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Abstract

The thesis deals with the modeling of soft materials and structures. Attentions is con-

fined to (i) constitutive modeling of time-dependent passive skeletal muscle and (ii) mod-

eling of residually stressed materials. In constitutive modeling, a new three-dimensional

constitutive material model is presented to capture time-dependent material responses,

i.e. rate-dependence response, stress recovery and relaxation at constant stretch, of

passive skeletal muscle in loading–unloading cycle. The proposed model, consists of

dissipative components in parallel with elastic component, is capable of modeling rate-

dependent and rate-independent response of muscle with no finite range. A robust,

strongly objective numerical integration algorithm is used to solve the evolution equa-

tions concerning the proposed model. The proposed model can closely match experi-

mental response with specialized material parameters. In modeling of residually stressed

materials, numerical framework is presented to incorporate three-dimensional residual

stress in stress analysis of soft materials and structures. General formulation, derivation

of required tensor quantities for numerical implementation of the method is summa-

rized. Verification and validation is performed by evaluating stress of residually stressed

patient specific Abdominal Aortic Aneurysm (AAA) considering material anisotropy.
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Chapter 1

Introduction

Soft materials and structures are characterized by its ability to undergo large defor-

mation in response to applied loading. Polymers, gels, soft biological tissues are the

most common example of soft materials. Structures or components of structure com-

posed with soft materials, for instances human organs, components of automobile and

aerospace, isolation system of infrastructure, prosthetic devices etc., are termed as soft

structures. Material and geometric nonlinearity, stability, hysteretic behavior are the

most fundamental challenges of modeling soft materials and structures. In this research,

we mainly focus our attention to the modeling soft biological tissue and human organ.

However, the same approach is appropriate to many of the cases with other soft materials

and structures.

Continued development of biomechanics, now, enable us to model and analysis of me-

chanical response of complex biological system. Which has exciting possible applications

in medical treatment of disease, development of artificial organ, future use of biomete-

rials as structural/mechanical components and so on. In mechanical point of view,

the biological systems are nothing but an arrangement of different biological tissues,

broadly known as biomaterial which is very complex in structure and highly nonlinear

in response, in a setup of boundary valued problem. Two major requirements to solve

such boundary valued problem, using numerical tool like finite element method, are to

have the constitutive model of the material to capture the behaviors of interest and the

finite element mesh of the problem geometry.

During the last three decades, a considerable progress has been made in formulating

numerical model for different muscle tissues with the discovery of different mechani-

cal responses. The complexity of model has increased substantially, from most simple

isotropic model to complex anisotropic model possibly capable of transition from pas-

sive to active state, with the understanding of functional mechanism and mechanical

1



Introduction 2

structure of different muscle tissues. Even though, the development still remains mainly

within theories and simulations. Moreover, with the ongoing extensive attempts in sim-

ulation and testing, our research being on of them, and extended computing capabilities

it is now just matter of time biomechanics will find its way to widespread practical

applications.

The dissertation is divided into four main chapters. This chapter provides the brief

introduction and background of the research. Second and third chapters, presented in

form of manuscript in an intention to publish in scientific journal, present constitutive

modeling of muscle tissue and numerical modeling of residually stressed materials respec-

tively. Each of these two chapters is complete with corresponding sections presenting

main ideal, result, discussion and bibliography. The mathematical notation used in this

two chapters are different but throughly described and remain consistent within each

chapter. The overall conclusion of the thesis is provided in Chapter four.

Appendices are included for supplementing materials regarding modeling of residually

stressed materials. All the sections and subsections, figures, tables are summarized in

contents, list of figures, list of tables respectively.



Chapter 2

Time-dependent behavior of

passive skeletal muscle

T. Ahamed1, M.B. Rubin2, B.A. Trimmer3, L. Dorfmann1

1Department of Civil and Environmental Engineering

Tufts University, Medford, MA

2Faculty of Mechanical Engineering

Technion−Israel Institute of Technology, Haifa, Israel

3Department of Biology

Tufts University, Medford, MA

Abstruct

An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the

time-dependent behavior of passive skeletal muscle. The development of the model is

stimulated by experimental data that characterize the response during simple uniaxial

stress cyclic loading and unloading. Of particular interest is the rate dependent re-

sponse, the recovery of muscle properties from the preconditioned to the unconditioned

state and stress relaxation at constant stretch during loading and unloading. The model

considers the material to be a composite of a nonlinear hyperelastic component in par-

allel with a nonlinear dissipative component. The strain energy and the corresponding

stress measures are separated additively into hyperelastic and dissipative parts. In

3



Time-dependent behavior of passive skeletal muscle 4

contrast to standard nonlinear inelastic models, here the dissipative component is mod-

eled using an evolution equation that combines rate-independent and rate-dependent

responses smoothly with no finite elastic range. Large deformation evolution equations

for the distortional deformations in the elastic and in the dissipative component are pre-

sented. A robust, strongly objective numerical integration algorithm is used to model

rate-dependent and rate-independent inelastic responses. The constitutive formulation

is specialized to simulate the experimental data. The nonlinear viscoelastic model accu-

rately represents the time-dependent passive response of skeletal muscle.

Keywords: passive muscle, finite deformation, rate-dependent response, stress relax-

ation

2.1 Introduction

Mathematical and numerical modeling of bioactive materials requires the use of consti-

tutive equations, which in their simplest form must account for the passive, active and

transitioning states [1–3]. The challenge is to select or develop an appropriate constitu-

tive law and to experimentally determine the values of associated model parameters. In

this paper, the biological model, Manduca sexta, is used to examine the time-dependent

mechanical properties of the ventral interior lateral muscle (VIL) of the third abdominal

segment (A3) under passive conditions. Attention is focused on the A3 VIL skeletal

muscle since it is one of the largest larval muscles comprising 14 muscle fibers [4]. Time

independent data of the passive and active states are given in Dorfmann et al. [4] and

the transitioning state is discussed in Paetsch et al. [1]. A general representation of the

theory of time-dependent materials is given by, for example, Wineman and Rajagopal

[5] and Christensen [6].

Unlike either amorphous or crystalline materials, muscles are complex composites. Each

muscle fiber contains aligned actin and myosin filaments within an amorphous matrix

material composed of proteins, lipids and polysaccharides. Many studies focus on the

active state; however, there is a growing appreciation of the importance of the passive

properties of these materials for their roles as brakes and dampers.

An outstanding issue in muscle properties is the mechanism by which passive force

changes with the deformation rate and how they recover after unloading [7, 8]. Dif-

ferent molecular mechanisms are responsible for these time-dependent processes. Both

actin/myosin cross-bridge breakage and reformation, and the unfolding of gap-filament

proteins (e.g., titin) have been proposed as likely mechanisms [9–13]. Intramuscular

collagenous structural elements [14] and muscle junctions [15] may also contribute to
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properties observed in experimental muscle preparations. At the molecular level, active

force production is generated through conformational changes in proteins (specifically

myosin heads) and the making and breaking of chemical bonds between aligned pro-

teins. Thus, active shortening is produced by enzymatic processes that consume the

chemical energy of phosphate bonds in ATP, a process that even occurs at low levels in

inactive muscle and contributes to energy loses. Muscles cannot reverse this metabolic

process directly so the muscle must be re-lengthened by external forces. Re-lengthening

involves another structural rearrangement of the protein complexes which contribute to

the dissipation of mechanical energy during strain cycling. Both the shortening and

lengthening appear to have rate dependent and independent components as a result of

the hierarchical cascade of molecular and mechanical interactions [16]. The distribu-

tion of mechanical stresses by each of the components is complex and poorly understood

[17, 18] but the goal of this paper is to develop a model that better accounts for the over-

all time-dependent properties of passive muscle. These different molecular mechanisms

are important because they influence the assumptions and validity of most mechanical

models used to describe muscle behavior.

A seminal contribution to characterize viscoelasticity of skeletal muscle is due to Hill

[19]. His experimental data showed that the amount of damping depends on the speed

of shortening, conversely on the speed of lengthening. They are used by Hill [19] to

define a phenomenological approach to describe the muscle-force and force-velocity rela-

tionships. Hill’s two-component model consists of an undamped, purely elastic element

in series with an energy dissipating element. The classic two-component model is ar-

ranged parallel to a purely elastic spring element, which provides the time-independent

response and is known as the three-element Hill model. Hill’s model has been extended

to formulate three-dimensional stress-strain formulations, see, for example, Martins et

al. [20], Parente et al. [21], Tang et al. [22].

Limited amount of data is available that characterize the viscoelastic properties of skele-

tal muscles [23, 24]. Meyer et al. [25] characterize stress relaxation of single passive

muscle fibers and propose a three-element Hill model to simulate the observed response.

The viscoelastic properties of passive skeletal muscle are investigated in Rehorn et al.

[26]. Specifically, the change of the passive properties of single muscle fibers as a function

of the lengthening velocity is evaluated. The data are then used to develop a uniaxial,

quasi-linear viscoelastic model with the relaxation function expressed as a three-term

Prony series. The authors attribute the viscoelastic behavior during tensile loading to

the passive properties of the protein titan.

Experimental data and finite element modeling of passive rat tibias anterior muscle

during compressive loading are given in Bosboom et al. [27]. A one-term Ogden model
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combined with a Prony series expansion is used to account for the viscoelastic behavior.

More recently, the nonlinear anisotropic properties of passive skeletal muscle have been

addressed in Van Loocke et al. [28]. Attention is placed on the unconfined compressive

behavior of porcine, bovine and ovine muscle samples. A strain-dependent Young’s

modulus is included in the model to account for the nonlinear behavior. Experimental

characterization and a quasi-linear viscoelastic model of muscle tissue in compression

is given in Van Loocke et al. [24]. Specifically, the model by Van Loocke et al. [28]

is extended by introducing a relaxation function with the viscoelastic properties being

transversely isotropic. The behavior of passive skeletal porcine muscle during cyclic

compressive loading at different loading rates is characterized in Van Loocke et al. [29]

and a nonlinear viscoelastic model to simulate this behavior is given.

Three-dimensional constitutive formulations of skeletal muscles using nonlinear solid

mechanics have recently been developed. A hyperelastic, incompressible and transversely

isotropic formulation to model the passive and active responses of the left and right

masseter muscles is proposed by Röhrle and Pullan [30]. The model given by Ito et al.

[31] accounts for viscoelasticity, material anisotropy, damage and failure due to excessive

stretch. It is validated in uniaxial tension and compression by comparing numerical

results to experimental data. An energy function comprised of an isochoric neo-Hookean

part combined with an additional fiber contribution is used in [32] to characterize the

behavior under tensile load. The fiber response is described using Hill’s three-element

formulation. A finite-strain anisotropic constitutive law to describe the viscoelastic

response of abdominal rat muscles in the passive state is proposed by Calvo et al. [33].

A decoupled volumetric-isochoric representation of the energy function, augmented by

an inelastic contribution expressed in terms of internal variables, is used to account for

the nonlinear viscoelastic response of muscles in the anterior abdominal wall.

In previous work [4, 34], stress-strain relations for loading and unloading of transversely

isotropic passive and active muscles were developed using the theory of hyperelasticity.

The theory has been modified to account for the hysteretic response of a preconditioned

muscle during loading-unloading. Phenomenological relations were included in the model

to account for the molecular mechanisms responsible for energy dissipation and rate-

dependent material behavior. The pseudo-elastic model in Dorfmann et al. [4, 34] did

not account for the viscoelastic stress relaxation during loading and the time dependent

recovery at constant elongation from the preconditioned to the unconditioned state.

The objective of this paper is to develop a three-dimensional constitutive model that

accounts for the time-dependent behavior of skeletal muscle in the passive state. Hunter

et al. [35] model the passive response of cardiac muscle using a hyperelastic orthotropic

strain energy function and the incompressibility constraint. In particular, the response
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to uniaxial stress in the principal directions of orthotropy is consistent with that of an

incompressible isotropic material, but with different responses for each direction. In this

paper, attention is limited to uniaxial stress in the muscle fiber direction so it is sufficient

to use an isotropic model. Experimental data are used to justify the formulation and to

validate the implementation of the numerical integration algorithm. The model considers

the material to be a composite of a nonlinear hyperelastic component in parallel with

a nonlinear dissipative component (see Figure 2.1). Standard models of viscoelasticity

are typically formulated in terms of hereditary integrals of the history of deformation

and rate of deformation. In contrast, here the dissipative component is based on the

model by Hollenstein et al. [36], which exhibits smooth behavior and can be considered

as a generalization of a viscoplastic overstress model [37], a generalized plasticity model

[38, 39] and a generalized hyperplastic model [40]. Specifically, the dissipative component

used here models combined rate-independent and rate-dependent inelastic responses

with no finite elastic range.

An outline of the paper is as follows. Section 2.2 presents experimental data of un-

stimulated Manduca muscle subject to simple uniaxial tension. The data quantify the

rate-dependent response, the recovery of muscle properties from the preconditioned state

towards the unconditioned state and stress relaxation at constant stretch during load-

ing and unloading. Section 2.3 summarizes the kinematics of finite deformation, the

theories of hyperelasticity and rate-dependent and rate-independent inelasticity. Sec-

tion 2.4 describes a robust, strongly objective numerical integration algorithm. Then,

in Section 2.5, the general framework is specialized to soft tissue that experience large

distortional deformations and exhibit exponential stiffening when loaded in tension. In

Section 2.6 the model developed is formulated to simulate experimental data in simple

uniaxial tension and the corresponding numerical results are included in Section 2.7.

loaded in tension. In Section 6 the model developed is formulated to sim-
ulate experimental data in simple uniaxial tension and the corresponding
numerical results are included in Section 7.
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Figure 1: Schematic representation of the model.

2. Experimental results

Experimental data of the rate-dependent response of an unstimulated
muscle of Manduca sexta for stretch rates of λ̇ = 0.0144, 0.072, 0.36 and
1.8 s−1 are summarized in Dorfmann et al. (2008). The data were used to
formulate a pseudo-elastic constitutive model for the mechanical response
of the Manduca muscle at finite strains. The model accounts for the energy
dissipated with each loading-unloading cycle but does not address the effect
of recovery time during which a preconditioned muscle returns to the refer-
ence configuration upon unloading (Dorfmann et al., 2008). In this paper
the rate-dependent response of this material is revisited and a systematic
evaluation of time-dependent processes is presented.

During each of the tests, the unstimulated muscle was subjected to five
cycles of preconditioning with constant strain rate λ̇ up to a pre-selected
extension with stretch λ = 1.23. The experiments started at the prestressed
resting length (denoted by point A in Figure 2), and cycles of loading to
point B and unloading to point C were performed at different rates of stretch.
The resting length of the muscle, equal to the initial distance of the pinned
connections at each end of the muscle, was found to be 5.5 mm and used to
determine the corresponding prestressed resting stretch λr = 1.05. Changes
in the distance between these connections were measured with an accuracy

5

Figure 2.1: Schematic representation of the model.
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2.2 Experimental results

Experimental data of the rate-dependent response of an unstimulated muscle of Man-

duca sexta for stretch rates of λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1 are summarized in

Dorfmann et al. [34]. The data were used to formulate a pseudo-elastic constitutive

model for the mechanical response of the Manduca muscle at finite strains. The model

accounts for the energy dissipated with each loading-unloading cycle but does not ad-

dress the effect of recovery time during which a preconditioned muscle returns to the

reference configuration upon unloading [34]. In this paper the rate-dependent response

of this material is revisited and a systematic evaluation of time-dependent processes is

presented.

During each of the tests, the unstimulated muscle was subjected to five cycles of precon-

ditioning with constant strain rate λ̇ up to a pre-selected extension with stretch λ = 1.24.

The experiments started at the prestressed resting length (denoted by point A in Figure

2.2), and cycles of loading to point B and unloading to point C were performed at dif-

ferent rates of stretch. The resting length of the muscle, equal to the initial distance of

the pinned connections at each end of the muscle, was found to be 5.5 mm and used to

determine the corresponding prestressed resting stretch λr = 1.05. Changes in the dis-

tance between these connections were measured with an accuracy of 1µm. The tensile

force was measured using an Aurora 300B-LR lever-arm ergometer with an accuracy of

less than 0.3 mN. Finally, following the methods summarized in Dorfmann et al. [34],

the reference cross-sectional area was found to be 0.4 mm2. This information was used

to determine the nominal stress as the ratio of the axial force to the reference cross-

sectional area. Pre-conditioning was performed in order to monitor the progression of

stress softening and to determine the ultimate stress–deformation response for stretches

up to λ = 1.24. Figure 2.2 shows the nominal stress versus stretch λ for the muscle in

an unstimulated state with stretch rates of λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1. The data

show dependence on the loading rate, large nonlinear elastic deformations, a hysteretic

response during loading-unloading and preconditioning (stress-softening) during the first

few cycles of repeated loading. Recovery, during which the stress increased towards the

prestressed resting state, was observed when the muscle was left at its resting length for

several minutes. The results in Figure 2.2 also show that the reference configuration,

corresponding to the resting length of the animal, is not stress-free.

