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ABSTRACT5

In this paper, Bayesian linear finite element (FE) model updating is applied for uncertainty6

quantification (UQ) in the vibration-based damage assessment of a seven-story reinforced concrete7

building slice. This structure was built and tested at full scale on the USCD-NEES shake table:8

progressive damage was induced by subjecting it to a set of historical earthquake ground motion9

records of increasing intensity. At each damage stage, modal characteristics such as natural fre-10

quencies and mode shapes were identified through low amplitude vibration testing; these data are11

used in the Bayesian FE model updating scheme. In order to analyze the results of the Bayesian12

scheme and gain insight into the information contained in the data, a comprehensive uncertainty13

and resolution analysis is proposed and applied to the seven-story building test case. It is shown14

that the Bayesian UQ approach and subsequent resolution analysis are effective in assessing uncer-15

tainty in FE model updating. Furthermore, it is demonstrated that the Bayesian FE model updating16

approach provides insight into the regularization of its often ill-posed deterministic counterpart.17
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In structural engineering, it is common practice to use finite element (FE) models for design,21

analysis, and assessment of civil structures. For existing structures, FE model updating techniques22

provide a tool for calibrating FE models based on observed structural response (Mottershead and23

Friswell 1993; Friswell and Mottershead 1995). Structural FE model updating most often makes24

use of vibration data, i.e. response time histories obtained from forced (Heylen et al. 1997), am-25

bient (Peeters and De Roeck 2001) or combined (Reynders and De Roeck 2008) vibration testing,26

as well as modal characteristics (e.g., natural frequencies and mode shapes) extracted from these27

vibration tests. FE model updating is frequently applied for structural damage assessment, where28

damage is located and quantified in a non-destructive manner (Teughels et al. 2002). Localized29

damage in a structure results in a local reduction of stiffness; therefore the updating parameters30

typically represent the effective stiffness of a number of substructures. The FE model updating31

process involves determining the optimal values of a set of FE model parameters by solving an32

inverse problem, where the objective is to minimize the discrepancy between FE model predic-33

tions and measured modal data. However, the inverse problem is typically ill-posed (due to e.g.,34

low data resolution, over-parameterization, non-linearities,. . . ), which means that accounting for35

measurement and modeling errors or uncertainties is crucial when applying FE model updating36

techniques.37

One possible approach to incorporate uncertainty regarding the observations and the model pre-38

dictions into the FE model updating process is to adopt a probabilistic scheme based on Bayesian39

inference (Box and Tiao 1973; Beck and Katafygiotis 1998; Jaynes 2003). This approach makes40

use of probability theory to model uncertainty; the plausibility or degree of belief attributed to the41

values of uncertain parameters is represented by specifying probability density functions (PDFs)42

for the uncertain parameters. A prior (marginal or joint) PDF reflects the prior knowledge about43

the parameter(s), i.e., the knowledge before any observations are made. Using Bayes’ theorem,44

the prior PDF is transformed into a posterior PDF, accounting both for uncertainty in the prior45

information as well as for uncertainty in the experimental data and FE model predictions. This46

transformation is performed through the so-called likelihood function, which reflects how well the47
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FE model can explain the observed data and which can be computed using the probabilistic model48

of the prediction error.49

The Bayesian inference approach has gained interest amongst uncertainty quantification meth-50

ods in recent years, mostly because of its firm foundation on probability theory and its rigorous51

treatment of uncertainties. The method has a wide range of application domains; in a civil en-52

gineering context, topics include geophysics (Mosegaard and Tarantola 1995; Schevenels et al.53

2008) and structural dynamics, where it is applied for e.g. reliability studies and structural health54

monitoring (SHM) (Beck and Au 2002; Sibilio et al. 2007; Sohn and Law 1997; Vanik et al. 2000;55

Yuen and Katafygiotis 2002), model class selection (Beck and Yuen 2004; Muto and Beck 2008;56

Yuen 2010b) and optimal sensor placement (Papadimitriou et al. 2000; Yuen et al. 2001).57

One of the advantages of the Bayesian model updating method is that it is firmly set in a58

probabilistic framework, which means that a well established set of tools exists to investigate the59

posterior results. The analysis of the posterior PDF is often referred to as resolution analysis,60

and typically consists of the computation of standard posterior statistics such as mean values,61

modes, standard deviations and covariances, which yield insight into how well individual param-62

eters are resolved from the data, and whether statistical correlations exist between them. An ad-63

ditional eigenvalue analysis based on the prior and posterior covariance matrices helps identify64

well-resolved features or parameter combinations (Tarantola 2005). A useful link to information65

entropy (Papadimitriou et al. 2000; Papadimitriou 2004) allows for further insight into the relative66

resolution of different parameter combinations.67

The Bayesian FE model updating approach furthermore shows the distinct advantage that it can68

be easily related to its deterministic counterpart. As the likelihood function provides a measure for69

the discrepancy between the FE model predictions and the measured/identified data, minimizing70

this function (with respect to the model parameters) corresponds to solving the deterministic in-71

verse problem referred to above. It is shown in this paper that by including the prior PDF into72

this minimization scheme, a regularization term is introduced naturally into the (often ill-posed)73

deterministic optimization problem, without having to revert to standard regularization methods74
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that require additional decision-making and may appear heuristic.75

In this paper, the Bayesian UQ technique will be used for uncertainty quantification in the76

vibration-based damage assessment of a seven-story reinforced concrete building slice (Panagiotou77

et al. 2011). This test structure was built and tested at full scale on the UCSD-NEES shake table,78

and therefore yields a unique set of controlled experimental data, representing a realistic mid-79

rise building subject to earthquake excitation. Progressive damage was induced in the structure,80

allowing for deterministic damage assessment at several stages through linear FE model updating,81

as performed in (Moaveni et al. 2010). In these deterministic updating schemes and associated82

sensitivity analyses (Moaveni et al. 2007; Moaveni et al. 2009; Moaveni et al. 2011), it became83

apparent that this problem is subject to many uncertainties (regarding e.g. the measured modal data84

and the FE model) that have large influence on the results of the damage identification scheme. This85

indicates the ill-posedness of the inverse problem at hand, and the necessity to assess the effect of86

these sources of uncertainty on the FE model updating results in a comprehensive manner.87

The paper starts by introducing the seven-story test case in the next section. The subse-88

quent section establishes the framework and methodology of the Bayesian inference scheme for89

vibration-based linear FE model updating, and elaborates the Bayesian multi-stage damage assess-90

ment procedure for the seven-story test structure. A following section continues with the descrip-91

tion of the resolution analysis used to investigate the damage assessment results obtained from the92

Bayesian inference schemes. Results and conclusions are discussed in a final section.93

THE SEVEN-STORY TEST STRUCTURE94

The seven-story test structure (Moaveni et al. 2007; Moaveni et al. 2009; Moaveni et al. 2010;95

Moaveni et al. 2011), representing a slice of a prototype reinforced concrete mid-rise residen-96

tial building, was built and tested at full-scale on the UCSD-NEES shake table (Figure 1a). The97

structure consists of two perpendicular walls (i.e. a main wall and a back wall for transverse stabil-98

ity), seven concrete floor slabs, an auxiliary post-tensioned column for torsional stability, and four99

gravity columns to transfer the weight of the slabs to the ground level (Figure 1b).100

