, to compare synthesis routes to the target molecules from various starting points. 

The random walks results to indolepyruvate and dopamine on the GM graph confirm the GM R 

matrix result that these two metabolites are reachable from all the amino acids. Out of 100,000 

random walks run to these two metabolites, glutamine and isoleucine had the most reached walks 

to indolepyruvate (1415 and 1425 walks, respectively), while phenylalanine had the greatest num-

ber of reached walks to dopamine (1098 walks). This data did not correlate with the atom tracing 

results, which indicated that phenylalanine atoms ended up in indolepyruvate most frequently (143 

walks), and isoleucine atoms ended up in dopamine most frequently (166 walks). These results 

also affirm the notion that metabolites are connected much less on the atomic level that it would 

appear when simply analyzing reactions at the metabolite level.  

To confirm that 100,000 walks was sufficient to reach the target metabolites at a consistent 

frequency, the percent of walks reached was plotted against the number walks for both indolepy-

ruvate and dopamine (Figures S3 and S4). It was found that for both metabolites, about 30,000 

walks were enough to reach a consistent fraction of reached walks. The reached walks were then 

analyzed for path distance (Figure 5), path probability (Figure 6), and path connectivity (Figure 7).  
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Figure 5. Histograms of path distances as defined in eq. (1) for the reached walks from the amino 

acids to indolepyruvate on the GM graph. One hundred thousand walks walks were run from each 

amino acid.  
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Figure 6. Histograms of the logarithm of path probabilities (eq. (2)) for the reached walks from 

the amino acids to indolepyruvate on the GM graph. One hundred thousand walks were run from 

each amino acid.  

Figure 7. Path connectivity (eq. (3)) histograms for the reached walks from the amino acids to 

indolepyruvate on the GM graph. One hundred thousand walks were run from each amino acid.  

 

The path distance histograms were all positively skewed, indicating that the shorter a 

reached path, the more frequently this path was found, though the slopes of these histograms were 

different for the various amino acids. The log (probability) histograms were all negatively skewed, 

indicating that paths with higher reaction weights were reached more frequently, though at differ-

ent rates for the amino acids. The connectivity histograms were all positively skewed, indicating 

that reached paths with a lesser number of branching nodes were reached more frequently. To-

gether, these histograms show that the likelihood of reaching a target metabolite from some starting 
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point on a metabolic graph is a function of the node distance, the edge weighting, and the degree 

of path branching. Note that the same trends were observed for reached walks to dopamine (Fig-

ures S5, S6, and S7).  

The atom tracing function was used to determine which atoms of the starting amino acids 

were conserved throughout the reached walks. The results are shown in Figure 8.  

Figure 8. Bar plot of the number of times an atom was conserved vs. the atom’s original location 

on each amino acid for reached walks from the amino acids to indolepyruvate on the GM graph, 

out of a total of 100,000 walks.  

 

The atom tracing data identifies which atoms were conserved throughout a pathway. Figure 

8 shows that often times, groups of atoms will be conserved together; for example, arginine, as-

partic acid, cysteine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, serine, and 
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valine all apparently underwent a decarboxylation reaction, and it was the CO2 that ended up in 

indolepyruvate. This can be inferred because the carboxylic acid portion of these amino acids was 

always conserved together in walks from these amino acids. The atom tracing data also reveals 

that some amino acids had a greater number of atoms conserved per walk than others, and suggests 

atoms to label for potential labeling experiments.  

Indolepyruvate, Dopamine, Indoleacetate, and Serotonin Walks on All Models 

 Random walks were next run from the amino acids to indolepyruvate, dopamine, indole-

acetate, and serotonin on all 12 models.  
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Figure 9. Heat-maps of the number of reached walks from the amino acids to indolepyruvate, 

dopamine, indoleacetate, and serotonin on all 12 models. One hundred thousand random walks 

were run from each amino acid to each target molecule. Note that the same data is shown graph-

ically for select amino acids in Figure S8.  

 

 The results of these walks indicate a great degree of variation in the likelihood of reaching 

the target molecule from different amino acids. For example, indoleacetate was significantly more 
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reachable from tryptophan than it was from any other amino acid, while dopamine was reachable 

to a significant degree by tyrosine, phenylalanine, and asparagine. A comparison of results across 

various models shows that the greatest factor in determining the degree of reachability from the 

amino acids to these molecules was the ratio of host cells to microbiota (columns 1-5 in Figure 9). 

All four target molecules were reached the most when there was a 10:1 MMU:GM ratio, and were 

least reached on the GM alone graph. Altering the microbiota profile in the high fat diet model, 

obese model, and loss of phylum models, did not significantly affect the frequency of reaching 

these target molecules.  An interesting result that was observed, however, is that sometimes re-

moving a phylum increased the number of walks reached. When phylum 3 (Firmicutes) was re-

moved, indoleacetate was reached much more from tryptophan than when this phylum was present. 

Firmicutes accounts for a significant portion (56%) of the microbiota profile in lean mice (Murphy, 

2010). Since the probability of traversing a node was simply proportional to the number of cells 

and reactions that lead to it, removing a major portion of reactions that do not lead to the target 

molecule would increase the probability of selecting reactions that do lead to the desired destina-

tion.  

Random Walks to 3-Hydroxycinnamate 

 3-Hydroxycinnamate synthesis from the amino acids was identified by the metabolite level 

R matrices as requiring the Proteobacteria genome. Random walks to 3-Hydroxycinnamate were 

run from the amino acids and select carbohydrates on all 12 models (Figure 10).  
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Figure 10. Heat-map of the number of reached walks from the amino acids and some carbohy-

drates to 3-Hydroxycinnamate on all 12 models. One hundred thousand random walks were run 

from each starting molecule.  

 

 As expected, the models that excluded Proteobacteria (MMU and MMU+GM-P4) did not 

reach 3-hydroxycinnamate from any of the starting molecules. These results show in the number 

of walks reached from the various starting points in a given model, as well as from the same start-

ing molecule across the various models, including the models with varying bacterial phyla propor-

tions. In this experiment, since reachability depended on the presence of Proteobacteria, models 

with smaller MMU:GM ratios had more reached walks.  
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Though Figure 10 shows differences in the number of reached walks to 3-hy-

droxycinnamate, the differences across the models are not significant, as the most the target me-

tabolite was reached from any starting point was 12 times. Examination of the reaction pathways 

to 3-hydroxycinnamate shows that the closer to the target metabolite, the more specific the path 

becomes.  

Figure 11. One hundred thousand random walks were run from each of the amino acids and glu-

cose, fructose, galactose, mannose, and ribose to 3-hydroxycinnamate. Of all these walks, 329 

walks reached the target, and of these reached walks, there were 1603 unique metabolites traversed. 