To quantify the recovery of muscle properties from the preconditioned state towards the

prestressed resting state, simple uniaxial tension tests were performed on two muscles

with a resting length of 4.5 mm and a cross-sectional area of 0.265 mm2. For each test,

a total of three loading-unloading cycles were performed from the prestressed resting

stretch λr = 1.05 to a maximum stretch λ = 1.24 at a constant strain rate of λ̇ = 0.18
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s−1. At the end of each loading-unloading cycle the muscles were held at the resting

length for 3 minutes to allow recovery towards the prestressed resting state. The data

in Figure 2.3 show that the muscles at resting length are not stress-free and that almost

complete recovery occurs during the three minute intervals. Preconditioning occurs,

which is noted when the first and second loading paths are compared.

To evaluate stress relaxation, simple uniaxial tension tests were performed on two muscle

specimens having a resting length of 4.5 mm and a cross-sectional area of 0.265 mm2. For

each muscle stress-deformation data of a single loading-unloading cycle with constant

strain rate λ̇ = 0.2 s−1 and with maximum elongation λ = 1.26 were collected. During

both the loading and unloading portions of the cycle, interrupted relaxation tests were

performed by holding the stretch constant (λ̇ = 0) for 30 seconds at the stretches

λ = 1.12 and λ = 1.19. The data in Figure 2.4 show that the stress decreases during the

relaxation tests from the loading portion of the cycle and that recovery with increasing

stress occurs during the relaxation tests from the unloading portion of the cycle. Notice

that the values of stress after relaxation from the loading portion of the cycle do not

equal the values of stress after recovery from the unloading portion of the cycle for the

state towards the prestressed resting state, simple uniaxial tension tests were
performed on two muscles with a resting length of 4.5 mm and a cross-
sectional area of 0.265 mm2. For each test, a total of three loading-unloading
cycles were performed from the prestressed resting stretch λr = 1.05 to a
maximum stretch λ = 1.23 at a constant strain rate of λ̇ = 0.18 s−1. At
the end of each loading-unloading cycle the muscles were held at the rest-
ing length for 3 minutes to allow recovery towards the prestressed resting
state. The data in Figure 3 show that the muscles at resting length are not
stress-free and that almost complete recovery occurs during the three minute
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Figure 2: The nominal stress versus stretch of a passive Manduca muscle in
simple uniaxial tension with prestressed resting stretch λr = 1.05, maximum
extension λ = 1.23 and stretch rates of λ̇ = 0.0144 s−1, λ̇ = 0.072 s−1,
λ̇ = 0.36 s−1 and λ̇ = 1.8 s−1. Reproduced from [31].
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Figure 2.2: The nominal stress versus stretch of a passive Manduca muscle in simple
uniaxial tension with prestressed resting stretch λr = 1.05, maximum extension λ = 1.24
and stretch rates of λ̇ = 0.0144 s−1, λ̇ = 0.072 s−1, λ̇ = 0.36 s−1 and λ̇ = 1.8 s−1.

Reproduced from [34].
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Figure 3: The stress-deformation responses of two unstimulated muscles in
simple uniaxial tension during 3 loading-unloading cycles. At the end of
each unloading the muscles are held at the resting length for 3 minutes during
which recovery occurs from the preconditioned state to the prestressed resting
state (point A). The left graphs show the nominal stress as a function of the
stretch λ. The graphs on the right show the nominal stress as a function of
time.

intervals. Preconditioning occurs, which is noted when the first and second
loading paths are compared.

To evaluate stress relaxation, simple uniaxial tension tests were performed
on two muscle specimens having a resting length of 4.5 mm and a cross-
sectional area of 0.265 mm2. For each muscle stress-deformation data of a
single loading-unloading cycle with constant strain rate λ̇ = 0.2 s−1 and with
maximum elongation λ = 1.25 were collected. During both the loading and
unloading portions of the cycle, interrupted relaxation tests were performed

8

Figure 2.3: The stress-deformation responses of two unstimulated muscles in simple
uniaxial tension during 3 loading-unloading cycles. At the end of each unloading the
muscles are held at the resting length for 3 minutes during which recovery occurs from
the preconditioned state to the prestressed resting state (point A). The left graphs show
the nominal stress as a function of the stretch λ. The graphs on the right show the

nominal stress as a function of time.

same value of λ. It is not known if these values of stress would coincide for the same

values of λ if more time were allowed for the relaxation tests (as suggested by the model

discussed in the next section).

The data reported in this section will be used to formulate a constitutive model for

the time-dependent response of the Manduca muscle at finite strain. The theory of

hyperelasticity is used to characterize the elastic response and a dissipative component

to account for the inelastic response of the material. For simplicity it is assumed that

stress relaxation at constant stretch during loading and during unloading approach the

same equilibrium state.

2.3 Constitutive modeling

The data in Figures 2.2-2.4 suggest that the mechanical behavior of the material can

be characterized by a composite model of an elastic component in parallel with a dis-

sipative component. This model is shown schematically in Figure 2.1 where the single
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elastic spring represents the time-independent nonlinear hyperelastic component and the

spring element in series with a dashpot represents a nonlinear inelastic response simi-

lar to a Maxwell element. In the model discussed below the dashpot is generalized to

include both rate-dependent and rate-independent inelastic responses. Since soft bio-

logical tissues undergo finite deformations, the model is formulated for arbitrarily large

deformations.

By way of background, it is recalled that a material point in a fixed reference configu-

ration is located by the vector X relative to a fixed origin. The same material point is

located by the vector x (relative to the same origin) in the present configuration at time

t. The velocity v, velocity gradient L and the rate of deformation tensor D are defined

by

v = ẋ, L =
∂v

∂x
, D =

1

2

(
L + LT

)
, (2.1)

where a superposed ( ˙) denotes material time differentiation holding X fixed. Since the

proposed model includes hysteretic dissipation it is also recalled that the rate of material

where a superposed ( ˙ ) denotes material time differentiation holding X fixed.
Since the proposed model includes hysteretic dissipation it is also recalled
that the rate of material dissipation D can be expressed in the form

D = σ ·D− ρΣ̇ > 0, (2)

where σ is the Cauchy stress, A ·B = tr
(
ABT

)
denotes the inner product

between two second order tensors {A,B}, ρ is the current mass density and
Σ is the strain energy per unit mass.
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Figure 4: Experimental data showing the mechanical responses of two un-
stimulated muscles in simple uniaxial tension during loading and unloading.
The graphs on the left show the nominal stress versus stretch λ. The graphs
on the right depict the nominal stress versus time.
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Figure 2.4: Experimental data showing the mechanical responses of two unstimulated
muscles in simple uniaxial tension during loading and unloading. The graphs on the left
show the nominal stress versus stretch λ. The graphs on the right depict the nominal

stress versus time.
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dissipation D can be expressed in the form

D = σ ·D− ρΣ̇ > 0, (2.2)

where σ is the Cauchy stress, A ·B = tr
(
ABT

)
denotes the inner product between two

second order tensors {A,B}, ρ is the current mass density and Σ is the strain energy

per unit mass.

Specifically, for the composite model the strain energy is separated additively into a

hyperelastic part Σe and a dissipative part Σd

Σ = Σe + Σd, (2.3)

where the latter characterizes the elastic strain energy in the dissipative element. Sim-

ilarly, the Cauchy stress σ separates additively into a hyperelastic part σe and a dissi-

pative part σd

σ = σe + σd, (2.4)

with the hyperelastic component being non-dissipative such that

σetext in equation ·D = ρΣ̇e. (2.5)

It then follows that the rate of material dissipation is due solely to the dissipative

component which must satisfy the restriction

D = σd ·D− ρΣ̇d > 0. (2.6)

2.3.1 Hyperelastic component

In general, hyperelastic materials experience both volumetric and distortional deforma-

tions. The volumetric deformation is characterized by the total dilatation J , which is

determined by integrating the evolution equation

J̇ = JD · I, (2.7)

where I is the second order unit tensor. Using the theories in Flory [14] and Ogden [24]

it is possible to define a symmetric second order unimodular tensor B′ which is a pure

measure of total distortional deformation by integrating the evolution equation

Ḃ′ = LB′ + B′LT − 2

3
(D · I) B′. (2.8)
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It can easily be shown that B′ is the unimodular part of the standard left Cauchy-Green

deformation tensor. Since B′ is unimodular [det (B′) = 1] it has only two independent

invariants. These can be specified by the scalars β1 and β2 defined by

β1 = B′ · I, β2 = B′2 · I, (2.9)

which satisfy the equations

β̇1 = 2 dev
(
B′
)
·D, β̇2 = 4 dev

(
B′2
)
·D, (2.10)

where the deviatoric operator dev ( ) of a second order tensor A is defined by

dev (A) = A− 1

3
(A · I) I. (2.11)

For elastically isotropic materials the strain energy Σe is a function of the invariants

{J, β1, β2} expressed as

Σe = Σe (J, β1, β2) . (2.12)

The hyperelastic part σe of the Cauchy stress is then given by

σe = −peI + dev (σe) , pe = −ρ0
∂Σe

∂J
, (2.13)

dev (σe) = 2ρ
∂Σe

∂β1
dev

(
B′
)

+ 4ρ
∂Σe

∂β2
dev

(
B′2
)
, (2.14)

where use has been made of the conservation of mass which connects the mass density

ρ in the present configuration to its value ρ0 in the reference configuration

ρJ = ρ0. (2.15)

2.3.2 Dissipative component

The work in Rubin and Attia [43] proposes that the elastic distortional deformation of the

dissipative component, which is insensitive to volume changes, can be characterized by

the symmetric unimodular tensor B′d, which is determined by integrating the evolution

equation

Ḃ′d = LB′d + B′dLT − 2

3
(D · I) B′d − ΓAd, (2.16)
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where the function Γ controls the rate of inelastic distortional deformation and is spec-

ified by a constitutive equation. Its direction is controlled by Ad, which is given by

Ad = B′d −
(

3

B′d
−1 · I

)
I, Ad ·B′d

−1
= 0. (2.17)

This functional form for Ad causes inelastic relaxation of B′d towards the unit tensor I,

with the restriction (2.17)2 ensuring that B′d remains unimodular. Moreover, comparison

of (2.16) with (2.8) shows that when the rate of inelasticity ΓAd vanishes, B′d satisfies

the same evolution equation as that for the total elastic distortional deformation B′.

However, B′d can still differ from B′ if the material experienced any inelastic deformation

during its history of loading, since B′d does not retain permanent memory of a specific

reference configuration.

Two independent invariants of B′d can be specified by the scalars {α1, α2} as

α1 = B′d · I, α2 = B′ 2d · I, (2.18)

which satisfy the equations

α̇1 = 2 dev
(
B′d
)
·D− ΓAd · I, (2.19)

α̇2 = 4 dev
(
B′d

2
)
·D− 2ΓAd ·B′d.

The strain energy Σd, for elastically isotropic materials, is specified to be a function of

{α1, α2}
Σd = Σd (α1, α2) , (2.20)

and the dissipative part σd of the Cauchy stress is taken in the form

σd = dev (σd) = 2ρ
∂Σd

∂α1
dev

(
B′d
)

+ 4ρ
∂Σd

∂α2
dev

(
B′ 2d

)
. (2.21)

Moreover, the rate of material dissipation (2.6) requires

D = Γρ

[
∂Σd

∂α1
Ad · I + 2

∂Σd

∂α2
Ad ·B′d

]
> 0. (2.22)

A model with a smooth elastic-inelastic transition which can be either rate-independent

or rate-dependent, with and without a yield function is given by Hollenstein et al. [36].

For the model here considered, the value of Γ depends on the effective rate of total
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distortional deformation ε̇ defined by

ε̇ =

√
2

3
dev (D) · dev (D). (2.23)

The experimental data of the Manduca muscle suggest that the functional form of Γ

depends on the state of the dissipative component. In particular, a model is proposed

for which the parameters {a, b} have different values when the material is being loaded

{al, bl} with the dissipative component being in a state of triaxial extension and when

the material is being unloaded {au, bu} with the dissipative component being in a state

of triaxial compression. Since data are only available for uniaxial stress it is not possible

to quantify a three-dimensional formulation that models all states of the dissipative

component. Nevertheless, since the present model is developed for three-dimensional

deformations it is desirable to suggest a theoretical structure that can be used. To this

end, it is recalled from Rubin [44] that simple isotropic functions can be developed using

a Lode angle to distinguish between different states of the material. Motivated by this

work, it is convenient to introduce a Lode angle γ based on the deviatoric part of the

elastic distortional deformation of the dissipative component by

sin(3γ) = − 27 det [dev (B′d)]

2
[

3
2dev

(
B′d
)
· dev

(
B′d
)]3/2 , −π

6
6 γ 6 π

6
. (2.24)

Different functional forms of Γ were considered in [44], but here attention is limited to

a Mohr-Coulomb type model with Γ being specified by

Γ = a (al, au, γ) + b (bl, bu, γ) ε̇, (2.25)

where

a (al, au, γ) =

√
3 al au

(al + au) cos γ +
√

3 (al − au) sin γ
> 0, (2.26)

and

b (bl, bu, γ) =

√
3 bl bu

(bl + bu) cos γ +
√

3 (bl − bu) sin γ
> 0, (2.27)

and with {al, au, bl, bu} being positive constants. This functional dependence of Γ on the

Lode angle γ can be modified once multi-axial data become available.

For the simple case of uniaxial stress in the fixed unit s direction, starting from zero stress

in the dissipative component, the distortional deformation tensor B′d can be written as

a function of the stretch λd > 0 in the form

B′d = λ2
d s⊗ s +

1

λd
(I− s⊗ s) , s · s = 1. (2.28)
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It can be shown that

γ = −π
6
, a

(
al, au,−

π

6

)
= al, b

(
bl, bu,−

π

6

)
= bl for λd > 1, (2.29)

γ =
π

6
, a

(
al, au,

π

6

)
= au, b

(
bl, bu,

π

6

)
= bu for λd < 1. (2.30)

Thus, the values {al, bl} characterize loading with the dissipative component being in

triaxial extension {λd > 1} and the values {au, bu} characterize unloading with the

dissipative component in triaxial compression {λd < 1}.

2.4 Robust, strongly objective numerical integration algo-

rithm

A robust, strongly objective numerical integration algorithm was developed in Hollen-

stein et al. [36], which can be applied to the evolution equations (2.7), (2.8) and (2.16).

This algorithm is briefly summarized in this section with reference to the proposed

model. Specifically, it is assumed that at time t = t1 the values {J(t1),B′(t1),B′d(t1)}
of {J,B′,B′d} are known and the objective is to find the values {J(t2),B′(t2),B′d(t2)}
of these quantities at the end of the time step at t = t2 with ∆t = t2 − t1.

Following the work in [45–47] it is convenient to define the relative deformation gradient

Fr, the relative dilatation Jr and the unimodular part F′r of Fr by the evolution equations

Ḟr = LFr, J̇r = JrD · I, Ḟ′r = LF′r −
1

3
(D · I) F′r, (2.31)

with the initial conditions

Fr (t1) = I, Jr (t1) = 1, F′r (t1) = I, (2.32)

where

Jr = det (Fr) , F′r = J−1/3
r Fr. (2.33)

For finite element programs the value Fr (t2) can be determined directly in terms of the

nodal displacements during the time step so that the evolution equations (2.31) and

(2.32) do not need to be integrated explicitly.

Now, the exact solutions of (2.7) and (2.8) can be written in the forms

J (t2) = Jr (t2) J (t1) , B′ (t2) = F′r (t2) B′ (t1) F′r
T

(t2) . (2.34)
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Also, the elastic trial value of B′d, denoted by B′d
?, determined by the solution of (2.16)

with vanishing rate of inelastic deformation Γ = 0, can be expressed in the form

B′d
?

= F′r (t2) B′d (t1) F′r
T

(t2) . (2.35)

Using an implicit backward Euler integrated approximation, the auxiliary tensor B̄′d ≈
B′d (t2) associated with the evolution equation (2.16) is given by

B̄′d = B′d
? −∆tΓ (t2)

[
B̄′d −

(
3

B̄′−1
d · I

)
I

]
, (2.36)

where Γ (t2) is the value of Γ at the end of the time step. Next, taking the deviatoric

part of (2.36) and requiring that dev [B′d (t2)] = dev
(
B̄′d
)

it follows that

dev
[
B′d (t2)

]
=

1

1 + ∆tΓ (t2)
dev

(
B′d

?)
. (2.37)

In order to determine the value of Γ (t2) in (2.37) it is recalled from Papes [48] that the

value D̄ of D (t2) at the end of the time step can be approximated by

D (t2) ≈ D̄ =
1

2∆t

[
Fr (t2) FT

r (t2)− I
]
, (2.38)

so that the average increment of the effective total rate of deformation, defined in (2.23),

can be approximated by

∆ε = ∆t ε̇ (t2) ≈ ∆t

√
2

3
dev

(
D̄
)
· dev

(
D̄
)

(2.39)

and the Lode angle γ in (2.24) is given by

sin(3γ) = − 27 det
[
dev

(
D̄
)]

2
[

3
2dev

(
D̄
)
· dev

(
D̄
)]3/2 , −π

6
6 γ 6 π

6
. (2.40)

Thus, ∆tΓ (t2) becomes

∆tΓ (t2) = ∆t a (al, au, γ) + b (bl, bu, γ) ∆ε. (2.41)

Finally, using (2.41) in (2.37), the value of B′d at the end of the time step can be

expressed in the form

B′d (t2) = dev
[
B′d (t2)

]
+

1

3
α (t2) I, (2.42)
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where the scalar α (t2) is determined by solving the cubic equation

det
[
B′d (t2)

]
= 1. (2.43)

For details see Eq. (49a) in Rubin and Attia [43].