A progressive damage pattern was induced in the test structure through four historical earth-101
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quake records, leading to 5 damage states S0 to S4 (Table 1). After each seismic excitation102

sequence, ambient vibration tests and low-amplitude white-noise base excitation tests were per-103

formed in order to obtain modal characteristics of the structure; the experimentally identified nat-104

ural frequencies and damping ratios of the first three longitudinal modes are listed in Table 2 for105

each damage state. The natural frequencies evidently decrease as the damage increases; the damp-106

ing ratios show no particular trend, most likely due to the fact that damping ratios generally cannot107

be measured with sufficient accuracy to allow for any statement regarding their values (Reynders108

et al. 2008). Figure 2 shows the corresponding employed mode shapes obtained at damage state S0109

using 28 sensors located along the main wall and on the floor slabs. Note that for the damage iden-110

tification, only the mode shape measurements obtained using 14 sensors located along the main111

wall are employed. In the following, experimental eigenvalues and mode shapes are denoted as112

λ̃r = (2πfexp,r)
2 and φ̃r ∈ R

No , respectively, where No represents the number of observed degrees113

of freedom. Both experimental data are collected in the vector d̃ = {. . . , λ̃r, . . . , φ̃
T
r , . . .}

T.114

These modal data are used in five consecutive damage analyses: for each damage state, Bayesian115

FE model updating is applied to quantify the uncertainties on the damage identification results. To116

this end, a detailed 3D linear elastic FE model was constructed with 322 shell and truss elements117

and Nd = 2418 degrees of freedom (Figure 3a), using the general-purpose FE analysis program118

FEDEASLab (Filippou and Constantinides 2004). In order to model the damage, the structure is119

divided into 10 substructures, each consisting of part of the main wall (Figure 3b). It is assumed120

that each substructure has a uniform effective stiffness (Young’s modulus); these stiffness values121

will be the updating parameters θM in the Bayesian updating schemes (see below). The stiffness122

values are effective stiffness values in the sense that they represent not only the true stiffness of123

a particular substructure, but are also affected by other elements that are not included in the pa-124

rameterization (e.g. characteristics of the floor slabs or flange wall). Initial values θinit
M of the 10125

Young’s moduli are obtained trough concrete cylinder testing at various heights along the building126

(Moaveni et al. 2010); these values will be used to represent the initial FE model in the updating127
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schemes:128

θinit
M =

[

24.5 24.5 26.0 26.0 34.8 34.8 30.2 28.9 32.1 33.5

]T

GPa (1)129

The FE model allows for the computation of the modal data as a function of the model pa-130

rameters θM, where the modal data consist of Nm eigenvalues λr and corresponding mode shapes131

φr ∈ R
Nd , which are the solutions of the (undamped) eigenvalue equation K(θM)Φ = MΦΛ,132

where K(θM) is the FE model stiffness matrix and M the mass matrix. Φ collects the eigenvectors133

φr corresponding to the eigenvalues λr located on the diagonal of Λ. In the Bayesian updating134

scheme, these computed modes are paired to the experimentally identified modes by means of the135

Modal Assurance Criterion (or MAC); furthermore, a least squares scaling factor is introduced in136

order to ensure that paired modes are scaled equally. The set of computed data for a certain model137

parameter set θM is referred to as GM(θM) in the following.138

BAYESIAN FE MODEL UPDATING139

The basic concept of Bayesian inference is that evidence (usually in the form of experimental140

observations) is used to update or re-infer the probability that a certain hypothesis is true. Important141

to note here is that Bayesian methods use the Bayesian interpretation of probability, which differs142

from the frequentist interpretation of probability. In the frequentist interpretation, probability is143

seen as a relative frequency of a certain event, whereas in the Bayesian interpretation, probability144

reflects the relative plausibility or degree of belief attributed to a certain event or proposition (here:145

a model in a model class), given the available information. In this interpretation – often termed the146

Cox-Jaynes interpretation (Jaynes 2003; Cox 1946) – probability can be seen as an extended logic,147

i.e. as an extension of a Boolean logic to a multi-valued logic for plausible inference.148

The next subsections present the Bayesian updating methodology used here, starting with some149

preliminary specifications of the basic framework concerning model classes and uncertainties.150
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Models and model classes151

In general terms, a model MM(θM) belonging to the model class MM provides a map from152

the parameters θM to an output vector d through the transfer operator GM:153

MM(θM) : GM(θM) = d (2)154

In the ideal case, the model output GM(θM) corresponds perfectly to the true system output155

d. This is the main starting point for deterministic model updating or parameter identification,156

where the objective is to determine the model parameters θM for a given set of observed system157

outputs d. However, Eq. (2) is only valid when it is assumed that the underlying fundamental158

physics of the system are fully known. This is of course never the case, as no model is capable of159

perfectly representing the behavior of the true physical system. A modeling error ηG is therefore160

always present, and can be described as the discrepancy between the model predictions GM(θM)161

and the true system output d, i.e. ηG = GM(θM) − d. In general, two forms of modeling error162

are distinguished: (1) model structure errors, caused for example by incorrect assumptions on163

the governing physical equations of the system (e.g. linearity instead of non-linearity) or by an164

insufficient model order, and (2) model parameter errors, caused by e.g. inaccurate geometric and165

material properties.166

As the true system output has to be measured and processed experimentally, the data d are167

always subject to measurement error. This error can be an aleatory random measurement or es-168

timation error, or can be a bias error caused by imperfections in the measurement equipment or169

the subsequent signal processing. This causes an additional source of discrepancy between the170

observed structure behavior d̃ and the real structure response d; this difference is defined as the171

measurement error ηD = d − d̃. Eliminating the unknown true system output d from the error172

equations and collecting both errors on the right hand side of the resulting equation yields:173

GM(θM)− d̃ = ηG + ηD = η (3)174
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The sum of both errors is equal to the total observed prediction error η, defined as the difference175

between the observed and predicted response quantities. This also implies that, when no informa-176

tion is available on the errors, there is no way to distinguish between measurement and modeling177

errors, as only the total observed prediction error can be identified. The above expressions serve178

as a starting point for the Bayesian uncertainty quantification method.179

Bayesian inference methodology180

The general principle behind Bayesian model updating is that the structural model parameters181

θM ∈ R
NM that parametrize model class MM are modeled as random variables, i.e. probability182

density functions (PDFs) are assigned to these parameters, which are then updated in the inference183

scheme based on the available information. Measurement and modeling uncertainty are taken into184

account by modeling the respective errors as random variables as well: PDFs are assigned to ηG185

and ηD, which are parametrized by parameters θG ∈ R
NG and θD ∈ R

ND . These parameters186

are added to the structural model parameters θM to form the general model parameter set θ =187

{θM, θG, θD}T ∈ R
N . This in fact corresponds to adding two probabilistic model classes to the188

structural model class MM to form a joint model class M = MM ×MG ×MD, parametrized by189

θ.190

It has to be noted here that introducing a probabilistic model for the errors is only one of sev-191

eral possible approaches for stochastic modeling of the uncertainties (Soize 2011); alternatively,192

one could revert to non-parametric approaches (Soize 2000) acting directly on the operators of the193

model, e.g., making use of random matrix theory (Mehta 2004), or so-called generalized proba-194

bilistic approaches (Soize 2010) that combine parametric and non-parametric approaches.195

