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Abstract 
 

 Dynamic response surface model (DRSM) methodology is a generalization on response 

surface models (RSM) that greatly facilitates the ability to determine reaction stoichiometries 

and rate information for a black box system.  Activities reported in this thesis implement new 

strategies to tackle two of the weaknesses within the existing methodology: oscillatory end 

behavior and subjective determination of significant singular values.  Regularization techniques 

were explored as remedies for the first weakness, while both empirical and statistical methods 

were explored to resolve the latter weakness.  L2 regularization, also known as ridge regression, 

was shown to reduce the oscillation-based error by over 50% for a targeted problem species in a 

pharmaceutical reaction system provided by Pfizer Inc.  Reduction in oscillatory behavior 

stabilizes model extrapolation and downstream rate calculations.  An f-test strategy that 

compared variances of singular values was determined best for objective determination of 

significant singular values, which is necessary to establish the number of expected independent 

reactions occurring in the black box system.  A new iteration of the methodology is presented 

incorporating these improvements to overcome the two targeted weaknesses.  
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Introduction 
 Dynamic Response Surface Models have shown impressive promise in offering a new 

and efficient data-driven methodology by which an unknown time-evolving system can be 

modelled throughout time.  The most impressive capability of this rising methodology is the 

subsequent ability to test and predict potential reaction stoichiometries to identify the 

independent reactions occurring in a black box.  Additionally, once the reaction stoichiometries 

of the system are identified, it is possible to not only graph reaction rates vs time, but also 

estimate the rate constant of the reaction (Klebanov & Georgakis, 2015).  These higher 

capabilities facilitated by DRSM methodology are not possible with other similar modelling 

techniques, such as response surface methodology. 

 First introduced by Klebanov and Georgakis, the methodology was applied to a simple 

batch process with two species, a semi-batch with five species, and a penicillin fermentation 

process (Klebanov & Georgakis, 2015).  The viability of the methodology was then tested 

through a collaboration between Georgakis and Pfizer Inc. using simulated data from a 

reasonably complex pharmaceutical kinetic system consisting of ten species (Georgakis, 2016).  

In a continuation of that collaboration, Santos-Marques worked with Pfizer Inc. to examine the 

robustness and weaknesses of the methodology (Santos-Marques, 2016).  Activities reported in 

this thesis detail possible improvements to the methodology that aim to tackle three of the major 

weaknesses identified in the methodology: oscillatory end behavior of the model, objective 

determination of significant singular values, and false positives on untrue reaction 

stoichiometries.  
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DRSM 
 The dynamic response surface model, DRSM, is a generalization of response surface 

models, RSMs, that vastly improves data analysis capabilities.  DRSM methodology uses time-

dependent concentration data to model a time-dependent output, unlike RSM which takes input 

from a specific time, typically the end of batch time, and models output at that same end of batch 

time.  The quadratic response surface model general equation is as follows (Montgomery, 2013): 

𝑦 = 𝛽଴ ෍ 𝛽௜𝑥௜ +

௡

௜ୀଵ

෍ ෍ 𝛽௜௝𝑥௜𝑥௝

௡

௝ୀ௜ାଵ

+

௡

௜ୀଵ

෍ 𝛽௜௜𝑥௜
ଶ

௡

௜ୀଵ

 

Equation 1 

 The general RSM equation defines a surface in (n+1) dimensional space with 

dimensionality corresponding to the factors, xi, in the experimental design.  The coefficients, βij, 

estimated by linear regression are the respective weights for each factor and factor pairing, 

indicating the importance of a factor on the output, y.  If any given βi,j is zero, then the output 

does not depend on the corresponding factor pairing, creating a simpler than anticipated model. 

 Response surface methodology is an effective data driven modelling tool that allows one 

to predict species concentrations at end of batch for varying conditions after conducting well 

designed experiments.  With these same well designed experiments, once can create a dynamic 

response surface model by measuring concentration data throughout the batch time.  Creation of 

a DRSM requires the same time and experimentation as an RSM but boasts the capabilities to 

predict through time, while greatly facilitating the ability to predict stoichiometries and calculate 

rate constants.  The general model for a quadratic dynamic response surface model is as follows 

(Klebanov & Georgakis, 2015): 
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𝑦(𝜏) = 𝛽଴(𝜏) ෍ 𝛽௜(𝜏)𝑥௜ +
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Equation 2 

 The modelled concentration, y, and the coefficients, βi,j, now depend on dimensionless 

time, τ.   

τ =  
t

t୤
 

Equation 3 

The β coefficients are parametrized in time via the application of shifted Legendre polynomials, 

a polynomial expansion chosen for their orthogonality in the (0,1) interval of dimensionless time, 

τ.  The first three shifted Legendre polynomials, SLPs, are as follows, accompanied by the 

recurrence relation by which higher ordered SLPs can be determined: 

𝑃଴(𝜏) = 1 
𝑃ଵ(𝜏) = −1 + 2𝜏 

𝑃ଶ(𝜏) = 1 − 6𝜏 + 6𝜏ଶ 

 

 𝑃௜(𝜏) =
(2𝑖 − 1)(2𝜏 − 1)𝑃௜ିଵ − (𝑖 − 1) ∗ 𝑃௜ିଶ

𝑖
 

 Equation 4 

 The regression for a DRSM estimates the coefficients, γij, of the SLPs used to 

parametrize the betas.  When compared to an RSM, regression on a DRSM will need to estimate 

R times as many coefficients, where R is the number of SLP used to parametrize the betas. 

𝛽଴(𝜏) = ෍ 𝛾଴,௥𝑃௥(𝜏)

ோିଵ

௥ୀ଴

                             𝛽௜(𝜏) = ෍ 𝛾௜,௥𝑃௥(𝜏)

ோିଵ

௥ୀ଴
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𝛽௜௝(𝜏) = ෍ 𝛾௜,௝,௥𝑃௥(𝜏)
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                      𝛽 ௜௜(𝜏) = ෍ 𝛾௜,௜,௥𝑃௥(𝜏)
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Equation 5 

 Determination of R is vital to create an effective model.  In the first methodology posited 

by Klebanov and Georgakis, a lack of fit (LoF) p-value was used to determine the significance of 

the model (Klebanov & Georgakis, 2015).  If a model was determined to have significant lack of 

fit for a given R, then the number of polynomials would be increased.  Significant lack of fit was 

defined as an f-test on lack of fit mean square over pure error mean square yielding a p-value 

below 0.05; this threshold represents a 95% confidence that the inaccuracies of the model are due 

to pure error, which cannot be modelled (Montgomery, 2013).  More recently cross-validation 

has been successfully used by Santos-Marques to determine the best R for a given model across 

varying levels of error (Santos-Marques, 2016). 