2.5 Specific constitutive equations

Since many soft tissues experience large distortional deformations relative to volumetric

deformations it is convenient to consider them to be incompressible by introducing the

volumetric constraint

J = 1. (2.44)

The constraint response which enforces the incompressibility condition (2.44) effectively

replaces the pressure pe in (2.13) by an arbitrary function that is determined by the bal-

ance of linear momentum and boundary conditions. It follows that only the distortional

response of the strain energy function Σe needs to be specified. Specifically, here Σe is

taken in the form

ρ0Σe =
µe

2βe
{exp [βe(β1 − 3)]− 1} , (2.45)

where µe is a non-negative, constant shear modulus and βe is a positive material constant

that controls the nonlinearity of the elastic response. Then, using (2.14) the elastic part

σe of the stress is given by

σe = −peI + µe exp [βe (β1 − 3)] dev
(
B′
)
. (2.46)

The constitutive equation for the elastic strain energy of the dissipative component is

taken in a similar form to (2.45) with

ρ0Σd =
µd

2αd
{exp [αd(α1 − 3)]− 1} , (2.47)

where µd is a non-negative, constant shear modulus and αd is a positive material constant

that controls nonlinearity of the elastic response of the dissipative component. It then

follows from (2.21) that the dissipative part σd of the stress is given by

σd = dev (σd) = µd exp [αd (α1 − 3)] dev
(
B′d
)
. (2.48)

Also, the rate of material dissipation (2.22) requires

D =
1

2
Γµd exp [αd (α1 − 3)] (Ad · I) > 0. (2.49)
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It can be shown that by expressing B′d in its spectral form that the expression Ad · I is

non-negative so that (2.49) is satisfied by the functional form (2.25) for Γ.

2.6 Simulation

The model developed in the previous sections is used here to simulate the experimental

data for simple uniaxial tension of the Manduca muscle. To this end, λ is taken to be

the axial stretch in the fixed s direction with the material being stress-free in its initial

state with

λ(0) = 1, B′(0) = I, B′d(0) = I. (2.50)

Moreover, the velocity gradient L is specified by (2.28) so that the solutions of the

evolution equations (2.8) and (2.16) give

B′ = λ2s⊗ s +
1

λ
(I− s⊗ s) , β1 =

λ3 + 2

λ
, (2.51)

B′d = λ2
ds⊗ s +

1

λd
(I− s⊗ s) , α1 =

λ3
d + 2

λd
, (2.52)

where λd is the stretch associated with the dissipative component. Thus, for uniaxial

stress in the s direction, the pressure pe is determined by the condition that the lateral

stress vanishes. The total stress is represented in the form

σ = σs⊗ s, (2.53)

where the explicit expression for σ, using (2.4), (2.46) and (2.48), is given by

σ = µe exp [βe (β1 − 3)]

(
λ2 − 1

λ

)
+ µd exp [αd (α1 − 3)]

(
λ2

d −
1

λd

)
. (2.54)

Furthermore, for incompressible material subject to simple uniaxial tension, the nominal

axial stress Π (stress per unit reference area) is given by

Π =
σ

λ
. (2.55)

Now, using the numerical procedure described in Section 2.4, it follows that the value

of the unimodular part of the relative deformation gradient at the end of a typical time

step, F′r (t2), is given by

F′r (t2) =
λ (t2)

λ (t1)
s⊗ s +

√
λ (t1)

λ (t2)
(I− s⊗ s) , (2.56)
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and the elastic trial value λ?d of λd can be expressed by

λ?d =

[
λ (t2)

λ (t1)

]
λd (t1) . (2.57)

Then, equation (2.37) yields a cubic equation for λd (t2) in the form

λ2
d (t2)− 1

λd (t2)
=

[
1

1 + ∆tΓ (t2)

](
λ?d

2 − 1

λ?d

)
. (2.58)

Moreover, in determining the value of Γ (t2) in (2.41) use has been made of the expression

(2.38), which yields

dev
(
D̄
)

=
1

2∆t

[
λ2 (t2)

λ2 (t1)
− λ (t1)

λ (t2)

](
s⊗ s− 1

3
I

)
. (2.59)

Then, using the values {λ (t2) , λd (t2)} together with (2.51) - (2.55) gives the value of

the nominal stress Π (t2) at the end of the time step.

2.7 Model predictions

The rate-dependent response of an unstimulated muscle, the recovery of muscle proper-

ties from the preconditioned state and stress relaxation for constant stretches are now

evaluated using the formulation presented in Section 2.5. Recordings of experimental

data were initiated when the stretch λ = λr corresponding to the resting length of the

muscle. For completeness, the numerical computation includes the stress-free initial

state and a quasi-static extension from λ(0) = 1 to λr = 1.05, which ensures zero stress

in the dissipative component. At λ = λr, the stretch rate changes and assumes val-

ues equivalent to those used in the experimental characterization. The data shown in

Figures 2.2, 2.3 and 2.4 are obtained from different muscles so that, due to the variabil-

ity of biological tissue, a change in the material parameters should be expected. This

is shown by comparing values of corresponding parameters in Tables 2.1, 2.2 and 2.3.

Trial and error estimates are used to determine the parameters µe and βe of the elastic

energy function (2.45). The remaining parameters, {µd, αd} used to define the energy

Σd in (2.47) and {al, bl, au, bu} to define Γ in (2.25), are determined by a least square

optimization routine using the data shown in Section 2.2.

2.7.1 Rate-dependent response

Figure 2.2 summarizes experimental data of the rate-dependent response of an unstim-

ulated Manduca muscle for stretch rates λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1. These
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data are used to determine the corresponding material model parameters, which are

summarized in Table 2.1 and used to obtain the numerical results depicted in Figure

2.5. Specifically, the numerical results show the nominal stress Π as a function of the

stretch λ for two loading-unloading cycles in simple tension with maximum extension

λ = 1.24 for λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1. The results also show a change in

material response when transitioning from quasi-static loading to the specified stretch

rate at λ = λr. The inelastic behavior is characterized by the permanent set of the

material at completion of the first loading-unloading cycle. Reloading differs from the

primary loading path indicating preconditioning of the material similar to the Mullins

effect observed in rubberlike materials [49–51]. For convenience of comparison, experi-

mental behavior for loading-unloading cycles of the preconditioned material are included

as dashed curves in Figure 2.5. Comparing the numerical results with the experimental

data validates the formulation of the proposed model to simulate the rate-dependent

response of Manduca muscle.

µe βe µd αd al bl au bu
0.06 5 0.16 6 0.16 8 0.6 60

Table 2.1: Model parameters used to simulate the rate dependent response of an
unstimulated muscle. The values of al and au are in s−1 and µe and µd are given in

MPa.

2.7.2 Recovery from preconditioned state

The material model is now used to describe the time-dependent recovery of a Manduca

muscle from the preconditioned state. The experimental data in Figure 2.3 show three

loading-unloading cycles at constant strain rate and maximum extension λ = 1.24. At

the end of each unloading, the muscle is held at the resting length for three minutes

during which the material nearly recovers its prestressed resting state. These data are

now used to determine material parameters, which are summarized in Table 2.2 with

the corresponding numerical results given in Figure 2.6. The graph on the left starts

from the stress-free configuration λ(0) = 1 and shows the nominal stress Π as a function

of λ for three loading-unloading cycles. The transition from quasi-static loading to the

stretch rate λ̇ = 0.18 s−1 is again visible during primary loading when λ = λr. During

unloading the material does not return to the initial stress-free state clearly showing the

inelastic component of the deformation. During the recovery time, at constant stretch

λ = λr, the stress increases but does not reach the primary loading state. Therefore, the

reloading again differs from primarily loading. The nominal stress Π as a function of

time is shown in the graph on the right in Figure 2.6. Experimental behavior, depicted

by dashed curves, are included to assess the accuracy of the model prediction.
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Figure 5: Numerical results showing two loading-unloading cycles of an
unstimulated Manduca muscle in simple tension with maximum extension
λ = 1.23 and stretch rates of λ̇ = 0.0144 s−1, λ̇ = 0.072 s−1, λ̇ = 0.36 s−1 and
λ̇ = 1.8 s−1. The dashed curves represent the experimental behavior of the
preconditioned material. All graphs depict the nominal stress as a function
of the stretch λ.

starts from the stress-free configuration λ(0) = 1 and shows the nominal
stress Π as a function of λ for three loading-unloading cycles. The transition
from quasi-static loading to the stretch rate λ̇ = 0.18 s−1 is again visible
during primary loading when λ = λr. During unloading the material does not
return to the initial stress-free state clearly showing the inelastic component
of the deformation. During the recovery time, at constant stretch λ = λr,
the stress increases but does not reach the primary loading state. Therefore,
the reloading again differs from primarily loading. The nominal stress Π as a

21

Figure 2.5: Numerical results showing two loading-unloading cycles of an unstimu-
lated Manduca muscle in simple tension with maximum extension λ = 1.24 and stretch
rates of λ̇ = 0.0144 s−1, λ̇ = 0.072 s−1, λ̇ = 0.36 s−1 and λ̇ = 1.8 s−1. The dashed

curves represent the experimental behavior of the preconditioned material.

All graphs depict the nominal stress as a function of the stretch λ.

µe βe µd αd al bl au bu
0.17 3.9 0.31 2.3 0.25 12 0.3 40

Table 2.2: Magnitudes of the material model parameters used to simulate the recovery
of passive muscle properties from a preconditioned state. The values of al and au are

in s−1 and the µe and µd are given in MPa.

2.7.3 Stress relaxation

The data in Figure 2.4 are used to determine a set of material parameters that represent

the time-dependent response of the Manduca muscle used in this study. These are

listed in Table 2.3 and are used to simulate stress relaxation at constant stretch during

loading and unloading portions of a cycle of simple uniaxial tension. Figure 2.7 shows

the numerical results of an unstimulated muscle in simple tension from the stress-free

configuration λ(0) = 1 to a maximum stretch λ ≈ 1.26. The loading rate changes from

quasi-static to λ̇ = 0.2 s−1 at λr = 1.05. During loading and unloading portions of

the cycle the stretch is held constant for 30 seconds at λ = 1.12 and λ = 1.19 and

the change in stress as a function of time is evaluated numerically. The change of the
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nominal stress Π with time, depicted in the graph on the right in Figure 2.7, differs from

that during loading and unloading portions of the cycle. Specifically, during loading

the stress decays with relaxation not completed after 30 seconds, during unloading the

stress increases reaching a constant value in less than 30 seconds. This requires different

values of the material parameters {a, b} to define Γ during loading and unloading, see

Equation (2.25). The graph on the right shows a change in slope at t = 5 s indicating

the change in loading rate at λ = λr. The dashed curves in Figure 2.7 represent the

observed behavior and are used to quantify the accuracy of the numerical prediction.

µe βe µd αd al bl au bu
0.06 5.5 0.22 11 0.04 6.5 1 80

Table 2.3: Summary of material model parameters describing stress relaxation of an
unstimulated muscle during loading and unloading in simple tension. The values of al

and au are in s−1 and the µe and µd are given in MPa.

2.8 Discussion and concluding remarks

Motivated by the need to characterize the time-dependent response of skeletal muscle,

this paper presents new experimental data and a phenomenological constitutive model

that captures the observed behavior with reasonable accuracy. The data, from the

unstimulated ventral interior lateral muscle of the third abdominal segment of Manduca

function of time is shown in the graph on the right in Figure 6. Experimental
behavior, depicted by dashed curves, are included to assess the accuracy of
the model prediction.

µe βe µd αd al bl au bu
0.17 3.9 0.31 2.3 0.25 12 0.3 40

Table 2: Magnitudes of the material model parameters used to simulate the
recovery of passive muscle properties from a preconditioned state. The values
of al and au are in s−1 and the µe and µd are given in MPa.

7.3 Stress relaxation

The data in Figure 4 are used to determine a set of material parameters that
represent the time-dependent response of the Manduca muscle used in this
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Figure 6: Numerical results representing three loading-unloading cycles of an
unstimulated muscle in simple tension. At the end of each cycle, at the resting
length λr = 1.05, a 180 seconds recovery period is included to allow recovery
of muscle properties from the preconditioned state. The graph on the left
shows the loading-unloading response, the graph on the right depicts the
change in nominal stress as a function of time. The dashed curves represent
the experimental behavior of the preconditioned material. For clarity of
representation, only one loading-unloading cycle is shown in the graph on
the left.
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Figure 2.6: Numerical results representing three loading-unloading cycles of an un-
stimulated muscle in simple tension. At the end of each cycle, at the resting length
λr = 1.05, a 180 seconds recovery period is included to allow recovery of muscle proper-
ties from the preconditioned state. The graph on the left shows the loading-unloading
response, the graph on the right depicts the change in nominal stress as a function of
time. The dashed curves represent the experimental behavior of the preconditioned
material. Experimental data in Figure 2.3 show that the stress-stretch response of the
preconditioned muscle coincides during the second and third loading cycles. Therefore,
for clarity of representation, only one loading-unloading cycle is included in the graph

on the left.
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Figure 7: Numerical results showing the response of the unstimulated Mand-
uca muscle in simple tension. The graph on the left shows the nominal stress
versus stretch during loading and unloading. The graph on the right depicts
stress relaxation as a function of time for constant values of λ. Experimental
behavior, depicted by the dashed curves, are included to assess the accuracy
of the model prediction.

resting state and stress relaxation at constant stretch during loading and
unloading.

The proposed model considers the material as a composite of a nonlinear
hyperelastic component in parallel with a dissipative component. In contrast
with standard nonlinear inelastic models, here the dissipative component is
modeled using an evolution equation that combines rate-independent and
rate-dependent behavior, which exhibits smooth response with no finite elas-
tic range. The three-dimensional constitutive model is specialized to simple
uniaxial tension in the preferred direction, hence an isotropic formulation
provides sufficient flexibility to capture the mechanical response. As such,
the structure of the proposed formulation is not muscle specific, i.e. a change
in the material parameters fully accounts for the variability of biological tis-
sue. The restriction imposed by the current isotropic formulation is that
the principal direction of the uniaxial stress component and the preferred
direction of the material coincide.
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Figure 7: Numerical results showing the response of the unstimulated Mand-
uca muscle in simple tension. The graph on the left shows the nominal stress
versus stretch during loading and unloading. The graph on the right depicts
stress relaxation as a function of time for constant values of λ. Experimental
behavior, depicted by the dashed curves, are included to assess the accuracy
of the model prediction.
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Figure 8: Numerical results showing the response of the unstimulated Mand-
uca muscle in simple tension. The graph on the left shows the nominal stress
versus stretch during loading and unloading. The graph on the right depicts
stress relaxation as a function of time for constant values of λ. Experimental
behavior, depicted by the dashed curves, are included to assess the accuracy
of the model prediction.
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Figure 2.7: Numerical results showing the response of the unstimulated Manduca
muscle in simple tension. The graph on the left shows the nominal stress versus stretch
during loading and unloading. The graph on the right depicts stress relaxation as
a function of time for constant values of λ. Experimental behavior, depicted by the

dashed curves, are included to assess the accuracy of the model prediction

.

sexta, are limited to simple uniaxial tensile loading-unloading in the fiber direction.

The experimental characterization quantifies the inelastic rate-dependent behavior, the

recovery of muscle properties from the preconditioned response towards the prestressed

resting state and stress relaxation at constant stretch during loading and unloading.

The proposed model considers the material as a composite of a nonlinear hyperelastic

component in parallel with a dissipative component. In contrast with standard non-

linear inelastic models, here the dissipative component is modeled using an evolution

equation that combines rate-independent and rate-dependent behavior, which exhibits

smooth response with no finite elastic range. The three-dimensional constitutive model

is specialized to simple uniaxial tension in the preferred direction, hence an isotropic

formulation provides sufficient flexibility to capture the mechanical response. As such,

the structure of the proposed formulation is not muscle specific, i.e. a change in the

material parameters fully accounts for the variability of biological tissue. The restric-

tion imposed by the current isotropic formulation is that the principal direction of the

uniaxial stress component and the preferred direction of the material coincide.
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materials with application to
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Abstruct

Growth and adaptation generate residual stress in many living tissues and systems that

need to be incorporated in the definition of constitutive equations. This paper sum-

marizes the general formulation of residual stresses and specifies all tensor quantities

necessary to implement the three-dimensional theory in a nonlinear finite element code.

Verification and validation is performed by evaluating the wall stress distribution of an

abdominal aortic aneurysm (AAA) using patient specific geometry and material model

parameters. A number of human AAA specimens are characterized in biaxial extension

and their responses averaged to obtain representative stress-stretch data. The material

is anisotropic having two preferred directions representing the orientation of the collagen

fibers in the aortic tissue. The numerical results show that the residual stress in the

material modifies the wall stress distribution by reducing the stress gradient across the

wall thickness. A large amount of published information is available to characterize the

correlation between wall stress distribution and medical implications.
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3.1 Introduction

Stresses in a body, in the absence of any applied loads, are defined as residual stresses.