To express the updated joint PDF of the unknown parameters θ, given some observations d̃196

and a certain joint model class M, Bayes’ theorem is used:197

p(θ | d̃,M) = c p(d̃ | θ,M) p(θ | M) (4)198

where p(θ|d̃,M) is the updated or posterior joint PDF of the model parameters given the measured199
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data d̃ and the assumed model class M; c is a normalizing constant (independent of θ) that ensures200

that the posterior PDF integrates to one; p(d̃|θ,M) is the PDF of the observed data given the201

parameters θ; and p(θ|M) is the initial or prior joint PDF of the parameters. In the following, the202

explicit dependence on the model class M is omitted in order to simplify the notations.203

Prior PDF204

The prior PDF p(θ) represents the probability distribution of the model parameters θ in the205

absence of observations or measurement results. In most cases, this PDF is chosen based on206

engineering judgment and the available prior information; alternatively, the Principle of Maximum207

Entropy (Jaynes 1957) provides an objective method to determine suitable prior PDFs that yield208

maximum uncertainty given the available information.209

Likelihood function210

The PDF of the experimental data p(d̃|θ) can be interpreted as a measure of how good a model211

succeeds in explaining the observations d̃. As this PDF also represents the likelihood of observing212

the data d̃ when the model is parameterized by θ, it is also referred to as the likelihood function213

L(θ|d̃). It reflects the contribution of the measured data d̃ in the determination of the updated PDF214

of the model parameters θ, and may be determined according to the Total Probability Theorem and215

Eq. (3) using the probabilistic models of the measurement and modeling errors:216

L(θ | d̃) ≡ p(d̃ | θ) =

∫

p(d | θ) p(d̃ | θ,d) dd (5)217

=

∫

pηD
(d− d̃; θD) pηG

(GM(θM)− d; θG) dd (6)218

where pηD
(d − d̃; θD) corresponds to the probability of obtaining a measurement error ηD, given219

the PDF of ηD parameterized by θD, and where pηG
(GM(θM)− d; θG) represents the probability220

of obtaining a modeling error ηG when the PDF of ηG is known and parameterized by θG. Here, it221

is implicitly assumed that the modeling error and measurement error are statistically independent222

variables.223

The above equations show that the likelihood function can be computed as the convolution224
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of the PDFs of the measurement and modeling error. When no information is available on the225

individual errors, as is most often the case, the likelihood function can be constructed using the226

probabilistic model of the total prediction error η (= GM(θM)− d̃), parameterized by θη:227

L(θ | d̃) ≡ p(d̃ | θ) = p(η; θη) (7)228

Prediction error model229

In some cases, a realistic estimate can be made concerning the probabilistic model represent-230

ing the prediction error, for instance based on the analysis of measurement results (Reynders et al.231

2008) or when information is available on the specific nature of the modeling and/or measurement232

error. In most practical applications, however, very little or no information is at hand regarding233

the characteristics of these errors. Then, it can be opted to make a reasonable assumption regard-234

ing the model class, and include the parameters of the probabilistic error model in the Bayesian235

scheme; additionally, several candidate model classes can be compared using Bayesian model class236

selection (Beck and Yuen 2004).237

Alternatively, assumptions can be made regarding both the total prediction error model class238

and the corresponding parameters, which means the parameter set in the Bayesian scheme reduces239

to θ = {θM} ∈ R
Nθ . Often, a zero-mean Gaussian prediction error characterized by a covariance240

matrix Ση is adopted, which means the likelihood function in Eq. (7) simplifies to a multivariate241

normal PDF :242

L(θ | d̃) ∝ exp

[

−
1

2
ηTΣ−1

η η

]

(8)243

Maximum likelihood estimate244

Maximizing, for example, the Gaussian (log) likelihood function in Eq. (8) is equivalent to245

solving the following optimization problem:246

θ̂ML = argmin
θ

{

1

2
ηTΣ−1

η η

}

(9)247
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where θ̂ML is the so-called Maximum Likelihood or ML estimate of the parameter set θ. For an248

uncorrelated prediction error, i.e. a diagonal covariance matrix Ση, the optimization problem in249

equation (9) corresponds to a weighted least squares optimization problem, while for a correlated250

prediction error it corresponds to a generalized least squares problem.251

Solving a least squares problem as stated in Eq. (9) in fact corresponds to solving a classical de-252

terministic FE model updating problem, as the objective function aims to minimize the discrepancy253

between model predictions and measured data. Note that the weights given to the discrepancies are254

inversely proportionate to the appointed error variances, which corresponds to giving more weight255

to more accurate data.256

Posterior PDF257

When the prior PDF and likelihood function are determined, Eq. (4) allows for the updating258

of the joint PDF of the model parameters θ based on experimental observations of the system.259

For most practical applications where multiple parameters are involved, computing the posterior260

joint and marginal PDFs requires solving high-dimensional integrals. Therefore use is often made261

of asymptotic expressions (Beck and Katafygiotis 1998; Papadimitriou et al. 1997) or sampling262

methods such as Markov Chain Monte Carlo (MCMC) methods (Gamerman 1997) and its deriva-263

tives, e.g. Delayed-Rejection Adaptive Metropolis-Hastings MCMC (Haario et al. 2001; Haario264

et al. 2006) and Transitional MCMC (Ching and Chen 2007).265

Link between prior PDF and regularization An interesting feature of the Bayesian scheme266

is that it provides a very natural way to regularize the ill-posed optimization problem described267

above. As mentioned above, maximizing the likelihood function corresponds to solving the un-268

regularized least squares problem. By maximizing the posterior PDF (in order to find the Maxi-269

mum A Posteriori or MAP estimate θ̂MAP), the prior PDF is included into this scheme, naturally270

introducing a regularization term into the corresponding deterministic optimization problem. For271

example, adopting a Gaussian likelihood function leads to the following expression for the MAP272
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estimate:273

θ̂MAP = argmin
θ

{JMAP} = argmin
θ

{

1

2
ηTΣ−1

η η − log p(θ)

}

(10)274

The second term in this equation corresponds to a Tikhonov-type regularization term, based on the275

prior information available. This clearly shows that the deterministic counterpart of the Bayesian276

inference scheme incorporates regularization in a natural way, without having to revert to re-277

parameterization or other standard regularization methods. Moreover, information contained in278

the prior PDF (e.g., positivity of the parameters) is automatically enforced in the deterministic279

optimization scheme. This will be illustrated below for the seven-story test structure.280

Bayesian FE model updating of the seven-story test structure281

To quantify the uncertainties in the multi-stage damage assessment of the seven-story building282

slice introduced above, the Bayesian inference method elaborated above is applied to this test case.283

As mentioned above, the employed structural response here consists of a number of modal char-284

acteristics identified from vibration data obtained at several damage states. The Bayesian updating285

scheme is performed for each of the considered damage states, starting with the undamaged state286

S0 in a first preliminary updating stage, where the initial values θinit in Eq. (1) are adopted as most287

probable prior point or Maximum A Priori (MAPr) estimate of the model parameters θ.288