The plot above shows the number of unique metabolites in the paths versus the number of metab-

olites away from the target.  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200
329 Reached Walks to 3 Hydroxycinnamate, 1603 Total Unique Metabolites

Metabolites Away from 3 Hydroxycinnamate

N
um

be
r o

f U
ni

qu
e 

M
et

ab
ol

ite
s

20 
 



The data in Figure 11 shows that there is a limited number of pathways that lead to 3-

hydroxycinnamate, for closer to the target metabolite there are less possible nodes that the walk 

could be on. One potential way to increase the number of reached walks to 3-hydroxycinnmate is 

to start the paths at a point closer to the target. The paths leading to 3-hydroxycinnamate were 

searched for potential common dietary metabolites that may be used as good starting metabolites 

to reach 3-hydroxycinnammate. Though no common nutrients other than the starting metabolites 

originally tested were found, it was found that about 90% of the reached walks to 3-hy-

droxycinnamate went through 4-hydroxy-2-oxopentanoate. Synthesis of 4-hydroxy-2-oxopenta-

noate is regulated by the enzyme 4-hydroxy-2-oxovalerate aldolase, which catalyzes the reaction 

between pyruvate and acetaldehyde to form 4-hydroxy-2-penatanoate. The enzyme is found pri-

marily in the bacterium Burkhodleria xenovorans, a member of the phylum Proteobacteria (Baker, 

et al., 2009), which may explain why the presence of Proteobacteria is required for 3-hy-

droxycinnamate synthesis. It is conceivable that the introduction of more Burkhodleria xenovorans 

to the gut, or the reverse engineering of existing cell to overexpress 4-hydroxy-2-oxovalerate al-

dolase would increase the synthesis of 4-hydroxy-2-oxopentaoate; random walks were thus run to 

determine the degree of 3-hydroxycinnammate’s reachability from 4-hydroxy-2-oxopentanoate. 
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Figure 12. Reached walks with conserved atoms from 4-hydroxy-2-oxopentaoate to 3-hy-

droxycinnamate for all 12 models. Thirty thousand walks were conducted.  

 

Random walks starting from 4-hydroxy-2-oxopentanoate reached 3-hydroxycinnamate signifi-

cantly more than did walks from the amino acids and select carbohydrates. There was large differ-

ence in the number of walk reached with conserved atoms from the MMU+GM-P2 compared to 

the MMU+GM-P3 (a difference of 570 walks). Removing phylum 2 (Bacteroidetes) decreased the 

number of walks reached, while removing phylum 3 (Firmicutes) increased the number of reached 

walks. Bacteriodetes may be able to perform some unique reactions that aid in the synthesis of 3-

hydroxycinnamate, while Firmicutes may contain a large number of reactions nonspecific to 3-

hydroxycinnmamate synthesis, and thus removing increased the reaction weighting of the reac-

tions leading to the target molecule. Again, reachability to the 3-hydroxycinnamate depended on 
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the presence of Proteobacteria, indicating that 4-hydroxy-2-oxovalerate aldolase was not the only 

limiting enzyme. A closer look at the reached random walks reveals that they all followed the 

series of chemical reactions shown in Figure 13.  

 

Figure 13. Pathway from 4-hydroxy-2-oxopentanoate to 3-hydroxycinnamate. The metabolite 

number refers to the KEGG compound ID number. The atoms numbered are the conserved atoms.  

 

All of the reached walks starting from 4-hydroxy-2-oxopentanoate required the transfor-

mation of 4-hydroxy-2-oxopentanoate to 2-Hydroxy-2, 4-pentadienoate (Figure 13, R1), a reaction 

regulated by the enzyme 2-hydroxy-6-oxo-6-phenylhex-2, 4-dienoate reductase, found in the bac-

terium Pseudomonas cruciviae of the Proteobacteria phylum (Omori, Ishigooka, & Minoda, 1986). 

Though 4-hydroxy-2-oxopentanoate is synthesized from pyruvate, random walks starting from 

pyruvate to 3-hydroxycinnamate did not reach the target with any appreciable frequency, due to 

the large number of reactions pyruvate can undergo.  

 

Conclusions 
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This work presents an atomic level analysis of metabolic networks for the investigation of 

host-gut microbiota metabolic interactions. Various metabolic models representing different pro-

portions of murine host cells and various bacterial phyla were assembled using the KEGG database. 

Utilizing reachability matrices, it was found that connectivity at the atomic level was significantly 

more limited than at the metabolite level. This was exemplified by the reachability matrices rep-

resenting a system consisting of murine host cells (Mus musculus), Actinobacteria, Bacteroidetes, 

Firmicutes, and Proteobacteria, which was missing bacterial phylum 5, the Miscellaneous cate-

gory. The metabolite level R matrix indicated that all the metabolites in Table S2 were reachable 

from the metabolites in Table S1. The atomic level R matrix, however, showed that several atoms 

were in fact not reachable, and that dimethylamine, trimethylamine, trimethylamine-N-oxide, and 

3-hydroxybenzoic acid were completely unreachable without the Miscellaneous category of gut 

microbiota.  

 The random walk and atom tracing analysis were used to investigate the pathways from 

the amino acids to indolepyruvate, dopamine, indoleacetate, and serotonin, metabolites whose 

reachability was not found to depend on the gut microbiota. It was found that the likelihood of 

reaching a target metabolite from some starting point depended on the path distance, path connec-

tivity, and the path probability. Random walks were run on the metabolite level adjacency matrices, 

so an atom tracing function was implored to find the number and location of conserved atoms 

throughout the pathways. The number of walks that reached the target node with conserved atoms 

was significantly less than the total number of walks reached simply at a metabolite level, and that 

these two measures did not correlate with each other. For these target metabolites, the frequency 

of being reached differed significantly amongst the amino acids, but for a given starting amino 
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acid, the likelihood of reaching the target metabolite did not vary significantly when the composi-

tion of the gut microbiota was altered. The biggest factor that affected reachability was the ratio 

of host cells to gut microbiota; a ratio of MMU:GM = 10 was generally found to have greatest 

number of reached walks.  

 Synthesis of 3-hydroxycinnamate was identified using the metabolite level reachability 

matrices as requiring Proteobacteria genomes. Random walks were run from the amino acids and 

some select carbohydrates to this target for all the models, but only a negligible fraction of the 

walk reached their target. Further analysis of the reached pathways revealed that 4-hydroxy-2-

oxopentanoate, a metabolite whose synthesis from pyruvate and acetaldehyde is catalyzed by 4-

hydroxy-2-oxovalerate aldolase, an enzyme found primarily in the bacterium Burkhodleria xeno-

vorans, a member of the Proteobacteria phylum, was a key step in the synthesis of 3-hy-

droxycinnamate. Random walks were run from 4-hydroxy-2-oxopentanoate to 3-hy-

droxycinnamate, and a significantly greater number of walks were reached. Furthermore, this lead 

to the identification of another key enzyme belonging to Pseudomonas cruciviae of the Proteo-

bacteria phylum that regulated the synthesis of 3-hydroxycinnamate. For the 3-hydroxycinnamate 

trials, the random walks and atom tracing analysis facilitated the identification of key enzymes and 

reactions in the synthesis pathway, and determined the conservation of atoms along this pathway.  