Experimental work by Holzapfel and Ogden [19], Nienhaus et al. [22], Tierney et al.

[37], Vandiver and Goriely [39] show the presence of residual stress in plants, human

tissues, insects and other animals. These are due to tissue growth and remodeling and

we refer to [6, 33, 36, 39, 42, 43] and to references therein for a detailed discussion.

The presence of residual stress in biological materials has been known for a long time,

but their implications and consequences on the behavior of the biological system, from

a biomechanics point of view, are yet to be fully appreciated. This has created great

interest during the last few years and many valuable publications followed.

To characterize the influence of residual stresses on the behavior of biological systems

it is necessary to determine their actual spacial distribution. Fung [15] emphasized the

influence of residual stress to explain the experimentally observed responses of tubular

sections of arterial tissue and introduced the opening angle experiment to quantify the

corresponding magnitude [8]. This technique was used by Vaishnav and Vossoughi [38]

to estimate the residual stress distribution and the corresponding strains in bovine and

porcine aortas. In a seminal publication, Holzapfel and Ogden [19] developed an ana-

lytical method to determine the layer specific residual stress distribution of the human

aorta using the magnitude of the opening angle as an input parameter. Experimental

techniques have been used by Costa et al. [9] and Wang et al. [41] to measure, respec-

tively, the three-dimensional residual strain distribution of canine left ventricle and the

residual deformation of ocular tissue, which were then used to determine the residual

stress. The influence of tissue growth on generating residual stress in biological materials

has been investigated by Olsson and Klarbring [27], Polzer et al. [30], Skalak et al. [33].

Fung [15], and Chuong and Fung [8] emphasized the need to include residual stress in

any analysis to determining the actual stress distribution in the material. Holzapfel et al.

[18], using appropriate constitutive equations, performed an analytical stress analyses

of the arterial wall to compare the stress distribution with and without taking residual

stress into account. Analytical methods to determine the arterial wall stress distributions

assume, in general, a circular tube of incompressible material, with constant cross section

and wall thickness subject to a constant pressure. Analytical methods must be replaced

by numerical approximations if these calculations are to be applied to patient specific

geometries.

The numerical approach proposed by Shams et al. [32] and Wang et al. [40] used a mod-

ified constitutive formulation to including residual stress of human left ventricle. Pierce

et al. [29] used a finite element formulation to determine the wall stress distribution
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of patient-specific AAA’s including the effect of residual stress. The paper by Pierce

et al. [29] presents results, but did not include derivations necessary to implement the

constitutive formulation in a nonlinear finite element solution scheme.

In this study we summarize the main tensorial quantities that are required for a numer-

ical solution of boundary value problems with arbitrary geometry and loading. Explicit

expression are given when deemed necessary. The formulation is verified and validated

by simulating the wall stress distribution in a patient specific AAA geometry using ex-

perimentally determine material parameters. The outline of the paper is as follows.

We begin in Section 3.2 with an overview of the basic equations required to present a

hyperelastic, invariant based anisotropic constitutive law that includes residual stresses.

Section 3.3 contains the increments of the kinematic and energy expressions that are

necessary to derive the fourth-order elasticity tensor. In Section 3.3.2 the general con-

stitutive formulation is specialized and in Section 3.3.3 a simple form of residual stress

estimation is given. Section 3.4 describes the patient specific finite element model, the

patient based material parameters, fiber orientations and the numerical results.

3.2 Basic equations

3.2.1 Kinematic

The region Br occupied by an unloaded and residually stressed deformable body is chosen

as reference configuration from which the deformation is measured. The location of any

material particle in Br is identified by its position vector X relative to some origin.

Let B denote the configuration of the body obtained by a continuous transformation

x = χ(X), where the vector function χ assigns to each point X a unique position x in

B and vice versa. The deformation gradient tensor relative to the configuration Br is

defined by

F =
∂χ(X)

∂X
=
∂x

∂X
, (3.1)

with Cartesian components Fiα = ∂xi/∂Xα, where i, α ∈ {1, 2, 3}. Roman indices

are associated with the current configuration B and Greek indices with the reference

configuration Br. We also use the standard notation J to denote the volume ratio given

by

J = detF =
dv

dV
> 0, (3.2)

where dv and dV denote corresponding volume elements in B and Br, respectively.

Frequently, deformations of many biological materials are said to be isochoric such that

J = 1 (volume-preserving), which is of course an idealization. In the following we



Modeling of residually stressed materials 32

relax this constraint and assume the general case of compressible materials with J 6=
1. Following the developments given by Flory [14] and Ogden [23, 24] we adopt the

multiplicative decomposition of the total deformation into volumetric and isochoric parts

expressed by

F = (J1/3)F̄, (3.3)

where F̄ is the isochoric portion of the deformation with detF̄ = 1. For further details

on decomposition of the deformation, refer to Holzapfel [17]. The isochoric right and

left Cauchy-Green tensors are, respectively, given by

C̄ = F̄TF̄, B̄ = F̄F̄T, (3.4)

with the principle invariants of C̄ (equivalently B̄) written

Ī1 = trC̄, Ī2 =
1

2

[
(trC̄)2 − tr

(
C̄2
)]
, Ī3 ≡ 1, (3.5)

where tr denotes the trace of the second-order tensor.

Unit vectors M and M′ are introduced to denote the two preferred directions of an

anisotropic material in the reference configuration Br and, following the work by Ogden

[25], define the structure tensors M ⊗M and M′ ⊗M′. Spencer and Rivlin [35] and

Spencer [34] showed that the integrity bases for three 3 × 3 matrices, in addition to

Ī1, Ī2, Ī3, include additional invariants that depend on M⊗M and M′ ⊗M′. Since M

and M′ are unit vectors, these are calculated as

Ī4 = M · (C̄M), Ī5 = M · (C̄2M), Ī6 = M′ · (C̄M′), Ī7 = M′ · (C̄2M′), (3.6)

with the remaining invariant quantities a function of both fiber directions

M · (C̄M′), M · (C̄2M′). (3.7)

Note that (3.7)2 is not independent and can therefore be eliminated.

3.2.2 Residual stress

An initial stress in the unloaded reference configuration Br is defined as residual stress

by Hoger [16], Shams et al. [32] and Ogden [26]. In the absence of body forces, surface

traction and intrinsic couple stresses the residual stress, denoted by τ , is symmetric and

satisfies the equilibrium equation

Divτ = 0, (3.8)
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where Div denotes the divergence operator with respect to Br. Since there are no surface

traction applied to the boundary ∂Br the residual stress must also satisfy the boundary

condition

τN = 0, (3.9)

where N is the unit normal at X, which implies that the residual stress in Br is non-

uniform. When modeling the mechanical response of arterial tissue, specifically the

response of abdominal aortic aneurysm, the residual stress is due to growth and remod-

eling and we refer to [19] and to the references therein for a detailed discussion.

The integrity bases for three 3×3 symmetric matrices, given by equation (3.5), (3.6) and

(3.7), need to be expanded to four 3×3 matrices. Specifically, the matrices corresponding

to the tensors C,M⊗M,M′⊗M′ and τ . Again, following Spencer and Rivlin [35], the

additional invariants are defined as

Ī8 = tr(C̄τ ), Ī9 = tr(C̄τ 2), Ī10 = tr(C̄2τ ), Ī11 = tr(C̄2τ 2), (3.10)

together with the invariant quantities

M · (C̄τM), M · (C̄τ 2M), M · (C̄2τM), M · (C̄2τ 2M), (3.11)

M′ · (C̄τM′), M′ · (C̄τ 2M′), M′ · (C̄2τM′), M′ · (C̄2τ 2M′), (3.12)

M · (C̄τM′), M · (C̄τ 2M′), M · (C̄2τM′), M · (C̄2τ 2M′), (3.13)

where the last two expressions in (3.13) are not independent. For an unconstrained

material there are thus a total of 22 invariants, for an incompressible material I3 ≡ 1

and the number reduces to 21.

3.2.3 Hyperelastic material

The theory of hyperelasticity describes the elastic response of a material using a strain

energy function W defined per unit volume in the reference configuration Br. For an

isotropic material, in the absence of residual stress, the energy W depends only on the

deformation gradient F and we write W = W (F). For a residually stressed, anisotropic

elastic solid with two preferred directions, W depends on F, on the structure tensors

M⊗M, M′ ⊗M′ and also on the residual stress τ . This is represented by

W = W
(
F,M⊗M,M′ ⊗M′, τ

)
(3.14)

where τ = τ (X). For a hyperelastic material the stress rate of working is associated

entirely with stored energy. The energy balance equation, written in terms of the the
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nominal stress tensor S, leads to the connection

S =
∂W

∂F
, Sαi =

∂W

∂Fiα
, (3.15)

which identifies the convention for the order of the indices in the differentiation with

respect to a non symmetric second-order tensor. Integration over a surface and the use

of Nanson’s formula [12] gives the Cauchy stress tensor

σ = J−1F
∂W

∂F
, σij = J−1Fiα

∂W

∂Fjα
. (3.16)

A strain energy function must be independent of superimposed rigid body deformations,

which requires W to be an isotropic function of the four tensors F,M⊗M,M′⊗M′, τ .

Then, the form of W is reduced to the dependence on the finite integrity bases of these

quantities.

Following Bose and Dorfmann [7] we assume a decoupled energy function

W = W̄
(
F̄,M⊗M,M′ ⊗M′, τ

)
+ U(J) (3.17)

where W̄ and U(J) denote the volume-preserving (distortional) and volumetric (dilata-

tional) contributions, respectively. In order to reduce the number of material parameters,

we consider a reduced form of the integrity bases and write the energy in the form

W = W̄
(
Ī1, Ī2, Ī4, Ī6, Ī8

)
+ U(J) (3.18)

where, for simplicity, we kept the same notation to denote the energy function W . The

use of the decomposition (3.18) in (3.15) gives the isochoric and volumetric components

of the nominal stress, denoted respectively by S̄ and Svol, as

S = S̄ + Svol =
∑

i∈I
W̄i

∂Īi
∂F

+
dU

dJ

dJ

dF
, σ = J−1FS, (3.19)

where the index set I = {1, 2, 4, 6, 8} is defined for notational convenience and W̄i =

∂W̄/∂Īi, i ∈ I. When the dependence on Ī4, Ī6, Ī8 is omitted from (3.19), the corre-

sponding expression for an isotropic material is obtained. The derivatives of the in-

variants and of J with respect to the deformation gradient F are needed to derive the

explicit expressions of the nominal stress components S̄ and Svol. For reference these
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are summarized here in the form

∂Ī1

∂F
= 2J−1/3

[
F̄T − 1

3
Ī1F̄

−1

]
, (3.20)

∂Ī2

∂F
= 2J−1/3

[
Ī1F̄

T − F̄TF̄F̄T − 2

3
Ī2F̄

−1

]
, (3.21)

∂Ī4

∂F
= 2J−1/3

[
M⊗ F̄M− 1

3
Ī4F̄

−1

]
, (3.22)

∂Ī6

∂F
= 2J−1/3

[
M′ ⊗ F̄M′ − 1

3
Ī6F̄

−1

]
, (3.23)

∂Ī8

∂F
= 2J−1/3

[
τ F̄T − 1

3
Ī8F̄

−1

]
, (3.24)

and
dJ

dF
= JF−1. (3.25)

Using equation (3.19) and substituting (3.20)-(3.25) gives the explicit expression of the

Cauchy stress σ and its isochoric and volumetric components. These are denoted re-

spectively by σ̄ and σvol and have the forms

σ̄ = 2J−1

[
W̄1

(
B̄− 1

3
Ī1I

)
+ W̄2

(
Ī1B̄− B̄2 − 2

3
Ī2I

)
+ W̄4

(
m̄⊗ m̄− 1

3
Ī4I

)

+ W̄6

(
m̄′ ⊗ m̄′ − 1

3
Ī6I

)
+ W̄8

(
F̄τ F̄T − 1

3
Ī8I

)]
, (3.26)

and

σvol =
dU

dJ
I, (3.27)

where m̄ = F̄M and m̄′ = F̄M′.

Expressions (3.26) and (3.27) can be written more concisely by introducing the deviatoric

operator defined as dev(A) = P : A, where the fourth-order projection tensor P has

components Pijkl = δikδjl − (1/3)δijδkl and A is a second-order symmetric tensor. The

component form of P : A is PijklAkl. The total Cauchy stress σ = σ̄ +σvol can then be

written in a more compact form

σ = 2J−1
[
W̄1 devB̄ + W̄2 dev

(
Ī1B̄− B̄2

)
+ W̄4 dev (m̄⊗ m̄)

+ W̄6 dev
(
m̄′ ⊗ m̄′

)
+ W̄8 devΣ̄

]
+

dU

dJ
I, (3.28)

where we used the notation Σ̄ = F̄τ F̄T used in, for example, [26, 32] and [21].
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3.3 Numerical solution

Exact solutions are possible only for a limited number of problems restricting the use of

a constitutive model to simple geometries and boundary conditions [21]. In this section

we develop the tensor quantities required for implementing a nearly incompressible,

anisotropic and residually stressed material in the finite element package ABAQUS [1].

Consider a small virtual incremental displacement superimposed on χ (X), which we

denote by δu. Through the transformation x = χ (X) we define δu as an Eulerian

quantity and write

δF = δlF, (3.29)

where δl is the virtual displacement gradient. This can be decomposed into the sum of

a symmetric and an antisymmetric part as

δl = δd + δw, (3.30)

where δd is the first variation of the rate-of-deformation and δw the first variation of

the continuum spin. These are give by

δd =
1

2

(
δl + δlT

)
, δw =

1

2

(
δl− δlT

)
, (3.31)

which are respectively symmetric and antisymmetric.

The numerical solution is based on a variational formulation of the boundary-value

problem. For completeness, we recall the internal virtual work expression in the form

∫

B
σ : δl dv =

∫

Br
Jσ : δl dV, (3.32)

where the transformation dv = JdV is used to convert the integral from the current

region B to the reference region Br. For consistency with the notation used in ABAQUS

[1], the operator : is used to define, for a pair of second order tensors A and B, the

double contraction AijBij . Since the Cauchy stress is symmetric the integrand σ : δl

may also be written as σ : δd.

Consider a small incremental displacement superimposed on the configuration B, which

for convenience, is treated as a function of x and denoted by du. This leads to the

important connection

dF = dl F, (3.33)

where dl is the spatial gradient of du, with components defined by dlij = ∂dui/∂xj .

Following the same argument as in (3.30), the incremental displacement gradient dl can
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be additively decomposed into symmetric and antisymmetric parts denoted dd and dw,

respectively.

The use of Newton’s method to solve the non-linear equilibrium equations requires lin-

earization of the internal virtual work expression as

dδWint =

∫

Br
[d(Jσ) : δd + Jσ : dδd] dV, (3.34)

where here and henceforth the operator d is used to denote the increment of the quantity

concerned. For an overview of variational formulations applicable to incompressible and

nearly incompressible materials we refer to Holzapfel [17] and Adler et al. [2].

Constitutive equations in ABAQUS [1] must be given in rate form as a relation between

the Kirchhoff stress rate, d(Jσ), and the rate of deformation dd. Objectivity of the

stress rate resulting from the evaluation of d(Jσ) is not guaranteed and, using continuum

elements, the Jaumann rate of the Kirchhoff stress is required. The notation defined by

Prot and Skallerud [31] is used to write the Jaumann rate of Jσ as

d∇J(Jσ) = d(Jσ)− J(dwσ − σdw), (3.35)

= C∇J : dd, (3.36)

where the operator d∇J denotes the increment determined from the Jaumann rate and

C∇J is the corresponding symmetric fourth-order elasticity tensor. Equating the right-

hand sides of equations (3.35) and (3.36) and solving for d(Jσ) gives

d (Jσ) = J
(
J−1C∇J : dd + dwσ − σdw

)
. (3.37)

ABAQUS [1] requires that the fourth-order elasticity tensor be implemented as

C = J−1C∇J , (3.38)

as specified in Section 4.6 of the Abaqus Theory Manual. The Kirchhoff stress rate of

the isochoric and volumetric components of the Cauchy stress tensor are denoted by

d(Jσ̄) and d(Jσvol), respectively. Equation (3.37) is then additively decomposed as

d(Jσ̄) = J(J−1C̄∇J : dd + dwσ̄ − σ̄dw), (3.39)

and

d(Jσvol) = J(J−1C∇J
vol : dd), (3.40)
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where C̄∇J is the isochoric part of the elasticity tensor and C∇J
vol is the volumetric part.