   The true benefits of using DRSM methodology are downstream, after formation of the 

models themselves.  Determining the reaction stoichiometries and calculating the respective 

reaction rate constants first requires an accurate evaluation of the number of singular values that 

are significant in describing the system.  An (N) x (nS) matrix, RS, is formed containing the rate 

of appearance/disappearance of each species.  RS is calculated via the obtained DRSMs created 

for each species, using derivatives of the SLPs with respect to τ.  Each column of RS represents a 

different species (nS being the number of observed species), while the rows indicate the 

experimental conditions (with N total combinations). 

 Singular value decomposition if performed on the matrix RS. 

𝑅𝑆 = 𝑈𝛴𝑉் 

Equation 6 
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The diagonal matrix, Σ, contains entries representing the singular values of the matrix RS.  A 

number of these values are determined to be significant (methods for doing so are discussed in 

Significant Singular Values).  Significant singular values correspond to singular vectors in V that 

describe the data.  Insignificant singular values indicate that the corresponding vectors in V 

represent error and do not contribute meaningful information to RS.  If k singular values are 

deemed significant, then the first k rows of VT, renamed VT
k, are kept and used to form a 

projection matrix, Pk. 

𝑃௞ =  𝑉௞𝑉௞
் 

Equation 7 

This projection matrix is used to project potential stoichiometries onto the subspace spanned by 

the significant singular vectors, VT
k. 

 With reaction stoichiometries identified, it is then possible to evaluate the respective 

reaction rates using the rates of appearance/disappearance of each species and the corresponding 

stoichiometric coefficients, assuming elementary kinetics. 
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Prior Work 
 Pfizer Inc. provided a set of simulated data by which the DRSM methodology would be 

tested.  The data represented a true, reasonably complex pharmaceutical system of ten species 

and eight independent reactions. 

RXN # Species Stoichiometric Coefficients 

1 -1 -1 1 1 0 0 0 0 0 0 

2 1 1 -1 -1 0 0 0 0 0 0 

3 0 0 -1 1 1 0 0 0 0 0 

4 0 0 0 0 -1 1 0 0 0 0 

5 0 -1 0 -1 0 0 1 0 0 0 

6 0 1 0 1 0 0 -1 0 0 0 

7 0 0 0 1 0 0 -1 1 0 0 

8 -1 0 0 0 0 -1 0 0 1 0 

9 -2 0 0 0 0 0 0 0 0 1 

10 0 -1 0 0 2 0 0 0 1 -1 
Table 1: Species Stoichiometric Coefficients for Pfizer System 

The above table shows the stoichiometric coefficients of the ten species in each of ten reactions.  

However, this reaction system is comprised of only eight linearly independent reactions because 

two of the reactions are reversible.  This can also be shown via the rank of the stoichiometry 

matrix. 

 The data provided by Pfizer Inc. followed a face centered central composite design with 

three factors: temperature, initial concentration of species four, and initial concentration of 

species two.  The face centered central composite design requires 17 experiments and has a cubic 
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design space in three dimensions where each dimension measures a factor in the design.  The 

design requires experiments at the eight vertices of the cube, the center of the six faces, and three 

experiments at the center point. 

 

Figure 1: Face Centered Central Composite Design 
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1746010 
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Blind DRSM Test 
 In a collaboration with Pfizer Inc, Georgakis was tasked with proving the capabilities of 

the DRSM methodology with respect to the reasonably complex simulated pharmaceutical 

system.  A MatLab script was created that first established the recipe for DRSM creation and 

application.  This script operated only for the provided Pfizer dataset, and utilized stepwise 

regression and a lack of fit p-value test for model validation (Georgakis, 2016). 

Figure 2: DRSM Methodology Flowchart, First Iteration, Georgakis, 2016 
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Cross-Validation Approach 
 After Georgakis’ collaboration with Pfizer Inc., Santos-Marques, in a summer internship, 

was tasked with exploring the robustness of the methodology in greater detail.  Tackling the 

same ten species, eight independent reaction system, the DRSM’s versatility was tested with 

varying levels of error and different experimental designs.  Because of this testing, a new 

MatLab script was created that replaced the LoF based polynomial determination with a leave 

one out (LOO) cross-validation method (Santos-Marques, 2016).  

Figure 3: DRSM Methodology Flowchart, Second Iteration, Santos-Marques, 2016 
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Weaknesses 
 Through extensive testing of the DRSM methodology, several problems were identified 

as foci for future research into DRSM improvements (Santos-Marques, 2016).  Two of these 

identified weaknesses are the focus of this research, the oscillations and determining significant 

singular values.  All major identified weaknesses are discussed briefly to provide contextual 

direction for the evolution of the DRSM methodology. 

Oscillations 
 A recognizable trend in the DRSM predictions was oscillatory behavior in the prediction 

of some species concentrations, particularly species 3 and species 5.  This trend occurred in areas 

of exponential decay, when the species concentration is approaching zero.  Below is a 

prototypical example for species 3. 

Figure 4: DRSM Prediction of Species 3 (in red) vs Trained Data (in blue) 
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The trained data, in blue, shows the simulated concentration with introduced error that 

was used to help create the species 3 DRSM.  This wavy end behavior is not expected in a 

reaction system; one expects an exponential decay based on reaction engineering knowledge.  

This behavior also leads to severely inaccurate model extrapolation.  This end behavior could be 

a result of overfitting, in which the DRSM is modelling error.  The behavior was not resolved by 

decreasing the number of polynomials in the model.  The above prediction was created via a 

nine-polynomial model, which was determined to be the best number of polynomials via cross-

validation (Santos-Marques, 2016) and lack of fit (Georgakis, 2016). 

 Following are example modelled concentrations for species 2, 5, and 7.  Species 5 shows 

oscillatory behavior and follows a similar trend to species 3, while the other species do not 

exhibit oscillations.  Both species 3 and species 5 are intermediates as seen by Table 1. 

.  