 Improvements to the reaction weighting scheme may significantly improve the accuracy 

and predictive nature of this computational approach to investigating hot-gut microbiota interac-

tions. The current model weights reactions solely based on the number of cells that can perform 

them; it assumes all metabolites are accessible to each other, and does not account for factors such 

as transport limitations or enzyme expression. Practical improvements to the reaction weighting 

scheme may include accounting for the various phyla’s locations along the digestive tract, favoring 
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reactions sequences that occur in the same cell type, appropriately regulating reactions that cross 

membranes, and accounting for enzyme expression. Other future work should also focus on shift-

ing all the analyses to the atomic level. With continued model improvement, this atom tracing 

analysis can become a very useful tool for the study of complex metabolic systems.  
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Supplementary Information  

Table S1. Starting dietary nutrients 

Compound Name KEGG ID 
Alanine 41 
Arginine 62 
Asparagine 152 
Aspartic Acid 49 
Cysteine 97 
Glutamic Acid 25 
Glutamine 64 
Glycine 37 
Histidine 135 
Isoleucine 407 
Leucine 123 
Lysine 47 
Methionine 73 
Phenylalanine 79 
Proline 148 
Serine 65 
Threonine 188 
Tryptophan 78 
Tyrososine 82 
Valine 183 
Glucose 31 
Starch 369 
Cholesterol 187 
Choline 114 
Ecosapentanoic Acid 6428 

 

Table S2. Target metabolites suspected of requiring host-gut metabolic interaction 

Compound Name KEGG ID 
Short Chain Fatty Acids  
Acetate 33 
Propionate 163 
Butyrate 246 

  
Bile Acids  
Cholate 695 
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Deoxycholate 4483 
Chendeoxycholate 2528 
Taurocholate 5122 
Glycocholate 5465 
Taurochendeoxycholate 1921 
Glycodeoxycholate 5464 
Taurodeoxylcholate 5463 

  
Choline Metabolites  
Choline   114 
Methylamine 218 
Dimethylamine 543 
Trimethylamine 565 
Trimethylamine N oxide 1104 
Dimethylglycine 1026 
Betaine 719 

  
Phenolic, Benzoyl, Phenyl Derivatives  
Benzoic acid 180 
Hippuric acid 1586 
3 Hydroxybenzoic acid 587 
4 Hydroxybenzoic acid 156 
3 Hydroxycinnamate 12621 
4 Hydroxyphenylacetate 642 
3,4 Dihydroxyphenylacetate 1161 
Phenylacetylglycine 5598 
Phenylacetate 15583 

  
Indole Derivatives  
Indoleacetate 954 
Melatonin 1598 
Serotonin 780 

  
Vitamins  
Vitamin K 2059 
Biotin 120 
Folate 504 
Thiamine 378 
Riboflavin 255 
Pyridoxine 314 

  
Polyamines  
Putrescine 134 
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Cadaverine 1672 
Spermidine 315 
Spermine 750 

  
Lipids  
LPS 338 
Acylglycerol 1885 
Sphingomeylin 550 
Cholesterol 187 
Phosphatidylcholine 157 
Phosphoethanolamine 346 
Triglyceride 422 

 

Table S3.  KEGG compound numbers of biochemical cofactors used to terminate random walks 

1 10 53 104 239 458 1344 2355 
2 15 54 105 286 459 1345 2739 
3 16 55 112 360 460 1346 2741 
4 20 63 130 361 575 1352 3246 
5 24 68 131 362 655 1367 3794 
6 35 75 144 363 700 1368 5822 
7 44 81 167 364 705 2353  
8 51 87 206 365 942 2354  
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Figure S1.  Color-map of the metabolite level R matrix from the metabolites in Table S1 to the 

metabolites in Table S2 for the GM model. Values of “1” indicate the existence of a path connect-

ing a metabolite pair, while values of “0” indicates the absence of such a path.  
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Figure S2.  Color-map of the metabolite level R matrix from the metabolites in Table S1 to the 

metabolites in Table S2 for the GM model. Values of “1” indicate the existence of a path connect-

ing a metabolite pair, while values of “0” indicates the absence of such a path.  

 

Figure S3. Plots of fraction of walks reached to indolepyruvate vs. the number of walks for all the 

amino acids.  
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Figure S4. Plots of fraction of walks reached to indolepyruvate vs. the number of walks for all the 

amino acids. 
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Figure S5. Histograms of path distances as defined in eq. (1) for the reached walks from the amino 

acids to dopamine on the GM graph. One hundred thousand walks walks were run from each amino 

acid.  

Figure S6. Histograms of the logarithm of path probabilities (eq. (2)) for the reached walks from 

the amino acids to dopamine on the GM graph. One hundred thousand walks were run from each 

amino acid. 
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Figure S7. Path connectivity (eq. (3)) histograms for the reached walks from the amino acids to 

indolepyruvate on the GM graph. One hundred thousand walks were run from each amino acid.  
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Figure S8. Plots of number of reached paths with conserved atoms for the amino acids with the 

most reached paths to indolepyruvate, dopamine, indoleacetate, and serotonin on all 12 models, 

out of 100,000 total random walks.  
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MATLAB Functions 

% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function AM = adjacency_matrix(S,reaction_weight) 
% Input is a directed or undirected stoichiometrix matrix 
% Creates adjacency matrix AM which contains the probability of going from 
% from node i --> j 
% AM is built assuming graph is undirected, i.e. AM(i,j) = AM(j,i) 
  
AM = zeros(size(S,1)); 
  
for i = 1:size(S,2) 
    for j = 1:size(S,1) 
        if S(j,i) < 0 
            [r,~] = find(S(:,i) > 0); 
            if exist('reaction_weight','var') 
                AM(j,r) = AM(j,r) + reaction_weight(i); 
                AM(r,j) = AM(r,j) + reaction_weight(i); 
            else 
                AM(j,r) = AM(j,r) + 1;  
                AM(r,j) = AM(r,j) + 1; 
            end 
        end 
    end 
end 
 

 

% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function [atom_tracing,reaction_path] = 
atom_tracer(Reached_Walk,S,cmpds,rxns,num_atoms,Kegg_Reactions_Data-
base,Kegg_RPairs_Database,rxn_weights) 
% atom_tracing = a row vector the length of the starting metabolite. 
% Conserved atoms will have a nonzero entry corresponding to the final atom 
% position at the end of the walk. Nonconserved atoms will have a zero 
% entry.  
% reaction_path = kegg reaction IDs of the reactions in the pathway 
% Reached_Walk = a vector containing the metabolites in the path  
% S = stoichiometric matrix  
% rxns = vector or kegg reaction IDs corresponding to the stoichiometric  
% matrix columns 
% cmpds = vector of kegg compound IDs corresponding to the stoichiometrix 
% matrix rows 
% num_atoms = (optional)number of atoms in the beginning compound (optional 
% argument) 
% Kegg_Reactions_Database = (optional) Database of kegg reactions, atom 
% tracer checks Kegg online if this argument is not present 
% Kegg_RPairs_Database = (optional) Database of kegg rpairs, atom tracer 
% checks Kegg online if this argument is not present 
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reaction_url = 'http://www.genome.jp/dbget-bin/www_bget?rn:R'; 
rpair_url = 'http://www.genome.jp/dbget-bin/www_bget?rp:'; 
starting_atom_url = 'http://www.genome.jp/dbget-bin/www_bget?cpd:'; 
  
% determine the number of atoms in the starting metabolite if its not 
% specified as an argument 
if exist('num_atoms','var') == 0 
    Starting_Point = cmpds(Reached_Walk(1,1),1); 
    first_metabolite = sprintf('C%05d',Starting_Point); 
    first_metabolite_page = urlread(strcat(starting_atom_url,first_metabo-
lite)); 
    ATOM_index = strfind(first_metabolite_page,'ATOM'); 
    BOND_index = strfind(first_metabolite_page,'BOND'); 
    num_atoms = regexp(first_metabolite_page(ATOM_index:BOND_index), 
'\d+','match'); 
    atom_tracing = 1:str2double(num_atoms{1});    
else 
    atom_tracing = 1:num_atoms; 
end 
Reached_Walk(Reached_Walk == 0) = []; 
reaction_path = zeros(1,size(Reached_Walk,2)-1);     
  
for m = 2:size(Reached_Walk,2) 
     
    % The walk data contains the nodes of the walk; the reactin between the 
    % nodes must be determined. If more than one possibility exists, a 
    % reaction is chosen at random.  
     
    [~,c1] = find(S(Reached_Walk(m-1),:) ~= 0); 
    [~,c2] = find(S(Reached_Walk(m),:) ~= 0); 
    [~,c3] = find(ismember(c1,c2) == 1); 
     
    if exist('rxn_weights','var') && length(c3) > 1 
        c3_order = datasample(c3,nnz(rxn_weights(c1(c3))),'re-
place',false,'weights',rxn_weights(c1(c3))); 
        possible_reactions_order = zeros(length(c3),1); 
        for i = 1:length(c3_order) 
            ind = find(c3 == c3_order(i)); 
            possible_reactions_order = ind; 
        end 
    else 
        possible_reactions_order = randperm(length(c3)); 
    end 
     
    % This step ensures that in the reaction chosen one node is a reactant  
    % and the other a product. This must be done because we assumed all 
    % reactions in the S matrix to be reversible, thus when the adjacency 
    % matrix was created it could not differentiate between reactants and 
    % products.    
     
    if exist('Kegg_Reactions_Database','var') 
        for n = 1:length(possible_reactions_order)   
            if S(Reached_Walk(m-1),c1(c3(possible_reactions_or-
der(n))))*S(Reached_Walk(m),c1(c3(possible_reactions_order(n)))) < 0 
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                kegg_rxn_id = rxns(c1(c3(possible_reactions_order(n)))); 
                reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_or-
der(n)))); 
                break 
            end 
        end 
        if n == length(possible_reactions_order) && S(Reached_Walk(m-
1),c1(c3(possible_reactions_order(n))))*S(Reached_Walk(m),c1(c3(possible_re-
actions_order(n)))) > 0 
            reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_order(n)))); 
            atom_tracing = atom_tracing*0;  
            break 
        end 
         
        % Once the reaction is known, find the relevant RPair 
        current_metabolite = cmpds(Reached_Walk(m-1),1); 
        next_metabolite = cmpds(Reached_Walk(m),1); 
        reaction_rpair_data = Kegg_Reactions_Database{kegg_rxn_id,4}; 
        row = and(any(reaction_rpair_data == current_metabolite,2),any(reac-
tion_rpair_data == next_metabolite,2)); 
        rpair_id = reaction_rpair_data(row == 1); 
        if isempty(rpair_id) 
            atom_tracing = atom_tracing*0; 
            break; 
        end 
         
    else 
         
        % Go online 
         
        for n = 1:length(possible_reactions_order)   
            if S(Reached_Walk(m-1),c1(c3(possible_reactions_or-
der(n))))*S(Reached_Walk(m),c1(c3(possible_reactions_order(n)))) < 0 
                kegg_rxn_id = sprintf('%05d',rxns(c1(c3(possible_reac-
tions_order(n))))); 
                reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_or-
der(n)))); 
                break 
            end 
        end 
        if n == length(possible_reactions_order) && S(Reached_Walk(m-
1),c1(c3(possible_reactions_order(n))))*S(Reached_Walk(m),c1(c3(possible_re-
actions_order(n)))) > 0 
            reaction_path(1,m-1) = rxns(c1(c3(possible_reactions_order(n)))); 
            atom_tracing = atom_tracing*0;  
            break 
        end 
         
        % Once the reaction is known, find the relevant RPair 
         
        kegg_reaction_url = strcat(reaction_url,kegg_rxn_id); 
        rxn_page = urlread(kegg_reaction_url); 
        current_metabolite = cmpds(Reached_Walk(m-1),1); 
        current_metabolite = sprintf('C%05d',current_metabolite); 
        next_metabolite = cmpds(Reached_Walk(m),1); 
        next_metabolite = sprintf('C%05d',next_metabolite); 
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        rpair_string = strcat(current_metabolite,'_',next_metabolite); 
        rpair_string = strcat('RP\d{5}.+',rpair_string); % makes the string 
RP\d{5}.+Cxxxxx_Cxxxxx where "x"s are numbers 
        rpair_find = cell2mat(regexp(rxn_page,rpair_string,'match')); % Looks 
for the RPair. finds strings of the form RPxxxxx   Cxxxxx_Cxxxxx, ex: RP01885  
C00331_C00637 
        if isempty(rpair_find) % The case that the relevant reaction is the 
reverse of the reaction in the page 
            rpair_string = strcat(next_metabolite,'_',current_metabo-
lite); %switch the current and next metabolite order, search again 
            rpair_string = strcat('RP\d{5}.+',rpair_string); 
            rpair_find = cell2mat(regexp(rxn_page,rpair_string,'match')); 
            rpair_index = strfind(rpair_find,'RP'); 
            if isempty(rpair_index) % the case that the two nodes are not di-
rectly involved in the reaction 
                atom_tracing = atom_tracing*0;  
                break; 
            end 
            rpair_index = rpair_index(end); %The case that the desired RPair 
is not the first RPair listed on the reaction page 
        else 
            rpair_index = strfind(rpair_find,'RP'); 
            if isempty(rpair_index) 
                atom_tracing = atom_tracing*0; 
                break; 
            end 
            rpair_index = rpair_index(end); % The case desired RPair is not 
the first RPair listed on the reaction page 
        end 
        if isempty(rpair_index) 
            atom_tracing = atom_tracing*0; 
            break; 
        end 
        rpair_id = rpair_find(rpair_index:rpair_index+6); 
    end 
     