The final form of the elasticity tensor is then given by

C = J−1(C̄∇J + C∇J
vol). (3.41)

3.3.1 Fourth-order elasticity tensor

This subsection summarizes the derivation of the fourth-order elasticity tensor of a

hyperelastic, anisotropic and residually stressed material. An energy function with a

reduced number of invariants is used to keep the derivation simple and concise. Thus,

the formulation (3.18) is replaced by

W = W̄ (Ī1, Ī4, Ī6, Ī8) + U(J), (3.42)

which allows to rewrite equation (3.28) as

σ = 2J−1
[
W̄1devB̄ + W̄4dev(m̄⊗ m̄)

+ W̄6dev(m̄′ ⊗ m̄′) + W̄8devΣ̄
]

+
dU

dJ
I.

(3.43)

The increment of the isochoric part of equation (3.43) can be written as

d(Jσ̄) = 2
[
dW̄1devB̄ + W̄1 d(devB̄)

+ dW̄4dev(m̄⊗ m̄) + W̄4 d(dev(m̄⊗ m̄))

+ dW̄6dev(m̄′ ⊗ m̄′) + W̄6 d(dev(m̄′ ⊗ m̄′))

+ dW̄8devΣ̄ + W̄8d(devΣ̄)
]
.

(3.44)

For convenience, the expression of the increments dW̄i, i ∈ {1, 4, 6, 8} are written as

dW̄1 = W̄11dĪ1 + W̄14dĪ4 + W̄16dĪ6 + W̄18dĪ8,

dW̄4 = W̄14dĪ1 + W̄44dĪ4 + W̄46dĪ6 + W̄48dĪ8,

dW̄6 = W̄16dĪ1 + W̄46dĪ4 + W̄66dĪ6 + W̄68dĪ8,

dW̄8 = W̄18dĪ1 + W̄48dĪ4 + W̄68dĪ6 + W̄88dĪ8,

(3.45)

where W̄ij = ∂2W̄/∂Īi∂Īj , {i, j} ∈ {1, 4, 6, 8}. The increment of the invariants are given,

respectively, by

dĪ1 = 2devB̄ : dd, dĪ4 = 2dev (m̄⊗ m̄) : dd,

dĪ6 = 2dev
(
m̄′ ⊗ m̄′

)
: dd, dĪ8 = 2devΣ̄ : dd,

(3.46)
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where, dd is the symmetric part of incremental displacement gradient dl. The increment

of devB̄, which can be obtained by

d(devB̄) = d(P : B̄) = P : dB̄ = dev(dB̄), (3.47)

where, P is the fourth-order projection tensor defined in Section 3.2.3. The increment

of B̄ can be written as

dB̄ = H : de + dw B̄− B̄ dw, (3.48)

where the fourth-order tensor H has the form Hijkl = 1/2(δikB̄jl+δilB̄jk+B̄ikδjl+B̄ilδjk)

and de = dev(dd) denotes the increment of the deviatoric strain rate. Equation (3.47)

can now be written in an alternative forms

d(devB̄) = dev(H : de) + dw B̄− B̄ dw, (3.49)

and

d(devB̄) =

[
H− 2

3
(I⊗ B̄ + B̄⊗ I) +

2

9
I1I⊗ I

]
: dd + dwB̄− B̄dw. (3.50)

Following a similar process that leads to equation (3.50), the increments of dev(m̄⊗m̄),

dev(m̄′ ⊗ m̄′) and devΣ̄ can be written as

d[dev(m̄⊗ m̄)] =

[
A1 −

2

3
(I⊗ m̄⊗ m̄ + m̄⊗ m̄⊗ I) +

2

9
I4I⊗ I

]
: dd

+ dw(m̄⊗ m̄)− (m̄⊗ m̄)dw, (3.51)

d[dev(m̄′ ⊗ m̄′)] =

[
A2 −

2

3
(I⊗ m̄′ ⊗ m̄′ + m̄′ ⊗ m̄′2 ⊗ I) +

2

9
I6I⊗ I

]
: dd

+ dw(m̄′ ⊗ m̄′)− (m̄′ ⊗ m̄′)dw, (3.52)

d(devΣ̄) =

[
A3 −

2

3
(I⊗ Σ̄ + Σ̄⊗ I) +

2

9
I8I⊗ I

]
: dd + dwΣ̄− Σ̄dw, (3.53)

where A1,A2 and A3 are given in component form, respectively, by

A1ijkl = 1/2(δikm̄jm̄l + m̄im̄kδjl + δilm̄jm̄k + m̄im̄lδjk),

A2ijkl = 1/2(δikm̄
′
jm̄
′
l + m̄′im̄

′
kδjl + δilm̄

′
jm̄
′
k + m̄′im̄

′
lδjk), (3.54)

A3ijkl = 1/2(δikΣ̄jl + Σ̄ikδjl + δilΣ̄jk + Σ̄ilδjk).

By first substituting (3.46) into (3.45) and then (3.45), (3.50)-(3.53), into (3.44) and

comparing with equation (3.39) gives the explicit expression of the isochoric tangent
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stiffness related to Jaumann rate

C̄∇J = 2[2(W̄11devB̄⊗ devB̄ + W̄14devB̄⊗ dev(m̄⊗ m̄)

+ W̄14dev(m̄⊗ m̄)⊗ devB̄ + W̄16devB̄⊗ dev(m̄′ ⊗ m̄′)

+ W̄16dev(m̄′ ⊗ m̄′)⊗ devB̄ + W̄18devB̄⊗ devΣ̄

+ W̄18devΣ̄⊗ devB̄ + W̄44dev(m̄⊗ m̄)⊗ dev(m̄⊗ m̄)

+ W̄46dev(m̄⊗ m̄)⊗ dev(m̄′ ⊗ m̄′) + W̄46dev(m̄′ ⊗ m̄′)⊗ dev(m̄⊗ m̄)

+ W̄48dev(m̄⊗ m̄)⊗ devΣ̄ + W̄48devΣ̄⊗ dev(m̄⊗ m̄)

+ W̄66dev(m̄′ ⊗ m̄′)⊗ dev(m̄′ ⊗ m̄′) + W̄68dev(m̄′ ⊗ m̄′)⊗ devΣ̄

+ W̄68devΣ̄⊗ dev(m̄′ ⊗ m̄′) +W88devΣ̄⊗ devΣ̄)

+ W̄1(H− 2

3
(I⊗ B̄ + B̄⊗ I) +

2

9
I1I⊗ I)

+ W̄4(A1 −
2

3
(I⊗ m̄⊗ m̄ + m̄⊗ m̄⊗ I) +

2

9
I4I⊗ I)

+ W̄6(A2 −
2

3
(I⊗ m̄′ ⊗ m̄′ + m̄′ ⊗ m̄′ ⊗ I) +

2

9
I6I⊗ I)

+ W̄8(A3 −
2

3
(I⊗ Σ̄ + Σ̄⊗ I) +

2

9
I8I⊗ I)]. (3.55)

The increment of volumetric part of the Cauchy stress Jσvol is given by

d(Jσvol) = dJ

(
dU

dJ
+ J

d2U

d2J

)
I, (3.56)

where the increment of J is given by dJ = J tr(dd). Comparing with equation (3.40),

C∇Jvol can be expressed in the form

C∇Jvol = J

(
dU

dJ
+ J

d2U

d2J

)
I⊗ I. (3.57)

The elasticity tensor C, which is defined in (3.41), is obtained by the terms given in

(3.55) and (3.57).

3.3.2 Constitutive model

There are many examples, both in biological and engineered systems, where residual

stresses have a significant influence on the overall mechanical response [29, 39]. To val-

idate and verify the equations derived in Sections 3.2 and 3.3 a physiologic abdominal

aortic aneurysm wall stress analysis is perfumed. Specifically, a patient-specific geome-

try, combined with a non-uniform distribution of wall pressure is used to evaluate the

associated wall stress field in the presence of residual stress. Details on wall pressure

measurements and the corresponding data are given in [13].
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A finite element model is developed by Wang et al. [40] to evaluate the response of a

residually stressed ventricular myocardium. A simple and extended approach is devel-

oped that differ in the number of terms used in the energy function to incorporate the

effect of residual stress. In their simple approach, for example, it is shown that for con-

sistency with the reference configuration is sufficient to assume W̄8 constant. We follow

this argument and assume in what follows that W̄8 = 1/2.

The isochoric part of the energy function W̄ includes the contributions from the isotropic

base matrix, from the two families of oriented fibers and from the residual stress. In

particular, the response of the isotropic base matrix is given by the exponential strain

energy function by Demiray [11], the anisotropic character is included using the formu-

lation developed by Holzapfel et al. [18] and the residual stress is accounted for using a

constant term. Therefore, the energy function W̄ has the form

W̄ =
µiso

2α

{
exp

[
α
(
Ī1 − 3

)]
− 1
}

+
µfib

2k

∑

i=4,6

{
exp

[
k
(
Īi − 1

)2]− 1
}

+
1

2
Ī8, (3.58)

where µiso denotes the shear stiffness of the matrix, µfib describes the degree of anisotropy

and α and k are dimensionless parameters. Finally, the volumetric portion of the strain

energy is taken as the penalty function

U(J) =
κ

2
(J − 1)2 , (3.59)

where κ is known as the penalty parameter [2]. For nearly incompressible materials, κ

is taken to be sufficiently large to minimize changes in volume. The expression of the

Cauchy stress corresponding to the energy functions (3.58) and (3.59) is obtained using

equation (3.28) with W2 = 0. It has the form

σ = 2J−1
[µiso

2
exp[α(Ī1 − 3)]devB̄ + µfib(I4 − 1)exp[k(Ī4 − 1)2]dev(m̄⊗ m̄)

+ µfib(I6 − 1) exp[k(Ī6 − 1)2]dev(m̄⊗ m̄) +
1

2
devΣ̄

]
+ κ(J − 1)I. (3.60)

In the residually stressed, unloaded reference configuration Br, using the penalty method

to impose material incompressibility, F ≈ I, i.e. the deformation gradient is not exactly

the identity tensor due to the constrain violation of the penalty method in presence of

residual stress. Hence,

devB̄ ≈ 0, Ī4 ≈ 1, Ī6 ≈ 1, devΣ̄ ≈ devτ , J ≈ 1. (3.61)
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From equation (3.60) it follows that the residual stress in Br, denoted σr, is given by

σr = devτ + κ(J − 1)I, (3.62)

where the first term on the right-hand side represents the deviatoric component of the

residual stress and second term the equivalent hydrostatic pressure. From equilibrium

of the residual stress in the reference configuration, where σr = τ , it follows that the

hydrostatic pressure is equal 1
3tr(τ ).

3.3.3 Estimation of residual stress

To the best of our knowledge, there are no available data that specify the magnitude and

distribution of residual stress in human abdominal aortic aneurysms. Recent studies use

different approaches to estimate these values. An analytical method is used by Pierce

et al. [29] to estimate the residual stretches in the layered structure of a healthy arterial

wall. The residual stretches are then used to numerically estimate the residual stress in

the imaged, in vivo geometry of a patient specific AAA. Details of the corresponding

equations, the data of the layer-specific residual deformation and geometric and traction

compatibilities are given in [19]. An experimental study to evaluate AAA residual stress

is summarized in [37]. The data are from an in vitro AAA model developed from an

excised porcine aorta with elastase treatment. Tierney et al. [37] report a fourfold

decrease in the opening angle measurement for the normal aorta and elastase treated

rings directly indicating that the residual stress in AAA is much less than in a healthy

aorta.

Any residual stress must satisfy the equilibrium equation (3.8) and the boundary con-

dition (3.9). These conditions are used by Merodio and Ogden [21] to assume that the

only nonzero components of the residual stress, for a circular cylindrical tube in terms

of cylindrical polar coordinates, are τRR and τΘΘ. Specifically, the component in the

radial direction has the form

τRR = αr(R−A)(R−B), (3.63)

where αr has the units of stress and defines the strength of the residual stress, R is the

radius of a material point and A,B denote, respectively, the internal and external radii

in the reference configuration Br. The expression (3.63) satisfies the boundary condition

τRR = 0 on R = A,B. (3.64)
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Using the radial component of the equilibrium equation (3.8) it follows that τΘΘ has the

form

τΘΘ = αr[3R
2 − 2(A+B)R+AB]. (3.65)

The geometry of patient specific AAAs is, in general, very irregular and cannot be

approximated by a thick wall cylindrical tube with constant cross-section. In addition,

limited and contradictory information on residual stresses is available [19, 37]. Therefore,

we use a simplified approach to include residual stresses. Specifically, the components

τRR and τΘΘ are evaluated using constant values of A = 10.7 mm, B = 12.7 mm and

αr = 0.9, the latter chosen to approximate stress magnitudes reported in the literature

[5, 19], see Figure 3.1. We assume that this represents the residual stress distribution in

the AAA model analyzed next. A spatially varying residual stress distribution will be

considered once corresponding data become available.
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Figure 1: Distribution of the residual stress components τRR and τΘΘ as a function of the
radius R. The radial component satisfies the boundary conditions τRR = 0 on the inner
and outer surfaces located at R = 8 and 10 mm, respectively. τΘΘ is in compression on
the inner and in tension on the outer wall surface. {Tau_distribution}

Table 1: The patient specific values of model parameters to define the isochoric energy
function (59) and the penalty term (60). The values of µiso, µfib and κ are given in kPa,
the angle ϕ in degrees.

Summary of model parameters

µiso α µfib k ϕ κ

46.987 21.071 33.922 37.287 6.744 20,000 {Table_1}

inner surface is obtained from measurements in the patient-based phantom
cast at a series of physiologically relevant steady flow rates (Dorfmann et al.,
2010). The data show that the wall pressure is 16.0 kPa at the phantom
entrance where x = 0, where x is the axial position. At mid-bulge the
pressure drops it its minimum of 15.5 kPa (x = 120− 140 mm) and recovers
to 15.9 kPa at the bulge exit (x = 215 mm). Therefore, the wall pressure
applied to the inner surface of the computation model was uniform in the
circumferential direction and varied longitudinally. The wall thickness of the
model was assumed to be uniform and was set at 2 mm and the outer diaper
of the model entrance was set to 25.4 mm.

15

Figure 3.1: Distribution of the residual stress components τRR and τΘΘ as a function
of the radius R. The radial component satisfies the boundary conditions τRR = 0 on
the inner and outer surfaces located at R = 10.7 and 12.7 mm, respectively. τΘΘ is in

compression on the inner and in tension on the outer wall surface.

3.4 Patient based AAA model

The patient specific values of the material model parameters of a AAA are obtained

from strain-controlled, planar biaxial tests of tissue samples resected during elective re-

pair surgery [28]. For reference, cylindrical polar coordinates (r, θ, z), with unit basis

vectors er, eθ, ez, are used to denoted the radial, circumferential and axial directions of

the aortic wall. During each test, in situ axial stretch λz is held constant at physiologi-

cally realistic values while the specimen is subjected to five loading-unloading cycles in
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the circumferential direction. The nonlinear iterative function fmincon of the commer-

cial software package MATLAB [20] was used to determine the non-negative values of

µiso, α, µfib, k, ϕ required to define the isochoric part of the energy function (3.58). The

penalty parameter in the function (3.59) is taken as κ = 20, 000 kPa. The magnitudes

of all material parameters are shown in Table 3.1. Note that ϕ is the angle formed by

the two families of oriented fibers and the circumferential direction eθ. It follows that

the preferred direction during biaxial extension, here denoted M̄ and M̄′, characterizing

the structure of the material, are given by

M̄ = cosϕ eθ + sinϕ ez, M̄′ = cosϕ eθ − sinϕ ez. (3.66)

Table 3.1: The patient specific values of model parameters to define the isochoric
energy function (3.58) and the penalty term (3.59). The values of µiso, µfib and κ are

given in kPa, the angle ϕ in degrees.

Summary of model parameters

µiso α µfib k ϕ κ

46.987 21.071 33.922 37.287 6.744 20,000

A computational model of a patient-based AAA with a non-dilated inner diameter of

21.4 mm, maximum outer diameter of 56.5 mm and bulge length of 67 mm was used to

validate the numerical implementation and to analyze the effect of the residual stress on

the wall stress distribution. The wall thickness of the model was assumed to be uniform

and was set at 2 mm and the outer diameter of the model entrance was set to 25.4 mm.

The pressure distribution applied to the inner surface is obtained from measurements

in a patient-based phantom cast at a series of physiologically relevant steady flow rates

[13]. The data show that the wall pressure is 16.0 kPa at the phantom entrance, x = 0,

where x is the axial position. At mid-bulge the pressure drops to it its minimum of 15.5

kPa (x = 120 − 140 mm) and recovers to 15.9 kPa at the bulge exit (x = 215 mm).

Therefore, the wall pressure applied to the inner surface of the computation model was

uniform in the circumferential direction and varied longitudinally.