For each of the next stages S1 to S4, it is proposed to adopt the Maximum A Posteriori (MAP)289

estimate of the model parameters obtained in the previous stage as MAPr estimate of the current290

stage. This is in accordance with the progressive damage pattern that was induced in the struc-291

ture: in each stage Sk, only data obtained in that particular damage state are used to compute the292

posterior PDF of θ, but as the structure was already damaged in the previous stage S(k − 1), it is293

plausible to adopt the MAP parameter values of the previous damage state as the maximum prior294

values of the current state. The posterior PDF of a stage Sk is not chosen as prior PDF for the next295

stage S(k + 1), as this would imply that data set Sk provides information on the structure in the296

damage state S(k + 1). Therefore, the peak values of the posterior PDF are used to construct the297

prior PDF of the following damage stage, but the shape of the prior PDFs is kept the same over298
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all damage states. Note that in this way, it is also avoided that very narrow PDFs are chosen for299

the prior PDFs, which could lead to biased results in the updating scheme. The general Bayesian300

updating scheme is summarized as follows:301

S0: The prior PDF p(θ; θinit) of the model parameters θ, parameterized by the fixed set θinit,302

is updated to a posterior PDF p(θ|d̃(S0)) through the likelihood function L(θ|d̃(S0)), which303

is constructed using the measured modal data d̃(S0) obtained in damage state S0:304

p(θ | d̃(S0)) ∝ p(θ; θinit) L(θ | d̃(S0)) (11)305

S1: In the next stage S1, the MAP estimate θ̂
(S0)
MAP obtained in S0 is adopted as maximum a306

priori estimate in the prior PDF of S1 (see below). To obtain the posterior PDF for this307

stage, the prior has to be multiplied with the likelihood function L(θ | d̃(S1)) which is308

constructed using modal data obtained in S1:309

p(θ | d̃(S1)) ∝ p(θ; θ̂
(S0)
MAP) L(θ | d̃(S1)) (12)310

Sk: This scheme is repeated for the next stages, such that for an arbitrary stage Sk the follow-311

ing updating equation is obtained:312

p(θ | d̃(Sk)) ∝ p(θ; θ̂
(S(k−1))
MAP ) L(θ | d̃(Sk)) (13)313

In the next subsections, it is discussed how the prior PDFs and likelihood functions are deter-314

mined for each damage state.315

Prior PDF316

The joint prior PDF for the model parameters θ is determined based on the Maximum Entropy317

Principle (Soize 2008). For multivariate cases, the Maximum Entropy principle always leads to318

independent prior variables, which means the joint prior PDF is constructed as the product of the319
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marginal prior PDFs. In order to determine suitable prior PDFs for the individual parameters, the320

available prior information has to be evaluated; a priori, it is known that the stiffness parameters321

have a positive support, and a given mean value µj . Furthermore, in order to ensure that the322

response attains finite variance, θj and 1/θj should be second order variables. It can be shown that323

given this prior information, the Maximum Entropy principle yields a Gamma-distribution (Soize324

2003), which leads to the following expression of the joint prior PDF for the first undamaged stage325

S0:326

p(θ; θinit) =

Nθ
∏

j=1

p(θj ; θ
init
j ) =

Nθ
∏

j=1

θ
αj−1
j

β
αj

j Γ(αj)
exp

(

−
θj
βj

)

(14)327

where shape factor αj (= µ2
j/σ

2
j = 1/COV2

j) and scale factor βj (= µj/αj) depend on the values328

of µj and σj assigned to parameter θj . The shape factor αj is only dependent on the corresponding329

coefficient of variation (COVj). It is expected that damage will cause large deviations from these330

measured initial values in lower stories, but smaller deviations in higher stories; therefore, the331

following values of COVj are proposed, for all damage states:332

COVj =











0.35 for j = 1, . . . , 3

0.25 for j = 4, . . . , 10
(15)333

The scale factor βj differs for each damage state, and will therefore be denoted as β
(Sk)
j for a334

particular damage state Sk. For the first damage state S0, β
(S0)
j is chosen such that the maximum a335

priori point (i.e., the mode of the prior PDF) corresponds to the initial value θinitj . This leads to the336

following expression for β
(S0)
j :337

β
(S0)
j =

θinitj COV2
j

1− COV2
j

(16)338

For a stage Sk (with k > 0), it is assumed that the MAP estimate θ̂
(S(k−1))
MAP of the previous damage339

stage S(k − 1) is used as most probable prior point of the current stage, which yields:340

β
(Sk)
j =

θ̂
(S(k−1))
MAP,j COV2

j

1− COV2
j

(17)341
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In Figure 4a, a contour plot is given of the marginal prior PDFs at S0; in Figure 4b, the marginal342

prior PDF at S0 is shown for substructure 1, with a MAPr value equal to θinit1 = 24.5 GPa (see343

Eq. (1)).344

Likelihood function345

For each damage stage, an uncorrelated zero-mean Gaussian prediction error is adopted:346

η(Sk) ∼ N (0,Σ(Sk)
η ) (18)347

where it is assumed that the covariance matrix Σ
(Sk)
η is known. As mentioned above, error param-348

eters could be included in the Bayesian scheme in an effort to estimate the total prediction error349

model (or the individual contributions of measurement and modeling error), but due to the rela-350

tively low data resolution it is opted here to simply assume a fixed prediction error model. In this351

test case, the prediction error η(Sk) represents the discrepancy between measured and computed352

eigenvalues and mode shapes:353

η(Sk) =







η
(Sk)
λ

η
(Sk)
φ






=
[

. . . , η
(Sk)
λ,r , . . . , η

(Sk)
φ,r,ℓ, . . .

]T

(19)354

where r = 1, . . . , Nm and ℓ = 1, . . . , No. The assumption of a zero mean value for η(Sk) corre-355

sponds to assuming that the computed values will on average be equal to the measured values. In356

order to construct the covariance matrices Σ
(Sk)
η , standard deviations are proposed for the eigen-357

value and mode shape discrepancies. For the eigenvalues discrepancies η
(Sk)
λ,r , it is assumed that the358

standard deviations are proportionate to the measured values:359

η
(Sk)
λ,r ∼ N

(

0, c2λ,r(λ̃
(Sk)
r )2

)

(20)360

In this way, the values of cλ,r can be interpreted as appointed coefficients of variation. For the mode361

shape components, a slightly different strategy is adopted in order to avoid assigning extremely362
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small standard deviations to components with measured values close to zero. Instead, for each363

mode shape component ℓ of a mode r, the same standard deviation is assumed proportionate to the364

norm of mode shape r, such that:365

η
(Sk)
φ,r,ℓ ∼ N

(

0, c2φ,r ‖ φ̃(Sk)
r ‖2

)

(21)366

The values of cλ,r and cφ,r reflect the magnitude of the combined modeling and measurement error.367

In this particular case, however, only limited information is available regarding the measurement368

error, in the form of observed variabilities of identified natural frequencies using different system369

identification methods and ambient vibration tests (Moaveni et al. 2011; Moaveni et al. 2012).370

Based on these studies and engineering judgment, the following values for cλ,r and cφ,r are371

proposed for the three experimentally identified modes, for all damage states:372

cλ = cφ =

[

0.069 0.150 0.100

]

(22)373

Using the expressions in Eqs. (8), (20) and (21), the likelihood function for a single data set374

d̃(Sk) can now be written as:375

L(θ | d̃(Sk)) ∝ exp

[

−
1

2
(η(Sk))T(Σ(Sk)

η )−1(η(Sk))

]

= exp

[

−
1

2
JML(θ, d̃

(Sk))

]

(23)376

where JML(θ, d̃
(Sk)) is the ML objective function (often also referred to as the misfit function):377

JML(θ, d̃
(Sk)) =

Nm
∑

r=1

1

c2λ,r

(λr(θ)− λ̃
(Sk)
r )2

(λ̃
(Sk)
r )2

+
Nm
∑

r=1

1

c2φ,r

‖ φr(θ)− φ̃
(Sk)
r ‖2

‖ φ̃
(Sk)
r ‖2

(24)378

MAP estimate and deterministic updating379

As mentioned above, the MAP objective function defined in Eq. (10) can be adopted to obtain380

a deterministic objective function that incorporates all available information, and allows for auto-381

matic regularization based on the prior information. For the seven-story test structure, the MAP382
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objective function for a damage state Sk is constructed according to Eq. (10) as:383