     
    %RPair ID has been found, get RPair data 
     
    if exist('Kegg_RPairs_Database','var') 
        rpair_data = Kegg_RPairs_Database{rpair_id,1}; 
        [~,c] = find(rpair_data(1,:) == current_metabolite); 
        current_atom_position = zeros(size(rpair_data,1)-1,1); 
        next_atom_position = zeros(size(rpair_data,1)-1,1); 
        if c == 1 
            for p = 2:size(rpair_data,1) 
                % create two vectors, one containing the current atom posi-
tion 
                % of the aligned atoms, the other containing the new atom 
                % positions of those atoms in the next metabolite 
                current_atom_position(p-1,1) = rpair_data(p,1); 
                next_atom_position(p-1,1) = rpair_data(p,2); 
            end 
        else 
            for p = 2:size(rpair_data,1) 
                current_atom_position(p-1,1) = rpair_data(p,2); 
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                next_atom_position(p-1,1) = rpair_data(p,1); 
            end 
        end         
        conserved_atoms = zeros(1,length(atom_tracing)); 
        for q = 1:length(current_atom_position) 
            [~,column]=find(atom_tracing == current_atom_position(q)); 
            conserved_atoms(1,column) = next_atom_position(q); 
        end 
        atom_tracing = conserved_atoms; 
    else 
        kegg_rpair_url = strcat(rpair_url,rpair_id); 
        rpair_page = urlread(kegg_rpair_url);    
        ALIGN_index = strfind(rpair_page,'ALIGN'); 
        ENTRY1_index = strfind(rpair_page,'ENTRY1'); 
        align_info = regexp(rpair_page(ALIGN_index:ENTRY1_in-
dex),'\r\n|\n|\r','split');               
        Compound_index = strfind(rpair_page,'Compound'); 
        Type_index = strfind(rpair_page,'Type'); 
        align_metabolite_find = rpair_page(Compound_index:Type_index); 
        align_metabolite_index = regexp(align_metabolite_find,'C\d{5}'); 
        align_metabolite = align_metabolite_find(align_metabolite_in-
dex(1):align_metabolite_index(1)+5);    % Determine which compound is being 
aligned to the other 
        current_atom_position = zeros(length(align_info)-3,1); 
        next_atom_position = zeros(length(align_info)-3,1); 
        num_aligned_atoms = regexp(char(align_info{1}),'\d+','match'); 
        num_aligned_atoms = str2double(cell2mat(num_aligned_atoms(1)));     % 
Determine the number of aligned atoms 
        if strcmp(align_metabolite,current_metabolite)  % The case that the 
current metabolite in the walk is being aligned onto the next metabolite in 
the walk 
            for p = 1:num_aligned_atoms 
                % create two vectors, one containing the current atom posi-
tion 
                % of the aligned atoms, the other containing the new atom 
                % positions of those atoms in the next metabolite 
                align_info_p = regexp(align_info{p+1},'\d+:\w+','match'); 
                current_atom_position_cell = re-
gexp(align_info_p{1},'^\d+','match'); 
                current_atom_position(p,1) = str2double(cell2mat(cur-
rent_atom_position_cell)); 
                next_atom_position_cell = re-
gexp(align_info_p{2},'^\d+','match'); 
                next_atom_position(p,1) = str2double(cell2mat(next_atom_posi-
tion_cell)); 
            end 
            conserved_atoms = zeros(1,length(atom_tracing)); 
            for q = 1:length(current_atom_position) 
                [~,column]=find(atom_tracing == current_atom_position(q)); 
                conserved_atoms(1,column) = next_atom_position(q); 
            end 
            atom_tracing = conserved_atoms; 
        else 
            for p = 1:num_aligned_atoms % the case that the next metabolite 
in the walk is being aligned onto the current metabolite 
                align_info_p = regexp(align_info{p+1},'\d+:\w+','match'); 
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                current_atom_position_cell = re-
gexp(align_info_p{2},'^\d+','match'); 
                current_atom_position(p,1) = str2double(cell2mat(cur-
rent_atom_position_cell)); 
                next_atom_position_cell = re-
gexp(align_info_p{1},'^\d+','match'); 
                next_atom_position(p,1) = str2double(cell2mat(next_atom_posi-
tion_cell)); 
            end 
            conserved_atoms = zeros(1,length(atom_tracing)); 
            for q = 1:length(current_atom_position) 
                [~,column]=find(atom_tracing == current_atom_position(q)); 
                conserved_atoms(1,column) = next_atom_position(q); 
            end 
            atom_tracing = conserved_atoms; 
        end 
    end 
end 
  
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function [rxns_MMU_GM, GM_reaction_weight,MMU_GM_reaction_weight] = 
calc_rxn_weight(GM_composition,phyla_score,MMU_GM_ratio,rxns,rxns_MMU) 
  
GM_composition = GM_composition./sum(GM_composition); 
GM_reaction_weight = zeros(size(phyla_score,1),1); 
for i = 1:size(phyla_score,1) 
    for j = 1:size(phyla_score,2) 
        GM_reaction_weight(i) = GM_reaction_weight(i) + GM_composi-
tion(j).*phyla_score(i,j); 
    end 
end 
  
% Make combined MMU and GM matrix and combined MMU/GM reaction weights 
common_reactions = ismember(rxns,rxns_MMU); %same size as rxns, has a 1 for 
common reactions  
rxns_MMU_GM = cat(1,rxns_MMU,rxns(common_reactions == 0)); %all MMU rxns fol-
lowed by unique GM rxns 
GM_common_rxn_index = find(common_reactions == 1); 
common_reaction_ids = rxns(common_reactions == 1); 
MMU_reaction_weight = ones(size(rxns_MMU,1),1)*MMU_GM_ratio; 
reaction_weight = cat(1,MMU_reaction_weight,GM_reaction_weight(common_reac-
tions == 0)); 
  
for i = 1:length(common_reaction_ids) 
    MMU_common_rxn_index = find(rxns_MMU == common_reaction_ids(i)); 
    reaction_weight(MMU_common_rxn_index) = reaction_weight(MMU_com-
mon_rxn_index) + GM_reaction_weight(GM_common_rxn_index(i)); 
end 
reaction_weight = reaction_weight./(1 + MMU_GM_ratio); 
  