Figure 5: DRSM Prediction of Species 2 (in red) vs Trained Data (in blue) 
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Figure 6: DRSM Prediction of Species 5 (in red) vs Trained Data (in blue) 

 

 

Figure 7: DRSM Prediction of Species 7 (in red) vs Trained Data (in blue) 

 

 Improving on this tendency to overfit when modelling such intermediates was determined 

to require methodological improvements on how the DRSM is created.  Improving the modelling 

accuracy of the DRSM for such intermediate species is the focus of the research reported here. 
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Significant Singular Values 
    As previously alluded to, the determined number of significant singular values is vital 

in calculating the projection matrix, Pk.  No objective method was incorporated within the 

methodology to determine the number of significant singular values.  Previously, this 

determination was either done subjectively, or projections would be performed using every Pk 

with 1 ≤ k ≤ (nS-1).  The singular values calculated using the first iteration of the DRSM 

methodology as applied to the Pfizer dataset were as follows (Georgakis, 2016): 

19.4 10.7 5.5 3.8 0.99 0.53 0.00 0.00 0.00 0.00 

Table 2: Singular Values Determined for Pfizer Dataset by Georgakis 

The second iteration of the DRSM methodology created by Santos-Marques (2016) calculated 

singular values with a less obvious boundary between significant and insignificant: 

135 47.6 17.3 13.5 7.7 4.8 4.4 2.5 0.9 0.5 

Table 3: Singular Values Determined for Pfizer Dataset by Santos-Marques 

This finding created the need to establish an objective function capable of determining the 

significant singular values. 

Identifying Stoichiometries 
 A similar problem existed for the determination of “good” stoichiometric projections.  At 

the time, projection score was calculated for each candidate reaction via the following formula: 

𝑛௥ =  𝑃௞𝑛௖                                        Equation 8 

𝑆(𝑛௖) = 100 ቀ1 −
‖௡ೝି௡೎‖

‖௡೎‖
ቁ              Equation 9 

where nc is the candidate stoichiometry vector.  This method evaluates the deviation between nc 

and nr caused by the projection matrix (Georgakis, 2016).  An accurate candidate reaction is 
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expected to be unaltered by the projection, resulting in a perfect score of 100.  Because of 

introduced error and imperfect models, one cannot expect to obtain perfect scores for the 

accurate reaction stoichiometries.  Therefore, there needs to exist a method by which one can 

objectively determine the validity of a stoichiometry based on its score.  At the time of the 

report, only subjective methods existed. 

False Positives 

 Further complicating the process by which stoichiometries were determined was the 

frequency of false positives encountered when scoring projected reactions that were not valid for 

the Pfizer system.  This problem was identified by conducting an exhaustive test on every 

reaction stoichiometry with species coefficients spanning the integers: -2, -1, 0, 1, 2.  It was 

found that an abundance of reaction stoichiometries, which were shown to be linearly 

independent from the true reaction system, scored very well.  In some cases, the false reaction 

stoichiometries were even outperforming the true reaction stoichiometries (Santos-Marques, 

2016).  This result shows the need for a more refined and objective method by which candidate 

reactions are evaluated. 

Data Restrictions 
 In the collaboration with Pfizer Inc., Santos-Marques improved upon the Matlab script 

first written by Georgakis that implemented the DRSM methodology.  The initial script operated 

functionally only for the specific dataset and design provided by Pfizer.  Santos-Marques created 

a script that generalizes the DRSM methodology so that it can be implemented across varying 

experimental designs and kinetic systems.  Through this work to generalize the methodology for 

ease of implementation, three data problems were identified that would prevent the DRSM 

methodology from successfully operating.  The following three weaknesses exploit the rigidity 
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of the performed regression; future attempts to resolve these problems will focus on the 

representation of the matrices used in the regression (Santos-Marques, 2016).  

Experiments with Unequal Length 

 The first experimental design problem that could not be handled by the methodology was 

experiments with different lengths in time.  In this situation, the data will be curtailed to the 

shortest duration experiment, throwing away any data collected in other experiments past that 

minimum duration.  This creates a DRSM functional on the smallest time domain possible. 

Experiments Collecting Data at Different Times 

 The second experimental design problem, which is directly related to the first, is the 

inability to handle data that is collected at different times for different experiments.  In other 

words, the set of times at which data is collected must be identical for every experiment. 

𝝉௘௫௣ଵ = {𝜏ଵ, 𝜏ଶ, … 𝜏௡}                   Equation 10 
𝝉௘௫௣ଵ = 𝝉௘௫௣ଶ = ⋯ = 𝝉௘௫௣௠       Equation 11 

Missing Data 

 The third and final experimental design problem is inability to operate when specific 

observations are missing from the data set.  Functionally, this problem is identical to the previous 

two.  The τexp will not be equivalent for every experiment if any of these three criteria exist in the 

dataset.  In practice, these three problems pose separate restrictions on data collection.  The first 

two restrict the freedom of the researcher to implement varying data collection strategies.  The 

third imposes that missing a required observation will result in an error.  These restrictions create 

the need for a rigid data collection strategy that does not allow room for mistakes.  Overcoming 

these restrictions will require significant attention to be given to the regression, but would vastly 

improve the versatility of the methodology.  The data restrictions are not the focus of the 

improvements made in this research.   
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Oscillatory Behavior 
 The simulated kinetic system features eight independent reactions; correctly identifying 

all reaction stoichiometries requires existence of eight significant singular values.  Additionally, 

accuracy of the singular values is vital to stoichiometry prediction and estimation of rate 

constants, the primary advantages of the DRSM methodology.  Improvements made on the 

singular values themselves would lead to improvements on the number of significant singular 

values, and therefore improve the downstream calculations estimating stoichiometries and rate 

constants.  The identified weakness surrounding these downstream calculations, the false 

positives in reaction stoichiometries, were believed to be caused by error in the (nE * nT) x (nS) 

species rate of appearance/disappearance matrix, RS. 

The matrix RS is calculated using an altered dynamic response model, based on the 

estimated gammas and the derivatives of the Shifted Legendre Polynomials (dSLP).  This DRSM 

now models the change in concentration of a species over time. 