JMAP(θ, d̃
(Sk)) =

1

2
(η(Sk))T(Σ(Sk)

η )−1(η(Sk))− log p(θ; θ̂
(S(k−1))
MAP ) =

1

2
JML(θ, d̃

(Sk)) + J
(Sk)
MAPr

(25)384

The first term in this objective function corresponds to the standard least squares objective385

function elaborated above, and it can be easily verified that the second term acts as a regularization386

term. Elaborating J
(Sk)
MAPr for the seven-story structure yields (up to a constant term):387

J
(Sk)
MAPr =

Nθ
∑

j=1

(

θj

β
(Sk)
j

+ (1− αj) log θj

)

(26)388

It is clear that the first term in the above equation corresponds to a weighted L1 regularization term,389

which encourages sparsity of the parameter vector such that only the most relevant parameters390

remain. The second term acts as a barrier function which enforces the constraint of positivity on391

the model parameters θ, as the factor (1−αj) is here always negative and the corresponding second392

term therefore pushes the solution for θj away from zero in the positive direction. This clearly393

illustrates that the term J
(Sk)
MAPr (or − log p(θ) in general) can be interpreted as a regularization394

term which is based only on the available prior information and avoids having to revert to other395

standard regularization approaches. Furthermore, constraints contained in the prior information396

are automatically enforced, which bypasses the need for explicit definition of constraints in the397

optimization scheme, simplifying the implementation substantially. Therefore, it can be stated398

that, especially in combination with the Maximum Entropy principle, this approach constitutes399

a general and rigorous way to determine a suitable objective function in deterministic FE model400

updating problems.401

Note that the deterministic model updating results can be employed to validate the MAP results402

of the Bayesian scheme obtained through e.g. MCMC simulation. In this context, it is interesting403

to note that the Hessian of the objective function (evaluated in the optimum) can be shown to be404

an asymptotic approximation of the inverse posterior covariance matrix of the updating parameters405
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(Beck and Katafygiotis 1998; Papadimitriou et al. 1997). Since in many optimization algorithms,406

the Hessian is computed as a by-product in the optimization of the problem defined in Eq. (10), this407

provides an additional means of validating results or a way to perform an initial reconnaissance of408

the posterior updating results.409

Results of the Bayesian updating scheme410

For each damage stage, the joint posterior PDF of the model parameters θ was sampled using411

the Adaptive Metropolis-Hastings MCMC method (Haario et al. 2001). Several convergence412

measures (i.e. running mean values, running standard deviations and running correlation between413

samples) showed that for all damage states, convergence was reached after 200 000 samples. The414

marginal posterior PDFs were obtained by kernel smoothing density estimation.415

Results for damage state S0 The normalized marginal posterior PDFs for S0 are shown in Fig-416

ure 5; Table 3 reports the corresponding MAP estimate, and the mean value, standard deviation and417

coefficient of variation for each of the marginal PDFs. Also found in this table are the MAP values418

as obtained through minimization of the MAP objective function defined in Eq. (25); the uncon-419

strained optimization is performed in Matlab using a local gradient-based optimization algorithm420

through the standard Matlab routine fminunc.421

Comparing the MAP estimates θMAP
opt and θMAP

MCMC as obtained through the deterministic opti-422

mization and the MCMC scheme, respectively, it is found that the values are very similar but not423

identical. Examination of the MAP residuals (i.e. J
(S0)
MAP, J

(S0)
ML and J

(S0)
MAPr evaluated at the MAP424

estimates) confirms that both MAP estimates are in fact very close, exhibiting residuals differing425

by less than 0.1%, although the MAP estimate obtained from the deterministic updating routine al-426

ways results in smaller residuals (J
(S0)
MAP,opt = −301.5 and J

(S0)
MAP,MCMC = −301.2). This difference427

is most likely explained by the fact that the estimates are obtained through algorithms with very428

different objectives. The gradient-based optimization routine is specifically designed to find the429

MAP estimate, whereas the sampling method randomly searches the whole parameter space and is430

therefore sometimes less effective and less accurate in finding the global optimum.431

18 E. Simoen



Furthermore, it is found that the MAP objective function in this case exhibits non-smooth be-432

havior (most likely due to mode shape matching), which implies that the joint posterior PDF is433

most likely not peaked at a single point but rather exhibits many local maxima of similar prob-434

ability, making this a locally identifiable case (Katafygiotis and Beck 1998; Yuen 2010a). This435

situation is commonly encountered in Bayesian updating applications, and here further explains436

the difference between the two obtained MAP estimates. In the following, only the MCMC results437

are discussed in further detail.438

When examining the MAP-estimate and posterior mean values, it is clear that the effective439

stiffness in the undamaged state of the building was initially underestimated in most substructures,440

except for the bottom substructure 1, which shows a low value compared to the initial value θinit1 .441

Furthermore, among all the stiffness parameters, this bottom substructure stiffness is best identified442

from the data and prior information, as the COV is reduced from 35% to about 24%. For the top443

seven substructures, the uncertainty is reduced only to a very limited extent below the prior COV444

of 25%: the posterior COV-values range from 23% to 24.8%. In Figure 6, the normalized prior445

and posterior marginal PDFs are compared for substructures 1 and 5, which immediately confirms446

these findings: the posterior PDF for the bottom substructure has become much narrower, whereas447

for substructure 5 the posterior PDF is practically the same as the prior PDF. It should be noted448

here that it is apparent that both posterior PDFs are not Gaussian, which implies that mean values,449

standard deviations and associated COV values should be interpreted with appropriate care.450

Results for damage states S1 to S4 In Figures 7a–7d, contour plots of the posterior marginal451

PDFs of the effective stiffness parameters θM are shown for damage states S1 to S4. The MAP-452

estimates (obtained through MCMC) of the stiffness values are compared in Figure 8 for all dam-453

age states, the corresponding values are reported in Table 4, together with the posterior marginal454

coefficients of variation.455

The MAP stiffness values generally reduce as the damage increases, especially the stiffness456

in the bottom substructures – where the actual damage from the shake table tests is concentrated.457
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The most drastic stiffness reduction occurs for substructure 1, where the MAP stiffness at S4458

decreases to about 1 GPa due to the very high level of damage. For some substructures, sometimes459

a small increase in MAP stiffness is found for a higher damage state, which is most likely caused460

by insensitivity of the model predictions to changes in these parameter values, resulting in the461

identifiability issues discussed above. This is corroborated by the fact that the posterior uncertainty462

regarding these substructures remains largely the same over all damage states.463

The significantly decreased stiffness value for substructure 7 in damage state S4 was also464

observed in the previously performed deterministic damage identification study (Moaveni et al.465