[rxns_MMU_GM,ind] = sort(rxns_MMU_GM); 
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MMU_GM_reaction_weight = zeros(length(ind),1); 
for i = 1:length(ind) 
    MMU_GM_reaction_weight(i) = reaction_weight(ind(i)); 
end 
end 
 
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function [SM,U,R] = comm_class(AM,S,cmpds,rxns,rxn_weights) 
% Find the communication classes that make up the S matrix  
% Create new S matrices with compounds and reaction lists for each 
% communication classes 
% The SM cell array contains the following information for each sub S 
% matrix created 
% SM{:,1} = S matrix 
% SM{:,2} = cmpds 
% SM{:,3} = rxns 
% SM{:,4} = rxn_weight_adjusted 
% U = communication classes 
% R = reachability matrix 
  
if issparse(AM) == 0 
    AM = sparse(AM); 
end 
  
[nc,C] = graphconncomp(AM); 
  
R = zeros(length(C)); 
for i =1:nc 
    ind = find(C == i); 
    R(ind,ind) = 1; 
end 
  
C = R & R'; 
U = unique(C,'rows'); 
  
SM = cell(size(U,1),4); 
for i = 1:size(U,1) 
    met_ind = find(U(i,:) == 1); 
    [~,rxn_ind] = find(S(met_ind,:) ~= 0); 
    SM{i,1} = S(met_ind,unique(rxn_ind)); 
    SM{i,2} = cmpds(met_ind); 
    SM{i,3} = rxns(unique(rxn_ind)); 
    if exist('rxn_weights','var') 
        rxn_weight_adjusted = zeros(size(SM{i,3},1),1); 
        for j = 1:size(rxn_weight_adjusted,1) 
            rxn_weight_adjusted(j) = rxn_weights(SM{i,3}(j) == rxns); 
        end   
        SM{i,4} = rxn_weight_adjusted; 
    end 
end 
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% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function Kegg_Compounds_Database = kegg_cmpds_txt2cell(com-
pounds_txt_file,tot_num_cmpds) 
% Creates an array whose indices are the Kegg compound ID numbers and the 
% value of each entry corresponds to the number of atoms in that molecule.  
  
clear fid 
fid = fopen(compounds_txt_file); 
line = fgetl(fid); 
Kegg_Compounds_Database = zeros(tot_num_cmpds,1); 
counter = 0; 
while ischar(line) 
    if length(line) < 4 
        line = fgetl(fid); 
        continue 
    end 
    counter = counter + 1; 
    if isempty(regexp(line,'ENTRY.+C\d{5}','ONCE')) == 0;  
        cmpd_id_index = regexp(line,'C\d{5}'); 
        cmpd_id = str2double(line(cmpd_id_index+1:cmpd_id_index+6)); 
        line = fgetl(fid); 
        continue 
    end 
    if strcmp(line(1:4),'ATOM') 
        num_atoms = regexp(line,'\d+','match'); 
        num_atoms = str2double(cell2mat(num_atoms(1)));  
        Kegg_Compounds_Database(cmpd_id) = num_atoms; 
        line = fgetl(fid); 
        continue 
    end 
    line = fgetl(fid);     
end 
 
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function Kegg_RPairs_Database = 
kegg_rpairs_txt2cell(rpairs_txt_file,tot_num_rpairs) 
% Creates a cell array that contains the Kegg RPair alignment data 
% Format of cell array:  
%   - row number corresponds to RPAIR ID number 
%   - each enter is a matrix; the first row contains the metabolites 
%   involved in the RPAIR. The remaining rows contain the atom alignment 
%   data 
% rpairs_txt_file is the string name of the text file containing the rpair 
% database 
  
clear fid 
fid = fopen(rpairs_txt_file); 
line = fgetl(fid); 
Kegg_RPairs_Database = cell(tot_num_rpairs,1); 
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while ischar(line) 
    if length(line) < 5  
        line = fgetl(fid); 
        continue 
    end 
    if isempty(regexp(line,'ENTRY.+RP\d{5}','ONCE')) == 0;  
        rpair_id_index = regexp(line,'RP\d{5}'); 
        rpair_id = str2double(line(rpair_id_index+2:rpair_id_index+6)); 
        line = fgetl(fid); 
        metabolites = strsplit(char(re-
gexp(line,'C\d{5}_C\d{5}','match')),'_'); 
        x = metabolites{1}; 
        y = metabolites{2}; 
        x(1) = []; 
        y(1) = []; 
        metabolite1 = str2double(x); 
        metabolite2 = str2double(y); 
    end 
    if strcmp(line(1:5),'ALIGN') 
        num_aligned_atoms = regexp(line,'\d+','match'); 
        num_aligned_atoms = str2double(cell2mat(num_aligned_atoms(1)));  
        RPair = zeros(num_aligned_atoms+1,2); 
        RPair(1,1) = metabolite1; 
        RPair(1,2) = metabolite2; 
        for i = 1:num_aligned_atoms 
            line = fgetl(fid); 
            align_info = regexp(line,'\d+:\w+','match'); 
            RPair(i+1,1) = str2double(cell2mat(re-
gexp(align_info{1},'^\d+','match'))); 
            RPair(i+1,2) = str2double(cell2mat(re-
gexp(align_info{2},'^\d+','match'))); 
        end 
        Kegg_RPairs_Database{rpair_id,1} = RPair; 
    end 
    line = fgetl(fid);     
end 
 
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function Kegg_Reactions_Database = kegg_rxns_txt2cell(rxns_txt_file) 
% Creates Cell Array of Kegg Reactions Database.  
% Columns Descriptions: 
% 1 - Kegg reaction number 
% 2 - Reactants 
%       Column 1 - reactant stoichiometry 
%       Column 2 - reactant number 
% 3 - Products 
%       Column 1 - reactant stoichiometry 
%       Column 2 - reactant number 
% 4 - RPairs 
%       Column 1 - RPair number 
%       Column 2 - RPair reactant  
%       Column 3 - RPair product  
% 
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% rxns_txt_file is the string name  
  
  
kegg_reactions = importdata(rxns_txt_file); 
  