𝑃ଵ(𝜏) = 2𝜏 − 1                         𝑃ଶ(𝜏) = 6𝜏ଶ − 6𝜏 + 1     Equation 12 

೏ುభ(ഓ)

೏ഓ
 = 2                                ೏ುమ(ഓ)

೏ഓ
 = 12𝜏 − 6               Equation 13 

 Thus, the RS matrix is extremely sensitive to the oscillatory end behavior of the DRSMs 

because this behavior translates to alternating positive and negative values in RS, reducing the 

reliability of singular value decomposition of RS.  The species concentration being modelled is 

alternating between increasing and decreasing, particularly at experimental times when the 

species concentration is approaching zero.  This is most evident when observing the DRSM for 

species 3.   

 This trend is caused by the DRSM overfitting simulated error when species concentration 

is near or approaching zero.  Simulated data in these areas tends to, itself, oscillate due to no 
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longer having an even error distribution.  The normal error distribution applied to the simulated 

data cannot create a negative concentration; negative concentration values are set to zero.  

Therefore, when concentrations are low enough that the error distribution would overlap into 

negative values, it is no longer functionally a normal distribution.  The data will be skewed away 

from zero.  A simple but easily understood example of this trend would be in filling a glass with 

water.  A sufficiently large glass would have a normal error distribution around the target fill 

line.  Imagine now that one is to fill the glass to only a depth of 1mm; one is much more likely to 

overfill than to underfill, so the error distribution is not centered at the fill line.  The DRSM is 

modelling error when it comes to end behavior, most evident in species 3, and is therefore 

overfitting. 

 The overfitting in this case should not be confused with overfitting due to using too many 

SLP.  The number of polynomials to use was determined via leave-one-out cross validation, 

which prevents overfitting by the polynomials.  Instead, this overfitting was believed to be 

caused by the gammas in the model, the coefficients of the SLP.  Stepwise regression needed to 

be improved upon to restrain the effect of the gammas on the end behavior. 

Regularization 
 A mathematical approach especially used in machine learning algorithms that combats 

overfitting is regularization, which functions by adding a penalty or weight onto the least squares 

error minimization.  This allows one to control the complexity of the model by choosing the 

regularization coefficient, λ > 0.  The minimization of a regularized error function will yield 

smaller coefficients than linear regression; the exact effect of the regularization depends on the 

chosen λ and the chosen norm for regularization.  The limit of regularized regression as λ goes to 
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zero is linear regression.  The general form of the regularized error function is shown below 

(Bishop, 2006). 

𝑚𝑖𝑛
ఊ

൬
1

𝑁
‖𝑦 − 𝑋𝛾‖ଶ

ଶ + 𝜆‖𝛾‖௣
௣

൰ 

Equation 14 

 Two norms were evaluated in the application of regularization to the Pfizer data: the L1 

norm and the L2 norm.   

 

Figure 8: Unit Circles of L1 and L2 Norms  
http://simonstechblog.blogspot.com/2013/04/transforming-points-in-unit-square-with.html 

 The L2 norm is the Euclidean norm and has the unit circle most are accustomed to from 

trigonometry.  Using the L2 norm for regularization is called ridge regression or Tikhonov 

regularization.  The L1 norm’s unit circle is a square with corners located on the axes.  Utilizing 

the L1 norm for regularization is called lasso (least absolute shrinkage and selection operator) 

(Bishop).  
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LASSO 
 Least absolute shrinkage and selection operator is the L1 regularizer solving: 

𝑚𝑖𝑛
ఊ

൬
1

𝑁
‖𝑦 − 𝑋𝛾‖ଶ

ଶ + 𝜆‖𝛾‖ଵ ൰ 

Equation 15 

The L1 regularizer tends to shrink regularized coefficients, γij, to zero.  The tendency of lasso to 

shrink some γij to zero can be understood by looking again at the L1 unit circle.  The 

regularization term has contours tracing a cross-polytope.  This shape is best visualized in lower 

dimensions, but can be generalized as the convex object with vertices on each axis.  Each 

dimension can be thought of as a γij, with γ* being a point in the space with coordinates 

describing the minimized gammas.  Performing minimization with a constraint region of this 

shape will lead to γ* often being located at a vertex of the constraint region.  With γ* on some 

axes, the model will be sparse and have set some γij to zero. 

 The tendency of LASSO to set some gammas to zero when applying L1 regularization is 

desirable.  This creates a simpler model that more clearly identifies which factors play important 

roles in the model.  Functionally, LASSO is the form of regularization most like stepwise 

regression because both will eliminate unneeded gammas from the model, but differ in the 

selection process.  These two regression techniques use different target functions to determine 

which gammas are significant in the model. 

   Selection of the regularization coefficient is vital to creating an accurate model via 

LASSO, but is a delicate process.  As stated, a λ of zero will lead to a linear regression based 

model.  As λ is increased, fewer gammas will survive the regularization.  If too many coefficients 
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are eliminated from the model, the prediction will be poor.  Cross-validation error is a useful 

meter by which one can decide on an effective λ. 

Results 

 New models were created to test the effectiveness of LASSO as a means of reducing 

oscillatory end behavior in the DRSM.  As previously mentioned, oscillatory behavior was found 

primarily in the predictions for species 3 and species 5; species 3 will be looked at exclusively, 

being the largest source of oscillatory behavior and therefore the largest window for 

improvement in the methodology. 

 Introducing regularization into the methodology also introduced a second knob by which 

the model was controlled, the λ.  To isolate the impact of λ on the model performance, the 

number of polynomials used will be kept constant and equal to the best number of polynomials 

as determined by both lack of fit (Georgakis, 2016) and cross-validation (Santos-Marques, 

2016), which for species 3 is nine polynomials.  Future work on this methodology should seek to 

vary both R and λ to explore a wider range of possible models, but the focus here is to 

demonstrate the efficacy and value of regularization as applied to the DRSM methodology. 

 To determine the best λ, a plot was created comparing the cross-validated deviance, theta, 

and the respective λ, shown below.  Deviance shows the absolute error between the created 

model and the data used to create the model.  This is done via cross-validation, a statistical 

technique by which some of the data is reserved for a testing set, while the rest, the training set, 

is used to create the model. 

It is important to note that λ is increasing in value from right to left, and generally, as λ 

increases, the deviance increases.  The cross-validated deviance is a normalized statistic that 

quantifies the error in the model’s prediction.  This deviance reaches a maximum when λ reaches 
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its highest value because as λ increases, fewer gammas are kept in the model.  Elimination of too 

many gammas (which are responsible for curvature in the model) will lead to a linear prediction, 

which has poor performance.  The opposite extreme on Figure 9, as λ shrinks toward zero, shows 

the limit of the deviance as linear regression is approached.  The green line marks the λ for which 

a minimum deviance occurs, while the blue line indicates the largest λ value whose deviance 

falls within the bounds of error for the green demarcated value. 