2010), where it was determined to be a false alarm. Most likely the low stiffness value is explained466

by the fact that the updating parameters will also account for damage in other structural elements467

that are not included in the updating scheme, such as the floor slabs or the flange wall. Note also468

the increased stiffness values in adjacent substructure 8, which most likely compensate for the469

stiffness decrease observed in substructure 7.470

Overall, the lower part of the structure (substructures 1–3) shows a larger COV reduction com-471

pared to the top substructures, especially in states S0 and S1, and particularly for the bottom472

substructure, where the posterior COV is even reduced to about half of the prior COV in S4. These473

observations are most likely explained by considering modal curvatures: firstly, the lower sec-474

tion of the structure is in any case subjected to higher modal curvatures, meaning the modal data475

are more sensitive to local stiffness changes and thus provide more information for the updating476

scheme in these areas. Moreover, structural damage results in an additional increase in modal cur-477

vature, explaining the substantial uncertainty reduction in the most damaged bottom substructure478

1. This also implies that, as the damage increases, the data become relatively less informative re-479

garding substructures with less extensive damage. Examining the posterior COV-values for higher480

damage levels S3 and S4 confirms this statement: for substructures 2–10 the uncertainty no longer481

reduces, and sometimes even increases slightly due to this effect.482

All these findings indicate that the available data are not always as informative regarding the483

chosen model parameters. This also implies that the available prior information plays an important484
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role in the results obtained through the Bayesian inference scheme. In order to confirm these state-485

ments and to obtain more insight into the underlying causes of these findings, a detailed resolution486

and uncertainty analysis may be carried out, as presented in the next section.487

RESOLUTION ANALYSIS488

The first step in a resolution analysis typically consists in determining quantities such as MAP489

estimates, posterior mean values and standard deviations, which yield basic insight into the resolu-490

tion of the parameters. However, standard deviations do not provide information regarding possible491

correlations between parameters, therefore the prior and posterior covariance matrices, denoted as492

Spr and Spo respectively, may be calculated to this end. Usually, the off-diagonal correlation val-493

ues are most easily interpreted and compared by computing the prior and posterior correlation494

coefficient matrices.495

To further investigate the resolution of (combinations of) the parameters, one could revert to496

Principal Component Analysis (PCA), where the correlated posterior variables are transformed to497

a set of mutually orthogonal (uncorrelated) variables by transforming the posterior data to a new498

orthogonal coordinate system. The coordinates of this new system are termed the principal com-499

ponents. The transformation is done in such a way that the first principal component corresponds500

to a direction in the parameter space that exhibits the largest variability in the posterior data; in501

other words, the principal components correspond to linear combinations of the original variables502

(or parameters) ranked according to decreasing posterior variance. The principal components cor-503

respond to the set of eigenvectors of the posterior covariance matrix Spo. The eigenvectors are504

ranked according to increasing associated eigenvalue, which corresponds to increasing posterior505

variance.506

Although PCA is an interesting technique to investigate the posterior resolution of the param-507

eters in the parameter space, it does not take into account any information contained in the prior508

information. This is why several authors (Tarantola 2005; Duijndam 1988) propose to examine509
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instead the solution of the following extended eigenvalue problem:510

SpoX = ΛSprX (27)511

It can be shown that the eigenvectors in X correspond to mutually orthogonal directions in the512

parameter space ranked according to decreasing reduction from prior to posterior variance, when513

ranked according to increasing eigenvalue. Each eigenvalue gives a measure for the ratio of pos-514

terior to prior variance in the corresponding direction in the parameter space, which means that515

the eigenvector associated with the smallest eigenvalue corresponds to a direction in the parameter516

space that shows the largest reduction from prior to posterior variance. In other words, the values517

of the eigenvalues express the relative degree of the reduction from prior to posterior variance in518

the principal directions in the parameter space.519

Relation to information entropy520

The information entropy is often used as a measure of the resulting uncertainty in the Bayesian521

estimates of the model parameters (Papadimitriou et al. 2000). For the posterior PDF, it is defined522

as:523

h(θ) = E [− log p(θ|d)] (28)524

Under certain asymptotic conditions (i.e. global identifiability (Katafygiotis and Beck 1998),525

or availability of a large amount of data compared to the prior information, such that the posterior526

PDF can be approximated by a Gaussian PDF around the ML or MAP point), the information527

entropy can be approximated as (Papadimitriou 2004):528

h(θ) ≈
1

2
N log(2πe)−

1

2
log
[

detQ(θ̂ML)
]

(29)529

where Q denotes the Fisher Information Matrix (FIM), evaluated at the maximum likelihood point530

θ̂ML. The FIM is equal to the negative of the Hessian of the log likelihood, and it can be shown531

that this Hessian is (approximately) equal to the negative inverse of the posterior covariance matrix532
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(Papadimitriou et al. 1997). This in fact corresponds to assuming that the posterior PDF can533

be asymptotically approximated by a Gaussian PDF centered at the MAP or ML point, with a534

posterior covariance matrix Spo, as the entropy expression in Eq. (29) can be reformulated as:535

h(θ) ≈
1

2
log
[

(2πe)N detSpo

]

(30)536

which can be recognized as the information entropy of a multivariate Gaussian PDF.537

The entropy discrepancy ∆h may be computed as a measure of the information that was gained538

from the observations. It is a non-negative scalar (as adding information always leads to decreasing539

entropy) which is defined as:540

∆h = hpr − hpo (31)541

Using the approximative entropy expression in Eq. (29), the following approximation for the542

entropy discrepancy is obtained:543

∆h ≈ −
1

2
log det

(

S−1
pr Spo

)

= −
1

2

Nθ
∑

k=1

log λk (32)544

where λk are the eigenvalues of the eigenvalue problem defined in Eq. (27). This means that545

by computing the values dk = −1
2
log λk corresponding to the eigenvectors (or directions in the546

parameter space) Xk, the relative contribution of the different directions to the total resolution can547

be quantified.548

Resolution analysis for the seven-story test structure549

The posterior correlation coefficient matrix for the substructure stiffnesses is shown in Figure550

9a for damage state S0, from which it can be deduced that, in contrast to the prior situation, the551

model parameters are a posteriori no longer independent variables. However, the correlations552

between the model parameters generally remain very limited, except for the bottom substructures553

where correlation coefficients of −0.42 are attained. Note that the occurring correlations are mostly554

negative, which is to be expected as contrasting stiffnesses (i.e. high in one and low in the other)555
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in (adjacent) substructures would explain the data almost equally well.556

In Figure 9b, the first and last two (normalized) eigenvectors or parameter combinations are557

shown, corresponding to the best and worst resolved directions in the parameter space. It is clear558

that the best resolved parameter combination contains predominantly the first substructure stiff-559

ness, whereas the two worst resolved directions contain all seven of the top substructure stiffness560

values. This is in very good agreement with the previously discussed results. By examining the561

eigenvalues associated with these eigenvectors, their relative contributions to the total resolution562

can be quantified in terms of entropy reduction. In this case, the total entropy reduction ∆h equals563

1.21, of which a part of (−1/2 log λ1 =) 0.92 or 76% is contributed by reduction in the direction564

X1. Directions X9 and X10 together contribute a mere 0.04% to the total entropy reduction, which565

also confirms the results found above. Note that, even though the conditions for using the approxi-566

mate entropy expressions may not be completely fulfilled for this particular case study, the entropy567

analysis yields important insights into the resolution of the different parameter combinations.568

For damage states S1 to S3, very similar results are found. In Figure 10a, the posterior cor-569

relation coefficient matrix is shown for damage state S4, and in Figure 10b, the best and two570

worst resolved directions in the parameter space are displayed. The negative correlations between571

adjacent substructures 6–9 , and especially between substructures 7 and 8 (ρ7,8 = −0.46) are im-572

mediately apparent; substructure 7 even shows a negative correlation with all other substructures.573