ENTRY = strfind(kegg_reactions,'ENTRY'); 
EQUATION = strfind(kegg_reactions,'EQUATION'); 
ENTRY_indices = find(~cellfun('isempty',ENTRY)); 
EQUATION_indices = find(~cellfun('isempty',EQUATION)); 
SLASH = strfind(kegg_reactions,'///'); 
SLASH_indices = find(~cellfun('isempty',SLASH)); 
  
line = cell2mat(kegg_reactions(ENTRY_indices(end))); 
max_rxn_num_index = regexp(line,'R\d{5}'); 
max_rxn_num = str2double(line(max_rxn_num_index+1:max_rxn_num_index+5)); 
  
Kegg_Reactions_Database = cell(max_rxn_num,4); 
  
for i = 1:length(ENTRY_indices) 
    % find reaction number  
    line = cell2mat(kegg_reactions(ENTRY_indices(i))); 
    rxn_num_index = regexp(line,'R\d{5}'); 
    rxn_num = str2double(line(rxn_num_index+1:rxn_num_index+5)); 
    Kegg_Reactions_Database{rxn_num,1} = rxn_num; 
    rxn_line = cell2mat(kegg_reactions(EQUATION_indices(i))); 
     
    % find reactants  
    reactants_match = strtrim(strsplit(char(re-
gexp(rxn_line,'N.+<','match')),'+')); 
    for j = 1:length(reactants_match) 
        reactant_info = regexp(reactants_match{j},'\d+','match'); 
        if isempty(reactant_info) 
            reactants_match{j} = []; 
        end 
    end 
    reactants_match = reactants_match(~cellfun('isempty',reactants_match)); 
    reactants = zeros(length(reactants_match),2); 
    for j = 1:length(reactants_match) 
        reactant_info = regexp(reactants_match{j},'\d+','match'); 
        if length(reactant_info) == 1 
            reactants(j,1) = 1; 
            reactants(j,2) = str2double(reactant_info(1)); 
            else 
            reactants(j,1) = str2double(reactant_info(1)); 
            reactants(j,2) = str2double(reactant_info(2)); 
        end 
    end 
    Kegg_Reactions_Database{rxn_num,2} = reactants; 
     
    % find products 
    products_match = strtrim(strsplit(char(re-
gexp(rxn_line,'>.+','match')),'+')); 
    for j = 1:length(products_match) 
        product_info = regexp(products_match{j},'\d+','match'); 
        if isempty(product_info) 
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            products_match{j} = []; 
        end 
    end 
    products_match = products_match(~cellfun('isempty',products_match)); 
    products = zeros(length(products_match),2); 
    for j = 1:length(products_match) 
        product_info = regexp(products_match{j},'\d+','match'); 
        if length(product_info) == 1 
            products(j,1) = 1; 
            products(j,2) = str2double(product_info(1)); 
        else 
            products(j,1) = str2double(product_info(1)); 
            products(j,2) = str2double(product_info(2)); 
        end 
    end 
    Kegg_Reactions_Database{rxn_num,3} = products;  
     
    % find RPairs 
    RPAIR = strfind(kegg_reactions(EQUATION_indices(i):SLASH_indi-
ces(i)),'RPAIR'); 
    if isempty(cell2mat(RPAIR)) 
        continue 
    else 
        RPAIR_index = find(~cellfun('isempty',RPAIR)); 
        ENZYME = strfind(kegg_reactions(EQUATION_indices(i):SLASH_indi-
ces(i)),'ENZYME'); 
        ENZYME_index = find(~cellfun('isempty',ENZYME)); 
        RPairs = zeros(ENZYME_index - RPAIR_index,3); 
        for j = 1:size(RPairs,1) 
            % find RPair number 
            RPair_line = cell2mat(kegg_reactions(EQUATION_indices(i) + 
RPAIR_index + j-2)); 
            rpair_id_index = regexp(RPair_line,'RP\d{5}'); 
            rpair_id = str2double(RPair_line(rpair_id_index+2:rpair_id_in-
dex+7)); 
            RPairs(j,1) = rpair_id; 
             
            % find RPair metabolites 
            rpair_metabolite_index = regexp(RPair_line,'C\d{5}'); 
            RPairs(j,2) = str2double(RPair_line(rpair_metabolite_in-
dex(1)+1:rpair_metabolite_index(1) + 5)); 
            RPairs(j,3) = str2double(RPair_line(rpair_metabolite_in-
dex(2)+1:rpair_metabolite_index(2) + 5)); 
        end 
        Kegg_Reactions_Database{rxn_num,4} = RPairs;  
    end         
end 
 
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function [T,cmpds_T] = Make_Atom_TM(cmpds,rxns,Kegg_Compounds_Data-
base,Kegg_Reactions_Database,Kegg_RPairs_Database,rxn_weights) 
% Creates atomic level transition matrix  
% T = transition matrix 
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% cmpds_T = compounds corresponding to the rows of T   
  
  
tot_num_atoms = 0; 
for i = 1:size(cmpds,1) 
    num_atoms = Kegg_Compounds_Database(cmpds(i)); 
    if num_atoms == 0; 
        num_atoms = 1; 
    end 
    tot_num_atoms = tot_num_atoms + num_atoms; 
end 
  
cmpds_T = zeros(tot_num_atoms,2); 
  
for i = 1:size(cmpds,1) 
    num_atoms = Kegg_Compounds_Database(cmpds(i)); 
    if num_atoms == 0 
        num_atoms = 1; 
    end 
    [r,~] = find(cmpds_T(:,1) == 0); 
    cmpds_T(r(1):r(1) + num_atoms - 1,1) = cmpds(i); 
    cmpds_T(r(1):r(1) + num_atoms - 1,2) = (1:num_atoms)'; 
end   
  
Row = zeros(30*tot_num_atoms,1); 
Column = zeros(30*tot_num_atoms,1); 
Value = zeros(30*tot_num_atoms,1); 
  