Figure 9:Cross-Validation Deviance vs Lambda for Species 3 DRSM 

 

 An interesting conclusion drawn from Figure 10 is that LASSO will not yield a 

significant reduction in model deviance.  The magnitude of the deviance for the linear regression 
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model, which is the limit of this graph as λ goes to zero, is not significantly larger than the 

deviance of the λ marked in green.  

Figure 10: Cross-Validation Deviance vs Lambda for Species 3 DRSM, closeup 

 

 Another significant trend to notice is that Figure 9 appears to be monotonically 

decreasing when decreasing λ.  The minimum in deviance marked by the green line is extremely 

subtle.  Models that are best suited for improvement from LASSO have obvious, more 

pronounced minimums in deviance that indicate an ideal λ for regularization.  

Figure 10 shows minimal improvement in deviance when using LASSO over linear 

regression, but the existing methodology utilizes stepwise regression, rather than linear 

regression, so it already improves upon linear regression.  Going forward it is necessary to 

quantify the oscillatory behavior so that objective comparisons can be made and conclusions 

drawn on the effectiveness of LASSO in the DRSM methodology.  An exponential curve was fit 
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to the DRSM prediction of the cross-validation based methodology (Santos-Marques, 2016) for 

the second half of the experimental duration, τ > 0.5.  This fit represents the possible exponential 

decay expected for species 3.   

Figure 11: Example CV Model (Santos-Marques) and Exponential Fit for Species 3 

 

 

The oscillatory behavior of each model was quantified by calculating the absolute 

difference between the model’s prediction and this exponential fit for each of the seventeen 

experimental conditions in the face-centered central composite design.  The absolute error was 

then summed to yield one error value per model.  It was then possible to identify the best λ value 

for regularization based on minimizing the oscillation based error. 
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Model Oscillation Error 

λ = 2.2 * 10-4 0.0046 

Stepwise Regression 0.0048 

Table 4: Oscillation Based Error Comparison for Stepwise Regression (Santos-Marques, 2016) 
and Best LASSO Regularization 

  

The determined λ that minimized the oscillation based error can be seen in Table 4.  This value 

for λ is close to the indicated blue λ in Figure 9.  The improvement of LASSO regularization 

over stepwise regression was a ~5% reduction in oscillations. 

 

Figure 12: Model Comparison; Stepwise Regression vs Best Determined LASSO Regularization 
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Figure 13: Closeup on Oscillatory Behavior Comparison; Stepwise Regression vs LASSO 

 

  

As shown in Figure 13 and Table 4, the improvement made by LASSO in reducing 

oscillatory behavior was minimal.  Most importantly, application of LASSO did not eliminate 

any oscillatory behavior, merely reduced the amplitude of the peaks.  This means that the species 

rate of appearance/disappearance matrix will still suffer from a frequent change in sign for 

species 3, as modelled concentration oscillates between increasing and decreasing. 
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Figure 14: Oscillation Based Error Comparison Across Lambda Range 

 

 Figure 14 shows a broader range of λ values and their impact on the model for a given set 

of experimental conditions. The value of λ increases going from Lambda 1 to Lambda 5.  The 

largest λ, Lambda 5, shows primarily a linear model due to too much reduction in model 

complexity.  It can also be seen that as λ increases, the ability to predict the initial peak suffers.  

Lambda 4 appears to have the least significant oscillations, but its predictive ability is 

dramatically worse than stepwise regression.  The end behavior, while steadier, is far off from 

the “ideal” exponential fit. 
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Figure 15: Closeup on Oscillation Comparison for Range of Lambdas 

 

A closer look at the oscillatory behavior as λ is changed further demonstrates that 

LASSO is largely unable to eliminate oscillatory behavior across a large range of values.  

LASSO is capable of dampening existing oscillations to a degree.  In Figure 15 one can see that 

Lambdas 1, 2, and 3 appear to exhibit oscillations to a lesser magnitude than the stepwise 

regression, but contain the same number of local extrema.  
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Ridge 
 Ridge regression, also known as Tikhonov regularization is the L2 regularizer solving: 

𝑚𝑖𝑛
ఊ

൬
1

𝑁
‖𝑦 − 𝑋𝛾‖ଶ

ଶ + 𝜆‖𝛾‖ଶ
ଶ൰ 

Equation 16 

L2 regularization does not explicitly perform covariate selection.  The gammas in the regression 

will shrink in magnitude in proportion to the regularization coefficient selected, but are much 

more likely to stabilize at nonzero values, compared to L1 regularization.  Ridge regression can 

lead to zero gamma values, but this result is not as favored as in L1.  This can be seen when 

comparing the constraint regions of the regularizers.  The cross-polytope shaping of the L1 

constraint region causes the optimization to more often lead to a vertex, on which some γij will be 

zero.  The unit circle for L2 has no such vertices; minimization that causes a gamma to be zero is 

no more likely than minimization that leads to any reduced gamma value. 

 Ridge regression’s inability to create a selective model (eliminate insignificant gammas) 

is a weakness when compared to LASSO or stepwise regression.  It is desirable to determine 

causal relationships between the factors and the response.  Understanding which factors play 

largest roles in the DRSM, and the polynomial dependence of those factors with time, provides 

insight into the kinetic system.  Ridge, however, is a valuable tool for reducing error sensitivity 

in inverse problems in machine learning.  Inverse problems, in this case regression, are 

extremely sensitive to error in the measurements.  Thus, these problems are deemed ill-

conditioned because the regression results are not stable.  Improving the conditioning of the 

regression will decrease the model’s dependence and smoothen oscillatory behavior. 
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Results 

 
 To test ridge regression on the Pfizer dataset, once again the number of polynomials was 

held at nine, as determined optimal by both lack of fit (Georgakis, 2016) and cross-validation 

(Santos-Marques, 2016).  Species 3 will be the focus for analysis on oscillatory behavior. 

 Once again, determination of ideal regularization coefficient is key to creating the best 

possible model.  Figure 16 shows the relative change in size of the gammas as the ridge 

parameter, α, is varied.  The ridge parameter is related to the regularization coefficient, λ, 

originating from an alternative representation of L2 regularization shown below. 