This corresponds to the observations made above regarding the false alarm and compensation by574

substructure 8.575

The eigenvector analysis confirms that the effective stiffness of substructure 1 is by far the best576

resolved feature, accounting for almost 80% of the entropy reduction through the data in dam-577

age state S4. Furthermore, the worst resolved parameter directions encompass almost all other578

substructures, especially substructures 6–8, indicating that very little information about these pa-579

rameters can be obtained from the data used in this study. Therefore, large uncertainty remains580

associated with the false alarm detected in the previous analyses.581

It is confirmed that the worst resolved features incorporate the top substructures 4–10 for all582
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damage states, which indicates that the FE model of the seven-story test building is most likely583

over-parameterized, as the data appears to contain very little to no information regarding these top584

seven parameters.585

CONCLUSIONS586

In this paper, Bayesian linear FE model updating is used for uncertainty quantification in the587

assessment of progressive damage in a seven-story reinforced concrete building slice subjected to588

seismic tests on the USCSD-NEES shake table. To this end, experimentally identified modal data589

obtained in five different damage states are employed. In the Bayesian FE model updating ap-590

proach, a zero-mean uncorrelated Gaussian prediction error is assumed, and to construct the prior591

PDFs, the Maximum A Posteriori (MAP) estimate of a certain damage state is adopted as the Max-592

imum A Priori estimate of the next damage state. The posterior joint PDF of the substructure stiff-593

ness parameters is estimated using a MCMC approach and the MAP results are validated through594

a deterministic updating scheme based on the Bayesian approach. The results of the Bayesian FE595

model updating scheme are assessed further by performing a detailed resolution analysis, which596

allows for improved insight into which (and to what extent) characteristics of the damaged struc-597

ture are resolved through the Bayesian scheme using the identified modal data. Furthermore, it is598

shown how the incorporation of prior information relates to the regularization of the corresponding599

deterministic FE model updating problem.600

Overall, the Bayesian approach succeeded in identifying the damage in the seven-story struc-601

ture and in quantifying the corresponding uncertainties at all damage states. It was found that602

the data contain little information concerning the top stories of the building, as the uncertainty603

on the stiffness parameters representing this area could not be reduced through the observed data.604

This was confirmed by a detailed resolution analysis, which showed that parameter combinations605

containing the upper seven substructures were always least resolved by the available data. How-606

ever, the lower substructures, and the bottom substructure 1 in particular, are well resolved by the607

data, most likely due to the higher damage level and higher modal curvatures in these areas of the608

structure.609

25 E. Simoen



These findings lead to the conclusion that for this structure, damage can be detected (SHM610

Level 1 (Rytter 1993)) effectively, but that for the purpose of reducing the uncertainty regarding611

damage quantification and localization (SHM levels 2–3) in the upper stories, more elaborate ex-612

perimental data are desirable. This can be accomplished by increasing the number of mode shapes613

and/or measurement DOFs, or by including other types of modal data such as modal strains.614

REFERENCES615

Beck, J. and Au, S.-K. (2002). “Bayesian updating of structural models and reliability using616

Markov Chain Monte Carlo simulation.” ASCE Journal of Engineering Mechanics, 128(4), 380–617

391.618

Beck, J. and Katafygiotis, L. (1998). “Updating models and their uncertainties. I: Bayesian statis-619

tical framework.” ASCE Journal of Engineering Mechanics, 124(4), 455–461.620

Beck, J. and Yuen, K.-V. (2004). “Model selection using response measurements: Bayesian prob-621

abilistic approach.” ASCE Journal of Engineering Mechanics, 130(2), 192–203.622

Box, G. and Tiao, G. (1973). Bayesian inference in statistical analysis. Addison-Wesley.623

Ching, J. and Chen, Y.-C. (2007). “Transitional Markov Chain Monte Carlo method for Bayesian624

model updating, model class selection, and model averaging.” ASCE Journal of Engineering625

Mechanics, 133(7), 816–832.626

Cox, R. (1946). “Probability, frequency and reasonable expectation.” American Journal of Physics,627

14(1), 1–13.628

Duijndam, A. (1988). “Bayesian estimation in seismic inversion. Part II: Uncertainty analysis.”629

Geophysical Prospecting, 36(8), 899–918.630

Filippou, F. and Constantinides, M. (2004). “Fedeaslab getting started guide and simulation exam-631

ples.” Technical report NEESgrid-2004-22, <http://fedeaslab.berkeley.edu>.632

Friswell, M. and Mottershead, J. (1995). Finite element model updating in structural dynamics.633

Kluwer Academic Publishers, Dordrecht, The Netherlands.634

Gamerman, D. (1997). Markov Chain Monte Carlo: stochastic simulation for Bayesian inference.635

Chapman & Hall, London.636

26 E. Simoen



Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). “DRAM: Efficient adaptive MCMC.”637

Statistics and Computing, 16(4), 339–354.638

Haario, H., Saksman, E., and Tamminen, J. (2001). “An adaptive Metropolis algorithm.”639

Bernouilli, 7(2), 223–242.640

Heylen, W., Lammens, S., and Sas, P. (1997). Modal analysis theory and testing. Department of641

Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.642

Jaynes, E. (1957). “Information theory and statistical mechanics.” The Physical Review, 106(4),643

620–630.644

Jaynes, E. (2003). Probability Theory. The Logic of Science. Cambridge University Press, Cam-645

bridge, UK.646

Katafygiotis, L. and Beck, J. (1998). “Updating models and their uncertainties. II: Model identifi-647

ability.” ASCE Journal of Engineering Mechanics, 124(4), 463–467.648

Mehta, M. (2004). Random Matrices. Elsevier, San Diego, CA, 3rd edition.649

Moaveni, B., Barbosa, A., Conte, J., and Hemez, F. (2007). “Uncertainty analysis of modal param-650

eters obtained from three system identification methods.” Proceedings of IMAC-XXV, Interna-651

tional Conference on Modal Analysis, Orlando, Florida, USA (February).652

Moaveni, B., Conte, J., and Hemez, F. (2009). “Uncertainty and sensitivity analysis of damage653

identification results obtained using finite element model updating.” Computer-Aided Civil and654

Infrastructure Engineering, 24(5), 320–334.655

Moaveni, B., He, X., Conte, J., and Restrepo, J. (2010). “Damage identification study of a seven-656

story full-scale building slice tested on the UCSD-NEES shake table.” Structural Safety, 32,657

347–356.658

Moaveni, B., He, X., Conte, J., Restrepo, J., and Panagiotou, M. (2011). “System identification659

study of a 7-story full-scale building slice tested on the USCD-NEES shake table.” ASCE Jour-660

nal of Engineering Mechanics, 137(6), 705–717.661

Moaveni, B., Barbosa, A.R., Conte, J.P. and Hemez, F. (2012). “Uncertainty analysis of system662

identification results obtained for a seven story building slice tested on the UCSD-NEES shake663

27 E. Simoen



table.” Structural Control and Health Monitoring, under review.664

Mosegaard, K. and Tarantola, A. (1995). “Monte Carlo sampling of solutions to inverse problems.”665

Journal of Geophysical Research, 100, 12431–12447.666

Mottershead, J. and Friswell, M. (1993). “Model updating in structural dynamics: a survey.” Jour-667

nal of Sound and Vibration, 167(2), 347–375.668

Muto, M. and Beck, J. (2008). “Bayesian updating and model class selection for hysteretic struc-669

tural models using stochastic simulation.” Journal of Vibration and Control, 14(1–2), 7–34.670