for i = 1:size(rxns,1) 
    rpair_info = Kegg_Reactions_Database{rxns(i),4}; 
    reactants = Kegg_Reactions_Database{rxns(i),2}(:,2); 
    products = Kegg_Reactions_Database{rxns(i),3}(:,2); 
    % reactions that do not have rpair data 
    if isempty(rpair_info) 
        for j = 1:length(reactants) 
            [r,~] = find(cmpds_T(:,1) == reactants(j)); 
            next_spot = find(Row == 0); 
            Row(next_spot(1):next_spot(1)+length(products)-1) = r(1); 
            Column(next_spot(1):next_spot(1)+ length(products)-1) = products; 
            if exist('rxn_weights','var') 
                Value(next_spot(1):next_spot(1) + length(products)-1) = 
rxn_weights(i);  
            else 
                Value(next_spot(1):next_spot(1) + length(products)-1) = 1; 
            end 
        end 
    else 
        % reactions that have rpair data 
        % metabolites in the reaction that do not have rpair data 
        no_rpair_reactants = reactants(ismember(reactants,rpair_info(:,2:3)) 
== 0); 
        no_rpair_products = products(ismember(products,rpair_info(:,2:3)) == 
0); 
        r_products = zeros(length(no_rpair_products),1); 
        for j = 1:length(no_rpair_products) 
            [r,~] = find(cmpds_T == no_rpair_products(j)); 
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            r_products(j) = r(1); 
        end 
        for j = 1:length(no_rpair_reactants)           
            [r_reactant,~] = find(cmpds_T(:,1) == no_rpair_reactants(j)); 
            next_spot = find(Row == 0); 
            Row(next_spot(1):next_spot(1)+length(no_rpair_products)-1) = 
r_reactant(1); 
            Column(next_spot(1):next_spot(1)+length(no_rpair_products)-1) = 
r_products; 
            if exist('rxn_weights','var') 
                Value(next_spot(1):next_spot(1) + length(no_rpair_products)-
1) = rxn_weights(i);  
            else 
                Value(next_spot(1):next_spot(1) + length(no_rpair_products)-
1) = 1; 
            end 
        end 
        % metabolites in the reaction that do have rpair data 
        for j = 1:size(rpair_info,1) 
            rp = Kegg_RPairs_Database{rpair_info(j,1)}; 
            next_spot = find(Row == 0); 
            counter = next_spot(1); 
            [r_reactant,~] = find(cmpds_T(:,1) == rp(1,1)); 
            [r_product,~] = find(cmpds_T(:,1) == rp(1,2)); 
            for k = 2:size(rp,1) 
                [r,~] = find(cmpds_T(r_reactant(1):r_reactant(end),2) == 
rp(k,1)); 
                % this if statement is included because some compounds in 
                % the model are generic compounds (e.g. generic amine) 
                % which don't have an atom number listed, but they still 
                % have RPairs in reactions 
                if  isempty(r) && cmpds_T(r_reactant,2) == 1 
                    num_atoms = max(rp(2:end,1)); 
                    cmpds_T = [cmpds_T(1:r_reactant,1) cmpds_T(1:r_react-
nat,2); ones(num_atoms-1,1)*rp(1,1) (2:num_atoms)'; cmpds_T(r_reac-
tant+1:end,1) cmpds_T(r_reactant+1:end,2)]; 
                    [r_reactant,~] = find(cmpds_T(:,1) == rp(1,1)); 
                    [r,~] = find(cmpds_T(r_reactant(1):r_reactant(end),2) == 
rp(k,1)); 
                end 
                Row(counter) = r_reactant(r); 
                [r,~] = find(cmpds_T(r_product(1):r_product(end),2) == 
rp(k,2)); 
                if isempty(r) && cmpds_T(r_product,2) == 1 
                    num_atoms = max(rp(2:end,2)); 
                    cmpds_T = [cmpds_T(1:r_product,1) cmpds_T(1:r_product,2); 
ones(num_atoms-1,1)*rp(1,2) (2:num_atoms)'; cmpds_T(r_product+1:end,1) 
cmpds_T(r_product+1:end,2)]; 
                    [r_product,~] = find(cmpds_T(:,1) == rp(1,2)); 
                    [r,~] = find(cmpds_T(r_product(1):r_product(end),2) == 
rp(k,2)); 
                end 
                Column(counter) = r_product(r); 
                if exist('rxn_weights','var') 
                    Value(counter) = rxn_weights(i);  
                else 
                    Value(counter) = 1; 
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                end 
                counter = counter + 1; 
            end 
        end      
    end 
end 
  
ind = find(Value == 0); 
Row(ind) = []; 
Column(ind) = []; 
Value(ind) = []; 
     
T = sparse(Row,Column,Value,length(cmpds_T),length(cmpds_T));     
  
T = T + T'; 
  
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function [S,cmpds] = Make_S_Matrix(reaction_data,tot_num_kegg_cmpds,Kegg_Re-
actions_Database) 
% Make stoichiometric matrix - each row is a metabolite, each column is a 
% reaction 
% S = stoichiometrix matrix 
% cmpds = list of metabolite IDs in the S matrix 
% reaction_data = a list of reaction IDs to be included in this S matrix 
% tot_num_kegg_rxns = the total number of reactions in the Kegg database 
% Kegg_Reactions_Database = database of Kegg reactions 
  
S = zeros(tot_num_kegg_cmpds,length(reaction_data)); 
  
for i = 1:size(reaction_data,1) 
    reactants = Kegg_Reactions_Database{reaction_data(i,1),2}; 
    products = Kegg_Reactions_Database{reaction_data(i,1),3}; 
    for j = 1:size(reactants,1) 
        S(reactants(j,2),i) = -reactants(j,1); 
    end 
    for j = 1:size(products,1) 
        S(products(j,2),i) = products(j,1); 
    end 
end 
  
r = any(S,2); 
[cmpds,~] = find(r == 1); 
[empty_rows,~] = find(r == 0); 
S(empty_rows,:) = []; 
 
 
% CREATED BY BASSEL GHADDAR 
% LAST EDITED 5/6/15 
  
function [paths,steps] = random_walks(IM,CL,A,B,num_walks,maxSteps) 
% S = stoichiometric matrix 
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% IM = incidence matrix 
% CL = cofactors list, or list of nodes at which to terminate walks 
% A = beginning node 
% B = end node 
% maxSteps: maximum # of steps to take on the walk. 
% iterate the walk until a deadend is reached, or maxSteps exceeded, or B 
% is reached. 
% terminate a walk if a cofactor is reached 
  
paths = zeros(num_walks,maxSteps+1); 
paths(:,1) = A; 
steps = zeros(num_walks,1); 
  
for i = 1:num_walks 
    BNotReached = 0; 
    currentNode = A; 
    while (steps(i) < maxSteps && ~BNotReached) 
       % decide where to go: 
       possibleDestinations = find(IM(currentNode,:)> 0); 
       if (possibleDestinations <=0) 
           % reached an external metaoblite;  
           break; 
       end 
       next_dest = datasample(possibleDestinations,length(possibleDestina-
tions),'replace',false,'weights',IM(currentNode,possibleDestinations)); 
       for j = 1:length(possibleDestinations) 
           currentNode = next_dest(j); 
           if any(paths(i,:) == currentNode) || any(CL == currentNode) 
               continue  
           else 
               break 
           end 
       end 
       if any(paths(i,:) == currentNode) 
           break 
       else 
           BNotReached = B == currentNode; 
           steps(i) = steps(i)+1;  
           paths(i,steps(i)+1) = currentNode; 
       end 
    end 
end 
end 
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