  𝛾 = (𝑋்𝑋 + 𝛼ଶ𝐼)ିଵ𝑋்𝑦 

Equation 17 

If the ridge parameter is zero, Equation 17 will reduce back to ordinary least squares 

regression.  The required value for α varies depending on the problem, and as seen in Figure 16 

for species 3, it can become much larger than the utilized regularization coefficient, λ, in 

LASSO.  This is a result of α’s dependence on N, the number of data points utilized in the 

regression, which develops from the simplification of Equation 16 to Equation 17. 

 Figure 16 shows the change in standardized magnitude for the 90 gammas calculated via 

ridge regression for varying α.  The general trend, which is expected and desired for ridge 

regression, is that the gammas are being reduced in magnitude as α increases.  This can be seen 

much more clearly in Figure 17, in which only a handful of gammas are shown to better illustrate 

the change in magnitude as α increases. 
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Figure 16: Gamma Shrinkage vs Magnitude of Ridge Parameter for Species 3 

 

Figure 17: Selected Standardized Gammas vs Ridge Parameter for Species 3 
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Unlike λ of L1 regularization, α can be increased indefinitely and still yield a model.  In 

L1 regularization, too large of a regularization coefficient eliminates all terms from the model.  In 

L2 regularization, the gammas will shrink in magnitude towards a steady-state, so a larger range 

of ridge parameters was analyzed then shown in Figure 16 and Figure 17.  

Figure 18: Range of Ridge Parameters Considered for Regularization 

 

 Figure 18 better shows the evolution of the gammas as they approach a steady-state 

value.  Multiples of 1000, up to and including 10000, will be considered for the ridge parameter.  

It is also for this reason that Figure 18 lacks the curvature in the 0-1000 range as shown in Figure 

16. 
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Figure 19: Ridge Regression Models, Ridge Parameters as Compared to Stepwise Regression 

 

 Figure 19 shows the impact of the ridge parameter for a given set of experimental 

conditions and exemplifies the general trends across other experimental conditions.  First, 

looking at the first half of the experiments, one can see that ridge regression is overshooting the 

maximum concentration, especially at low ridge parameter values.  Looking at the latter half of 

the experiment, one can see that the ridge based model will undershoot the stepwise model at 

insufficient α values.  Generally, as α increases the ridge based model is pulled in closer to the 

stepwise regression model.  This corrective behavior can be seen to have its limits.  There is 

virtually no difference between the models with α = 4000 and α = 10000.   
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 In a method, similar to that done for LASSO, the ability of ridge regression to reduce 

oscillatory behavior will be quantified by comparing the difference between the model and an 

exponential fit of the model.  These results are shown in Table 5.  A ridge parameter value of 

4000 is deemed sufficient, past which there is no apparent significant improvement. Table 5: 

Oscillation Based Error vs Ridge Parameter 

Regression Method Oscillation Based Error 

Stepwise Regression 0.0048 

Alpha = 0 0.0371 

Alpha = 1000 0.0097 

Alpha = 2000 0.0051 

Alpha = 3000 0.0026 

Alpha = 4000 0.0022 

Alpha = 5000 0.0021 

Alpha = 6000 0.0020 

Alpha = 7000 0.0020 

Alpha = 8000 0.0020 

Alpha = 9000 0.0020 

Alpha = 10000 0.0020 

Table 5: Oscillation Based Error vs Ridge Parameter 
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Impact on Singular Values 
 

Stepwise LASSO (λ=2.2*10-4) Ridge (α=4000) 

1285.1 1283.9 1285.9 

448.8 443.9 453.9 

133.3 133.5 134.9 

85.1 83.9 92.4 

41.1 40.1 43.6 

18.5 17.8 18.8 

11.8 11.8 11.3 

9.8 9.7 9.4 

5.5 5.5 5.5 

2.8 2.8 2.8 

Table 6: Comparison of Singular Values for Best Case Regularization of Species 3 

 

 The rate of species appearance/disappearance matrix, RS, was calculated using stepwise 

regression or regularization for species 3, the primary species exhibiting oscillatory behavior, to 

analysis what benefits regularization may have on the downstream calculations of the DRSM 

methodology.  Table 6 shows the comparison for obtained singular values based on regression 

strategy for species 3.  The DRSMs for the other nine species were calculated via stepwise 

regression for all three cases to isolate the impact of improving the behavior of species 3’s 

DRSM. 
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RXN # Stepwise 
LASSO 

(λ=2.2*10-4) 
Ridge 

(α=4000) 

1 99.929 99.928 99.925 

2 99.929 99.928 99.925 

3 99.779 99.781 99.773 

4 99.677 99.679 99.673 

5 99.518 99.519 99.519 

6 99.518 99.519 99.519 

7 92.695 92.698 92.689 

8 84.588 84.586 84.586 

9 57.716 57.715 57.777 

10 52.045 52.049 52.099 

Table 7: Stoichiometry Projection Scores for Ten True Reactions as shown in Table 1 

  

 Table 7 shows the projection scores for the ten true reaction stoichiometries defining the 

chemical system as listed in Table 1.  As was the case for singular values, the projection scores 

did not vary significantly when implementing regularization on species 3.  Reduction of 

oscillatory behavior did not improve the scores of true reaction stoichiometries as expected.  

Additionally, Table 8 shows that regularization did not lower the projection scores for an 

example set of “false positive” stoichiometries. 
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RXN # Stepwise 
LASSO 

(λ=2.2*10-4) 
Ridge 

(α=4000) 

1 99.590 99.591 99.609 

2 98.895 98.899 98.864 

3 99.465 99.466 99.448 

4 98.872 98.876 98.870 

5 99.137 99.140 99.117 

6 98.820 98.827 98.756 

7 99.259 99.263 99.210 

8 97.385 97.396 97.367 

9 98.951 98.959 98.865 

10 98.619 98.625 98.573 

11 99.664 99.667 99.650 

12 97.700 97.708 97.719 

13 98.981 98.988 98.906 

Table 8: Comparison of Example False Positives Based on Regression Technique 

 

 The thirteen reaction stoichiometries tested in Table 8 are shown in Table 9.  These 

stoichiometries are each linearly independent from the true set of occurring reactions.  These 

false positives are now shown to be unrelated to oscillatory behavior in the model. 
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RXN # Species Stoichiometric Coefficients 

