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Abstract

By work of Caprace and Sageev ([CS11]), every finite-dimensional CAT(0) cube

complex X has a canonical product decomposition X = X1×· · ·×Xn into irreducible

factors and any group G which acts on X must have a finite index subgroup which

embeds in

Aut(X1)× · · · ×Aut(Xn).

We explore the natural followup questions, “If G = G1×· · ·×Gn acts geometrically

and essentially on a CAT(0) cube complex X, does X have product decomposition

X = X1 × · · · ×Xn? If so, how close is the action to a product action?”

In chapter 3, we answer this question when each Gi is a non-elementary hyper-

bolic group. We recover the canonical product decomposition X = X1 × · · · ×Xn

and show that G has a finite index subgroup which acts with the product action on

this decomposition of X.

In chapter 4, we create a generalization of the work in chapter 3 to the case

when each Gi satisfies a property we call (AIP). Essentially, this property gives us

a large degree of control over how locally maximal abelian subgroups can intersect.

We again show that X has a decomposition X = X1 × · · · × Xn, though this is

not the canonical decomposition. We also show that G has a finite index subgroup

which acts with the product action on X.

In chapter 5, we consider groups of the form Γ = G × A, where G satisfies

(AIP) and A is free-abelian. We show that any cube complex X on which Γ acts

geometrically and essentially decomposes as X = XG × XA, and there is a finite

index subgroup G′ ×A′ of Γ which acts with a product action on XG ×XA.
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Chapter 1

Introduction

A fundamental tenet of geometric group theory is, given a nice enough action of a

group G on a metric space X, the coarse geometry of X and G are the same. A

common proof technique is to take a group which is well-understood, find an action

of that group on a space, and use the action to understand the space better. This

thesis shows that if a nice enough direct product of groups acts on a CAT(0) cube

complex, then the cube complex decomposes as a direct product of cube complexes

and the action must be close to a product action.

A major inspiration for this thesis was the work of Caprace-Sageev in [CS11].

In the paper, they prove that every finite dimensional CAT(0) cube complex has a

canonical decomposition as a product of cube complexes which is preserved, up to

permutation of isomorphic factors, by any automorphism of the cube complex. In

particular, this means that any group acting on a finite dimensional CAT(0) cube

complex X with canonical decomposition X1 × · · · × Xn must have a finite index

subgroup that embeds in the product of the automorphism groups Aut(X1)× · · · ×

Aut(Xn). We have a discussion of some of the results from the paper in section 2.9.

Caprace-Sageev use information about how a cube complex decomposes to say

something about a group acting on it. The question we asked is the reverse. Are

there conditions on the action of a product of groups G1 × G2 on a CAT(0) cube

complex X that force X to decompose as a product X1×X2? Is this the same as the

canonical decomposition of [CS11]? Is the action of G1 ×G2 on X1 ×X2 a product

action? If not, is it close? We give an answer for finite products of non-elementary

hyperbolic groups in our first theorem. A group action is essential if there are orbit

points arbitrarily far from every hyperplane H in both of its halfspaces H+ and H−.

Theorem 3.1.1. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose

G = G1× · · ·×Gn acts properly, cocompactly, and essentially, by cubical isometries
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on a CAT(0) cube complex X. Then

• X splits as a product of irreducible CAT(0) cube complexes X = X1×· · ·×Xn

and each g ∈ G acts on X1×· · ·×Xn as a product of isometries µ1×· · ·×µn;

• every Gi acts properly and cocompactly on Xi; and

• every Gi contains a finite-index subgroup G′′i which acts trivially on every Xj

for i 6= j.

An important technique used in the proof combines ideas from [CS11] and

[WW15] to control how highest free-abelian subgroups intersect. An abelian sub-

group is highest if it does not contain a finite index subgroup that belongs to a

higher rank abelian subgroup. The property we need in order to exert this control

we call (AIP), the abelian intersection property. A group satisfies (AIP) if it is infi-

nite and contains a collection of highest abelian subgroups with trivial intersection.

We prove a generalization of this first theorem in chapter 4.

Theorem 4.1.1. Let G = G1×· · ·×Gn satisfy (AIP) and have finite center, where

each Gi is an infinite group. Suppose G acts properly, cocompactly, and essentially

on a CAT(0) cube complex X. Then

• X decomposes as a product of CAT(0) cube complexes X1×· · ·×Xn and each

g ∈ G acts on X as a product of isometries µ1 × · · · × µn;

• every factor Gi acts on Xi properly, cocompactly, and essentially; and

• every factor Gi contains a finite-index subgroup G′i that acts trivially on Gj

when i 6= j.

In the case when G1 ×G2 satisfies (AIP), the action of G1 ×G2 on X1 ×X2 is

very close to a product action. If we try to extend this to a group G × A, where

G satisfies (AIP) and A is free-abelian, the action can be farther from a product

action. A quasi-line is a CAT(0) cube complex quasi-isometric to R.



4

Theorem 5.2.1. Let G be a group with finite center satisfying (AIP) and A ∼= Zp.

Suppose Γ = G × A acts properly, cocompactly, and essentially on a CAT(0) cube

complex X. Then

• X decomposes as a product of CAT(0) cube complexes X⊥A × XA, where XA

is a product of p quasi-lines;

• Γ has a finite-index subgroup Γ′ = G′×A′ that acts on X⊥A ×XA as a product

action; and

• furthermore, G′ is isomorphic to a subgroup of G.

An important point is that while G′ is isomorphic to a finite index subgroup of

G, its generators have been multiplied by elements of A in order to make its action

on XA trivial. The details can be found in chapter 5.

In [NR98], Niblo-Roller prove that there are CAT(0) groups which cannot act on

finite dimensional CAT(0) cube complexes, and Bergeron-Wise proved in [BW12]

that every closed, hyperbolic 3-manifold group acts properly and cocompactly on

a finite-dimensional CAT(0) cube complex. However, it is possible that the cube

complexes constructed by Bergeron-Wise may have a dimension much higher than

3. To measure the difference in complexity between the CAT(0) spaces on which

these groups act and the CAT(0) cube complexes on which they act, we will refer to

the CAT(0) dimension and the CAT(0) cubical dimension of a group. The CAT(0)

dimension of a group is the minimum covering dimension of the CAT(0) spaces on

which the group acts geometrically. The CAT(0) cubical dimension of a group is

the minimum dimension of the CAT(0) cube complexes on which the group acts

geometrically.

In [Li02], Tao Li found an infinite family of closed, hyperbolic 3-manifolds which

are not homeomorphic to any 3-dimensional non-positively curved cube complex.

We extend his result and apply Theorem 3.1.1 to get the following result.

Corollary 3.2.1. Given any natural number k, there is an infinite family of groups

which have CAT(0) cubical dimension at least k larger than their CAT(0) dimension.
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Chapter 2

Background

2.1 Introduction to CAT(0) Cube Complexes

We start by reviewing basic notions of cube complexes that we will need. An n-

dimensional cube (n-cube) is an isometric copy of [−1
2 ,

1
2 ]n. We start with a collection

C of cubes of various dimensions along with a collection F of isometries between

their faces. A cube complex X is the quotient space C/F of two such collections.

For example, the number line with vertices (0-cubes) at each integer and edges (1-

cubes) connecting adjacent integers is a cube complex. The integer lattice on R2 is

a 2-dimensional cube complex. The dimension of a cube complex is defined to be

the supremum of the dimensions of its cubes. In this thesis, we will assume that

every cube complex is finite dimensional. That is to say, every cube complex will

have a finite upper bound on the dimension of its component cubes.

A local edge is a subinterval of length 1/3 of an edge of a cube in C, one of whose

endpoints is a vertex of C. The local edges of X are images of the local edges of C.

The link of a vertex v, denoted lk(v), is a simplicial complex. Its vertices are the

local edges of X, and a collection of vertices spans a simplex when the corresponding

local edges are contained in the same cube of C and share a vertex.

A simplicial complex is flag if for every 1-skeleton of a k-simplex (k ≥ 2), the

corresponding k-simplex is in the complex. A cube complex is non-positively curved

if the link of every vertex is a flag simplicial complex. For example, if the link

of a vertex contains a triangle then the cube complex contains the 2-skeleton of

a 3-cube attached to the vertex. Since the 3-cube is not filled in, this region of

the cube complex will have positive curvature. A cube complex is CAT(0) if it is

non-positively curved and simply connected.

The definition of CAT(0) for a cube complex given above is often more convenient
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when working with cube complexes, but the original definition of CAT(0) comes from

metric geometry. Let T be a geodesic triangle in a geodesic metric space X with

side lengths a, b, c. We can construct a comparison triangle T in E2 with the same

side lengths. If x is a point in T , then the comparison point x is the point the same

distance along the corresponding edge of T as x is along its edge. The triangle T

satisfies the CAT(0) inequality if for every two points x, y ∈ T , the inequality

dT (x, y) ≤ dT (x, y)

holds. A geodesic metric space X is CAT(0) if every geodesic triangle satisfies the

CAT(0) inequality.

A cube complex can be endowed with a path metric induced by the piecewise

Euclidean metric of each cube. If we refer to a metric on a cube complex, it will be

the path metric unless otherwise specified. It is a theorem of Gromov ([Gro87]) that

the path metric is CAT(0) if and only if the cube complex is non-positively curved

and simply connected.

There is a second commonly used metric for CAT(0) cube complexes that is

induced by the piecewise-L1 metric on each cube. If a subspace is convex under this

metric, we call it L1-convex. We refer to the convex hull of a subspace under this

metric as the L1-convex hull or Hull1 to differentiate it from the L2-convex hull.

An isomorphism of cube complexes is an isometry which sends n-cubes to n-

cubes. We may sometimes refer to these maps simply as isometries, but it is assumed

that any map between cube complexes preserves the cell structure.

A midcube is a subset of a cube obtained by restricting one coordinate to 0. A 2-

cube has two midcubes, one horizontal and one vertical. An n-cube has n midcubes,

one for each coordinate. Let X be a non-positively curved cube complex. Let � be

the equivalence relation on the edges of X generated by the relation e�f if e and f

are the opposite edges of a square in X. A hyperplane of a cube complex is the set

of midcubes intersecting a �-equivalence class of edges. The �-equivalence class of

edges which a hyperplane intersects are said to be dual to the hyperplane and vice
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versa. Studying the hyperplanes of a CAT(0) cube complex can reveal quite a lot of

information about the cube complex, itself. Some important features of hyperplanes

are stated in the following proposition.

Proposition 2.1.1 ([Sag95]). Let X be a CAT(0) cube complex and H a hyperplane

of X. Then

• H is two-sided

• H is convex

• H is a CAT(0) cube complex

• If a set of hyperplanes of X pairwise intersects, then the intersection of the

full set of hyperplanes is nonempty.

The proof of this proposition is somewhat involved; for more detail see [Sag95],

where it was originally proven.

Let X be a finite-dimensional, locally finite CAT(0) cube complex and H a

hyperplane of X. The hyperplane H separates X into two components, which we

will denote H+ and H−. These components are called halfspaces, and they give X a

wallspace structure. In the case that X is finite dimensional, the wall space induced

by the hyperplanes and the cube complex itself are dual. That is to say, there is an

operation by which one can reconstruct the cube complex with only the wallspace

structure. The details of that procedure are in the following two sections.

2.2 Cubulating Wallspaces

There are several approaches to this construction in various settings described by

Roller [Rol99], Nica [Nic04], Chatterji-Niblo [CN05], and Guralnik [Gur06]. We will

follow the approach of Chatterji-Niblo.

A wallspace is a set S, called the underlying set, together with a nonempty

collection W of walls. A wall W ∈ W is a partition S = W− t W+ into two

nonempty sets called halfspaces. A wall W is said to separate two points s, s′ ∈ S
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if s and s′ are in distinct halfspaces associated to W . We will assume that all wall

spaces satisfy the finite interval condition: for all s, s′ ∈ S, there are finitely many

walls that separate s from s′.

Two walls V and W are said to cross if all four quarterspaces

W+ ∩ V +,W+ ∩ V −,W− ∩ V +,W− ∩ V −

are nonempty.

Let (S,W) be a wallspace andW± be the set of halfspaces associated toW. Let

π : W± → W be the map which takes a halfspace W+ (or W−) to its associated

wall W . The dual cube complex X(S,W) to this wallspace is constructed in the

following way.

The vertices X0 of the cube complex are a subset of the sections of the map

π. Each section should be thought of as choosing a preferred halfspace for each

wall. Let σ be a section of π. Then σ is said to be consistent if for every pair of

walls V,W ∈ W, the intersection of the halfspaces chosen by σ, σ(V ) ∩ σ(W ), is

nonempty. Note that if V and W cross, then any choice of halfspaces for V and

W will be consistent, assuming they do not conflict with the choice of halfspace for

another wall. If V and W are disjoint and σ is consistent, then σ cannot choose

the halfspaces of V and W that are disjoint, but the other three configurations are

valid.

We will construct a graph Γ, one connected component of which will become

the 1-skeleton of the dual cube complex. The vertex set of Γ is the set of consistent

sections. We connect two vertices σx, σy with an edge if they differ as functions by

only one value. That is to say, one can change from the orientations chosen by σx

to those chosen by σy by swapping the choice of exactly one halfspace. The graph

with the specified vertex and edge sets is not, in general, connected.

One example is the wallspace (Z,W), where W consists of the partitions

{. . . , n− 1, n} t {n+ 1, n+ 2, . . .}
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for every n ∈ Z. One consistent section σ−∞ chooses the halfspace with smaller

numbers for every wall, and another, σ+∞, chooses the halfspace with larger numbers

for every wall. One can show that the only other consistent sections σn are those

which fix an n ∈ Z and choose the halfspace containing n for every wall. The graph

Γ associated to this wallspace has three connected components: σ+∞, σ−∞, and the

rest of the graph, which is generated by the σn.

Choose an element s ∈ S. Let σs be the section which chooses, for each wall

W , the halfspace containing s. This section is consistent, so it is a vertex of Γ.

The sections constructed in this way are called special sections. We claim that the

special sections are in the same connected component. Note that there may be

consistent sections in this component that are not special. This component will

be the 1-skeleton of the dual cube complex. Fix two special sections σs, σs′ . Since

(S,W) satisfies the finite interval condition, there are finitely many walls separating

s from s′. One can check that there is a path from σs to σs′ achieved by iteratively

flipping these separating walls in a sensible order.