3.4.1 Fiber orientation in the AAA model

The unit vectors M̄ and M̄′ specify the preferred direction during biaxial extension,

equivalently during extension and inflation of a circular tube, i.e. a healthy aorta. To

define the ‘corresponding’ orientations in the AAA model, we use the projection tensor

P to generate images of M̄ and M̄′ projected onto the wall surface defined by the normal

unit vector n. This is accomplished by first identifying a 3D piecewise linear centerline
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Figure 3.2: Geometric layout and element distribution of the computational AAA
model used to evaluate the effect of residual stress. Four hexahedron elements are used

through the wall thickness.

of the AAA. The line connecting the centroid of each element with the nearest linear

section of the 3D centerline defines the local direction er, the orientation of the centerline

specifies ez and their cross product provides eθ, see Figure 3.3. The local orientation of

the preferred directions are given by the unit vectors M and M′ obtained by

M =
PM̄

|PM̄| , M′ =
PM̄′

|PM̄′| , (3.67)

where the projection tensor P has the form

P = I− n⊗ n. (3.68)

3.4.2 Results

To validate and verify the developments presented in the previous sections, we now

summarize the numerical results of a nonlinear finite element analysis using a patient

specific AAA geometry and patient based material parameters. We write a user specific

material subroutine, called UMAT, of the constitutive formulations given in (3.58) and

(3.59) and use ABAQUS [1] to solve the corresponding equations.

The undeformed, residually stressed reference configuration is used to visualize the von

Mises stress distribution on the inner and outer surfaces of the AAA wall. We found
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Figure 3: Location of the piecewise linear center line, which is used to define a local
cylindrical coordinate system with unit basis vectors er, eθ, ez. {local_reference}

Fig. 4. Fig. 4(a), (b) depict the inner surface and 4(c), (d) depict the
outer surface of AAA respectively. By noting the directions and position
reference coordinate system around the sections in Fig. 4, it is easier to
understand how the sections were generated from intact AAA. For example,
intact AAA can be generated by rotating the sections in Fig. 4 (a) and (b)
about Z-direction, anti-clock and clockwise respectively, so the X– directions
of those two sections coincide. Same sectional layout will be used in later
presentation. As expected, the magnitude of the stress is non uniform and
inner surface stress is larger compared to that of outer surface. The localized
maximum stresses locate on the inner surface of the posterior side of the
wall, one at proximal neck and other at mid-bulge, with a maximum value
of 460.85 kPa. The von Mises stress without considering residual stress has
a similar distribution with a small variation in magnitude (not shown). The
stress variation across the thickness is reported in the later part of the result
section.

The magnitude of the nodal displacements ||u|| of AAA simulation consid-
ering residual stress is plotted in Fig. 5. Maximum displacement magnitude
is observed ||u|| = 16.89 mm. When residual stress is not considered, the
magnitude of nodal displacement and its distribution (not shown) is similar
to the Fig. 5, with a difference 0.03 mm at maximum displacement location.

19

Figure 3.3: Location of the piecewise linear center line, which is used to define a local
cylindrical coordinate system with unit basis vectors er, eθ, ez.

that the von Mises stress magnitudes, when residual stress is accounted for, are very

similar to those without residual stress. Therefore, for the sake of space, only results of

the former are included in this paper.

The von Mises stress distribution of AAA with physiological relevant pressure applied

to the inner surface, accounting for residual stresses, is shown in Figure 3.4, where the

images (a) and (b) depict the distribution on the inner surface and (c) and (d) on the

outer surface of the AAA. For ease of reference we have added the orientation of the

global coordinate system to each of the images.

As expected, the magnitude of the stress is non uniform and varies widely on the inner

and outer surfaces. Not surprisingly, the magnitude on the inner surface is, in general,

larger when compared to the values on the outer surface. We found that the maximum

value of 460.85 kPa occurs on the inner surface on the posterior side of the AAA wall.

The absolute value of the displacements ||u|| on the inner and outer surfaces are shown

on the four images in Figure 3.5. Similar to the von Mises stress distribution, the

displacement results from analyses with and without residual stress are very similar and

therefore only those including the residual stress are shown. The maximum displacement

for an applied physiological pressure is given by ||u|| = 16.89 mm. For the analysis, where

residual stress is not included, the magnitude is similar with a difference 0.03 mm at the

same location.



Modeling of residually stressed materials 47

12 aasd

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

X Y

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

XY

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

X Y

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

XY

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

XY

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

X Y

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

XY

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

X Y

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

XY

Z

(Avg: 75%)
S, Mises

+1.000e+01
+4.917e+01
+8.833e+01
+1.275e+02
+1.667e+02
+2.058e+02
+2.450e+02
+2.842e+02
+3.233e+02
+3.625e+02
+4.017e+02
+4.408e+02
+4.800e+02

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

XY

Z

σv (KPa)
480

245

10
� 6

X

Z

-6 X

Z

� 6
X

Z

-6 X

Z

Figure 4: {mises_residual}

12 aasd

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

X Y

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

XY

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

X Y

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     38: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESINE.odb    Abaqus/Standard 6.11−2    Wed May 20 18:00:12 Eastern Daylight Time 2015

XY

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

XY

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

X Y

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

XY

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

X Y

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

XY

Z

U, Magnitude

+0.000e+00
+1.417e+00
+2.833e+00
+4.250e+00
+5.667e+00
+7.083e+00
+8.500e+00
+9.917e+00
+1.133e+01
+1.275e+01
+1.417e+01
+1.558e+01
+1.700e+01

Step: Step−1
Increment     37: Step Time =    1.000
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: AAARESIE.odb    Abaqus/Standard 6.11−2    Fri May 22 16:36:28 Eastern Daylight Time 2015

XY

Z

||u|| (mm)
17

8.5

0
� 6

X

Z

-6 X

Z

� 6
X

Z

-6 X

Z

Figure 5: {mises_residual}

18

(a) (b) (c) (d)

Figure 3.4: The von Mises stress distribution on the inner and outer surfaces of the
AAA when a physiological relevant pressure is applied. The pressure applied to the
inner surface is uniform in the circumferential direction but various longitudinally. The
images (a) and (b) depict the distribution on the inner surface and (c) and (d) on the

outer surface.

The variation of the von Mises stress across the wall thickness is presented in Figures

3.6 and 3.7. The path in Figure 3.6 is at the location where the von Mises stress on

the inner surface assume its maximum value. The path in Figure 3.7 is at an arbitrarily

location where the stress values are relatively small. For completeness, we have included

the results for both analyses, with and without residual stress.
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(a) (b) (c) (d)

Figure 3.5: The absolute value of the displacements on the inner and outer surfaces
of the AAA model subject to an internal pressure. The imposed boundary condition at
the proximal and distal end of the AAA are unrealistic and created stress concentration

but do not influence the results in the zone of interest.
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Figure 6: The von Mises stress values across wall thickness at location with high stress
concentration on the inner surface. Solid lines indicates values with no residual stress
included, dashed line show results with residual stress included. {Path1}
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Figure 3.6: The variation of the von Mises stress across the wall thickness at the
location where the von Mises stress on the inner surface assume its maximum value.
Solid lines indicates values with residual stress not included, dashed line show results

with residual stress included.
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Figure 7: The von Mises stress values across wall thickness at an arbitrary location.
Solid lines indicates values with no residual stress included, dashed line show results with
residual stress included. {Path2}
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Figure 3.7: The variation of the von Mises stress across the wall thickness at an
arbitrary location. Solid lines indicates values with residual stress not included, dashed

line show results with residual stress included.
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3.5 Discussion and concluding remarks

A numerical method for incorporating a three-dimensional residual stress state in a

hyperelastic constitutive formulation is presented. The energy function is expressed in

terms of invariants of an isotropic base matrix, two sets of preferred fiber directions and

the residual stress tensor and, for numerical purposes, is decomposed into isochoric and

volumetric parts. The isochoric part contains exponential terms related to the isotropic

matrix, to the behavior of the oriented fibers and an additional term related to the

residual stress. The volumetric part is a penalty function to enforce the incompressibility

constraint. The corresponding fourth-order elasticity tensors are derived by linearizing

the expression of internal virtual work and are given explicitly.

No reliable data exit that describe the three-dimensional residual stress state in AAAs.

Therefore, for this study we use the expressions suggested by Merodio and Ogden [21],

which satisfy the zero traction boundary conditions. The corresponding model param-

eters are determined to obtain residual stress magnitudes similar in to those given in

[4, 19]. Finally, a new algorithm is proposed that projects the two oriented fiber orien-

tations along a tubular configuration onto the irregular geometry of the AAA.

To verify and validate the formulation we summarize the main results of a finite element

analysis using a patient specific AAA geometry. These show, when the effect of residual

stress is neglected, a maximum von Mises stress of 478.14 kPa, which reduces to 460.85

kPa when the residual stress is included. This finding is consistent with the now accepted

understanding that residual stress in tissue optimize the mechanical performance by

homogenizing stress levels. The publications by Delfino et al. [10], Holzapfel et al.

[18], Pierce et al. [29], Vaishnav and Vossoughi [38] report similar findings to further

strengthen this understanding. Although, the inclusion of residual stress lowers the

magnitude of the maximum stress, we also note that influence is minimal for the results

here reported. Other authors, for example, Alastrué et al. [3], Delfino et al. [10], Pierce

et al. [29], report significant reductions when residual stress is considered. Holzapfel

et al. [18] report small and large changes in stress values in arteries of humans and other

species. Holzapfel et al. [18] find that the influence of residual stress is minor when

the wall thickness to diameter ratio is small. For the simulation in the paper, the wall

thickness to diameter ratio is much smaller than that reported by Delfino et al. [10],

Alastrué et al. [3], which validates the findings reported here.

The magnitudes of the displacement field, with and without residual stress, show minor

changes similar to the the stress field. Alastrué et al. [3] show signifiant changes of

the displacement field when the residual stress is accounted for. However, Alastrué

et al. [3] consider a carotid brunch, which has a very complex geometry. Thus the
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influence of residual stress might be magnified by the geometric layout and would require

further investigation. Our results show that the applied pressure generates a maximum

displacement magnitude of ||u|| = 16.89 mm. This large value is due to the rigid body

motion of the bulge region and is thus related to the specific geometry of the AAA.

The von Mises stress values across the wall thickness where stresses have the larges

value are presented in Figure 3.6. The graphs show that accounting of the residual

stress homogenize the stress level across the thickness by reducing the stress gradient,

consistent with the understanding reported in the literature. Note that the results in

Figure 3.7 are different, but the stress level at this location is lower compared to the

stress level shown in Figure 3.6.

In conclusion, we presented a numerical method for incorporating a three-dimensional

residual stress state in a constitutive formulation that is very general and can be used

in combination with any hyperelastic material law. A patient specific AAA geometry,

subject to internal pressure, is used to evaluate the wall stress distribution with and

without the influence of residual stress.
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Chapter 4

Conclusion

Constitutive material modeling and framework for incorporating three-dimensional resid-

ual stress in analysis for soft materials and structures are presented.

Proposed constitutive model is very general, which can model rate-independent and rate-

dependent responses including the stress relaxation and recovery phenomena of passive

skeletal muscle. Robust, strongly objective numerical integration algorithm is used

in solving nonlinear evolution equation regarding the presented model. Comparison of

numerical simulation results with corresponding experimental data shows model’s ability

to capture time-dependent responses of muscle tissue.

Framework for accounting residual stresses to predict accurate response of soft materials

and structures is presented. The formulation has the generality to adopt any hyperelastic

material law in combination with estimated residual stress. Details derivations of tensor

quantities are included for numerical implementation of the method into finite-element

codes. The framework is validated and verified by implementing, into ABAQUS using

UMAT subroutine, and analyzing patient specific AAA wall stress. Analysis results

are in agreement with the results in the literature and consistent with the accepted

understanding regarding the influence of residual stress.
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Appendix A

Derivation

Appendix A contain derivations of mathematical quantities used in Modeling of residu-

ally stressed materials with application to AAA. For convenience all the mathematical

quantities are drived in index notation. Following the same index convention in the

report, Roman indices are associated with the current configuration and Greek indices

with the reference configuration.

∂F̄jβ
∂Fiα

=
∂

∂Fiα
(J−1/3Fjβ)

=
∂J−1/3

∂Fiα
Fjβ + J−1/3∂Fjβ

∂Fiα

= −1

3
J−4/3JF−1

αi Fjβ + J−1/3δijδαβ

= −1

3
J−1/3(F−1

αi )Fjβ + J−1/3δijδαβ

= −1

3
J−1/3(J−1/3F̄

−1
αi )Fjβ + J−1/3δijδαβ

= −1

3
J−1/3F̄

−1
αi F̄jβ + J−1/3δijδαβ

(A.1)

∂B̄jk

∂Fiα
=

∂

∂Fiα
(F̄jβF̄kβ)

=
∂F̄jβ
∂Fiα

F̄kβ + F̄jβ
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3
J−1/3F̄

−1
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3
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= J−1/3

[
δijF̄kα + δikF̄jα −
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3
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]

(A.2)
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∂C̄βγ
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dFiα = d
∂ui
∂Xα

= d
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∂xj

∂xj
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∂ui
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(A.9)
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dB̄ij = d
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=
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dĪ1 =
∂Ī1

∂Fiα
dFiα

= 2J−1/3

[
F̄iα −

1

3
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Ī2F̄

−1
αi

]
dlijFjα

= 2

[
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∂Ī6
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dĪ8 =
∂Ī8
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Ī1δijδkl

)
ddkl

= Hijklddkl −
2

3
B̄ijδklddkl + dwikB̄kj − B̄ikdwkj

− 2

3

(
δijB̄kl −

1

3
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=
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+ dwikB̄kj − B̄ikdwkj

(A.19)
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dΣ̄ij = d
(
F̄iαταβF̄jβ

)

= dF̄iαταβF̄jβ + F̄iαταβdF̄jβ

=

(
dlikF̄kα −

1

3
dlkkF̄iα

)
ταβF̄jβ + F̄iαταβ

(
dljkF̄kβ −

1

3
dlkkF̄jβ

)

= dlikτ̄kj −
1

3
dlkkτ̄ij + τ̄ikdljk −

1

3
dlkkτ̄ij

= (ddik + dwik)τ̄kj −
1

3
dlkkτ̄ij + τ̄ik(ddkj − dwkj)−

1

3
dlkkτ̄ij

= ddikτ̄kj + dwikτ̄kj −
1

3
dlkkτ̄ij + τ̄ikddkj − τ̄ikdwkj −

1

3
dlkkτ̄ij

= ddikτ̄kj −
1

3
dlkkτ̄ij + τ̄ikddkj −

1

3
dlkkτ̄ij + dwikτ̄kj − τ̄ikdwkj

= ddikτ̄kj −
1

3
ddkkτ̄ij + τ̄ikddkj −

1

3
ddkkτ̄ij + dwikτ̄kj − τ̄ikdwkj

=
1

2
(ddikτ̄kj + ddikτ̄kj) +

1

2
(τ̄ikddkj + τ̄ikddkj)

− 1

2

(
1

3
ddkkτ̄ij +

1

3
ddkkτ̄ij +

1

3
ddkkτ̄ij +

1

3
ddkkτ̄ij

)

+ dwikτ̄kj − τ̄ikdwkj
=

1

2
(δilddlkτ̄kj + δilddlkτ̄kj) +

1

2
(τ̄ikddklδlj + τ̄ikddklδlj)

− 1

2

(
1

3
ddmmτ̄ij +

1

3
ddmmτ̄ij +

1

3
ddmmτ̄ij +

1

3
ddmmτ̄ij

)

+ dwikτ̄kj − τ̄ikdwkj
=

1

2
(δilddlkτ̄kj + δilddlkτ̄kj) +

1

2
(τ̄ikδjlddlk + τ̄ikδjlddlk)

− 1

2

(
1

3
ddmmτ̄ij +

1

3
ddmmτ̄ij +

1

3
ddmmτ̄ij +

1

3
ddmmτ̄ij

)

+ dwikτ̄kj − τ̄ikdwkj
=

1

2
(δilτ̄kj + δilτ̄kj + τ̄ikδjl + τ̄ikδjl) ddlk

− 1

2
(τ̄ij + τ̄ij + τ̄ij + τ̄ij)

1

3
ddmm + dwikτ̄kj − τ̄ikdwkj

=
1

2
(δilτ̄jk + δikτ̄jl + τ̄ikδjl + τ̄ilδjk) ddkl

− 1

2
(δklδilτ̄jk + δklδikτ̄jl + τ̄ikδjlδkl + τ̄ilδjkδkl)

1

3
ddmm

+ dwikτ̄kj − τ̄ikdwkj
=

1

2
(δilτ̄jk + τ̄ilδjk + δikτ̄jl + τ̄ikδjl) ddkl

− 1

2
(δilτ̄jk + τ̄ilδjk + δikτ̄jl + τ̄ikδjl)

1

3
ddmmδkl + dwikτ̄kj − τ̄ikdwkj

= A3ijklddkl − A3ijkl
1

3
ddmmδkl + dwikτ̄kj − τ̄ikdwkj

= A3ijkl

(
ddkl −

1

3
ddmmδkl

)
+ dwikτ̄kj − τ̄ikdwkj

(A.20)

A3ijmm =
1

2
(δimτ̄jm + τ̄imδjm + δimτ̄jm + τ̄imδjm)

= 2τ̄ij

(A.21)
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d(div τ̄ij) = d

(
τ̄ij −

1

3
Ī8δij

)