1 
0 -1 0 -1 0 -1 1 0 0 0 

2 -1 -1 1 -1 1 -1 0 0 0 0 

3 -1 -1 1 0 1 -1 0 0 0 0 

4 0 1 1 -1 0 0 -1 0 0 0 

5 1 1 0 -1 0 -1 0 0 0 0 

6 -1 -1 0 -1 1 -1 0 0 0 0 

7 -1 -1 -1 1 0 1 0 0 0 0 

8 0 -1 0 -1 0 1 0 0 0 0 

9 -1 -1 -1 -1 1 -1 0 0 0 0 

10 -1 0 1 -1 1 -1 -1 0 0 0 

11 
0 -1 1 -1 0 -1 1 0 0 0 

12 
0 1 -1 1 0 -1 0 0 0 0 

13 
0 0 -1 -1 0 0 0 0 0 0 

Table 9: Example "False Positive" Stoichiometries Linearly Independent from True Set 
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Significant Singular Values 
 Determining which singular values, as shown in Table 6, are significant is an important 

step in the methodology that did not have an objective function behind it.  Both previous 

strategies had a subjective determination of significance, as seen in Figure 2 and Figure 3.  

Presenting an objective strategy for determining significant singular objectives is the second goal 

of this research in improving the DRSM methodology. 

 As mentioned in the introduction, establishing the number of significant singular values 

plays an important role in the stoichiometry projection.  The number of significant singular 

values indicates the number of independent chemical reactions occurring in the system that the 

collected data with its associated uncertainties can reveal.  Without determining the number of 

significant singular values, and especially because of false positives, one cannot tell when to stop 

projecting more stoichiometries.   

In this case, with ten observed species, there could be as many as nine independent 

reactions occurring, but no more than nine.  The maximum number of independent reactions 

occurring will always be one less than the number of species observed.  This is because nS 

reaction coefficients can only be arranged into, at most, nS linearly independent vectors of 

reaction stoichiometries.  Additionally, every reaction must have at least two nonzero 

coefficients, therefore indicating at least one free variable.  This reduces the maximum number 

of linearly independent reaction stoichiometries from nS to (nS-1).   

 The number of significant singular values indicates the dimensionality of the 

subspace whose basis is the linearly independent set of true reactions.  Stoichiometries are 

projected into this subspace to gage how well they fit the system.  True stoichiometries will 
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already exist in this subspace, and should hypothetically score 100%.  Stoichiometries linearly 

dependent on the true reaction stoichiometries also exist in this subspace and should score 100%. 

Propagating Error 
 Regression methods by which the DRSM’s gammas are calculated have associated 

estimated error.  Because there is a confidence interval associated with each model parameter 

estimated, there will be a prediction interval associated with the DRSM output.  The gamma 

confidence interval was not considered when calculating the RS matrix.  It was hypothesized that 

by propagating the gammas’ uncertainty to the singular value calculation, one could obtain 

insight on which singular values are significant.  Singular values cannot be negative, but it was 

thought that insignificant singular values may have an error range nearly incorporating zero. 

 To test this hypothesis, a simpler reaction system was considered for computational 

speed.  This system featured only three reactions and five species.  The gammas were normally 

distributed individually, with the mean being their respective calculated value and the standard 

deviation of their respective error.  This was done 20,000 times, and the results are shown below. 

Singular Values, No Error Singular Values, w/ Error Standard Deviation 

53.59 53.56 1.42 

9.57 9.53 0.27 

3.72 3.73 0.24 

1.62 1.59 0.10 

1.00 0.99 0.04 

Table 10: Singular Value Comparison when Propagating Error for Simpler Reaction System 
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 As shown in Table 10, propagating the error from the gamma calculation had no 

significant effect on the singular values.  The determined values showed narrow error bars for 

both significant and insignificant singular values.   

IND Function 
 The factor indicator function is an empirical function suggested by Malinowski for its 

ability to “deduce dimensionality of the factor space” (Malinowski, 1977).  This function was 

presented to determine significant eigenvalues, but here it is applied to singular values of RS, 

which are the square roots of the eigenvalues of (RS)T(RS).  The dimensionality of the factor 

space is synonymous with the number of significant singular values of RS. 

𝑅𝐸 = ൭
∑ 𝜎௝

ଶ௝ୀ௖
௝ୀ௡ାଵ

𝑟(𝑐 − 𝑛)
൱

ଵ
ଶ

 

𝐼𝑁𝐷 =  
𝑅𝐸

(𝑐 − 𝑛)ଶ
 

Equation 18: Factor Indicator Function (Malinowski, 1977) 

 The real error, RE, is a function of the data matrix’s rows (r) and columns (c), and the 

singular values (σ).  A number, n, of singular values to be “significant” is selected; the rest of the 

singular values, (n+1) to c, are incorporated into the real error, the difference between pure data 

and what was observed experimentally.  Here, it is assumed that there are more rows than 

columns in the data matrix, hence the singular values being summed until the cth value.  This 

assumption is true for RS when using the Pfizer dataset. 

The IND function will naturally minimize when n is equal to the number of significant 

singular values.  Therefore, one can simply evaluate the function at all possible values of n and 

determine the number of significant singular values (Malinowski, 1977). 



45 
 

# Significant 

Singular Values 
Stepwise LASSO 

 (λ=2.2*10-4) 
Ridge  

(α=4000) 

1 0.00537 0.00531 0.00544 

2 0.00249 0.00248 0.00258 

3 0.00205 0.00202 0.00221 

4 0.00148 0.00145 0.00155 

5 0.00121 0.00118 0.00120 

6 0.00141 0.00140 0.00136 

7 0.00203 0.00202 0.00196 

8 0.00297 0.00297 0.00297 

9 0.00770 0.00770 0.00770 

Table 11: IND Function Value Comparison Between Regression Techniques 

As shown in Table 11, the IND function is minimized when five singular values are 

significant, regardless of regression technique.  This is less than expected based on knowledge of 

the chemical system.  With eight total independent reactions, one would ideally expect eight 

singular values to be significant; error in the data will interfere with this, however.  Interestingly, 

all three regression techniques fail to identify reactions 9 and 10, as seen in Table 7.  These two 

reactions incorporate minor species that are largely obfuscated by introduced error.  Perhaps the 

inability to accurately project two of the linearly independent true reactions is related this 

undershooting of the number of significant singular values. 
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Malinowski F-Test 
 The factor indicator test (IND function) relies on an empirical function of no statistical 

significance.  Attention was given to search for a statistically significant method by which 

significant singular values can be ascertained.  Malinowski first adapted the f-test for application 

in singular value decomposition in 1988.   