Consider the path in the example above from the special section about 3 to the

special section about 5. One would first flip the wall separating 3 from 4, arriving

at the special section about 4. Then flip the wall separating 4 from 5, and we arrive

at our destination.

Now that we have a 1-skeleton, the next step is to attach higher-dimensional

cubes. In fact, this graph is the 1-skeleton of a unique CAT(0) cube complex. This

cube complex is constructed by filling in an n-cube whenever the graph contains

the 1-skeleton of an n-cube. The cube complex we get after filling in every skeleton

is the dual cube complex to the wallspace (S,W). For a more detailed exposition,

consult [CN05].

2.3 Roller Duality

Let X be a finite dimensional CAT(0) cube complex. Then W (X) will denote the

wallspace of the form (X(0),W), where X(0) is the 0-skeleton of X and W is the set
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of hyperplanes of X. We will show why the dual cube complex X(W (X)) to this

wallspace is isomorphic to X, the cube complex we started with.

Let X be a CAT(0) cube complex, W be the hyperplanes of X, W± the associ-

ated set of halfspaces, and π : W± → W the map that sends each halfspace to its

corresponding hyperplane. Fix a 0-cube x ∈ X. Then the map σx which chooses

the halfspace containing x is a special section. This shows that the vertices of Γ

contain the 0-skeleton of X. One can check that these are the only special sections.

Let x and y be two 0-cubes connected by an edge e. Then the hyperplane H dual

to e is the only hyperplane separating x from y, so we can change from σx to σy by

flipping the halfspace associated to H. The only halfspaces we can flip to change σx

to another consistent section are those corresponding to hyperplanes that intersect

an edge containing x as one of its endpoints. Flipping any other halfspace would

violate the consistency condition. This shows that the 1-skeleton of the dual cube

complex X(W (X)) is graph isomorphic to X(1). Since two CAT(0) cube complexes

with isomorphic 1-skeletons must be the isomorphic as cube complexes, we’ve shown

that X(W (X)) is isomorphic to X, as desired.

We will look at a small example to see how higher-dimensional cubes are filled

in and to see a vertex of X(S,W) which is not a special section. Let (S,W) be the

wallspace below. Picture

I will follow the convention that the arrows point into the positive halfspace,

so the special section σx1 is defined by the choice {W+
1 ,W

+
2 ,W

+
3 }. We can flip

W1 to get the special section σx2 , so there is an edge connecting σx1 and σx2 .

Similarly, there are edges connecting σx2 to σx7 , σx7 to σx6 , and σx6 back to σx1 .

This 4-cycle forms the 1-skeleton of a 2-cube, so we fill in a 2-cube with 0-cube set

{σx1 , σx2 , σx6 , σx7}. In the same way, there are 2-cubes defined by {σx2 , σx3 , σx4 , σx7}

and {σx4 , σx5 , σx6 , σx7}. These 2-cubes are glued together to form what appears to

be three faces of a 3-cube. (Picture)

Note that every pair of walls crosses, so every section is consistent. The one

section we haven’t yet used is {W+
1 ,W

−
2 ,W

+
3 }, which is not special. We will denote

this by σh. If we flip W1, we get {W−1 ,W
−
2 ,W

+
3 }, which is just σx3 . Flipping
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W2 results in σx1 and flipping W3 gives us σx5 . Therefore σh is connected to each

of these vertices by an edge, finishing the 1-skeleton of a 3-cube. The dual cube

complex X(S,W) in this example is a 3-cube.

One notable way in which Roller duality can be used is to give a sufficient and

necessary condition on the hyperplanes for a CAT(0) cube complex to decompose as

a product of cube complexes. The following results come from [CS11]. We include

proofs, as they are important to our main theorem.

Lemma 2.3.1 ([CS11]). Let X be a CAT(0) cube complex and H the hyperplanes

of X. X decomposes as a product of cube complexes X1×X2 if and only if there is a

partition H = H1tH2 such that every hyperplane in H1 intersects every hyperplane

in H2.

Proof. Suppose X decomposes as a product of cube complexes X1×X2. Then there

are natural projection maps pi : X → Xi and each cube in X is a product of a cube

of X1 with a cube of X2. If two edges in X are opposite edges of a 2-cube, then

they must belong to the same factor Xi. It follows that every hyperplane of X is

the preimage by pi of a hyperplane of Xi. We can use this to partition the set H

of hyperplanes of X as H1 t H2, where Hi consists of the hyperplanes which are

preimages by pi of a hyperplane of Xi. Any hyperplane H1 ∈ H1 must therefore

be of the form H ′1 ×X2, where H ′1 is p1(H1). Since every hyperlane of H2 has the

form X1 ×H ′2, we know that H1 and H2 intersect. This concludes the proof of one

direction of the biconditional.

Suppose X is a CAT(0) cube complex and the set of hyperplanes H of X has

a partition H1 t H2 such that every hyperplane belonging to H1 intersects every

hyperplane in H2. The space X along with a collection of hyperplanes Hi form a

wallspace. When we cubulate these wallspaces, we get the dual cube complexes X1

and X2. A cube in X corresponds to a set of pairwise-intersecting hyperplanes along

with a choice of orientation on the remaining hyperplanes which points towards

the cube. If we “forget” the choices for the hyperplanes in H2, the remaining

pairwise-intersecting hyperplanes and orientations define a cube in X1 and vice
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versa. This means that every cube of X is a product of a cube of X1 and a cube

of X2. In addition, since every hyperplane of H1 intersects every hyperplane of H2,

any consistent section on H1 combined with any consistent section on H2 will yield

a consistent section on H. Therefore any product of a cube of X1 and a cube of X2

will be a cube of X, proving that X = X1 ×X2.

A cube complex which cannot be decomposed as a product of cube complexes

is called irreducible. A consequence is the following proposition.

Proposition 2.3.1 ([CS11]). A finite-dimensional CAT(0) cube complex admits a

canonical decomposition

X = X1 × · · · ×Xp

into a product of irreducible cube complexes Xi. Every automorphism of X pre-

serves that decomposition, up to a permutation of possibly isomorphic factors. In

particular, the image of the canonical embedding

Aut (X1)× · · · ×Aut (Xp) ↪→ Aut(X)

has finite index in Aut(X).

Proof. Since X is finite-dimensional, any product decomposition can be refined into

a finite product of irreducible factors. Therefore we need to show that if X admits

two product decompositions X = X1× · · · ×Xp and X = X ′1× · · · ×X ′q, then p = q

and there is a permutation σ so that Xi = X ′σ(i) for every i. By Lemma 3.1.1,

the set H of hyperplanes of X admits partitions H = H1 t . . . t Hp and H =

H′1 t . . . t H′q. The second partition induces a partition on each individual subset

Hi of the first partition. Since each Xi is irreducible, these must all be the trivial

partition. Therefore p ≤ q. By symmetry, q ≤ p, and so p = q. The desired result

follows from the fact that all of the above induced partitions are trivial.
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2.4 CAT(0) Axes

This section contains a discussion of CAT(0) axes, a crucial tool to the study of

CAT(0) spaces and CAT(0) cube complexes. Much of the material is drawn from

[BH99], the standard reference for the study of CAT(0) spaces.

Let X be a metric space and g be an isometry of X. The displacement function

of g is the function dg : X → R defined by dg(x) = dX(x, g · x). The translation

length of g is defined to be |g| := infx∈X dg(x). The set of points where g attains its

translation length is denoted Min(g). An isometry g is called semi-simple if Min(g)

is nonempty.

Proposition 2.4.1 (II.6.2 [BH99]). Let X be a metric space and let g be an isometry

of X.

1. Min(g) is g-invariant.

2. If α is an isometry of X, then |g| = |αgα−1| and Min(αgα−1) = α ·Min(g).

In particular, if α commutes with g, then it leaves Min(g) invariant.

3. If X is a CAT(0) space, then the displacement function dg is convex, and

hence Min(g) is a closed, convex set.

4. If C ⊂ X is nonempty, complete, convex, and g-invariant, then |g| = |g|C | and

g is semi-simple if and only if g|C is semi-simple. Thus Min(g) is nonempty

if and only if C ∩Min(g) is nonempty.

We use the standard classification of isometries into three classes. An isometry

g is called

1. elliptic if it has a fixed point,

2. hyperbolic if dg attains a strictly positive minimum, and

3. parabolic if dg does not attain its minimum.

The following theorem from [BH99] shows that Min(g) has very nice structure

when g is a hyperbolic isometry of a CAT(0) space.
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Theorem 2.4.1 (II.6.8 [BH99]). Let X be a CAT(0) space.

1. An isometry g of X is hyperbolic if and only if there exists a geodesic line

c : R → X which is translated nontrivially by g, namely g · c(t) = c(t + a) for

some a > 0. The set c(R) is called an axis of g. For any such axis, the number

a is equal to |g|.

2. If X is complete and gm is hyperbolic for some m 6= 0, then g is hyperbolic.

Let g be a hyperbolic isometry of X.

1. The axes of g are parallel to each other and their union is Min(g).

2. Min(g) is isometric to a product Y × R, and the restriction of g to Min(g) is

of the form (y, t) 7→ (y, t+ |g|), where y ∈ Y, t ∈ R.

3. Every isometry α that commutes with g leaves Min(g) = Y ×R invariant, and

its restriction to Y × R is of the form (α′, α′′), where α′ is an isometry of Y

and α′′ is a translation of R.

In the interest of clarity, I will refer an axis as defined above as a CAT(0) axis.

There is another notion of an axis for a hyperbolic isometry of a CAT(0) cube

complex called a combinatorial axis. Let g be an isometry of a CAT(0) cube complex

X. Then γ : R→ X(1) is a combinatorial axis for g if γ is a g-invariant geodesic in

X(1) on which g acts by translation. An automorphism is combinatorially hyperbolic

if it has a combinatorial axis, and an automorphism is combinatorially elliptic if it

has a fixed point in X(0). Although every combinatorially hyperbolic element is

hyperbolic, we need some mild conditions to guarantee the converse. The same is

true for elliptic elements.

An automorphism acts without inversion if it does not map H− to H+ for any

hyperplane H. An automorphism acts stably without inversion if no power maps

H− to H+ for any hyperplane H. A group acts without inversion if every element

acts without inversion. Note that this implies that every element is acting stably

without inversion. One can show that if an automorphism acts stably without
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inversion, then it is combinatorially hyperbolic if and only if it is hyperbolic and it

is combinatorially elliptic if and only if it is elliptic. Note that if a group acts on a

CAT(0) cube complex, then it acts without inversion on the barycentric subdivision.

The following theorem from [Hag07] classifies automorphisms which act stably

without inversion.

Theorem 2.4.2 ([Hag07]). Every automorphism of a CAT(0) cube complex acting

stably without inversion is either combinatorially elliptic or combinatorially hyper-

bolic.

It is an easy consequence of this theorem that every automorphism of a CAT(0)

cube complex must be either elliptic or hyperbolic.

A few propositions follow which are useful for working with CAT(0) and combi-

natorial axes. An axis γ crosses a hyperplane H if γ intersects, but is not contained

in, H. These propositions will show that the set of hyperplanes crossing an axis of

a hyperbolic element is well defined.

Proposition 2.4.2 ([CS11]). If γ and γ′ are two CAT(0) axes of a hyperbolic

element g, then γ and γ′ cross the same set of hyperplanes.

Proof. This is proven in [CS11]; we include a proof here for completeness.

By the Flat Strip Theorem (Theorem II.2.13 in [BH99]), the CAT(0) convex

hull of γ ∪ γ′ is isometric to R× [0, D], where D is the Hausdorff distance between

γ and γ′, R × {0} = γ, and R × {D} = γ′. If γ crosses a hyperplane H, then H

must intersect the convex hull of γ ∪ γ′. In particular, H intersects γ in a point and

intersects the convex hull in a Euclidean line. This line must intersect γ′ when it

exits the convex hull, so γ′ crosses H. Conversely, if γ′ crosses H, then γ must also

cross H by the same logic.

Proposition 2.4.3 (Haglund [Hag07]). If γ and γ′ are two combinatorial axes of a

hyperbolic element g, then γ and γ′ cross the same set of hyperplanes.

We prove that the set of hyperplanes crossed by the axis of an element is the

same, regardless of whether it is a CAT(0) axis or a combinatorial axis.
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Proposition 2.4.4. Let g be a hyperbolic isometry on a locally finite, finite dimen-

sional CAT(0) cube complex X. Then the set of hyperplanes crossed by a combina-

torial axis for g is the same as the set of hyperplanes crossed by a CAT(0) axis for

g.

Proof. Let H be a hyperplane in X. An element g skewers a hyperplane H if there

is some power gn such that gnH+ ( H+. From Lemma 2.3 in [CS11], H crosses

a CAT(0) axis for g if and only if g skewers H. If we show that H intersects a

combinatorial axis for g if and only if g skewers H, we will be done.

Suppose a combinatorial axis for g crosses H. Because X is finite dimensional,

there must be some n so that gnH is disjoint from H. The element g does not

reverse the orientation of its axis, so gnH+ ( H+; g skewers H.

Suppose g skewers H. Then there is some n so that gnH+ ( H+. Let γ be a

combinatorial axis for g and p a 0-cube in γ. Without loss of generality, assume

p ∈ H−. Let m be the number of hyperplanes separating p from H. Then gn(m+1)H

is separated from H by at least m hyperplanes. Since gn(m+1)p is separated from

gn(m+1)H by m hyperplanes, it must be contained in H+. The combinatorial axis

γ is 〈g〉-invariant, so gn(m+1)p is also on γ. This shows that γ contains a point in

H− and a point in H+, so γ crosses H.

2.5 Hyperbolic Spaces and the Visual Boundary

Gromov developed a class of spaces capturing many useful properties of classical

hyperbolic geometry and of trees called δ-hyperbolic spaces in his seminal paper

[Gro87]. The concept has proved useful in many disciplines and is considered to

have started the field of geometric group theory. In this section we will cover some

useful ideas from the study of δ-hyperbolic groups. In the interest of space, we will

not always provide definitions in their full generality, and we omit some proofs. For

a more full exposition, see [Gro87] or [GdlH90].