= dτ̄ij −
1

3
dĪ8δij

= A3ijkl

(
ddkl −

1

3
ddmmδkl

)
+ dwikτ̄kj − τ̄ikdwkj

− 2

3

[
τ̄kl −

1

3
Ī8δkl

]
ddklδij

= A3ijkl

(
ddkl −

1

3
ddmmδkl

)
+ dwikτ̄kj − τ̄ikdwkj

− 2

3

(
δij τ̄kl −

1

3
Ī8δijδkl

)
ddkl

= A3ijklddkl −
1

3
A3ijmmδklddkl + dwikτ̄kj − τ̄ikdwkj

− 2

3

(
δij τ̄kl −

1

3
Ī8δijδkl

)
ddkl

= A3ijklddkl −
2

3
τ̄ijδklddkl + dwikτ̄kj − τ̄ikdwkj

− 2

3

(
δij τ̄kl −

1

3
Ī8δijδkl

)
ddkl

=

[
A3ijkl −

2

3
τ̄ijδkl −

2

3
δij τ̄kl −

2

9
Ī8δijδkl

]
ddkl

+ dwikτ̄kj − τ̄ikdwkj

=

[
A3ijkl −

2

3
(τ̄ijδkl + δij τ̄kl)−

2

9
Ī8δijδkl

]
ddkl

+ dwikτ̄kj − τ̄ikdwkj

(A.22)
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d (m̄1im̄1j) = d
(
F̄iαM1αF̄jβM1β

)

= dF̄iαM1αF̄jβM1β + F̄iαM1αdF̄jβM1β

=

(
dlikF̄kα −

1

3
dlkkF̄iα

)
M1αF̄jβM1β + F̄iαM1α

(
dljkF̄kβ −

1

3
dlkkF̄jβ

)
M1β

= dlikm̄1km̄1j −
1

3
dlkkm̄1im̄1j + m̄1im̄1kdljk −

1

3
dlkkm̄1im̄1j

= (ddik + dwik)m̄1km̄1j −
1

3
dlkkm̄1im̄1j + m̄1im̄1k(ddkj − dwkj)−

1

3
dlkkm̄1im̄1j

= ddikm̄1km̄1j + dwikm̄1km̄1j −
1

3
dlkkm̄1im̄1j + m̄1im̄1kddkj

− m̄1im̄1kdwkj −
1

3
dlkkm̄1im̄1j

= ddikm̄1km̄1j −
1

3
dlkkm̄1im̄1j + m̄1im̄1kddkj −

1

3
dlkkm̄1im̄1j

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

= ddikm̄1km̄1j −
1

3
ddkkm̄1im̄1j + m̄1im̄1kddkj −

1

3
ddkkm̄1im̄1j

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

=
1

2
(ddikm̄1km̄1j + ddikm̄1km̄1j) +

1

2
(m̄1im̄1kddkj + m̄1im̄1kddkj)

− 1

2

(
1

3
ddkkm̄1im̄1j +

1

3
ddkkm̄1im̄1j +

1

3
ddkkm̄1im̄1j +

1

3
ddkkm̄1im̄1j

)

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

=
1

2
(δilddlkm̄1km̄1j + δilddlkm̄1km̄1j) +

1

2
(m̄1im̄1kddklδlj + m̄1im̄1kddklδlj)

− 1

2

(
1

3
ddmmm̄1im̄1j +

1

3
ddmmm̄1im̄1j +

1

3
ddmmm̄1im̄1j +

1

3
ddmmm̄1im̄1j

)

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

=
1

2
(δilddlkm̄1km̄1j + δilddlkm̄1km̄1j) +

1

2
(m̄1im̄1kδjlddlk + m̄1im̄1kδjlddlk)

− 1

2

(
1

3
ddmmm̄1im̄1j +

1

3
ddmmm̄1im̄1j +

1

3
ddmmm̄1im̄1j +

1

3
ddmmm̄1im̄1j

)

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

=
1

2
(δilm̄1km̄1j + δilm̄1km̄1j + m̄1im̄1kδjl + m̄1im̄1kδjl) ddlk

− 1

2
(m̄1im̄1j + m̄1im̄1j + m̄1im̄1j + m̄1im̄1j)

1

3
ddmm + dwikm̄1km̄1j − m̄1im̄1kdwkj

=
1

2
(δilm̄1km̄1j + δikm̄1jm̄1l + m̄1im̄1kδjl + m̄1im̄1lδjk) ddkl

− 1

2
(δklδilm̄1im̄1k + δklδikm̄1jm̄1l + m̄1im̄1kδjlδkl + m̄1im̄1lδjkδkl)

1

3
ddmm

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

=
1

2
(δilm̄1km̄1j + m̄1im̄1lδjk + δikm̄1jm̄1l + m̄1im̄1kδjl) ddkl

− 1

2
(δilm̄1jm̄1k + m̄1im̄1lδjk + δikm̄1jm̄1l + m̄1im̄1kδjl)

1

3
ddmmδkl

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

= A1ijklddkl − A1ijkl
1

3
ddmmδkl + dwikm̄1km̄1j − m̄1im̄1kdwkj

= A1ijkl

(
ddkl −

1

3
ddmmδkl

)
+ dwikm̄1km̄1j − m̄1im̄1kdwkj

(A.23)
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A1ijmm =
1

2
(δimm̄1jm̄1m + m̄1im̄1mδjm + δimm̄1jm̄1m + m̄1im̄1mδjm)

= 2m̄1im̄1j

(A.24)

d(divm̄1im̄1j) = d

(
m̄1im̄1j −

1

3
Ī4δij

)

= dm̄1im̄1j −
1

3
dĪ4δij

= A1ijkl

(
ddkl −

1

3
ddmmδkl

)
+ dwikm̄1km̄1j − m̄1im̄1kdwkj

− 2

3

[
m̄1km̄1l −

1

3
Ī4δkl

]
ddklδij

= A1ijkl

(
ddkl −

1

3
ddmmδkl

)
+ dwikm̄1km̄1j − m̄1im̄1kdwkj

− 2

3

(
δijm̄1km̄1l −

1

3
Ī4δijδkl

)
ddkl

= A1ijklddkl −
1

3
A1ijmmδklddkl + dwikm̄1km̄1j − m̄1im̄1kdwkj

− 2

3

(
δijm̄1km̄1l −

1

3
Ī4δijδkl

)
ddkl

= A1ijklddkl −
2

3
m̄1im̄1jδklddkl + dwikm̄1km̄1j − m̄1im̄1kdwkj

− 2

3

(
δijm̄1km̄1l −

1

3
Ī4δijδkl

)
ddkl

=

[
A1ijkl −

2

3
m̄1im̄1jδkl −

2

3
δijm̄1km̄1l −

2

9
Ī4δijδkl

]
ddkl

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

=

[
A1ijkl −

2

3
(m̄1im̄1jδkl + δijm̄1km̄1l)−

2

9
Ī4δijδkl

]
ddkl

+ dwikm̄1km̄1j − m̄1im̄1kdwkj

(A.25)

d(divm̄2im̄2j) =

[
A2ijkl −

2

3
(m̄2im̄2jδkl + δijm̄2km̄2l)−

2

9
Ī6δijδkl

]
ddkl

+ dwikm̄2km̄2j − m̄2im̄2kdwkj

(A.26)
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UMAT

The UMAT subroutine, to be used with ABAQUS, for residually stressed material with

two preferred directions used in analysis of patient specific AAA is given below. Where

preferred directions and residual stresses are defined as state variables for the UMAT.

1 C----------------------------------------------------------------------

2 C----------------------------------UMAT--------------------------------

3 C----------------------------------------------------------------------

4 SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, RPL,

5 1 DDSDDT, DRPLDE, DRPLDT, STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP,

6 2 PREDEF, DPRED, CMNAME, NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS,

7 3 COORDS, DROT, PNEWDT, CELENT, DFGRD0, DFGRD1, NOEL, NPT, LAYER,

8 4 KSPT, KSTEP, KINC)

9 C

10 INCLUDE ’ABA_PARAM.INC’

11 C

12 CHARACTER*20 CMNAME

13 C

14 DIMENSION STRESS(NTENS), STATEV(NSTATV), DDSDDE(NTENS, NTENS),

15 1 DDSDDT(NTENS), DRPLDE(NTENS), STRAN(NTENS), DSTRAN(NTENS),

16 2 PREDEF(1), DPRED(1), PROPS(NPROPS), COORDS(3), DROT(3, 3),

17 3 DFGRD0(3, 3), DFGRD1(3, 3)

18 C

19 C-----------------------------------------------------------------

20 C LOCAL ARRAY DESCRIPTION

21 C-----------------------------------------------------------------

22 C BBAR = UNIMODULAR LEFT GREEN CAUCHY TENSOR

67
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23 C BBARD = DEV(BBAR)

24 C DISTGR = UNIMDULAR DFORMATION GRADIANT

25 C FR1 = FIBER 1 DIRECTION (REFERENCE)

26 C FR2 = FIBER 2 DIRECTION (REFERENCE)

27 C FC1 = FIBER 1 DIRECTION (CURRENT)

28 C FC2 = FIBER 2 DIRECTION (CURRENT)

29 C F1CF1 = FC1 TENSOR CROSS PRODUCT FC1 (FC1 X FC1)

30 C F1CF1D = DEV(F1CF1)

31 C F2CF2 = FC2 TENSOR CROSS PRODUCT FC2 (FC2 X FC2)

32 C F2CF2D = DEV(FC2FC)

33 C CI4 = I4 INVARIANT

34 C CI6 = I6 INVRIANT

35 C CI8 = I8 INVRIANT

36 C H = FOURTH ORDER H TENSOR

37 C A1 = FOURTH ORDER TENSOR FOR FIBER SET 1

38 C A2 = FOURTH ORDER TENSOR FOR FIBER SET 2

39 C A3 = FOURTH ORDER TENSOR FOR RESIDUAL STRESS

40 C-----------------------------------------------------------------

41 C

42 C LOCAL ARRAY

43 C

44 DIMENSION FR1(3), FR2(3), DISTGR(3,3), FC1(3),

45 1 FC2(3), F1CF1(6), F1CF1D(6), F2CF2(6), F2CF2D(6),

46 2 BBAR(6), BBARD(6), CBAR(6), DEL(6), H(6,6), A1(6,6),

47 3 A2(6,6), A3(6,6), TAU(6), SBAR(6), SBARD(6)

48 C

49 C

50 PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0,

51 1 SIX=6.D0, CNINE=9.D0, PI=3.141592653D0)

52 C

53 C ----------------------------------------------------------------

54 C UMAT FOR HYPERELASTICITY. CANNOT BE USED FOR PLANE STRESS

55 C DESCRIPTION OF REQUIRED INPUT PARAMETERS ARE GIVEN BELOW.

56 C FIBERS DIRECTION AND RESIDUAL STRESS MUST BE DEFINED USING

57 C TWELVE STATE VARIABLES IN GLOBAL COORDINATES; FIRST THREE

58 C FOR FIBER-1, FOUTH TO SIXTH FOR FIBER-2 AND LAST SIX FOR

59 C RESIDUAL STRESS

60 C ----------------------------------------------------------------

61 C PROPS(1) - ALPHA
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62 C PROPS(2) - EMU

63 C PROPS(3) - ALPHA1

64 C PROPS(4) - EMU1

65 C PROPS(5) - FIBER1 ANGEL IN DEGREE (NOT USED HERE)

66 C PROPS(6) - ALPHA2

67 C PROPS(7) - EMU2

68 C PROPS(8) - FIBER1 ANGEL IN DEGREE (NOT USED HERE)

69 C PROPS(9) - D1 PARAMETER (SEE ABAQUS THEOTY MANUAL)

70 C ----------------------------------------------------------------

71 C

72 C ELASTIC MATERIAL PROPERTIES

73 C

74 ALPHA=PROPS(1)

75 EMU=PROPS(2)

76 ALPHA1 = PROPS(3)

77 EMU1 = PROPS(4)

78 F1ANG = PROPS(5)*PI/180.D0

79 ALPHA2 = PROPS(6)

80 EMU2 = PROPS(7)

81 F2ANG = PROPS(8)*PI/180.D0

82 D1=PROPS(9)

83 C

84 C DEFINING FIBER-1 DIRECTION

85 C

86 FR1(1) = STATEV(1)

87 FR1(2) = STATEV(2)

88 FR1(3) = STATEV(3)

89 C

90 C DEFINING FIBER-2 DIRECTION

91 C

92 FR2(1) = STATEV(4)

93 FR2(2) = STATEV(5)

94 FR2(3) = STATEV(6)

95 C

96 C DEFINING RESIDUAL STRESS AND STORING IN FIRST INCREMENT (GLOBAL)

97 C

98 TAU(1) = STATEV(7)

99 TAU(2) = STATEV(8)

100 TAU(3) = STATEV(9)
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101 TAU(4) = STATEV(10)

102 TAU(5) = STATEV(11)

103 TAU(6) = STATEV(12)

104 C

105 C JACOBIAN AND DISTORTION TENSOR

106 C

107 DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3)

108 1 -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3)

109 IF(NSHR.EQ.3) THEN

110 DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1)

111 1 +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1)

112 2 -DFGRD1(1, 3)*DFGRD1(3, 1)*DFGRD1(2, 2)

113 3 -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1)

114 END IF

115 SCALE=DET**(-ONE/THREE)

116 DO K1=1, 3

117 DO K2=1, 3

118 DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1)

119 END DO

120 END DO

121 C

122 C FIBER IN CURRENT DIRRECTION (FBAR-FC1) & (FBAR-FC2)

123 C

124 FC1(1) = DISTGR(1,1)*FR1(1) + DISTGR(1,2)*FR1(2)

125 1 + DISTGR(1,3)*FR1(3)

126 FC1(2) = DISTGR(2,1)*FR1(1) + DISTGR(2,2)*FR1(2)

127 1 + DISTGR(2,3)*FR1(3)

128 FC1(3) = DISTGR(3,1)*FR1(1) + DISTGR(3,2)*FR1(2)

129 1 + DISTGR(3,3)*FR1(3)

130 FC2(1) = DISTGR(1,1)*FR2(1) + DISTGR(1,2)*FR2(2)

131 1 + DISTGR(1,3)*FR2(3)

132 FC2(2) = DISTGR(2,1)*FR2(1) + DISTGR(2,2)*FR2(2)

133 1 + DISTGR(2,3)*FR2(3)

134 FC2(3) = DISTGR(3,1)*FR2(1) + DISTGR(3,2)*FR2(2)

135 1 + DISTGR(3,3)*FR2(3)

136 C

137 C DEFINING F1CF1 TENSOR

138 C

139 F1CF1(1) = FC1(1)**2
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140 F1CF1(2) = FC1(2)**2

141 F1CF1(3) = FC1(3)**2

142 F1CF1(4) = FC1(1)*FC1(2)

143 F1CF1(5) = FC1(1)*FC1(3)

144 F1CF1(6) = FC1(2)*FC1(3)

145 C

146 C DEFINING F1CF1D TENSOR (DEVIATORIC)

147 C

148 TF1CF1 = F1CF1(1)+F1CF1(2)+F1CF1(3)

149 F1CF1D(1) = F1CF1(1)-TF1CF1/THREE

150 F1CF1D(2) = F1CF1(2)-TF1CF1/THREE

151 F1CF1D(3) = F1CF1(3)-TF1CF1/THREE

152 F1CF1D(4) = F1CF1(4)

153 F1CF1D(5) = F1CF1(5)

154 F1CF1D(6) = F1CF1(6)

155 C

156 C DEFINING F2CF2 TENSOR

157 C

158 F2CF2(1) = FC2(1)**2

159 F2CF2(2) = FC2(2)**2

160 F2CF2(3) = FC2(3)**2

161 F2CF2(4) = FC2(1)*FC2(2)

162 F2CF2(5) = FC2(1)*FC2(3)

163 F2CF2(6) = FC2(2)*FC2(3)

164 C

165 C DEFINING F2CF2D TENSOR (DEVIATORIC)

166 C

167 TF2CF2 = F2CF2(1)+F2CF2(2)+F2CF2(3)

168 F2CF2D(1) = F2CF2(1)-TF2CF2/THREE

169 F2CF2D(2) = F2CF2(2)-TF2CF2/THREE

170 F2CF2D(3) = F2CF2(3)-TF2CF2/THREE

171 F2CF2D(4) = F2CF2(4)

172 F2CF2D(5) = F2CF2(5)

173 F2CF2D(6) = F2CF2(6)

174 C

175 C CALCULATE ISO LEFT CAUCHY-GREEN DEFORMATION TENSOR

176 C

177 BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2

178 BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2
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179 BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2

180 BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2)

181 1 +DISTGR(1, 3)*DISTGR(2, 3)

182 IF(NSHR.EQ.3) THEN

183 BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2)

184 1 +DISTGR(1, 3)*DISTGR(3, 3)

185 BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2)

186 1 +DISTGR(2, 3)*DISTGR(3, 3)