 If the error in the data follows a normal distribution, then so will the variance of the 

insignificant singular values.  This is because insignificant singular values no longer represent 

meaningful information on the system, only error.  It is possible then to compare the variance of 

a singular value to the pooled variance of the smaller singular values.  If the two variances are 

statistically different, then the tested singular value is significant.  A two-factor f-test will be 

applied to pass judgement on the respective variances (Malinowski, 1988). 

  𝐹(1, 𝑐 − 𝑛) =  
σ'  ೙

మ

∑ σ'  ೕ
మೕస೎

ೕస೙శభ

(𝑐 − 𝑛) 

  σ'  ௡
ଶ =  

  σ  ೙
మ

(௥ି௡ାଵ)(௖ି௡ାଵ)
 

  𝐻଴: σ'  ௡
ଶ = σ'  ௣௢௢௟

ଶ  

  𝐻௔: σ'  ௡
ଶ > σ'  ௣௢௢௟

ଶ  

Equation 19 
 

 This f-test tests the null hypothesis that the variance of the nth reduced singular value is 

equal to the variance of the pooled reduced singular values.  Reduction of the singular values is 

done by the large left fraction in Equation 19.  This serves to magnify the significant singular 

values, while error singular values should have, statistically, the same reduced singular value 

(Malinowski, 1988).  
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Nth Singular Value Stepwise LASSO 
 (λ=2.2*10-4) 

Ridge 
 (α=4000) 

1 1.000 1.000 1.000 

2 1.000 1.000 1.000 

3 1.000 1.000 1.000 

4 1.000 1.000 1.000 

5 0.998 0.998 0.998 

6 0.966 0.962 0.971 

7 0.880 0.881 0.878 

8 0.847 0.845 0.836 

9 0.599 0.599 0.599 

Table 12: Probability from F Cumulative Distribution Function for Varying Singular Values and 
Regression Techniques 

 Table 12 above shows the respective probabilities that each singular value is significant 

based on the f-test in Equation 19.  Typically, a 95% confidence level is used; the smallest 

singular value above this confidence level is denoted with an underline. 

 The Malinowski F-Test determines that for each regression technique and with a 95% 

confidence level that six singular values are significant.  Like the results of the IND function, this 

is lower than the expected number of eight significant singular values.  Once again, this is likely 

related to the inability to correctly identify reactions 9 and 10.  These reactions may be too minor 

to be statistically significant in the reaction system.  However, it is also possible that inaccuracies 

arise from the sheer size of RS affecting the distribution (Malinowski, 2004).  
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Conclusion 
 The goal of this research was to suggest advancements in the DRSM methodology that 

tackle two problems: oscillatory end behavior and determination of significant singular values.   

Regularization, particularly ridge regression, was shown to be able to greatly smoothen 

the model for species 3.  Oscillation based error for species 3 was reduced by over 50% when 

implementing ridge regression with a large enough ridge coefficient.  This reduction in 

oscillations did not lead to improvements in downstream weaknesses, such as stoichiometry 

projection, as was hoped.  

Two potential methods were identified as functioning, objective strategies for 

determination of significant singular values; one of which is empirical in nature (IND function) 

while the other is statistically significant (f-test).  Both methods determined fewer significant 

singular values than would be expected ideally for a reaction system with eight independent 

reactions.  The Malinowski f-test is suggested as the better method to be implemented in the 

DRSM methodology for two reasons.  First, the statistical basis for this technique is vital in such 

a mathematically driven modelling methodology.  Second, the determination of six singular 

values via this f-test introduces peculiar implications on the inability to identify reactions 9 and 

10 as shown in Table 1.  The stoichiometry projection identified only six of the eight true 

independent reactions.  It is possible that the two unidentified reactions are too minor to be 

considered by the methodology. 

The new flowchart for DRSM methodology and subsequent kinetic calculations as 

established through this research is shown in Figure 20.  This new strategy implements a second 

loop by which the optimal ridge coefficient is determined for a species, which will introduce a 
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second knob by which the model is controlled and can be tuned.  Additionally, it is suggested 

that the use of stepwise regression in conjunction with ridge regression be explored.  This could 

potentially overcome the performance issues encountered in using solely ridge regression.  This 

increase in complexity is warranted by increasing model stability and reducing oscillatory end 

behavior. 

 

Figure 20: Proposed Flowchart to Eliminate Two Previously Identified Weaknesses 
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Key 
DRSM = dynamic response surface model 

dSLP = shifted Legendre polynomials 

derived w.r.t. τ 

k = number of significant singular values 

LoF = lack of fit, the strategy by which the 

Georgakis iteration of DRSM 

methodology decided a suitable R 

for the model 

LOO = leave one out, the cross-validation 

strategy by which the Santos-

Marques iteration of DRSM 

methodology decided a suitable R 

for the model 

N = total data points, nE*nT 

nE = number of experiments in design 

nS = number of species observed 

nT = number of instants data was collected 

per experiment 

p = norm chosen for regularization 

Pk = projection matrix using k significant 

singular values 

R = number of polynomials approximating β 

RS = (N) x (nS) matrix showing rates of 

change for each species 

SLP = shifted Legendre polynomials 

X = matrix of covariates, (N) x (10R),    

products of design factors xi and SLP 

y = species concentration 

α = ridge parameter, determines degree of 

regularization for ridge regression 

β = coefficients of factors in DRSM, 

functions of τ, represented by 

weighted sums of SLP  

γ = coefficients of SLP in DRSM estimated 

via regression 

λ = regularization coefficient, determines 

degree of regularization 

τ = dimensionless time, tau 
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Appendix 
Oscillations in Stepwise Regression DRSM 

 

 

 

 



53 
 

 

 



54 
 

 

 



55 
 

 

 



56 
 

 

 



57 
 

 

 



58 
 

 

 



59 
 

 

 



60 
 

 

 



61 
 

Stepwise vs LASSO, λ=2.2*10-4 
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Stepwise vs Ridge, α=4000 
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