Let X be a geodesic metric space. A geodesic triangle in X is called δ-slim if

each side of the triangle is contained in the δ-neighborhood of the union of the other
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two sides, where δ is some nonnegative constant. A geodesic metric space X is called

δ-hyperbolic if there is a uniform δ for which every geodesic triangle in X is δ-slim.

Examples of hyperbolic spaces include Hn and metric trees. The Euclidean plane is

a space which is not δ-hyperbolic.

The class of δ-hyperbolic spaces is invariant under an important type of map:

the quasi-isometry. Let f : X → Y be a map between metric spaces. Then f is a

(K,C)-quasi-isometric embedding if for every two points x1, x2 in X we have the

following bounds on the distance between their images:

1

K
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C.

The map f is called a quasi-onto if there is a constant C such that for every

point y in Y , we can find a point x in X so that f(x) is within a C-neighborhood

of y. A map is a (K,C)-quasi-isometry if it is a (K,C) quasi-isometric embedding

and quasi-onto. Often, we drop the constants and call a map a quasi-isometry if

there are some constants for which it is a (K,C)-quasi-isometry. Two metric spaces

are quasi-isometric if there exists a quasi-isometry between them, and one can show

that this is an equivalence relation.

An important property of δ-hyperbolic spaces is that they are invariant under

quasi-isometries. This allows us to extend the notion of δ-hyperbolicity from metric

spaces to finitely generated groups. A finitely generated group is a δ-hyperbolic

group if the Cayley graph associated to a fixed generating set and equipped with

the word metric is a δ-hyperbolic space. This is well-defined because two Cayley

graphs for a group associated to different generating sets are quasi-isometric. (In

fact, they are bi-Lipschitz.)

We can use the Svarc-Milnor Lemma to extend this further, which we need a few

definitions to state. A metric space is proper if every closed metric ball is compact.

Let G be a group and X a proper, geodesic metric space. An action of G on X

is properly discontinuous if for any basepoint x0 ∈ X and every compact subset

K ⊂ X, there are finitely many elements g ∈ G with g · x0 ∈ K. An action of G
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on X is cocompact if the orbit space X/G equipped with the quotient topology is

compact. For short, a group action that is properly discontinuous, cocompact, and

by isometries is called geometric. The Svarc-Milnor Lemma states:

Lemma 2.5.1 (Svarc-Milnor Lemma). Let G be a group acting geometrically on

a proper geodesic metric space X. Then the group G is finitely generated and for

every finite generating set S of G and every point x0 ∈ X, the orbit map

fx0 : Γ(G,S)→ X

is a quasi-isometry, where Γ(G,S) denotes the Cayley graph of G associated to the

generating set S.

This shows that if a group acts geometrically on a metric space X, then X is

δ-hyperbolic if and only if G is δ-hyperbolic.

An invariant of δ-hyperbolic groups that has proved extremely useful is the

visual boundary, sometimes called the Gromov boundary. We will denote the visual

boundary of a space X by ∂X. The visual boundary is formed from equivalence

classes of geodesic rays. Let X be a δ-hyperbolic space. Two geodesic rays γ1, γ2 in

X are equivalent if there is a constant K such that

d(γ1(t), γ2(t)) ≤ K

for all t.

The visual boundary is equipped with what is called the cone topology. Essen-

tially, geodesic rays that stay close for a long time represent points that are close

in the visual boundary. For a more formal definition, we need the Gromov product.

Given three points x, y, z in a metric space X, the Gromov product of y and z based

at x is

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)) .

The Gromov product measures how long the geodesic segments from x to y and

from x to z stay close. Let x0 be a basepoint in a δ-hyperbolic space X. Let
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p ∈ ∂X. We define the set V (p, r) to be the boundary points q such that there exist

representatives γ1 and γ2 for p and q, resp., satisfying

lim inf
t→∞

(γ1(t), γ2(t))x0 ≥ r.

These are the geodesics which stay close to γ1 for time r before diverging. The

cone topology is the topology with neighborhood basis the collection of V (p, r) with

r ≥ 0. One can show that the topology does not depend on the choice of basepoint

and it can be extended to a topology on X ∪ ∂X.

Furthermore, if X and Y are δ-hyperbolic spaces and f : X → Y is a quasi-

isometry, then we can extend f to a canonical homeomorphism F̂ : ∂X → ∂Y

([GdlH90]). Since the visual boundary of a δ-hyperbolic space is a quasi-isometry

invariant, we can define the visual boundary of a δ-hyperbolic group to be the visual

boundary of its Cayley graph with respect to any finite generating set.

2.6 The CAT(0) Boundary

In the previous section, we introduce δ-hyperbolic spaces and associate to each space

X a visual boundary ∂X. We will describe a related construction for CAT(0) spaces

called the CAT(0) boundary. In fact, if X is a δ-hyperbolic CAT(0) space, then its

visual boundary and CAT(0) boundary are homeomorphic in a natural way. For

this reason, we will often abuse notation and simply refer to the visual boundary

when we mean the CAT(0) boundary.

Let x0 be a basepoint in a complete CAT(0) space X. The CAT(0) boundary

∂X consists of geodesic rays with the same equivalence relation as in the visual

boundary above. Two rays γ1 and γ2 are equivalent if there is a constant K such

that

d(γ1(t), γ2(t)) ≤ K

for all t. Let U(γ,R, ε) denote the set of equivalence classes of geodesic rays where
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the representative γ′ based at γ(0) satisfies

d(γ(R), γ′(R)) ≤ ε.

Then the cone topology for ∂X has neighborhood basis U(γ,R, ε), where R > 0 and

ε > 0.

In Proposition III.3.7 from [BH99], it is shown that in the special case where X

is a proper, δ-hyperbolic CAT(0) space, the cone topologies on the visual boundary

and CAT(0) boundary coincide.

2.7 Least Area Surfaces

This section discusses some background on least area surfaces and the 4-plane prop-

erty, most of which comes from [FHS83] and [Li02]. First, we define some necessary

terminology. We then discuss results from [FHS83] regarding least area surfaces.

Last, we’ll see how least area surfaces relate to cube complexes by reviewing a

theorem from [Li02].

Throughout this section, M will be assumed to be a Riemannian manifold and

F a closed surface. A map f : F → M is incompressible if it induces an injection

on the fundamental group. A map f is two-sided if its normal bundle is trivial. An

immersion f is self-transverse if given two points x and x′ with f(x) = f(x′), there

exist small disks about x and x′ which are embedded by f and intersect transversely.

A map f : F →M is least area if the area of f is less than the area of any homotopic

map from F to M .

A natural initial question is which homotopy classes of maps contain least area

representatives. Schoen and Yau resolved this in [SY79], in which they prove the

following theorem.

Theorem 2.7.1 ([SY79]). Let M be a P 2-irreducible Riemannian 3-manifold and

F a closed, orientable surface not S2. If g : F →M is an incompressible map, then

there is a least area map f : F → M which is homotopic to g, any of which can be
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parametrized as an immersion.

The general philosophy of least area surfaces is that they intersect least, meaning

that the intersections and self-intersections of least area immersions are as small as

their homotopy classes allow. The main result of [FHS83] formalizes this.

Theorem 2.7.2 (Theorem 5.1 from [FHS83]). Let M be a closed, P 2-irreducible

Riemannian 3-manifold and let F be a closed surface, not S2 nor P 2. Let f : F →M

be a least area immersion such that f∗ : π1(F ) → π1(M) is injective and such that

f is homotopic to a two-sided embedding g. Then either

1. f is an embedding, or

2. f double covers a one-sided surface K embedded in M and g(F ) bounds a

submanifold of M which is a twisted I-bundle over a surface isotopic to K.

An example of case (ii) can be obtained by taking M to be the product of a flat

Mobius band with a circle and F to be a torus. There is a family of totally geodesic

tori homotopic to the boundary of this 3-manifold, each of which has the same area,

minimal in its homotopy class. Exactly one member of this family is an immersion

and double covers a one-sided, embedded torus.

Lemma 6.5 of [FHS83] shows how we can leverage algebraic intersection informa-

tion into geometric intersection information. Let M be a compact, P 2-irreducible

Riemannian 3-manifold. Let F1 and F2 be closed surfaces, not S2 or P 2, and let

fi : Fi → M be a two-sided, least area, incompressible map for i = 1, 2. Pick a

subgroup π1(Fi) of π1(M) from the conjugacy class of subgroups determined by fi.

Let Mi be the cover of M with fundamental group π1(Fi). We fix a lift of fi in Mi

and call this fixed lift Fi, abusing notation. It follows from earlier work in [FHS83]

that this copy of Fi is embedded and two-sided. Let M̃ denote the universal cover

of M and F̃i be the pre-image in M̃ of Fi in Mi. Since Fi is an embedded surface

in Mi, F̃i is an embedded plane.

Lemma 2.7.1 (Lemma 6.5 from [FHS83]). If G = π1(Fi) ∩ γπ1(Fj)γ−1 is infinite

cyclic, where γ ∈ π1(M), then either F̃i and γF̃j are disjoint or they intersect
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transversely in a line whose stabilizer contains G.

In particular, if F is a two-sided, least area surface and two intersecting lifts F̃

and γF̃ have π1(F ) ∩ γπ1(F )γ−1 ∼= Z, the two lifts must intersect exactly in a line.

In [Li02], Li found a large class of closed 3-manifolds which are not homeomorphic

to a non-positively curved cube complex. The theorem from his paper follows.

Theorem 2.7.3 (Theorem 3 from [Li02]). Let M be an orientable and irreducible

3-manifold whose boundary is an incompressible torus. Suppose that M does not

contain any closed, nonperipheral, embedded, incompressible surfaces. Then only

finitely many Dehn fillings on M can yield 3-manifolds that are homeomorphic to

3-dimensional non-positively curved cube complexes.

We need one definition for a sketch of Li’s proof. Let g be an incompressible

surface. Then g : F → M has the 4-plane property if for any least area map f

homotopic to g, any four lifts of f contains a disjoint pair. Recall that these lifts

must be embedded planes by work in [FHS83].

Li proves this theorem by contradiction, supposing that a Dehn filling of M with

slope s is homeomorphic to a 3-dimensional non-positively curved cube complex. He

then shows that M must contain an incompressible surface with boundary slope s

that satisfies the 4-plane property. However, he shows in an earlier theorem that

the collection of slopes of incompressible surfaces satisfying the 4-plane property is

finite. Therefore the Dehn fillings along the infinitely many other slopes cannot be

homeomorphic to a non-positively curved cube complex. In fact, these Dehn fillings

cannot contain any incompressible surfaces satisfying the 4-plane property.

We prove a stronger result in chapter 3. In fact, the fundamental groups of the

3-manifolds obtained by Dehn filling cannot act geometrically on any 3-dimensional

CAT(0) cube complex, and so the 3-manifolds are not homotopy equivalent to any

3-dimensional non-positively curved cube complex.
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2.8 The Cubical Flat Torus Theorem

An abelian subgroup is highest if it contains no finite index subgroup that is con-

tained in a higher rank free-abelian subgroup. In this section, we will assume that

a group Γ containing a highest free-abelian subgroup A of rank p generated by

{a1, . . . , ap} acts properly and cocompactly by isometries on a CAT(0) cube com-

plex X.

By the Flat Torus Theorem (Theorem II.7.1 in [BH99]),

Min(A) ∼= Y × Ep.

Let E be {y} × Ep for some y ∈ Y . If E is contained in a hyperplane, the 1
2 -

neighborhood about E contains a region isometric to Ep×(−1
2 ,

1
2), where the interval

lies orthogonal to the hyperplane. In this case, let E be a level set of Ep that is not

a hyperplane.

If a hyperplane intersects E, it intersects E in a subspace isometric to Ep−1. Two

hyperplanes are said to be parallel if their intersections with E do not intersect. Let

P1, . . . , Pq be the parallelism classes of hyperplanes in E. The only proper and

cocompact action of Zp on Ep is by translation, so each ai acts on E by translations.

An action is disjoint if every pair of hyperplanes in the same orbit do not intersect

in X. By Lemma 2.3 of [WW15], each parallelism class Pi in E admits a disjoint

action by some element gi ∈ A.

Let H and H ′ be two hyperplanes that intersect E. If H and H ′ are not parallel,

they are said to be crossing. The rest of the definitions will assume thatH andH ′ are

both in the parallelism class Pi. Two hyperplanes H and H ′ are said to be crossing

if gkiH intersects gk
′
i H

′ for every integer k and every integer k′. The hyperplanes

H and H ′ are said to be aligned if gkiH intersects H ′ for only finitely many k.

Otherwise, there exists an N ∈ Z such that H intersects gkiH
′ for all k > N or H

intersects gkiH
′ for all k < N . In this case, H and H ′ are said to be semi-crossing.

One can show that these definitions are independent of the choice of gi.
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A quasi-line is a CAT(0) cube complex that is quasi-isometric to a line.

Theorem 2.8.1 (Wise-Woodhouse [WW15], Cubical Flat Torus Theorem). Let G

act properly and cocompactly on a CAT(0) cube complex X. Let A be a highest

virtually abelian subgroup of G and let p = rank(A). Then A acts properly and

cocompactly on a convex subcomplex Y ⊆ X such that Y ∼=
∏p
i=1Ci, where each Ci

is a quasi-line.

Proof. The Cubical Flat Torus Theorem is important to the results of this work, so

we will provide a proof sketch.

From Corollary II.7.2 of [BH99], X contains an A-invariant, p-dimensional flat

E. Most of the work of proving the Cubical Flat Torus Theorem is in an earlier

theorem of [WW15], which states that if a (not necessarily highest) virtually abelian

subgroup A of rank p acts properly and cocompactly on a CAT(0) flat E, then either

Hull1(E) is a product of p quasi-lines or there exists a finite index subgroup B < A

so that Min(B) ∩Hull1(E) is not B-cocompact. In order to prove the Cubical Flat

Torus Theorem, they show that such a finite index subgroup cannot exist when A

is highest.

Let B < A be a finite index subgroup whose action on the hyperplanes inter-

secting E is disjoint, meaning that distinct hyperplanes in the same B-orbit are

disjoint. For each parallelism class Pi, fix an element zi which acts disjointly on

the hyperplanes of Pi. It is not hard to show that alignment of 〈zi〉-orbits is an

equivalence relation.