Panagiotou, M., Restrepo, J., and Conte, J. (2011). “Shake table test of a full-scale 7-story building671

slice. Phase I: rectangular wall.” ASCE Journal of Structural Engineering, 137(6), 691–704.672

Papadimitriou, C. (2004). “Optimal sensor placement for parametric identification of structural673

systems.” Journal of Sound and Vibration, 278, 923–947.674

Papadimitriou, C., Beck, J., and Au, S. (2000). “Entropy-based optimal sensor location for struc-675

tural model updating.” Journal of Vibration and Control, 6(5), 781–800.676

Papadimitriou, C., Beck, J., and Katafygiotis, L. (1997). “Asymptotic expansions for reliability and677

moments of uncertain systems.” ASCE Journal of Engineering Mechanics, 123(12), 1219–1229.678

Peeters, B. and De Roeck, G. (2001). “Stochastic system identification for operational modal anal-679

ysis: A review.” ASME Journal of Dynamic Systems, Measurement, and Control, 123(4), 659–680

667.681

Reynders, E. and De Roeck, G. (2008). “Reference-based combined deterministic-stochastic sub-682

space identification for experimental and operational modal analysis.” Mechanical Systems and683

Signal Processing, 22(3), 617–637.684

Reynders, E., Pintelon, R., and De Roeck, G. (2008). “Uncertainty bounds on modal parameters685

obtained from Stochastic Subspace Identification.” Mechanical Systems and Signal Processing,686

22(4), 948–969.687

Rytter, A. (1993). “Vibration based inspection of civil engineering structures.” Ph.D. thesis, Aal-688

borg University, Aalborg University.689

Schevenels, M., Lombaert, G., Degrande, G., and François, S. (2008). “A probabilistic assessment690

28 E. Simoen



of resolution in the SASW test and its impact on the prediction of ground vibrations.” Geophys-691

ical Journal International, 172(1), 262–275.692

Sibilio, E., Ciampoli, M., and Beck, J. (2007). “Structural health monitoring by Bayesian upating.”693

Proceedings of the ECCOMAS Thematic Conference on Computational Methods in Structural694

Dynamics and Earthquake Engineering, Rethymno, Crete, Greece (June).695

Sohn, H. and Law, K. (1997). “A Bayesian probabilistic approach for structure damage detection.”696

Earthquake Engineering and Structural Dynamics, 26(12), 1259–1281.697

Soize, C. (2000). “A nonparametric model of random uncertainties for reduced matrix models in698

structural dynamics.” Probabilistic Engineering Mechanics, 15, 277–294.699

Soize, C. (2003). “Probabilités et modélisation des incertitudes: éléments de base et concepts700
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TABLE 1: The five damage states and corresponding imposed historical earthquake records.

Damage Earthquake record

state Earthquake Component Recorded at M

S0 None - - -

S1 1971 San Fernando longitudinal Van Nuys 6.6

S2 1971 San Fernando transversal Van Nuys 6.6

S3 1994 Northridge longitudinal Oxnard Blvd. 6.7

S4 1994 Northridge 360 degree Oxnard Blvd. 6.7
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TABLE 2: Experimentally identified natural frequencies and damping ratios for the five damage

states.

Damage fexp [Hz] ξexp [%]

state Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

S0 1.91 10.51 24.51 2.3 2.4 0.5

S1 1.88 10.21 24.31 2.9 2.7 0.6

S2 1.67 10.16 22.60 1.3 1.4 0.9

S3 1.44 9.23 21.82 2.7 1.3 1.4

S4 1.02 5.67 15.10 1.0 1.7 1.0
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TABLE 3: Initial values, MAP estimates obtained through deterministic updating and MCMC,

posterior mean values µ, standard deviations σ and coefficients of variation (COV) for S0.

Sub- S0 [GPa]

structure θinit θMAP
opt θMAP

MCMC µ(σ) COV [%]

1 24.50 19.71 20.91 21.33 (5.10) 23.9

2 24.50 25.05 24.83 27.41 (8.77) 32.0

3 26.00 28.74 27.87 31.56 (9.86) 31.3

4 26.00 26.52 27.79 28.07 (6.75) 24.0

5 34.80 35.07 36.06 37.23 (9.25) 24.8

6 34.80 36.18 32.56 38.12 (9.19) 24.1

7 30.20 31.96 29.14 33.43 (7.69) 23.0

8 28.90 28.73 31.53 31.42 (7.26) 23.1

9 32.10 31.81 32.67 35.14 (8.33) 23.7

10 33.50 33.61 33.12 36.05 (8.93) 24.8
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TABLE 4: MAP-values and coefficients of variation (COV) for the 10 substructure stiffnesses, for

all damage states.

Sub- S0 S1 S2 S3 S4

structure MAP COV MAP COV MAP COV MAP COV MAP COV

[GPa] [%] [GPa] [%] [GPa] [%] [GPa] [%] [GPa] [%]

1 20.91 23.9 19.56 23.1 12.66 24.4 7.96 22.7 1.16 19.1

2 24.83 32.0 25.92 33.0 25.92 38.3 21.61 40.1 20.53 37.7

3 27.87 31.3 26.17 31.7 23.97 35.6 18.43 40.8 17.80 40.9

4 27.79 24.1 28.36 24.3 30.12 25.0 30.04 25.9 25.81 27.0

5 36.06 24.8 36.06 24.7 37.03 25.4 33.70 25.3 29.94 27.6

6 32.56 24.1 32.36 24.3 31.27 24.6 28.80 24.9 25.82 29.0

7 29.14 23.0 30.35 23.2 29.40 23.4 28.43 24.6 9.68 36.2

8 31.53 23.1 32.68 23.2 35.44 22.5 39.10 24.0 30.18 32.7

9 32.67 23.7 33.06 22.9 33.94 22.7 36.49 24.5 35.07 27.3

10 33.12 24.8 33.01 24.0 36.53 24.3 33.13 25.4 31.18 25.8
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(a) (b)

FIG. 1: (a) Seven-story test structure and (b) elevation view.
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FIG. 2: First three longitudinal mode shapes obtained at damage state S0.
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(a) (b)

FIG. 3: (a) FE model of the seven-story test structure and (b) definition of the substructures along

the main wall.
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FIG. 4: (a) Contour plot of the normalized marginal prior PDFs and (b) marginal prior PDF for

substructure 1, for damage state S0.
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FIG. 5: Contour plot of the normalized marginal posterior PDFs for all substructures, for damage

state S0.
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FIG. 6: Normalized marginal prior PDF (dashed line) and posterior PDF (solid line) for (a) sub-

structure 1 and (b) substructure 5, for damage state S0.
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(d) S4

FIG. 7: Contour plot of the normalized marginal posterior PDFs for all substructures, for damage

states S1 to S4.
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FIG. 8: Initial stiffness values θinit and MAP stiffness values for all damage states.
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FIG. 9: (a) Visualization of posterior correlation coefficient matrix where the relative size of the

symbols represents the value of the negative (◦) and positive (�) correlation coefficients, and (b)

the best (X1) and two worst (X9 and X10) resolved parameter combinations, for damage state S0.
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FIG. 10: (a) Visualization of posterior correlation coefficient matrix where the relative size of the

symbols represents the value of the negative (◦) and positive (�) correlation coefficients and (b)

the best (X1) and two worst (X9 and X10) resolved parameter combinations, for damage state S4.
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