187 END IF

188 C

189 C DEFINING BBARD = DEV(BBAR) (DEVIATORIC)

190 C

191 TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3))

192 BBARD(1)= BBAR(1)-TRBBAR/THREE

193 BBARD(2)= BBAR(2)-TRBBAR/THREE

194 BBARD(3)= BBAR(3)-TRBBAR/THREE

195 BBARD(4)= BBAR(4)

196 BBARD(5)= BBAR(5)

197 BBARD(6)= BBAR(6)

198 C

199 C CALCULATE ISO RIGHT CAUCHY-GREEN DEFORMATION TENSOR

200 C

201 CBAR(1)=DISTGR(1, 1)**2+DISTGR(2, 1)**2+DISTGR(3, 1)**2

202 CBAR(2)=DISTGR(1, 2)**2+DISTGR(2, 2)**2+DISTGR(3, 2)**2

203 CBAR(3)=DISTGR(3, 3)**2+DISTGR(1, 3)**2+DISTGR(2, 3)**2

204 CBAR(4)=DISTGR(1, 1)*DISTGR(1, 2)+DISTGR(2, 1)*DISTGR(2, 2)

205 1 +DISTGR(3, 1)*DISTGR(3, 2)

206 IF(NSHR.EQ.3) THEN

207 CBAR(5)=DISTGR(1, 1)*DISTGR(1, 3)+DISTGR(2, 1)*DISTGR(2, 3)

208 1 +DISTGR(3, 1)*DISTGR(3, 3)

209 CBAR(6)=DISTGR(1, 2)*DISTGR(1, 3)+DISTGR(2, 2)*DISTGR(2, 3)

210 1 +DISTGR(3, 2)*DISTGR(3, 3)

211 END IF

212 C

213 C SBAR (RESIDUAL STRESS FBAR-TAU-FBART)

214 C

215 SBAR(1) = DISTGR(1, 1)*(DISTGR(1, 1)*TAU(1)+DISTGR(1, 2)*TAU(4)

216 1 + DISTGR(1, 3)*TAU(5))

217 2 + DISTGR(1, 2)*(DISTGR(1, 1)*TAU(4)+DISTGR(1, 2)*TAU(2)
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218 3 + DISTGR(1, 3)*TAU(6))

219 4 + DISTGR(1, 3)*(DISTGR(1, 1)*TAU(5)+DISTGR(1, 2)*TAU(6)

220 5 + DISTGR(1, 3)*TAU(3))

221 SBAR(2) = DISTGR(2, 1)*(DISTGR(2, 1)*TAU(1)+DISTGR(2, 2)*TAU(4)

222 1 + DISTGR(2, 3)*TAU(5))

223 2 + DISTGR(2, 2)*(DISTGR(2, 1)*TAU(4)+DISTGR(2, 2)*TAU(2)

224 3 + DISTGR(2, 3)*TAU(6))

225 4 + DISTGR(2, 3)*(DISTGR(2, 1)*TAU(5)+DISTGR(2, 2)*TAU(6)

226 5 + DISTGR(2, 3)*TAU(3))

227 SBAR(3) = DISTGR(3, 1)*(DISTGR(3, 1)*TAU(1)+DISTGR(3, 2)*TAU(4)

228 1 + DISTGR(3, 3)*TAU(5))

229 2 + DISTGR(3, 2)*(DISTGR(3, 1)*TAU(4)+DISTGR(3, 2)*TAU(2)

230 3 + DISTGR(3, 3)*TAU(6))

231 4 + DISTGR(3, 3)*(DISTGR(3, 1)*TAU(5)+DISTGR(3, 2)*TAU(6)

232 5 + DISTGR(3, 3)*TAU(3))

233 SBAR(4) = DISTGR(2, 1)*(DISTGR(1, 1)*TAU(1)+DISTGR(1, 2)*TAU(4)

234 1 + DISTGR(1, 3)*TAU(5))

235 2 + DISTGR(2, 2)*(DISTGR(1, 1)*TAU(4)+DISTGR(1, 2)*TAU(2)

236 3 + DISTGR(1, 3)*TAU(6))

237 4 + DISTGR(2, 3)*(DISTGR(1, 1)*TAU(5)+DISTGR(1, 2)*TAU(6)

238 5 + DISTGR(1, 3)*TAU(3))

239 SBAR(5) = DISTGR(3, 1)*(DISTGR(1, 1)*TAU(1)+DISTGR(1, 2)*TAU(4)

240 1 + DISTGR(1, 3)*TAU(5))

241 2 + DISTGR(3, 2)*(DISTGR(1, 1)*TAU(4)+DISTGR(1, 2)*TAU(2)

242 3 + DISTGR(1, 3)*TAU(6))

243 4 + DISTGR(3, 3)*(DISTGR(1, 1)*TAU(5)+DISTGR(1, 2)*TAU(6)

244 5 + DISTGR(1, 3)*TAU(3))

245 SBAR(6) = DISTGR(3, 1)*(DISTGR(2, 1)*TAU(1)+DISTGR(2, 2)*TAU(4)

246 1 + DISTGR(2, 3)*TAU(5))

247 2 + DISTGR(3, 2)*(DISTGR(2, 1)*TAU(4)+DISTGR(2, 2)*TAU(2)

248 3 + DISTGR(2, 3)*TAU(6))

249 4 + DISTGR(3, 3)*(DISTGR(2, 1)*TAU(5)+DISTGR(2, 2)*TAU(6)

250 5 + DISTGR(2, 3)*TAU(3))

251 C

252 C SBARD (DEVIATORIC OF SBAR)

253 C

254 TSBAR = SBAR(1)+SBAR(2)+SBAR(3)

255 SBARD(1) = SBAR(1)-TSBAR/THREE

256 SBARD(2) = SBAR(2)-TSBAR/THREE
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257 SBARD(3) = SBAR(3)-TSBAR/THREE

258 SBARD(4) = SBAR(4)

259 SBARD(5) = SBAR(5)

260 SBARD(6) = SBAR(6)

261 C

262 C INVARIANT I4

263 C

264 CI4 = FR1(1)*(CBAR(1)*FR1(1)+CBAR(4)*FR1(2)+CBAR(5)*FR1(3))

265 1 +FR1(2)*(CBAR(4)*FR1(1)+CBAR(2)*FR1(2)+CBAR(6)*FR1(3))

266 2 +FR1(3)*(CBAR(5)*FR1(1)+CBAR(6)*FR1(2)+CBAR(3)*FR1(3))

267

268 C FIBER CANNOT GO IN COMPRESSION

269 IF(CI4 .LT. ONE) CI4=ONE

270 C

271 C INVARIANT I6

272 C

273 CI6 = FR2(1)*(CBAR(1)*FR2(1)+CBAR(4)*FR2(2)+CBAR(5)*FR2(3))

274 1 +FR2(2)*(CBAR(4)*FR2(1)+CBAR(2)*FR2(2)+CBAR(6)*FR2(3))

275 2 +FR2(3)*(CBAR(5)*FR2(1)+CBAR(6)*FR2(2)+CBAR(3)*FR2(3))

276 C

277 C FIBER CANNOT GO IN COMPRESSION

278 IF(CI6 .LT. ONE) CI6=ONE

279 C

280 C INVARIANT I8

281 C

282 CI8 = CBAR(1)*TAU(1)+CBAR(2)*TAU(2)+CBAR(3)*TAU(3)

283 1 +TWO*(CBAR(4)*TAU(4)+CBAR(5)*TAU(5)+CBAR(6)*TAU(6))

284 C

285 C CALCULATE THE STRESS

286 C

287 C W1J = PARTIAL DERIVATIVES OF W RESPECT TO I1, OVER J

288 C W11J = PARTIAL DERIVATIVES OF W1 RESPECT TO I1, OVER J

289

290 C USE ONLY ONE BASE MATRIX MODEL (EXPONENTIAL/NEOHOOKEAN)

291 C TURN OF OTHER BY COMMENTING OUT

292

293 C EXPONENTIAL BASE MATRIX MODEL

294 W1J=EMU*EXP(ALPHA*(TRBBAR-THREE))/(TWO*DET)

295 W11J=EMU*ALPHA*EXP(ALPHA*(TRBBAR-THREE))/(TWO*DET)
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296 C

297 C NEOHOOKEAN BASE MATRIX MODEL

298 C W1J = EMU/(TWO*DET)

299 C W11J = ZERO

300

301 W4J=EMU1*(CI4-ONE)*EXP(ALPHA1*(CI4-ONE)**2)/DET

302 W44J=(TWO*EMU1*ALPHA1*(CI4-ONE)**2*EXP(ALPHA1*(CI4-ONE)**2)

303 1 +EMU1*EXP(ALPHA1*(CI4-ONE)**2))/DET

304 W6J=EMU2*(CI6-ONE)*EXP(ALPHA2*(CI6-ONE)**2)/DET

305 W66J=(TWO*EMU2*ALPHA2*(CI6-ONE)**2*EXP(ALPHA2*(CI6-ONE)**2)

306 1 +EMU2*EXP(ALPHA2*(CI6-ONE)**2))/DET

307 W8J = ONE/(TWO*DET)

308 EK=TWO/D1*(TWO*DET-ONE)

309 PR=TWO*(DET-ONE)/D1

310 C EK = TWO*DET/D1

311 C PR = (DET-ONE/DET)/D1

312 DO K1=1,NDI

313 STRESS(K1)=TWO*(W1J*BBARD(K1)+W4J*F1CF1D(K1)

314 1 +W6J*F2CF2D(K1)+W8J*SBARD(K1))+PR

315 END DO

316 DO K1=NDI+1,NDI+NSHR

317 STRESS(K1)=TWO*(W1J*BBARD(K1)+W4J*F1CF1D(K1)

318 1 +W6J*F2CF2D(K1)+W8J*SBARD(K1))

319 END DO

320 C

321 C DEFINING A UNIT TENSOR DEL

322 C

323 DEL(1) = ONE

324 DEL(2) = ONE

325 DEL(3) = ONE

326 DEL(4) = ZERO

327 DEL(5) = ZERO

328 DEL(6) = ZERO

329 C

330 C CALCULATION OF FORTH ORDER H TENSOR

331 C

332

333 DO K1 = 1,3

334 DO K2 = 1,3
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335 DO K3 = 1,3

336 DO K4 = 1,3

337 IF (K1 .EQ. K2) THEN

338 K5 = K1

339 ELSE

340 K5 = K1+K2+1

341 END IF

342 IF (K3 .EQ. K4) THEN

343 K6 = K3

344 ELSE

345 K6 = K3+K4+1

346 END IF

347 IF (K1 .EQ. K3) THEN

348 K7 = K1

349 ELSE

350 K7 = K1+K3+1

351 END IF

352 IF (K2 .EQ. K4) THEN

353 K8 = K2

354 ELSE

355 K8 = K2+K4+1

356 END IF

357 IF (K1 .EQ. K4) THEN

358 K9 = K1

359 ELSE

360 K9 = K1+K4+1

361 END IF

362 IF (K2 .EQ. K3) THEN

363 K10 = K2

364 ELSE

365 K10 = K2+K3+1

366 END IF

367

368 H(K5,K6) = (DEL(K7)*BBAR(K8)+DEL(K8)*BBAR(K7)

369 1 +DEL(K9)*BBAR(K10)+DEL(K10)*BBAR(K9))/TWO

370 END DO

371 END DO

372 END DO

373 END DO
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374 C

375 C CALCULATION OF FORTH ORDER A1 TENSOR FIBER SET ONE

376 C

377 DO K1 = 1,3

378 DO K2 = 1,3

379 DO K3 = 1,3

380 DO K4 = 1,3

381 IF (K1 .EQ. K2) THEN

382 K5 = K1

383 ELSE

384 K5 = K1+K2+1

385 END IF

386 IF (K3 .EQ. K4) THEN

387 K6 = K3

388 ELSE

389 K6 = K3+K4+1

390 END IF

391 IF (K1 .EQ. K3) THEN

392 K7 = K1

393 ELSE

394 K7 = K1+K3+1

395 END IF

396 IF (K2 .EQ. K4) THEN

397 K8 = K2

398 ELSE

399 K8 = K2+K4+1

400 END IF

401 IF (K1 .EQ. K4) THEN

402 K9 = K1

403 ELSE

404 K9 = K1+K4+1

405 END IF

406 IF (K2 .EQ. K3) THEN

407 K10 = K2

408 ELSE

409 K10 = K2+K3+1

410 END IF

411

412 A1(K5,K6) = (DEL(K7)*F1CF1(K8)+DEL(K8)*F1CF1(K7)
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413 1 +DEL(K9)*F1CF1(K10)+DEL(K10)*F1CF1(K9))/TWO

414 END DO

415 END DO

416 END DO

417 END DO

418 C

419 C CALCULATION OF FORTH ORDER A2 TENSOR FIBER SET TWO

420 C

421 DO K1 = 1,3

422 DO K2 = 1,3

423 DO K3 = 1,3

424 DO K4 = 1,3

425 IF (K1 .EQ. K2) THEN

426 K5 = K1

427 ELSE

428 K5 = K1+K2+1

429 END IF

430 IF (K3 .EQ. K4) THEN

431 K6 = K3

432 ELSE

433 K6 = K3+K4+1

434 END IF

435 IF (K1 .EQ. K3) THEN

436 K7 = K1

437 ELSE

438 K7 = K1+K3+1

439 END IF

440 IF (K2 .EQ. K4) THEN

441 K8 = K2

442 ELSE

443 K8 = K2+K4+1

444 END IF

445 IF (K1 .EQ. K4) THEN

446 K9 = K1

447 ELSE

448 K9 = K1+K4+1

449 END IF

450 IF (K2 .EQ. K3) THEN

451 K10 = K2
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452 ELSE

453 K10 = K2+K3+1

454 END IF

455

456 A2(K5,K6) = (DEL(K7)*F2CF2(K8)+DEL(K8)*F2CF2(K7)

457 1 +DEL(K9)*F2CF2(K10)+DEL(K10)*F2CF2(K9))/TWO

458 END DO

459 END DO

460 END DO

461 END DO

462

463 C

464 C CALCULATION OF FORTH ORDER A3 TENSOR FOR RESIDUAL

465 C

466 DO K1 = 1,3

467 DO K2 = 1,3

468 DO K3 = 1,3

469 DO K4 = 1,3

470 IF (K1 .EQ. K2) THEN

471 K5 = K1

472 ELSE

473 K5 = K1+K2+1

474 END IF

475 IF (K3 .EQ. K4) THEN

476 K6 = K3

477 ELSE

478 K6 = K3+K4+1

479 END IF

480 IF (K1 .EQ. K3) THEN

481 K7 = K1

482 ELSE

483 K7 = K1+K3+1

484 END IF

485 IF (K2 .EQ. K4) THEN

486 K8 = K2

487 ELSE

488 K8 = K2+K4+1

489 END IF

490 IF (K1 .EQ. K4) THEN
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491 K9 = K1

492 ELSE

493 K9 = K1+K4+1

494 END IF

495 IF (K2 .EQ. K3) THEN

496 K10 = K2

497 ELSE

498 K10 = K2+K3+1

499 END IF

500

501 A3(K5,K6) = (DEL(K7)*SBAR(K8)+DEL(K8)*SBAR(K7)

502 1 +DEL(K9)*SBAR(K10)+DEL(K10)*SBAR(K9))/TWO

503 END DO

504 END DO

505 END DO

506 END DO

507 C

508 C CALCULATE THE STIFFNESS

509 C

510 C

511 C CALCULATION OF FORTH ORDER DDSDDE TENSOR

512 C

513

514 DO K1 = 1,3

515 DO K2 = 1,3

516 DO K3 = 1,3

517 DO K4 = 1,3

518 IF (K1 .EQ. K2) THEN

519 K5 = K1

520 ELSE

521 K5 = K1+K2+1

522 END IF

523 IF (K3 .EQ. K4) THEN

524 K6 = K3

525 ELSE

526 K6 = K3+K4+1

527 END IF

528 DDSDDE(K5,K6) = FOUR*W11J*BBARD(K5)*BBARD(K6)+

529 1 FOUR*W44J*F1CF1D(K5)*F1CF1D(K6)+
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530 2 FOUR*W66J*F2CF2D(K5)*F2CF2D(K6)+

531 3 TWO*W1J*(H(K5,K6)-TWO*(DEL(K5)*BBAR(K6)+

532 4 BBAR(K5)*DEL(K6))/THREE+

533 5 TWO*TRBBAR*DEL(K5)*DEL(K6)/CNINE)+

534 6 TWO*W4J*(A1(K5,K6)-TWO*(DEL(K5)*F1CF1(K6)+

535 7 F1CF1(K5)*DEL(K6))/THREE+

536 8 TWO*CI4*DEL(K5)*DEL(K6)/CNINE)+

537 9 TWO*W6J*(A2(K5,K6)-TWO*(DEL(K5)*F2CF2(K6)+

538 1 F2CF2(K5)*DEL(K6))/THREE+

539 2 TWO*CI6*DEL(K5)*DEL(K6)/CNINE)+

540 3 TWO*W8J*(A3(K5,K6)-TWO*(DEL(K5)*SBAR(K6)+

541 4 SBAR(K5)*DEL(K6))/THREE+

542 5 TWO*CI8*DEL(K5)*DEL(K6)/CNINE)

543

544 IF (K5 .LT. 4 .AND. K6 .LT. 4) THEN

545 DDSDDE(K5,K6) = DDSDDE(K5,K6)+EK

546 END IF

547 END DO

548 END DO

549 END DO

550 END DO

551

552 RETURN

553 END
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