First, consider the case when there are no semi-crossing orbits of hyperplanes,

so every pair of orbits is either aligned or crossing. Let {Ai}mi=1 be an enumeration

of the alignment classes of orbits. Since any hyperplane in Ai must intersect any

hyperplane in Aj when i 6= j, we can use Roller duality to show that Hull1(E) ∼=∏m
i=1X(Ai). In the case that the number of alignment classes is the same as the

rank of A, we get that Hull1(E) is a product of p quasi-lines. Otherwise, m > p and

Min(B) ∩Hull1(E) is not B-cocompact.
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Now suppose there are at least two semi-crossing orbits of hyperplanes. Wise-

Woodhouse construct a series of B-equivariant injective cubical maps φk that map

E to a flat distance k from E. Each image φk(E) is contained in Min(B)∩Hull1(E)

and invariant under B, so Hull1(E) ∩Min(B) cannot be B-cocompact.

From Corollary II.7.2 of [BH99], X contains an A-invariant, p-dimensional flat

E. In [WW15], Wise and Woodhouse show that the cubical convex hull of E is a

product of p quasi-lines. Furthermore, they show that in the case that A is free-

abelian, there is a preferred set S of generators of a finite-index subgroup of A. The

intersection of A with another highest abelian subgroup A′ must occur “along” a

subgroup generated by a subset of S. This provides a high degree of control over

intersections of highest abelian subgroups.

Lemma 2.8.1 (Wise-Woodhouse [WW15], Lemma 4.2). Let A be a rank p virtually

abelian group acting properly and cocompactly on a CAT(0) cube complex
∏p
i=1Ci,

where each Ci is a quasi-line. Then there exists a finite index free-abelian subgroup

Â ≤ A with basis S = {â1, . . . , âp} such that âi · (c1, . . . , ci, . . . , cp) = (c1, . . . , âi ·

ci, . . . , cp) for each i.

Proof. This proof is pulled directly from [WW15]. By Proposition 2.3.1 ([CS11]),

there is a finite index subgroup B < A which acts on
∏
Ci as a product of auto-

morphisms of the factors. For each i, there is a subgroup Bi < B which acts on

an invariant line li ⊂ Ci by translation. Let Â = ∩iBi. There is a homomorphism

ϕ : Â → Zp induced by the action of Â on
∏
li. Since Â acts cocompactly on

∏
li,

ϕ(Â) must be finite index in Zp. Therefore for every i there is an ai ∈ Â such that

ϕ(ai) = (0, . . . , 0,mi, 0, . . . , 0), where mi 6= 0 is the ith entry.

Theorem 2.8.2 (Wise-Woodhouse [WW15], Theorem 4.1). Let G act properly and

cocompactly on a CAT(0) cube complex X. Let A ≤ G be a highest free-abelian

subgroup, and let p = rank(A). There is a set S = {â1, . . . , âp} ⊆ A such that the

following holds: For any highest rank free-abelian subgroup A′′ ≤ G, the intersection

A′ ∩A is commensurable to a subgroup generated by a subset of S.
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Proof. This is a sketch of the proof of Theorem 4.1 from [WW15].

Let Ỹ =
∏
Ci and Ỹ ′ =

∏
C ′i be the products of quasi-lines on which A and

A′ act, resp., by the Cubical Flat Torus Theorem. Denote by Ỹ +r the cubes cr

in X contained in a chain of cubes c0, c1, . . . , cr where c0 ⊂ Ỹ and ci ∩ ci+1 6= ∅

for every i. This forms an L1-convex, A-cocompact subcomplex. Choose r so that

the intersection E = Ỹ ∩ Ỹ ′+r is nonempty. Then E is an L1-convex subcomplex

of a product of cube complexes, so E must also be an L1-convex product of cube

complexes E =
∏
Ei where Ei ⊂ Ci. Let Â and Â′ be the finite index subgroups

of A and A′, resp., we get from Lemma 2.8.1. The action of Â ∩ Â′ on E must be

cocompact since Ỹ is Â-cocompact and Ỹ ′+r is Â′-cocompact.

For each i, the stabilizer of Ei in Â must be either 〈â1, . . . , ˆai−1, âi
ni , ˆai+1, . . . , âp〉

or 〈â1, . . . , ˆai−1, ˆai+1, . . . , âp〉. By construction, each âj with j 6= i acts trivially on

Ei. If some âi
ni stabilizes Ei, then Ei is a quasi-line. Otherwise Ei must be compact,

since Â∩ Â′ acts cocompactly on E. Let S0 be the subset of S where i ∈ S0 if Ei is

a quasi-line.

We can construct a subcomplex E′ = Ỹ +r∩ Ỹ ′ as above. Wise-Woodhouse show

that E and E′ lie within bounded neighborhoods of each other. Let Γ be the Cayley

graph of G with respect to some finite generating set and φ : Γ→ X the orbit map

with respect to some basepoint x0 ∈ X. Let B = stabÂ(E) and B′ = stabÂ′(E
′).

Since φ(B) and φ(B′) lie within finite neighborhoods of each other, so must B and

B′ in Γ. The action of B stabilizes a finite collection of cosets of B′, so B and B′

must be commensurable.

Let H = B∩B′, which we’ve shown is a finite index subgroup of both B and B′.

Since Â ∩ Â′ < B < Â and Â ∩ Â′ < B′ < Â′, we have H = Â ∩ Â′ is a finite index

subgroup of B. The claim then follows from the fact that B is commensurable to

the subgroup generated by S0 and Â ∩ Â′ is finite index in A ∩A′.

Following the proofs of Lemma 2.8.1 and Theorem 2.8.2 from [WW15], you will

note that the generating sets S in each are the same.
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2.9 Rank Rigidity for CAT(0) Cube Complexes

In this section, we will provide a brief overview of some key definitions and theorems

from [CS11]. Most of the results in the paper require essential cube complexes or

group actions, so we will review that concept first. Then we will review a few results

that will be used later.

Let X be a CAT(0) cube complex. A halfspace H± is deep if it contains arbi-

trarily large balls in X and shallow otherwise. Then we can categorize hyperplanes

into three categories. A hyperplane H is trivial if both H+ and H− are shallow.

A hyperplane H is half-essential if H+ is deep and H− is shallow or vice versa.

Lastly, a hyperplane H is essential if both H+ and H− are deep. We let Ess(X),

Hess(X), and Triv(X) denote the essential, half-essential, and trivial hyperplanes

of X, respectively.

A CAT(0) cube complex is essential if all its hyperplanes are essential. The core

of X is defined to be the dual cube complex X(Ess(X) ∪ Triv(X)). The essential

core of X is X(Ess(X)). Note that the essential core is always an essential CAT(0)

cube complex. In addition, because the property of being trivial, half-essential, or

essential is preserved by automorphisms of the cube complex, there is an induced

action of Aut(X) on the essential core of X.

Let G be a group acting by automorphisms on a CAT(0) cube complex X.

Choose a vertex x ∈ X. A halfspace H± is G-deep if it contains orbit points of x

arbitrarily far from H. A hyperplane is G-essential if both H+ and H− are G-deep.

We can similarly define G-half-essential and G-trivial hyperplanes and denote the

sets of hyperplanes Ess(X,G), Hess(X,G), and Triv(X,G). The action of G on X

is essential if every hyperplane in X is G-essential. Similar to above, the G-core and

G-essential cores are X(Ess(X,G) ∪ Triv(X,G)) and X(Ess(X,G)), resp.

Proposition 3.12 from [CS11] neatly summarizes some useful properties of the

essential core:

Proposition 2.9.1 (Proposition 3.12 of [CS11]). Let G be a finitely generated group

acting properly discontinuously on a finite-dimensional, locally finite CAT(0) cube
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complex X. Let Y denote the G-essential core of X. Then

1. G has finitely many orbits on H(Y ) = Ess(X,G).

2. Y is unbounded if and only if G has no global fixed point on X.

3. Y embeds as a convex, G-invariant subcomplex of X.

4. Every hyperplane of Y is skewered by some element of G.

Of particular use is the fact that if a group acts properly discontinuously and

essentially on a CAT(0) cube complex X, then for every hyperplane H of X, there

is some hyperbolic element of G whose axis crosses H.

Two hyperplanes H and H ′ are strongly separated if there is no hyperplane which

intersects both H and H ′. One exciting result from the paper is that a CAT(0)

cube complex is irreducible if and only if it contains a pair of strongly separated

hyperplanes.

Proposition 2.9.2 (Proposition 5.1 from [CS11]). Let X be a finite-dimensional

unbounded CAT(0) cube complex such that Aut(X) acts essentially without a fixed

point at infinity. Then the following conditions are equivalent.

1. X is irreducible.

2. X contains a pair of strongly separated hyperplanes.

3. For each halfspace H+, there is a pair of halfspaces U+ and V + such that

U+ ⊂ H+ ⊂ V + and U and V are strongly separated.

Lastly, we will use Lemma 6.1, the key lemma for proving rank rigidity for

CAT(0) cube complexes.

Lemma 2.9.1 (Lemma 6.1 from [CS11]). Let X be a finite-dimensional CAT(0)

cube complex. Let H+ be a halfspace and let g ∈ Aut(X) be a hyperbolic isometry

with axis γ such that gH+ ( H+. Assume that the hyperplanes H and gH are

strongly separated.
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Then there is a constant C, depending only on g, such that each geodesic segment

crossing at least three hyperplanes in the orbit 〈g〉H has a non-empty intersection

with the C-neighborhood of γ.

In particular, since the CAT(0) axes for an element are all parallel, it follows

that any element g with an axis γ crossing a pair of strongly separated hyperplanes

must have its axes contained in a bounded neighborhood of γ. In order to find such

a pair, we can make use of their Double Skewering Lemma.

Lemma 2.9.2 (Double Skewering Lemma from [CS11]). Let X be a finite-dimensional

CAT(0) cube complex and G < Aut(X) a group acting essentially without fixed point

at infinity. Then for any two halfspaces H+ ⊂ V +, there exists an element g ∈ G

such that

gV + ( H+ ⊂ V +.

Caprace-Sageev use this lemma to show that such an element is rank-one and

prove their rank rigidity result for CAT(0) cube complexes. One formulation of their

rank rigidity theorem follows.

Theorem 2.9.1 (Theorem 6.3 in [CS11]). Let X be a finite-dimensional CAT(0)

cube complex and G < Aut(X) a group acting essentially without fixed point at

infinity. Then X is a product of two cube subcomplexes or every hyperplane of X is

skewered by a contracting isometry in G. If in addition X is locally compact and G

acts cocompactly, then the same conclusion holds even if G fixes a point at infinity.

With some work they prove the following corollary, useful for determining an

upper bound on the number of irreducible factors a cube complex can have.

Corollary 2.9.1 (Corollary D in [CS11]). Let X be a locally compact CAT(0) cube

complex and G be a discrete group acting cocompactly on X. If X is a product of n

unbounded cube complexes, then G contains a subgroup isomorphic to Zn.

As a consequence, if an unbounded CAT(0) cube complex X admits a cocompact

action by a hyperbolic group, X must be irreducible.
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2.10 Cubical Minset Decomposition

The cubical minsets introduced in this section are a generalization of the character-

istic sets introduced in [FFT16]. Many propositions and proofs in this section have

analogues in [FFT16].

Let G×A act essentially on a CAT(0) cube complex X, where A is free-abelian.

The main idea of the section is to decompose X as a product X⊥A ×XA, where X⊥A

represents the directions orthogonal to the axes of elements in A and XA represents

the directions parallel to to the axes of elements in A. We will also show that A

has a global fixed point in X⊥A . In order to get a decomposition of X, we only

need A to be central. That will be our assumption in this section, though all of our

applications will have groups of the form G×A.

Let H denote the set of hyperplanes in X. We divide H into two sets:

HA = {H ∈ H | a combinatorial axis for some g ∈ A crosses H}

H⊥A = {H ∈ H | H separates two combinatorial axes for every g ∈ A}

Proposition 2.10.1. Let G act essentially on a finite dimensional CAT(0) cube

complex X and A ≤ G be a central free-abelian subgroup. Then every hyperplane of

X is in HA or H⊥A.

Proof. Let H ∈ H\HA be a hyperplane of X. Then there is no H does not intersect

a combinatorial axis for any g ∈ A. We’ll show H separates two combinatorial axes

for every g ∈ A, so H ∈ H⊥A.

Fix g ∈ A, a combinatorial axis γ for g, and a 0-cube p ∈ γ. The geodesic γ

does not intersect H, so without loss of generality γ ⊂ H−. The action of G is

essential, so there is some g′ ∈ G such that g′p ∈ H+. Since A is central in G, g′γ is

another combinatorial axis for g. Any two combinatorial axes for g cross the same

set of hyperplanes, so g′γ does not cross H. Therefore g′γ ⊂ H+; H separates two

combinatorial axes for g.
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Let XA be the dual cube complex X(HA) and X⊥A be the dual cube complex

X(H⊥A). We will show that X ∼= X⊥A ×XA.

Before proving that X decomposes as a product, let’s examine a motivating

example. Suppose the product of groups F2 × Z is acting on the product of its

standard Cayley graphs, T ×R. Then {1F2} × Z is a central free-abelian subgroup;

this is our A. There are two types of hyperplanes in this cube complex. There are

hyperplanes parallel to the R direction, of the form {p}×R. One can see that, given

one of these hyperplanes H, we can find two combinatorial axes of any element of A

separated by H. Therefore the hyperplanes of the form {p}×R belong to H⊥A. There

are also hyperplanes orthogonal to the R direction, of the form T ×{p}. One can see

that a combinatorial axis of any element of A will intersect all of these hyperplanes,

so they belong to HA. In this example the dual cube complex X(H⊥A) = X⊥A is the

tree factor T , and the dual cube complex X(HA) = XA is the R factor.

Proposition 2.10.2. Let G act essentially on a finite dimensional CAT(0) cube

complex X and A ≤ G be a central free-abelian subgroup. Then X decomposes as a

product

X ∼= X⊥A ×XA.

Proof. Fix H ∈ HA and H ′ ∈ H⊥A. By definition, H must intersect the combinatorial

axes of some element g ∈ A and H ′ must separate two combinatorial axes of g.

Therefore H intersects the two combinatorial axes that H ′ separates, so H must

intersect H ′. Since each hyperplane in HA intersects every hyperplane in H⊥A, the

subcomplex of X dual to HA and H⊥A must be a product region. This shows that

X must contain a subcomplex isomorphic to

X(H⊥A)×X(HA) = X⊥A ×XA.

We showed in Proposition 2.10.1 that every hyperplane of X is in HA or H⊥A, so by

Roller duality X ∼= X⊥A ×XA.

Proposition 2.10.3. Let G act on a CAT(0) cube complex X and A ≤ G be a
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central free-abelian subgroup. Every g ∈ A acts by an elliptic isometry on X⊥A .

Proof. Suppose there is a g ∈ A that acts by a hyperbolic isometry on X⊥A . Then a

combinatorial axis L for g in X projects to an axis for g in X⊥A . The projection of

L must cross some hyperplanes in X⊥A ; this is impossible, as the hyperplanes in H⊥A

cannot intersect a combinatorial axis of g. By contradiction, g acts by an elliptic

isometry on X⊥A .

Proposition 2.10.4. Let G act on a CAT(0) cube complex X and A ≤ G be a

central free-abelian subgroup where every element of A acts by an elliptic isometry.

Then A has a global fixed point.

Proof. Fix g, g′ ∈ A and let C = Min(g). Then C is non-empty, closed, and convex.

C is also g′-invariant, since g and g′ commute. By Proposition 6.2 in [BH99],

Min(g) ∩ Min(g′) is non-empty. Let {g1, . . . , gn} be a generating set for A. We

can apply the same reasoning inductively to show that ∩i Min(gi) is non-empty; in

particular, this implies that A has a global fixed point.
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Chapter 3

Products of Hyperbolic Groups

In the first section of this chapter, we prove a decomposition theorem for cube

complexes admitting a nice enough action by a product of non-elementary hyperbolic

groups. In the second section, we provide an application of the theorem, proving

the existence of an infinite family of groups with an arbitrarily large gap between

their CAT(0) dimension and their CAT(0) cubical dimension.

3.1 Products of Hyperbolic Groups

This goal of this section is to prove the decomposition theorem below.

Theorem 3.1.1. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose

G = G1× · · ·×Gn acts properly, cocompactly, and essentially, by cubical isometries

on a CAT(0) cube complex X. Then

• X splits as a product of irreducible CAT(0) cube complexes X = X1×· · ·×Xn

and each g ∈ G acts on X1×· · ·×Xn as a product of isometries µ1×· · ·×µn;

• every Gi acts properly and cocompactly on Xi; and

• every Gi contains a finite-index subgroup G′′i which acts trivially on every Xj

for i 6= j.

It follows from this theorem that G contains a finite index subgroup G′1×· · ·×G′n

which acts as a product action on X1 × · · · ×Xn, where the action of G′i on Xi is

proper and cocompact.

We’ll prove the theorem in a series of lemmas. First, we obtain the product

decomposition of X. Then we prove that each factor in the product decomposition

must be irreducible, and no element can permute isomorphic factors. We then prove

that the action must be cocompact, after which a bit of work finishes the proof of

the theorem.
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Lemma 3.1.1. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose G =

G1×· · ·×Gn acts properly, cocompactly, essentially, and without inversion by cubical

isometries on a CAT(0) cube complex X. Then X decomposes as a product X =

X1 × · · · ×Xn.

Proof. We will prove this lemma in three stages. First, note that by Proposition

3.12 of [CS11], every hyperplane is skewered by some element of G. We show that

if a hyperplane H is skewered by (g1, . . . , gn) ∈ G1 × · · · × Gn, then in fact H is

skewered by exactly one gi. Then we prove that if H is skewered by some other

element (g′1, . . . , g
′
n), it must be the ith component g′i that skewers H. Therefore we

can partition the set of hyperplanes into n sets, where a hyperplane H is in the ith

set Hi if it is skewered by some element of Gi. To finish the proof, we show that

every hyperplane in Hi intersects every hyperplane of Hj where i 6= j.

First, we show that if a hyperplane H is skewered by (g1, . . . , gn) ∈ G1×· · ·×Gn,

then it is skewered by exactly one gi. Let H denote the set of hyperplanes of

X. Fix a hyperplane H ∈ H. The group G is acting properly, cocompactly, and

essentially on X, so by Proposition 3.12 of [CS11], H is skewered by some element

(g1, . . . , gn) ∈ G1× · · · ×Gn. Since each Gi is hyperbolic, the free-abelian subgroup

A generated by {g1, . . . , gn} is highest. By Theorem 2.8.1, A acts properly and

cocompactly on a convex subcomplex Y = C1×· · ·×Cn, where each Ci is a quasi-line.

By Lemma 2.8.1, there is a finite index subgroup A′ < A generated by {α1, . . . αn}

so that αi acts trivially on Cj if i 6= j.

Every Gj is non-elementary hyperbolic, so for every j we can find an element

g′j ∈ Gj such that gj and g′j do not commute. Fixing an index i, we note that the

subgroup Bi generated by {g′1, . . . , g′i−1, gi, g′i+1, . . . , g
′
n} is another highest abelian

subgroup. By Theorem 2.8.2, the intersection A ∩ Bi = 〈gi〉 is commensurable to

a group generated by a subset of {α1, . . . , αn}. This means that some power α
kj
j

generates a finite index subgroup of 〈gi〉. Without loss of generality we can relabel

αj as αi, so we’ve shown that αkii = gni
i for some ni. Note that two components gi

and gj cannot be powers of the same αk. Since i was arbitrary, we’ve now found

that the set {gn1
1 , . . . , gnn

n } generates a finite-index subgroup A′′ < A′, and gni
i acts
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trivially on each Cj with i 6= j.

By the Flat Torus Theorem of [BH99], there is an A-invariant n-dimensional

flat E contained in X on which A acts properly and cocompactly. The flat E is

constructed as the convex hull of A·x0, where x0 is some point in Min(A). Note that

E is not, in general, a subcomplex. Recall that the hyperplane H is skewered by

(g1, . . . , gn), so H must intersect every CAT(0) axis of (g1, . . . , gn). In particular, H

intersects the CAT(0) axis γ which contains x0. By construction, γ is contained in

the flat E, so H intersects E. The product of quasi-lines C1×· · ·×Cn is constructed

in [WW15] as the dual cube complex to the set of hyperplanes intersecting E, so H

must be a hyperplane of Ci for some i. As C1 × · · · × Cn is the dual cube complex

to a set of hyperplanes of X, there is an embedding of C1 × · · · × Cn into X which

is convex in the combinatorial metric. We will often refer to C1 × · · · × Cn as a

subcomplex of X for this reason.

Suppose H is dual to Ci. We showed that g
nj

j acts trivially on Ci when i 6= j.

Therefore for each gj with j 6= i, no axis of gj can intersect H. Otherwise, gj would

skewer H and g
nj

j could not act trivially on Ci. Since (g1, . . . , gn) skewers H and

every gj with j 6= i does not skewer H, it follows that gi must skewer H. We’ve

shown that for any hyperplane H of X, if (g1, . . . , gn) skewers H, then exactly one

gi skewers H and every gj for j 6= i does not skewer H.

The next step is to show that no gj ∈ Gj skewers H when j 6= i. Suppose there

exists an element gj ∈ Gj that skewers H. Let gi ∈ Gi be the element we’ve already

shown skewers H. We can construct a highest abelian subgroup A containing gi and

gj generated by {g1, . . . , gi, . . . , gj , . . . gn}, where the generators other than gi and gj

are arbitrary infinite order elements from their respective factors. By our previous

argument, A acts properly and cocompactly on a product of quasi-lines C1×· · ·×Cn

and there is an nk for each k such that gnk
k acts trivially on Cl when k 6= l. An

axis of gi intersects H, so H must be a hyperplane dual to Ci. However, an axis for

gj also intersects H, so no power of gj acts trivially on Ci, a contradiction. We’ve

shown that for any hyperplane H of X, there is a well-defined index i such that if

gj ∈ Gj skewers H, then j = i.
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The last element of the proof that remains to be shown is that if i 6= j then

every Hi ∈ Hi intersects every Hj ∈ Hj . Recall that Hi is defined to be the set of

hyperplanes skewered by some element gi ∈ Gi. The proof up to this point confirms

that this index i is well defined.

Choose hyperplanes H1 ∈ H1, . . . ,Hn ∈ Hn. We will show that these hyper-

planes all pairwise intersect. For each i, by the definition of Hi, there is an element

gi ∈ Gi that skewers Hi. The set of these skewering elements generates a rank-n free-

abelian subgroup A. By the Flat Torus Theorem of [BH99], there is an A-invariant

n-dimensional flat E contained in X on which A acts properly and cocompactly.

The only proper, cocompact action of Zn on En is by translations, so every gi acts

on E as a translation. Fix indices i and j and a point x ∈ Hi. The element gj acts

as a translation and does not skewer Hi, so the orbit 〈gj〉x must be contained in

Hi. However, gj does skewer Hj , so 〈gj〉x must contain points on both sides of Hj .

Because Hi is convex, Hi must intersect Hj .

We’ve shown that the set of hyperplanes H of X can be partitioned as H1t . . .t

Hn, where Hi denotes the set of hyperplanes skewered by some element gi ∈ Gi. In

addition, for any Hi ∈ Hi and Hj ∈ Hj , Hi and Hj must intersect. Therefore X

splits as a product of cube complexes

X = X1 × · · · ×Xn,

where Xi is the dual cube complex to Hi.

Lemma 3.1.2. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose G =

G1×· · ·×Gn acts properly, cocompactly, essentially, and without inversion by cubical

isometries on a CAT(0) cube complex X. From Lemma 3.1.1, X decomposes as a

product X = X1 × · · · ×Xn. Then each Xi is irreducible.

Proof. This follows fairly directly from Corollary 2.9.1 of [CS11], which is as follows.

Suppose X is a locally compact CAT(0) cube complex and G is a discrete group

acting cocompactly on X. If X is a product of n unbounded cube complexes, then

G contains a subgroup isomorphic to Zn.
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Choose a hyperplane Hi belonging to Xi. Because G acts essentially on X, there

must be orbit points arbitrarily far from Hi in X. This implies that there must be

infinitely many hyperplanes in X that do not intersect Hi. As Hi intersects the

hyperplanes dual to every factor other than Xi, all of these hyperplanes must be

dual to Xi. Because Xi is finite dimensional and locally finite, we’ve shown that Xi

is unbounded.

Suppose Xi decomposes as a product of CAT(0) cube complexes Xi = X ′i ×X ′′i .

Because the action of G is essential, X ′i and X ′′i must be unbounded. Then G acts on

a product of n+1 unbounded cube complexes, so G contains a subgroup isomorphic

to Zn+1. This is a contradiction, as G is a product of n hyperbolic groups.

Lemma 3.1.3. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose G =

G1×· · ·×Gn acts properly, cocompactly, essentially, and without inversion by cubical

isometries on a CAT(0) cube complex X. From Lemma 3.1.1, X decomposes as a

product X = X1 × · · · ×Xn. Then every g ∈ G acts on X as a product of cubical

isometries µ1 × · · · × µn, where µi is a cubical isometry of Xi.

Proof. First, by Lemma 3.1.2 and Lemma 3.1.1, we have that X decomposes as a

product of n irreducible cube complexes

X = X1 × · · · ×Xn.

In addition, from Proposition 2.6 of [CS11] every cubical isometry of X preserves

this decomposition up to permutation of isomorphic factors. We will show that if

the permutation of isomorphic factors unduced by any g ∈ G sends a factor Xj to

Xk, then j = k. It is enough to show this holds for every gi ∈ Gi.

Choose gi ∈ Gi and suppose the permutation induced by gi maps Xj to Xk.

Let gj ∈ Gj be an element which skewers a hyperplane Hj of Xj . Then giHj is

a hyperplane of Xk. Since gj skewers Hj , gigjg
−1
i skewers giHj . If i 6= j, then gi

and gj commute. Thus gigjg
−1
i = gj ∈ Gj . If i = j, then gigjg

−1
i ∈ Gj . In either

case, gigjg
−1
i can only skewer hyperplanes of Xj . Since gigjg

−1
i skewers giHj , a

hyperplane of Xk, we must have j = k as desired.
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Lemma 3.1.4. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose G =

G1×· · ·×Gn acts properly, cocompactly, essentially, and without inversion by cubical

isometries on a CAT(0) cube complex X. From Lemma 3.1.1, X decomposes as a

product X = X1 × · · · ×Xn. We claim that any gi ∈ Gi acts on X1 × · · · ×Xi−1 ×

Xi+1 × · · · ×Xn as an elliptic isometry.

Proof. Let X̂i denote X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn. Fix an element gi ∈ Gi

and note that gi has a well-defined action on X̂i by Lemma 3.1.3. By Lemma 3.1.1,

gi can only skewer hyperlanes of Xi. Since gi does not skewer any hyperplanes of

X̂i, it must act as an elliptic isometry on X̂i.

Lemma 3.1.5. Let G1, . . . , Gn be non-elementary hyperbolic groups. Suppose G =

G1×· · ·×Gn acts properly, cocompactly, essentially, and without inversion by cubical

isometries on a CAT(0) cube complex X. From Lemma 3.1.1, X decomposes as a

product X = X1 × · · · ×Xn. Then Gi acts cocompactly on Xi.

Proof. We showed that Xi is irreducible, so by Proposition 5.1 of [CS11], Xi contains

a pair H,V of strongly separated hyperplanes. By the Double Skewering Lemma,

also from [CS11], there must be some gi ∈ Gi such that

giH
+ ( V + ⊂ H+.

Therefore a CAT(0) axis γ of gi intersects H and V . Using Lemma 6.1 of [CS11], we

ascertain that every axis of gi must lie in a bounded Hausdorff neighborhood of of

γ. The set Min(gi) is the union of the axes of gi and has the form Min(gi) = Y ×R

by Theorem II.6.8 of [BH99]. Because the axes of gi lie in a bounded Hausdorff

neighborhood of γ, Y must be bounded.

Choose some gj ∈ Gj with i 6= j. From [BH99], we know that Min(gi) is non-

empty, complete, and convex. Since gi and gj commute, Min(gi) is also invariant

under the action of gj . It then follows from Proposition II.6.2(4) of [BH99] that

Min(gi) ∩Min(gj) must be non-empty. In particular, gj fixes a point in Min(gi), as

gj acts elliptically on Xi. From Theorem II.6.8 of [BH99], gj acts as an isometry
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on each factor of Min(gi) = Y × R. This means that gj acts on R with a fixed

point, so gj must either reflect across that fixed point or act trivially. Since gi

and gj commute and gi acts as a translation on R, gj must act trivially. We’ve

shown that gj(y0, t0) must stay within Y × {t0} for any y0 ∈ Y and t0 ∈ R. Let

Ĝi = G1× · · · ×Gi−1×Gi+1× · · · ×Gn denote the product excluding Gi. It follows

that for any g ∈ Ĝi, g(y0, t0) must be in Y × {t0}, so Ĝi(y0, t0) ⊂ Y × {t0}. Since

Y is bounded, this implies that the Ĝi-orbit of any point in Min(gi) is bounded.

Suppose Gi does not act cocompactly on Xi. The cube complex X admits a

proper, compact action, so it must be finite-dimensional and locally finite. As Xi

is a factor of X, Xi must also be finite-dimensional and locally finite. Thus if Gi

does not act cocompactly on Xi, there must exist an unbounded sequence of vertices

(xk) in Xi such that xk = gkx1 for some gk ∈ Ĝi. Choose an element gi ∈ Gi

that skewers a pair of strongly separated hyperplanes of Xi as above, and let γ be

a CAT(0) axis for gi containing a point x0 of Xi. Since x0 ∈ Min(gi), we know

that Ĝix0 is bounded. Let K be the diameter of Ĝix0 and D the distance between

x0 and x1. Then every point in Ĝix1 must stay within a (D + K)-neighborhood

of x0, contradicting the unboundedness of the sequence. By contradiction, Gi acts

cocompactly on Xi.

Lemma 3.1.6. Let Γ = G1×G2 act by cubical isometries on a CAT(0) cube complex

X such that the action of G1 is cocompact. Then there is a finite index subgroup of

G2 that acts trivially on X/G1.

Proof. The simplicial barycentric subdivision of a cube is obtained by taking the

cubical barycentric subdivision of the cube, attaching the central vertex of this

subdivision to every other vertex by an edge, and adding an n-simplex wherever

there is a 1-skeleton of an n-simplex. The simplicial barycentric subdivision of a

cube complex is the simplicial complex obtained by taking the simplicial barycentric

subdivision of each cube simultaneously.

Let X ′ be the simplicial barycentric subdivision of X. Then Γ acts on X ′ by

simplicial automorphisms and X ′/G1 is a simplicial complex. This is because every
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isometry of a cube preserves the cell structure of its simplicial barycentric subdi-

vision. Since G2 commutes with G1, there is a well-defined action by simplicial

automorphisms of G2 on X ′/G1. This action can be represented as a homomor-

phism φ : G2 → Aut(X ′/G1). The simplicial complex X ′/G1 is compact, so its

automorphism group is finite. Therefore φ−1(1) is a finite index subgroup of G2

that acts trivially on X ′/G1.

Lemma 3.1.7. For every i there exists a finite index subgroup G′i < Gi such that

Gi acts trivially on Xj, where i 6= j. In addition, Gi acts properly on Xi.

Proof. Since Gi acts cocompactly on Xi, by Lemma 3.1.6 there is a finite index

subgroup Gij < Gj such that Gij acts trivially on Xi/Gi. This induces a homomor-

phism ϕ : Gij → Gi. Since every element of Gi commutes with every element of Gj ,

Gij must be mapped into the center of Gi. Because Gi is non-elementary hyperbolic,

it has a finite center. Therefore G′ij = ϕ−1(1) is a finite index subgroup of Gij that

acts trivially on Xi. Let G′j be ∩i 6=jG′ij . Then G′j is a finite index subgroup of Gj

which acts trivially on Xi if i 6= j. Since every G′j with j 6= i acts trivially on Xi

and G acts properly on X, Gi must act properly on Xi.

Proof of Theorem 3.1.1. We know from Lemma 3.1.1 and Lemma 3.1.3 that X

splits as a product X1 × · · · × Xn and every element of G acts on X1 × · · · × Xn

as a product of isometries. Lemma 3.1.2 tells us that each Xi must be irreducible.

By Lemma 3.1.5 and Lemma 3.1.7, each Gi acts properly and cocompactly on Xi.

Lastly, by Lemma 3.1.7, each Gi has a finite index subgroup G′i which acts trivially

on each factor Xj with j 6= i.

3.2 An Arbitrary Dimension Gap

Recall that the CAT(0) dimension of a group is the minimum covering dimension of

the CAT(0) spaces on which it acts geometrically. Recall also that the CAT(0) cubi-

cal dimension of a group is the minimum dimension of the CAT(0) cube complexes
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on which it acts geometrically. The goal of this section is to prove the existence

of an infinite family of groups which have an arbitrarily large gap between their

CAT(0) dimension and their CAT(0) cubical dimension using Theorem 3.1.1.

First, we need to find a family of hyperbolic groups which has CAT(0) cubical

dimension strictly larger than its CAT(0) dimension. We start with a family of

3-manifolds which are not homeomorphic to a 3-dimensional non-positively curved

cube complex from [Li02]. We then prove that the fundamental groups of these

3-manifolds cannot act geometrically on a 3-dimensional CAT(0) cube complex.

Having established that, we take direct products of these fundamental groups and

use Theorem 3.1.1 to show that as we take products of more of these groups, the

dimension gaps of the product groups increases without bound.

First, we need to show that if a closed, hyperbolic 3-manifold group acts properly,

cocompactly, and essentially by automorphisms on a CAT(0) cube complex, then

the hyperplane stabilizers are virtually surface subgroups.

Proposition 3.2.1. Let G be a closed, hyperbolic 3-manifold group which acts prop-

erly, cocompactly, and essentially by automorphisms on a CAT(0) cube complex X.

Then every hyperplane in X has S1 boundary.

Proof. Since G is a closed, hyperbolic 3-manifold group, ∂X ∼= S2. Let U be an

arbitrary hyperplane of X. Fix a basepoint x0 ∈ U . Every hyperplane is essential, so

there are infinite geodesic rays γ+ ⊂ U+ and γ− ⊂ U− based at x0. Since U is convex

and separates X into two halfspaces, any path in ∂X from γ− to γ+ must include

a geodesic contained in U . In particular, this means that ∂U separates ∂X into

at least two components. We will show that there are exactly two complementary

components.

Since G is a closed, hyperbolic 3-manifold group, there is a G-equivariant quasi-

isometry φ from X to H3 which extends to a homeomorphism on the boundary. Let

H < G be stabU . Since G acts geometrically on X, H acts geometrically on U .

In addition, H is quasi-convex, as it is a hyperplane stabilizer. Therefore ∂H is

homeomorphic to the image φ(∂U) in ∂H3. In this proof, we will use ∂X, ∂G, and
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S2 interchangeably since they are equivalent up to G-equivariant homeomorphism.

First, we’ll show that ∂H must have covering dimension 1. We claim that the

subset ∂H must be nowhere dense. Recall that a set is nowhere dense if the interior

of its closure is empty. Suppose ∂H is not nowhere dense. Then the closure of ∂H

has non-empty interior, which we call U . Since the endpoints of loxodromic elements

are dense in ∂H, there must be some element g ∈ H such that g∞ ∈ U . Let x be

an arbitrary point in ∂G. There is some k ∈ N such that gkx ∈ U . This shows that

gkx is in the closure of g−k∂H. However, ∂H is g-invariant, so x is in the closure of

∂H. In addition, the image of ∂H in ∂G is properly embedded, so it must be closed.

Therefore x ∈ ∂H. Since an arbitrary point of ∂X is in ∂H, ∂H = ∂X. This is a

contradiction, proving that ∂H is nowhere dense.

By Theorem 19 in [Sch12], ∂H must have covering dimension 0 or 1. If ∂H

has covering dimension 0, it must be totally disconnected. But then it could not

separate two points in S2, so ∂ stabH must have covering dimension 1.

The next step is to show that ∂H is connected. The set ∂H separates two points

in ∂G ∼= S2, so it cannot be two-ended. Suppose ∂H is infinite-ended. Then using

Stallings theorem about ends of groups and Dunwoody’s accessibility theorem, we

get that H is the fundamental group of a finite graph of groups with finite edge

groups. The full group G is torsion-free, so H decomposes as a finite free product

of groups which are one-ended or two-ended. If all of these groups are two-ended,

then H has Cantor set boundary, which we already showed is impossible. Therefore

at least one free factor F must be one-ended.

Using some known results, we will show that the boundary of a one-ended hy-

perbolic group contains an embedded circle. From the work of Bowditch, Levitt,

and Swarup in [Bow99b, Bow98, Bow99a, Lev98, Swa96], we know that ∂F is locally

connected. Bestvina-Mess showed in [BM91] that as ∂F is locally connected, it must

have no global cut point. By Chapter X, Section II, Theorem 4 from [Kur92], Vol.

2, each connected component of ∂X \ ∂F must be an open disk, so ∂F contains an

embedded circle.

There is an embedded copy of ∂F in ∂H for each coset of F in H ([MS15]), so
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there must be two embedded circles S1 and S2 in ∂H. These circles do not intersect

because the cosets do not intersect. There must be convex subsets H1 and H2 of H3

with ∂Hi = Si for i = 1, 2. Using the Jordan Curve Theorem, one can show that

S2 ∼= ∂G \ (S1 ∪ S2) has three components. Since H1 and H2 are convex, it follows

that H3 \ (H1 ∪H2) must have three unbounded components corresponding to the

three components of the boundary. This is a contradiction, since the hyperplane U

separates X into exactly two complementary components. We’ve shown that ∂H

cannot be two-ended or infinite-ended, so it must be one-ended.

Suppose ∂G \ ∂H has at least three components. If we take the convex hull of

∂H in H3, we find that H3 \ Hull(∂H) has at least three complementary compo-

nents. As above, this is a contradiction since U separates X into two unbounded

complementary components.

We have now shown that ∂X can be decomposed as the disjoint union of ∂U

along with two open disks, D1 and D2, each of which is the interior of the boundary

of a halfspace of H. Let FrD denote the frontier of the set D, and note that

FrD1 ⊂ ∂H and FrD2 ⊂ ∂U . A point in ∂U is defined to be an equivalence class of

geodesic rays contained in U . However, any geodesic contained in U is also contained

in U+ and U−. Therefore ∂U ⊂ ∂U+ and ∂U ⊂ ∂U−. It follows that ∂U ⊂ FrD1

and ∂U ⊂ FrD2, proving that ∂U ∼= S1.

We now state Tao Li’s result and begin the proof of our corollary.

Theorem 3.2.1 (Tao Li-2002, [Li02]). Let M be an orientable and irreducible 3-

manifold whose boundary is an incompressible torus. Suppose that M does not

contain any closed, nonperipheral, embedded, incompressible surfaces. Then only

finitely many Dehn fillings on M can yield 3-manifolds that are homeomorphic to

3-dimensional non-positively curved cube complexes.

Corollary 3.2.1. Given any natural number k, there is an infinite family of groups

which have CAT(0) cubical dimension at least k larger than their CAT(0) dimension.

First, we prove the existence of an infinite family of hyperbolic 3-manifold groups

with a finite dimension gap between their CAT(0) dimension and their CAT(0)
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cubical dimension. We then use Theorem 3.1.1 to show that we can find groups with

larger dimension gaps by taking direct products of our groups with finite dimension

gaps.

Proposition 3.2.2. There exists an infinite family of hyperbolic 3-manifold groups

with a finite gap between their CAT(0) dimension and their CAT(0) cubical dimen-

sion.

Proof. Let M be an orientable and irreducible 3-manifold whose boundary is an

incompressible torus that does not contain any closed, nonperipheral, embedded,

incompressible surfaces. For example, M could be a figure-8 knot complement. Let

M be a 3-manifold obtained by a Dehn filling of M that is not homeomorphic to

any 3-dimensional non-positively curved cube complex. This manifold exists by

Theorem 3.2.1 from [Li02]. Let Γ be π1(M). Then Γ acts properly, cocompactly,

and by isometries on H3. This shows that Γ has CAT(0) dimension 3.

By Proposition 3.2.1, ∂H = S1. It follows that stabH is virtually Fuchsian

since stabH acts properly and cocompactly on H. Let G be a finite-index surface

subgroup of stabH. Then by Theorem 1.1 of Freedman-Hass-Scott, there exists an

immersed, least-area surface F in M such that π1F = G. From Tao Li, we know

that every surface in M fails to satisfy the 4-plane property. That is to say, there

exist four pairwise-intersecting lifts g1F̃ , g2F̃ , g3F̃ , g4F̃ of F , where gi ∈ Γ\G. Since

F is least-area, we get from Lemma 6.4 of Freedman-Hass-Scott that the stabilizers

of these lifts must intersect in cyclic subgroups. If stabH ∩ g stabHg−1 ∼= Z, then

the boundaries ∂H and ∂gH must intersect in a cut pair. Then since H ∪ ∂H

separates X ∪ ∂X into two components and there are points of ∂gH in each, H and

gH must intersect.

We’ve found four hyperplanes which pairwise intersect. It is a basic fact that

the intersection of all four hyperplanes is non-empty and contained in a cube of

dimension at least four. This contradicts our assumption that X was 3-dimensional,

proving that Γ cannot act properly and cocompactly on a 3-dimensional CAT(0)

cube complex. Therefore Γ has a dimension gap of at least 1 between its CAT(0)



45

dimension and its CAT(0) cubical dimension.

By the work of Bergeron-Wise in [BW12], Γ acts properly and cocompactly on a

finite-dimensional CAT(0) cube complex, so Γ does not have an infinite dimension

gap.

Now we use Proposition 3.2.2 to construct an infinite family of groups with an

arbitrarily large gap between their CAT(0) dimension and their CAT(0) cubical

dimension.

Proof of Corollary 3.2.1. Let Γ be a hyperbolic 3-manifold group with a dimen-

sion gap between its CAT(0) dimension and its CAT(0) cubical dimension. In order

to prove our claim, we will show that ⊕ki=1Γ has a dimension gap of at least k. Let

G be ⊕ki=1Γ, and suppose G acts properly and cocompactly on a CAT(0) cube com-

plex X. Then G acts properly, cocompactly, and essentially on the essential core

X of X. Note that dimX ≥ dimX. By Theorem 3.1.1, X splits as a product of

CAT(0) cube complexes X = X1 × . . .×Xk, and each factor of ⊕ki=1Γ act properly

and cocompactly on the corresponding factor of X. It follows that each factor of X

must have dimension at least 4, proving that the dimension of X (and X) is at least

4k. However, G has a natural proper and cocompact action on ⊕ki=1H3, which has

dimension 3k. Therefore G has dimension gap at least k.



46

Chapter 4

Generalization of Hyperbolic Products

4.1 Products of (AIP) Groups

A group G has the abelian intersection property (AIP) if it contains a finite collec-

tion of highest abelian subgroups whose intersection is trivial. Many of the proofs

in this chapter are similar to those of chapter 3. However, in this chapter we can-

not guarantee a decomposition into irreducible cube complexes. Though we are

able to get the nearly the same results, this adds a new layer of complexity to the

proofs. While reading this chapter, it can be helpful to flip back and refer to the

corresponding proof in chapter 3.

The property (AIP) is strictly weaker than hyperbolicity. For example, the free

product of any two infinite groups which act on CAT(0) cube complexes satisfies

(AIP). Choosing a highest rank free-abelian subgroup from each free factor results

in a set of highest abelian subgroups with trivial intersection.

The main theorem of the chapter follows.

Theorem 4.1.1. Let G = G1×· · ·×Gn satisfy (AIP) and have finite center, where

each Gi is an infinite group. Suppose G acts properly, cocompactly, and essentially

on a CAT(0) cube complex X. Then

• X decomposes as a product of CAT(0) cube complexes X1×· · ·×Xn and each

g ∈ G acts on X as a product of isometries µ1 × · · · × µn;

• every factor Gi acts on Xi properly, cocompactly, and essentially; and

• every factor Gi contains a finite-index subgroup G′i that acts trivially on Gj

when i 6= j.

Note that the statement of this theorem matches Theorem 3.1.1 with the notable

exception that the cubical factors X1, . . . , Xn are not guaranteed to be irreducible.
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As in chapter 2, we will prove the theorem using a series of lemmas and propositions.

Proposition 4.1.1. Let G = G1×· · ·×Gn be a group acting properly, cocompactly,

and essentially by automorphisms on a CAT(0) cube complex X such that G has

(AIP). Any highest abelian subgroup of G contains a finite index subgroup generated

by {α1, . . . , αm} acting on a product of quasi-lines C1 × · · · × Cm in X, where each

αi only acts nontrivially on its corresponding quasi-line Ci.

Proof. Let A be a highest abelian subgroup of G. Note that such a subgroup must

be of the form A = A1 × · · · ×An, where Ai < Gi is highest abelian for each i. Let

mi = rankAi for each i. Since every Gi satisfies (AIP), it contains a finite collection

of highest abelian subgroups Ai, A
′
i, . . . , A

(li)
i whose intersection is trivial. Note

that we’ve added the aforementioned Ai into the collection, and the intersection is

still trivial. It is possible that different factors have collections of highest abelian

subgroups of different sizes. In order to make the proof easier, we will pad the

smaller collections to make them as large as the largest collection. More formally,

for every i, let A
(k)
i = A

(li)
i when li < k ≤ max li.

Let

C11 × · · · × C1mi × C21 × · · · × Cnmn

be a product of quasi-lines on which A acts by the Cubical Flat Torus Theorem

([WW15]). Our goal is to show that A1 has a finite index subgroup which acts

trivially on every quasi-line other than those with initial index 1. Using Lemma 2.8.1

([WW15]), there is a finite index subgroup of A with a preferred set of generators

S = {α11, . . . , α1m1 , α21, . . . , αnmn},

where αij acts trivially on every quasi-line other than Cij . By Theorem 2.8.2

([WW15]), for every k the intersection

(A1 × · · · ×An) ∩
(
A1 ×A(k)

2 ×A
(k)
3 × · · · ×A

(k)
n

)

is commensurable with the subgroup generated by a subset of S. In particular,
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this means that each of these intersections has a finite index free-abelian subgroup

generated by powers of the αij . Let B be one such intersection and C < B the finite

index subgroup generated by powers of the αij . Let C ′ < B′ be another such pair.

Then C ∩ C ′ is finite index in B ∩ B′. If we take a finite number of intersections,

we will still have that

∩C(k) < ∩B(k)

is finite index. We chose the A
(k)
i so that the intersection of all of the A

(k)
i for a

given index i is trivial. Therefore we can take finitely many intersections to get

max li⋂
k=0

A1 ×A(k)
2 ×A

(k)
3 × · · · ×A

(k)
n = A1 × {1} × · · · × {1}, (4.1)

which has a finite-index subgroup generated by powers of the αij . We have shown

that A1 has a finite index subgroup A1 generated by powers of, up to relabeling,

{α11, . . . , α1m1}.

If we carry out this procedure for the rest of the Ai, we can construct the desired

finite index subgroup A < A as

A = A1 × · · · ×An.

Lemma 4.1.1. Let G1, . . . , Gn be finitely generated groups, where each Gi satisfies

(AIP). Suppose G = G1 × · · · × Gn acts properly, cocompactly, and essentially by

cubical isometries on a CAT(0) cube complex X. Then X decomposes as a product

of CAT(0) cube complexes X = X1 × · · · ×Xn.

Proof. We will prove this lemma in three stages. First, note that by Proposition

3.12 of [CS11], every hyperplane is skewered by some element of G. We show that

if a hyperplane H is skewered by (g1, . . . , gn) ∈ G1 × · · · × Gn, then in fact H is

skewered by exactly one gi. Then we prove that if H is skewered by some other

element (g′1, . . . , g
′
n), it must be the ith component g′i that skewers H. Therefore we
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can partition the set of hyperplanes into n sets, where a hyperplane H is in the ith

set Hi if it is skewered by some element of Gi. To finish the proof, we show that

every hyperplane in Hi intersects every hyperplane of Hj where i 6= j.

First, we show that if a hyperplane H is skewered by (g1, . . . , gn) ∈ G1×· · ·×Gn,

then it is skewered by exactly one gi. Let H denote the set of hyperplanes of

X. Fix a hyperplane H ∈ H. The group G is acting properly, cocompactly, and

essentially on X, so by Proposition 3.12 of [CS11], H is skewered by some element

(g1, . . . , gn) ∈ G1 × · · · ×Gn. For each i, let Ai be a highest abelian subgroup of Gi

containing a power of gi and let mi = rankAi. Let A = A1 × · · · × An. Then the

free-abelian subgroup A is highest in G. By Theorem 2.8.1, A acts properly and

cocompactly on a convex subcomplex Y = C11 × · · · × C1m1 × C21 × · · · × Cnmn ,

where each Cij is a quasi-line. By Proposition 4.1.1, there is a finite index subgroup

A < A generated by {α11, . . . αnmn} so that αij acts trivially on every quasi-line

other than Cij . It follows that for every i, there is a power gkii that can be written

as a product of the αij with initial index i.

By the Flat Torus Theorem of [BH99], there is an A-invariant flat E contained

in X on which A acts properly and cocompactly. The flat E is constructed as the

convex hull of A · x0, where x0 is some point in Min(A). Note that E is not, in

general, a subcomplex. Recall that the hyperplane H is skewered by (g1, . . . , gn),

so every CAT(0) axis of (g1, . . . , gn) must cross H. In particular, the CAT(0) axis

γ which contains x0 crosses H. By construction, γ is contained in the flat E, so H

intersects E. The product of quasi-lines Y is constructed in [WW15] as the dual

cube complex to the set of hyperplanes intersecting E, so H must be a hyperplane

of Y .

The hyperplane H is dual to some quasi-line of Y . Suppose it’s dual to a quasi-

line C with initial index 1. We showed that each gkii can only act nontrivially on the

quasi-lines with initial index i. Therefore for each gi with i 6= 1, no axis of gi can

intersect H. Since (g1, . . . , gn) skewers H and every gi with i 6= 1 does not skewer

H, it follows that g1 must skewer H. We’ve shown that for any hyperplane H of

X, if (g1, . . . , gn) skewers H, then exactly one component gi skewers H and every
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gj for j 6= i does not skewer H.

The next step is to show that if (g1, . . . , gn) ∈ G and (g′1, . . . , g
′
n) ∈ G skewer

H, then the components of each which skewer H must have the same index. We

assume that g1 skewers H, and we’ll show that g′1 must also skewer H. We know

that some component gj ∈ Gj skewers H. For the sake of contradiction, we assume

that j 6= 1. We can construct a highest abelian subgroup A containing powers of g1

and gj . By our previous argument, A acts properly and cocompactly on a product

of quasi-lines C11 × · · · × Cnmn and there are k1 and kj such that gk11 and g
kj
j only

act nontrivially on quasi-lines with initial indices 1 and j, respectively. An axis of

g1 crosses H, so H must be a hyperplane dual to a quasi-line C with initial index

1. However, an axis for gj also crosses H, so no power of gj can act trivially on C,

a contradiction. Therefore j must be 1, and the index of components that skewer a

given hyperplane in well-defined.

Recall that Hi is defined to be the set of hyperplanes skewered by some element

gi ∈ Gi. The last element of the proof that remains to be shown is that if i 6= j then

every Hi ∈ Hi intersects every Hj ∈ Hj .

Choose hyperplanes H1 ∈ H1, . . . ,Hn ∈ Hn. We will show that these hyper-

planes all pairwise intersect. For each i, by the definition of Hi, there is an element

gi ∈ Gi that skewers Hi. There is a highest abelian subgroup A containing a power

of each of these skewering elements. Let p = rankA. For convenience, we will re-

name the lowest power of gi that is in A to gi, as we have no need of the original

gi. By the Flat Torus Theorem of [BH99], there is a p-dimensional A-invariant flat

E contained in X on which A acts properly and cocompactly. The only proper, co-

compact action of Zp on Ep is by translations, so every gi acts on E as a translation.

Fix indices i and j and a point x ∈ Hi. The element gj acts as a translation and

does not skewer Hi, so the orbit 〈gj〉x must be contained in Hi. However, gj does

skewer Hj , so 〈gj〉x must contain points on both sides of Hj . Because Hi is convex,

Hi must intersect Hj .

We’ve shown that the set of hyperplanes H of X can be partitioned as H1t . . .t

Hn, where Hi denotes the set of hyperplanes skewered by some element gi ∈ Gi. In
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addition, for any Hi ∈ Hi and Hj ∈ Hj , Hi and Hj must intersect. Therefore X

splits as a product of cube complexes

X = X1 × · · · ×Xn,

where Xi is the dual cube complex to Hi.

Lemma 4.1.2. Let G1, . . . , Gn be groups satisfying Property (AIP). Suppose G =

G1 × · · · × Gn acts properly, cocompactly, and essentially by automorphisms on a

CAT(0) cube complex X. Following Lemma 4.1.1, X decomposes as a product of

CAT(0) cube complexes X1 × · · · × Xn. Every g ∈ G acts on X1 × · · · × Xn as a

product µ1 × · · · × µn of cubical isometries.

Proof. First, by Proposition 2.6 of [CS11] X has a unique decomposition into irre-

ducible factors

X = X11 × · · · ×X1m1 ×X21 × · · · ×Xnmn ,

where Xi = Xi1 × · · · ×Ximi for every i. In addition, every cubical isometry of X

preserves this decomposition up to permutation of isomorphic factors. We will show

that if the permutation of isomorphic factors induced by any g ∈ G sends a factor

Xj with initial index j to Xk with initial index k, then j = k. It is enough to show

this holds for every gi ∈ Gi.

Choose gi ∈ Gi and suppose the permutation induced by gi maps a factor Xj

with initial index j to a factor Xk with initial index k. Let gj ∈ Gj be an element

which skewers a hyperplane Hj of Xj . Then giHj is a hyperplane of Xk. Since

gj skewers Hj , gigjg
−1
i skewers giHj . If i 6= j, then gi and gj commute. Thus

gigjg
−1
i = gj ∈ Gj . If i = j, then gigjg

−1
i ∈ Gj . In either case, gigjg

−1
i belongs to

Gj and can therefore only skewer hyperplanes with initial index j. Since gigjg
−1
i

skewers giHj , a hyperplane belonging to a factor with initial index k, we must have

j = k. In particular, this means that the irreducible factors of some Xi may only

be interchanged with other irreducible factors of Xi.
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Lemma 4.1.3. Let G1, . . . , Gn be groups with finite center satisfying (AIP). Suppose

G = G1× · · ·×Gn acts properly, cocompactly, and essentially by automorphisms on

a CAT(0) cube complex X. Following Lemma 4.1.1, X decomposes as a product of

CAT(0) cube complexes X1 × · · · ×Xn. Every gi ∈ Gi acts as an elliptic isometry

on X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn.

Proof. Let X̂i denote X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn. Fix an element gi ∈ Gi

and note that gi has a well-defined action on X̂i by Lemma 4.1.2. By Lemma 4.1.1,

gi can only skewer hyperlanes of Xi. Since gi does not skewer any hyperplanes of

X̂i, it must act as an elliptic isometry on X̂i.

Lemma 4.1.4. Let G1, . . . , Gn be groups with finite center satisfying (AIP). Suppose

G = G1× · · ·×Gn acts properly, cocompactly, and essentially by automorphisms on

a CAT(0) cube complex X. Following Lemma 4.1.1, X decomposes as a product of

CAT(0) cube complexes X1 × · · · ×Xn. Then Gi acts cocompactly on Xi for every

i.

Proof. Fix an index i. The factor Xi may not be irreducible, but it can be decom-

posed as a product of irreducible CAT(0) cube complexes

Xi = Xi1 × · · · ×Ximi .

Let G = G1 × · · · × Gn be the finite index subgroup of G whose elements do not

permute the irreducible factors of X and note that G acts properly, cocompactly, and

essentially by automorphisms on X. Fix an index j corresponding to an irreducible

factor Xij of Xi. By construction, every element of G has a well-defined action on

Xij . For the moment, we will restrict to discussing actions on Xij rather than the

full cube complex X.

By Proposition 5.1 of [CS11], Xij contains a pair Hj , Vj of strongly separated

hyperplanes. By the Double Skewering Lemma, also from [CS11], there must be

some gj = (g1j , . . . , gnj) ∈ G such that

gjH
+
ij ( V +

ij ⊂ H
+
ij .
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Since gj skewers a hyperplane of Xi, gij must skewer the same hyperplanes of Xi

by Lemma 4.1.1. Therefore a CAT(0) axis γ of gij in Xij intersects Hij and Vij .

Using Lemma 6.3 of [CS11], we see that every CAT(0) axis of gij in Xij must lie in

a bounded Hausdorff neighborhood of γ. The set Min(gij) is the union of the axes

of gij and has the form

Min(gij) = Y × R

by Theorem II.6.8 of [BH99]. Because the axes of gij lie in a bounded Hausdorff

neighborhood of γ, Y must be bounded.

Choose some g ∈ Gi′ , where i 6= i′. From [BH99], we know that Min(gij) is

non-empty, complete, and convex. Since i 6= i′, gij and g commute. Then follow-

ing Proposition II.6.2 of [BH99], Min(gij) is invariant under the action of g and

Min(gij)∩Min(g) must be non-empty. From Lemma 4.1.3, we know that the action

of g on Xij is elliptic, and so Min(g) consists of the fixed points of g. We’ve shown

that g fixes some point on Min(gij) = Y × R.

From Theorem II.6.8 of [BH99], g acts as a product of isometries µY × µR on

Y ×R. Since g has a fixed point in Min(gij), µR must have a fixed point. Therefore

µR must be either a reflection or the identity. Recall that we chose g so that it

commutes with gij . Therefore since gij acts on R as a translation, so µR must be

the identity. We’ve shown that the image of (y0, t0) ∈ Min(gij) under the action of

any g ∈ Gi′ with i 6= i′ is contained in the slice Y ×{t0}. Since Y is bounded, we’ve

shown that G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gn has bounded orbits in Xij .

Since G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gn has bounded orbits in each irreducible

factor Xij of Xi, it must have bounded orbit in Xi. The group G1 × · · · × Gi−1 ×

Gi+1×· · ·×Gn is a finite index subgroup of Ĝi = G1×· · ·×Gi−1×Gi+1×· · ·×Gn, so

Ĝi must also have bounded orbit in Xi. We assumed that Gi× Ĝi acts cocompactly

on Xi, so it follows that the action of Gi on Xi must be cocompact.

Lemma 4.1.5. Let G1, . . . , Gn be groups with finite center satisfying (AIP). Suppose

G = G1 × · · · × Gn acts properly, cocompactly, and essentially by automorphisms

on a CAT(0) cube complex X. Following Lemma 4.1.1, X decomposes as a product
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of CAT(0) cube complexes X1 × · · · × Xn. For every i there exists a finite index

subgroup G′i < Gi such that Gi acts trivially on Xj, where i 6= j. In addition, Gi

acts properly on Xi.

Proof. Since Gi acts cocompactly on Xi, by Lemma 3.1.6 there is a finite index

subgroup Gij < Gj such that Gij acts trivially on Xi/Gi. This induces a homo-

morphism ϕ : Gij → Gi. Since every element of Gi commutes with every element

of Gj , Gij must be mapped into the center of Gi. Because Gi has finite center,

G′ij = ϕ−1(1) is a finite index subgroup of Gij that acts trivially on Xi. Let G′j

be ∩i 6=jG′ij . Then G′j is a finite index subgroup of Gj which acts trivially on Xi if

i 6= j. Since every G′j with j 6= i acts trivially on Xi and G acts properly on X, Gi

must act properly on Xi.

Proof of Theorem 4.1.1. We know from Lemma 4.1.1 and Lemma 4.1.2 that X

splits as a product X1×· · ·×Xn and every element of G acts on X1×· · ·×Xn as a

product of isometries. By Lemma 4.1.4 and Lemma 3.1.7, each Gi acts properly and

cocompactly on Xi. Lastly, by Lemma 3.1.7, each Gi has a finite index subgroup

G′i which acts trivially on each factor Xj with j 6= i.
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Chapter 5

Product of (AIP) with Abelian

5.1 A Motivating Example

This example is from [BR96]. It illustrates some of the challenge of defining the

boundary of a CAT(0) group. Unless otherwise specified, I will denote the visual

boundary of a space X by ∂X. Let Γ = F2 × Z = 〈a, b〉 × 〈c〉. There is a natural

action of F2 on its standard Cayley graph, a 4-valent tree. Let T be the standard

Cayley graph of F2, and let 〈a, b〉 ∼= F2 act on it by left multiplication. We can

construct an action of Γ on X = T × R as follows:

a ◦ (x, r) = (a · x, r)

b ◦ (x, r) = (b · x, r + 2)

c ◦ (x, r) = (x, r + 1)

Note that this action is proper and cocompact.

What happens when we try to embed ∂F2 into ∂X? The most obvious way to

do this is to pick a basepoint x0 ∈ X and continously extend the quasi-isometry

(F2 × {0}) ◦ x0 to the boundary. We’ll see that the map f : ∂F2 → ∂X induced

by this quasi-isometry is not continuous. We do this by constructing a sequence of

points in yn ∈ ∂F2 that converge to y such that f(yn) does not converge to f(y).

Let π : T × R → T × {0} be the projection map onto the first factor. Consider

the sequence yn = (anbn)∞ ∈ ∂F2. This sequence converges to y = a∞ as n → ∞.

For each n, the sequence of points (anbn)k ◦ x0 defines an infinite geodesic ray γn

based at x0 representing f(yn) ∈ ∂X. The ray γn is a line in the Euclidean plane

π(γ)×R. Since the action of anbn translates by distance 2n in the tree direction and

2n in the R direction, γn meets T ×{0} at an angle of π/4 for every n. This implies

that a geodesic representing limn→∞ γn must also meet T × {0} at an angle of π/4.
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However, the boundary point corresponding to a∞ is contained in ∂(T × {0}), so

this map of ∂F2 into ∂X is not continuous.

The previous example shows that the natural quasi-isometric embedding (g, 0) 7→

(g, 0)◦x0 does not always extend continuously to a map of the boundary ∂F2 → ∂X.

However, [BR96] shows that we can construct an embedding h : ∂F2 → ∂X that

extends to a homeomorphism between the suspension Σ(∂F2) and ∂X using a minset

decomposition of X.

Unfortunately, h(∂F2) is not always F2 × {0}-invariant in ∂X. In fact, it is

possible that the only element in F2×Z that leaves h(∂F2) invariant is the identity.

It is an exercise to show this is the case with the action

a ∗ (x, r) = (a · x, r + e)

b ∗ (x, r) = (b · x, r + π)

c ∗ (x, r) = (x, r + 1).

While we cannot in general find a nontrivial stabilizer of f(∂F2) in the CAT(0)

space setting, we can find a “twisted” finite-index subgroup of F2 that preserves

f(∂F2) when X is a CAT(0) cube complex.

5.2 Product Decomposition

In the previous chapter, we showed that if a product of groups with (AIP) acts prop-

erly, cocompactly, and essentially by automorphisms on a CAT(0) cube complex,

we get a nice product decomposition of the cube complex. However, any CAT(0)

group with an infinite center fails to satisfy (AIP). Suppose Γ is of the form G×A,

where G satisfies (AIP) and A ∼= Zp. The main theorem from this section shows

that we can still recover a product decomposition of a CAT(0) cube complex this

group acts on, and the group is close to acting as a product action.

Theorem 5.2.1. Let G be a group with finite center satisfying (AIP) and A ∼= Zp.

Suppose Γ = G × A acts properly, cocompactly, and essentially on a CAT(0) cube
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complex X. Then

• X decomposes as a product of CAT(0) cube complexes X⊥A × XA, where XA

is a product of p quasi-lines;

• Γ has a finite-index subgroup Γ′ = G′×A′ that acts on X⊥A ×XA as a product

action; and

• furthermore, G′ is isomorphic to a subgroup of G.

An important note about the statement is that the group G′ is not a subgroup

of G from the original product decomposition. It is isomorphic to a subgroup of

G, but we have multiplied its generators by elements of A. Consider the example

action of 〈a, b〉× 〈c〉 ∼= F2×Z on its Cayley graph from the previous section defined

by

a ◦ (x, r) = (a · x, r)

b ◦ (x, r) = (b · x, r + 2)

c ◦ (x, r) = (x, r + 1).

The slice T × {0} is not 〈a, b〉-invariant. However, there is a skewed copy of F2

generated by a and bc−2 that does leave the slice T ×{0} invariant. In this example,

Γ′ = G′ ×A′ would be the full group decomposed as 〈a, bc−2〉 × 〈c〉.

Proposition 5.2.1. Let G satisfy (AIP) and have finite center, and let A ∼= Zp.

Suppose Γ = G × A acts properly, cocompactly, and essentially on a CAT(0) cube

complex X. Then X decomposes as a product of CAT(0) cube complexes X =

X⊥A ×XA, where XA is a product of p quasi-lines.

Proof. Denote by H the set of hyperplanes of X, HA the hyperplanes skewered by

some element of A, and HG the hyperplanes not skewered by any element of A.

Since HG and HA partition H, HG is the same as H⊥A, as defined in section 2.10.

Therefore by Proposition 2.10.2, X ∼= X⊥A ×XA.
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Let A1, . . . , An be a finite collection of highest abelian subgroups of G with trivial

intersection. Then each product Ai × A is highest in Γ. Since A1 × A is highest it

acts on a convex subcomplex Y that is a product of quasi-lines. The same argument

as in the proof of Proposition 4.1.1 implies that there is a finite index subgroup A

of A which acts trivially on all but p of the quasi-lines of Y . By construction, the

product of these p quasi-lines is the dual cube complex to the set of hyperplanes

skewered by some element of A, proving that XA is a product of p quasi-lines.

Lemma 5.2.1. Let Γ = G × A act properly, cocompactly, essentially, and without

inversion on a CAT(0) cube complex X, where G satisfies (AIP) and A ∼= Zp. Let

X ∼= X⊥A × XA as in Proposition 2.10.2. Then there is some subgroup A′ < A so

that A′ acts trivially on X⊥A , and the elements of G that stabilize the A′-orbits of

XA form a finite index subgroup of G.

Proof. The subgroup A is central, so the sets HA and H⊥A are Γ-invariant. Therefore

the actions of Γ on XA = X(HA) and X⊥A = X(H⊥A) are well-defined.

Since A commutes with G, there is a well-defined action of A on X⊥A/G. By

assumption, the action of Γ on X⊥A is cocompact. Each element a ∈ A acts on X⊥A

as an elliptic isometry, so by Proposition 2.10.4, A must have a global fixed point

in X⊥A . The action of G on X⊥A must be cocompact, or we could pick a sequence of

points in X⊥A/G going arbitrarily far from the global fixed point of A. This sequence

of points would maintain their distance from the fixed point of A in X⊥A/(G × A),

contradicting the cocompactness of the action of G×A on X⊥A .

By Lemma 3.1.6 there is a finite index subgroup A < A such that every a ∈ A

acts trivially on X⊥A/G. We’ve shown that each element a ∈ A has the same action

on X⊥A as some element of G, inducing a homomorphism φ : A→ G. Every element

of A commutes with every element of G, so the image φ(A) must be contained in

the center Z(G). Recall that G has finite center. It follows that A′ = φ−1(1) is a

finite index subgroup of A which acts trivially on X⊥A .

Since A′ is finite index in A, G × A′ acts cocompactly on XA. Therefore by

Lemma 3.1.6, there is a finite index subgroup G′ < G that acts trivially on XA/A
′,
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proving our claim.

Proof of Theorem 5.2.1. From Proposition 2.10.2, X decomposes as a product

X = X⊥A ×XA. In Proposition 5.2.1, we showed that XA is a product of p quasi-

lines. Lemma 5.2.1 tells us that there are finite index subgroups A′ of A and G of G

such that A′ acts trivially on X⊥A and G acts trivially on XA/A
′. If φ : Γ→ Aut(XA)

is the action of Γ on XA, then for every g ∈ G there exists an a ∈ A′ such that

φ(g) = φ(a). Define G′ to be

G′ = {ga−1|g ∈ G, φ(g) = φ(a)}.

Because G is finite index in G, G′ × A′ is a finite index subgroup of Γ. By

construction, G′ × A′ acts with a product action on X⊥A × XA. Therefore since

G′×A′ acts properly and cocompactly on X, it must be that G′ and A′ act properly

and cocompactly on X⊥A and XA, respectively.
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[MS15] Alexandre Martin and Jacek Świa̧tkowski. Infinitely-ended hyperbolic
groups with homeomorphic Gromov boundaries. J. Group Theory,
18(2):273–289, 2015.

[Nic04] Bogdan Nica. Cubulating spaces with walls. Algebr. Geom. Topol., 4:297–
309, 2004.

[NR98] Graham A. Niblo and Martin A. Roller. Groups acting on cubes and
Kazhdan’s property (T). Proc. Amer. Math. Soc., 126(3):693–699, 1998.

[Rol99] Martin Roller. Poc sets, median algebras and group actions, 1999.

[Sag95] Michah Sageev. Ends of group pairs and non-positively curved cube com-
plexes. Proc. London Math. Soc. (3), 71(3):585–617, 1995.

[Sch12] Reinhard Schulz. Notes on topological dimension theory, 2012.

[Swa96] G. A. Swarup. On the cut point conjecture. Electron. Res. Announc.
Amer. Math. Soc., 2(2):98–100, 1996.

[SY79] R. Schoen and Shing Tung Yau. Existence of incompressible minimal sur-
faces and the topology of three-dimensional manifolds with nonnegative
scalar curvature. Ann. of Math. (2), 110(1):127–142, 1979.

[WW15] Daniel Wise and Daniel Woodhouse. A cubical flat torus theorem and
the bounded packing property, 2015.


	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Introduction to CAT(0) Cube Complexes
	Cubulating Wallspaces
	Roller Duality
	CAT(0) Axes
	Hyperbolic Spaces and the Visual Boundary
	The CAT(0) Boundary
	Least Area Surfaces
	The Cubical Flat Torus Theorem
	Rank Rigidity for CAT(0) Cube Complexes
	Cubical Minset Decomposition

	Products of Hyperbolic Groups
	Products of Hyperbolic Groups
	An Arbitrary Dimension Gap

	Generalization of Hyperbolic Products
	Products of (AIP) Groups

	Product of (AIP) with Abelian
	A Motivating Example
	Product Decomposition

	Bibliography

